JP2005195145A - Gas control valve and fuel cell power generation system - Google Patents

Gas control valve and fuel cell power generation system Download PDF

Info

Publication number
JP2005195145A
JP2005195145A JP2004004325A JP2004004325A JP2005195145A JP 2005195145 A JP2005195145 A JP 2005195145A JP 2004004325 A JP2004004325 A JP 2004004325A JP 2004004325 A JP2004004325 A JP 2004004325A JP 2005195145 A JP2005195145 A JP 2005195145A
Authority
JP
Japan
Prior art keywords
gas
pressure
receiving member
chamber
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004004325A
Other languages
Japanese (ja)
Inventor
Kenji Kurita
健志 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2004004325A priority Critical patent/JP2005195145A/en
Publication of JP2005195145A publication Critical patent/JP2005195145A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Details Of Valves (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas control valve and a fuel cell power generation system advantageous to downsizing. <P>SOLUTION: The gas control valve 1 is equipped with a primary side passage 61; a secondary side passage 71; a pressure receiving member 3; a throttle opening variable mechanism 4 having a throttle opening L, throttling gas flow rate on the primary side passage 61 by the throttle opening L and supplying the gas flow rate to the secondary side passage 71; and an elastic member 7 exerting energizing force energizing the pressure receiving member 3. The pressure receiving member 3 is arranged in a storage chamber 20 of a body 2, and partitions the storage chamber 20 into a first chamber 21 communicated with the secondary side passage 71 and a second chamber 22 not communicated with the secondary side passage 71. The pressure receiving member 3 is deformed along with reception of pressure of gas in the first chamber 21, and has a structure stretchable in the directions (arrowheads Y1, Y2 directions) where the pressure receiving member 3 is deformed along with the reception of the pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、受圧に伴い絞り開度を調整する受圧部材を有するガス制御バルブ、このガス制御バルブを有する燃料電池発電システムに関する。   The present invention relates to a gas control valve having a pressure receiving member that adjusts a throttle opening according to pressure reception, and a fuel cell power generation system having the gas control valve.

従来、気体用バルブとして、収容室をもつボディと、ボディの収容室を第1室と第2室とに区画する変形可能な膜状のダイヤフラムと、ガスが供給される1次側通路である高圧通路と、2次側通路である低圧通路と、高圧通路と低圧通路との間に設けられた絞り孔と絞り孔を開閉する可動バルブ体とをもち可動バルブ体により絞り孔の絞り開度を調整する絞り開度可変機構と、絞り開度可変機構の絞り開度を増加させる方向にダイヤフラムを付勢する付勢力を発揮するコイルバネとを備えているものが知られている(特許文献1)。   Conventionally, as a gas valve, a body having a housing chamber, a deformable membrane diaphragm that partitions the body housing chamber into a first chamber and a second chamber, and a primary passage to which gas is supplied. The movable valve body has a high-pressure passage, a low-pressure passage that is a secondary passage, a throttle hole provided between the high-pressure passage and the low-pressure passage, and a movable valve body that opens and closes the throttle hole. There is known one that includes a variable aperture opening mechanism that adjusts the aperture and a coil spring that exerts a biasing force that biases the diaphragm in a direction that increases the throttle opening of the variable aperture opening mechanism (Patent Document 1). ).

この気体用バルブは、燃料電池用のガス流路にも使用できると記載されている。この気体用バルブによれば、高圧通路のガスが絞り孔で絞られて低圧通路に至る。低圧通路の圧力が増加すると、膜状のダイヤフラムの受圧力が増加してダイヤフラムが変形し、可動バルブ体が絞り孔の開度を減少させる方向に動作し、低圧通路の圧力の増加が抑制される。   It is described that this gas valve can also be used for a gas flow path for a fuel cell. According to this gas valve, the gas in the high-pressure passage is restricted by the restriction hole and reaches the low-pressure passage. When the pressure in the low pressure passage increases, the pressure received by the membrane diaphragm increases and the diaphragm is deformed, and the movable valve body operates in a direction to decrease the opening of the throttle hole, and the increase in pressure in the low pressure passage is suppressed. The

また従来、自動設定減圧弁として、膜状のダイヤフラムとこのダイヤフラムを付勢する圧力設定バネとをもつ減圧弁において、圧力設定バネの弾性力を調整するモータを取り付け、モータの駆動により圧力設定バネの弾性力を調整するものが知られている(特許文献2)。このものによれば、1次側通路である高圧通路の圧力がパイロット弁体を介してピストンの上面に作用している。ここで、2次側通路である低圧通路の圧力が減少してダイヤフラムが下方に変位すると、パイロット弁体が押し下げられ、主弁体であるピストンが押し下げられ、弁口の絞り開度が増加する。また2次側通路である低圧通路の圧力が増加してダイヤフラムが上方に変位すると、パイロット弁体が押し上げられ、主弁体であるピストンが押し上げられ、主弁口の絞り開度が減少する。   Conventionally, as an automatic setting pressure reducing valve, in a pressure reducing valve having a membrane-like diaphragm and a pressure setting spring for urging the diaphragm, a motor for adjusting the elastic force of the pressure setting spring is attached, and the pressure setting spring is driven by driving the motor. A device that adjusts the elastic force is known (Patent Document 2). According to this, the pressure of the high pressure passage which is the primary passage acts on the upper surface of the piston through the pilot valve body. Here, when the pressure in the low pressure passage, which is the secondary side passage, decreases and the diaphragm is displaced downward, the pilot valve body is pushed down, the piston, which is the main valve body, is pushed down, and the throttle opening of the valve port increases. . Further, when the pressure in the low-pressure passage that is the secondary side passage increases and the diaphragm is displaced upward, the pilot valve body is pushed up, the piston that is the main valve body is pushed up, and the throttle opening of the main valve port decreases.

また従来、流量調整弁として、膜状をなし広い面積をもつ主ダイヤフラム及び副ダイヤフラムを装備したボティに、パイロット弁口を開閉するパイロット弁体を設け、そのパイロット弁体を駆動させる駆動軸を設け、さらに駆動軸を駆動させるステッピングモータを設け、ステッピングモータの駆動で駆動軸を駆動させてパイロット弁体を移動させ、これによりパイロット弁口の開度を調整するものが知られている(特許文献3)。このものによれば、ステッピングモータの駆動軸をベローズでシールし、ステッピングモータに高温水が接触しないようにしている。このベローズは、駆動軸を移動可能にシールしているが、受圧に伴い絞り開度の大小を調整するものではない。更に、膜状をなし広い面積をもつ主ダイヤフラム及び副ダイヤフラムが設けられている。   Conventionally, as a flow control valve, a pilot valve body that opens and closes the pilot valve port is provided on a body that has a membrane-like main diaphragm and sub-diaphragm as a flow control valve, and a drive shaft that drives the pilot valve body is provided. Further, a stepping motor for driving the drive shaft is provided, and the pilot valve body is moved by driving the drive shaft by driving the stepping motor, thereby adjusting the opening degree of the pilot valve port (Patent Document) 3). According to this, the drive shaft of the stepping motor is sealed with the bellows so that the hot water does not contact the stepping motor. This bellows seals the drive shaft so as to be movable, but does not adjust the size of the throttle opening according to the pressure received. Further, a main diaphragm and a sub diaphragm having a film shape and a large area are provided.

また従来、弁装置として、ベローズ式のダイヤフラムでステムを覆ってシールするものが知られている(特許文献4)。このダイヤフラムは広面積をもち、径方向サイズが大きい。
特開2002−372162号公報 特開平3−296114号公報(特公平7−82395号公報) 特開平06−109163号公報 実公平07−047665号公報
Conventionally, a valve device that covers and seals a stem with a bellows type diaphragm is known (Patent Document 4). This diaphragm has a large area and a large radial size.
JP 2002-372162 A Japanese Patent Laid-Open No. 3-296114 (Japanese Patent Publication No. 7-82395) Japanese Patent Laid-Open No. 06-109163 Japanese Utility Model Publication No. 07-047665

上記した特許文献に係る技術によれば、膜状で径方向において広面積をもつダイヤフラムが用いられているため、径方向における小型化には限界があり、サイズが大型化しがちであった。この場合、制約された設置スペースに設置するには好ましくない。   According to the technique according to the above-described patent document, since a diaphragm having a film shape and a large area in the radial direction is used, there is a limit to downsizing in the radial direction, and the size tends to be increased. In this case, it is not preferable to install in a limited installation space.

本発明は上記した実情に鑑みてなされたものであり、小型化に有利なガス制御バルブ及び当該ガス制御バルブをもつ燃料電池発電システムを提供することを課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas control valve advantageous for downsizing and a fuel cell power generation system having the gas control valve.

即ち、第1様相に係るガス制御バルブは、収容室をもつボディと、
収容室に連通するようにボディに設けられガスが供給される1次側通路と、
収容室に連通するようにボディに設けられ前記ガスが吐出される2次側通路と、
ボディの前記収容室に配設され収容室を2次側通路に連通する第1室と2次側通路に連通しない第2室とに区画すると共に第1室のガスの圧力を受圧するに伴い変形する受圧部材と、
1次側通路と2次側通路との間に設けられた絞り開度をもち1次側通路のガス流量を前記絞り開度により絞って第1室を経て2次側通路に供給すると共に受圧部材の受圧に伴い絞り開度を調整する絞り開度可変機構と、
絞り開度可変機構の絞り開度を増加または減少させる方向に受圧部材を付勢する付勢力を発揮する弾性部材とを具備しており、
受圧部材は、受圧に伴い受圧部材が変形する方向において伸縮可能な構造とされていることを特徴とするものである。
That is, the gas control valve according to the first aspect includes a body having a storage chamber,
A primary-side passage that is provided in the body so as to communicate with the storage chamber and is supplied with gas;
A secondary passage provided in the body so as to communicate with the storage chamber and from which the gas is discharged;
Along with receiving the pressure of the gas in the first chamber while partitioning the storage chamber into a first chamber communicating with the secondary passage and a second chamber not communicating with the secondary passage. A pressure receiving member that deforms;
A throttle opening provided between the primary side passage and the secondary side passage has a throttle opening, and the gas flow rate in the primary side passage is throttled by the throttle opening to be supplied to the secondary side passage through the first chamber. A throttle opening variable mechanism that adjusts the throttle opening according to the pressure received by the member;
An elastic member that exerts an urging force to urge the pressure receiving member in a direction to increase or decrease the throttle opening of the throttle opening variable mechanism;
The pressure receiving member has a structure that can be expanded and contracted in a direction in which the pressure receiving member is deformed in accordance with pressure reception.

第1様相に係るガス制御バルブによれば、1次側通路のガスのガス流量が絞り開度可変機構の絞り開度により絞られ、第1室に至り、更には2次側通路に至る。このように1次側通路のガスのガス流量が絞り開度可変機構の絞り開度により絞られるため、第1室及び2次側通路のガスの2次圧は1次側通路のガスの1次圧よりも減圧される。ここで、第1室のガス圧力が受圧部材に作用する。このような受圧に伴い受圧部材が変形する。このとき当該変形方向において受圧部材は伸縮すると共に、受圧部材の受圧に伴い、絞り開度可変機構の絞り開度が調整され、第1室のガス圧力、ひいては2次側通路の2次圧が調整される。   According to the gas control valve according to the first aspect, the gas flow rate of the gas in the primary passage is throttled by the throttle opening of the variable throttle opening mechanism, and reaches the first chamber, and further reaches the secondary passage. Since the gas flow rate of the gas in the primary side passage is thus throttled by the throttle opening degree of the throttle opening varying mechanism, the secondary pressure of the gas in the first chamber and the secondary side passage is 1 of the gas in the primary side passage. The pressure is reduced from the next pressure. Here, the gas pressure in the first chamber acts on the pressure receiving member. The pressure receiving member is deformed along with such pressure reception. At this time, the pressure receiving member expands and contracts in the deformation direction, and the throttle opening of the throttle opening varying mechanism is adjusted in accordance with the pressure received by the pressure receiving member, so that the gas pressure in the first chamber, and hence the secondary pressure in the secondary side passage, is adjusted. Adjusted.

なお、弾性部材としては付勢部材を例示することができ、具体的には、コイルバネや板バネ等のバネ、ゴムや樹脂等の有機系材料、発泡材料、空気バネ等の気体バネ等の少なくとも1種を例示することができる。受圧部材の材質としては特に制限されないが、例えば、ゴム、樹脂、金属の少なくとも1種を基材として形成することができる。樹脂、金属を用いれば、ガスバリヤ性を更に高めることができる。   As the elastic member, an urging member can be exemplified, specifically, a spring such as a coil spring or a leaf spring, an organic material such as rubber or resin, a foam material, a gas spring such as an air spring, or the like. One type can be exemplified. Although it does not restrict | limit especially as a material of a pressure receiving member, For example, at least 1 sort (s) of rubber | gum, resin, and a metal can be formed as a base material. If a resin or a metal is used, the gas barrier property can be further improved.

第2様相に係るガス制御バルブによれば、受圧部材は、少なくとも一部に蛇腹構造を有することを特徴とするものである。このように蛇腹構造であれば、受圧に伴い受圧部材が容易に伸縮変形することができる。従って、当該変形方向において受圧部材は容易に伸縮すると共に、受圧部材の受圧に伴い、絞り開度可変機構の絞り開度が良好に調整され、第1室のガス圧力、ひいては2次側通路の2次圧が良好に調整される。蛇腹構造は、断面で、円弧を帯びる波形状のタイプでも良いし、三角波形状のタイプでも良いし、伸縮可能とする複数のスリットが形成されているタイプでも良く、伸縮可能とする複数の折り目が形成されているタイプでも良く、要するに伸縮可能であれば良い。   According to the gas control valve according to the second aspect, the pressure receiving member has a bellows structure at least partially. Thus, if it is a bellows structure, a pressure receiving member can be easily expanded-contracted with pressure receiving. Therefore, the pressure receiving member easily expands and contracts in the deformation direction, and the throttle opening of the throttle opening varying mechanism is well adjusted with the pressure received by the pressure receiving member, so that the gas pressure in the first chamber, and consequently the secondary passage, The secondary pressure is adjusted well. The bellows structure may be a wave-shaped type that has an arc shape in a cross section, a triangular wave-shaped type, or a type in which a plurality of slits that can be expanded and contracted are formed, and a plurality of folds that can be expanded and contracted. The formed type may be sufficient, and in short, it should just be extendable.

第3様相に係るガス制御バルブによれば、弾性部材の付勢力を調整するアクチュエータが設けられていることを特徴とするものである。弾性部材による付勢力の大きさを調整すれば、絞り開度可変機構の絞り開度を増加または減少させる方向に迅速に調整することができる。従って、アクチュエータを作動させて弾性部材の付勢力を調整すれば、受圧部材を付勢する付勢力を調整できるので、絞り開度可変機構の絞り開度を増加または減少させる方向に調整することができる。これにより2次側通路におけるガスのガス流量−圧力の特性を調整するのに有利となる。アクチュエータはモータまたはソレノイドとすることができる。モータとしては、回転するタイプ、直動するタイプでも良い。モータとしては、直流モータ、交流モータ、ステッピングモータ、超音波モータなどを例示できる。ソレノイドは磁気吸引力または磁気反発力に基づいて駆動するタイプを例示できる。更に本発明に係るガス制御バルブによれば、受圧部材は受圧に伴い伸縮可能な構造であるため、絞り開度の大きさを維持する変形量を確保しつつ、受圧部材の径サイズを小さくできる。このため、第1室の圧力が受圧部材に作用しているとしても、受圧部材の受圧力の増大を抑えることができる。このためアクチュエータの定格、動力の小型化を図るのに有利となる。   The gas control valve according to the third aspect is characterized in that an actuator for adjusting the biasing force of the elastic member is provided. If the magnitude of the urging force by the elastic member is adjusted, it can be quickly adjusted in the direction of increasing or decreasing the throttle opening of the variable throttle opening mechanism. Therefore, if the urging force of the elastic member is adjusted by operating the actuator, the urging force for urging the pressure receiving member can be adjusted. Therefore, the throttle opening degree of the throttle opening varying mechanism can be adjusted to increase or decrease. it can. This is advantageous for adjusting the gas flow rate-pressure characteristics of the gas in the secondary passage. The actuator can be a motor or a solenoid. The motor may be a rotating type or a direct acting type. Examples of the motor include a DC motor, an AC motor, a stepping motor, and an ultrasonic motor. The solenoid can be exemplified by a type driven based on a magnetic attractive force or a magnetic repulsive force. Further, according to the gas control valve according to the present invention, the pressure receiving member has a structure that can be expanded and contracted with the pressure, so that the diameter size of the pressure receiving member can be reduced while securing a deformation amount that maintains the size of the throttle opening. . For this reason, even if the pressure of the first chamber acts on the pressure receiving member, an increase in the pressure receiving pressure of the pressure receiving member can be suppressed. For this reason, it is advantageous to reduce the rating and power of the actuator.

第3様相に係るガス制御バルブによれば、アクチュエータと受圧部材との間には駆動力伝達機構を設けることができる。この場合、駆動力伝達機構によりアクチュエータの駆動力を受圧部材に良好に伝達することができる。   According to the gas control valve according to the third aspect, a driving force transmission mechanism can be provided between the actuator and the pressure receiving member. In this case, the driving force of the actuator can be satisfactorily transmitted to the pressure receiving member by the driving force transmission mechanism.

第4様相に係るガス制御バルブによれば、絞り開度可変機構は、絞り孔と、絞り孔を開閉する方向に動作する可動バルブ体と、絞り孔を閉鎖する方向に前記可動バルブ体を付勢する可動バルブ体用の弾性部材とを有することを特徴とするものである。可動バルブ体用の弾性部材としては、付勢部材を例示することができ、具体的には、コイルバネや板バネ等のバネ、ゴムや樹脂等の有機系材料、発泡材料、空気バネ等の気体バネ等の少なくとも1種を例示することができる。   According to the gas control valve according to the fourth aspect, the throttle opening varying mechanism is provided with a throttle hole, a movable valve body that operates in a direction to open and close the throttle hole, and the movable valve body in a direction to close the throttle hole. And an elastic member for the movable valve body to be energized. As the elastic member for the movable valve body, an urging member can be exemplified. Specifically, a spring such as a coil spring or a leaf spring, an organic material such as rubber or resin, a foam material, a gas such as an air spring, etc. At least one type such as a spring can be exemplified.

第5様相に係る燃料電池発電システムは、燃料極及び酸化剤極を有する燃料電池と、
燃料電池の燃料極に燃料ガスを供給する燃料用のガス供給通路と、燃料電池の酸化剤極に酸化剤ガスを供給する酸化剤ガス用のガス供給通路と、燃料用のガス供給通路及び酸化剤ガス用のガス供給通路のうちの少なくとも一方において燃料電池の上流に設けられた燃料電池用ガス制御バルブとを具備する燃料電池発電システムにおいて、
燃料電池用ガス制御バルブは、
収容室をもつボディと、
収容室に連通するようにボディに設けられガスが供給される1次側通路と、
収容室に連通するようにボディに設けられ前記ガスが吐出される2次側通路と、
ボディの収容室に配設され収容室を2次側通路に連通する第1室と2次側通路に連通しない第2室とに区画すると共に第1室のガスの圧力を受圧するに伴い変形する受圧部材と、
1次側通路と2次側通路との間に設けられた絞り開度をもち1次側通路のガス流量を絞り開度により絞って第1室を経て2次側通路に供給すると共に受圧部材の受圧に伴い絞り開度を調整する絞り開度可変機構と、
絞り開度可変機構の絞り開度を増加または減少させる方向に受圧部材を付勢する付勢力を発揮する弾性部材とを具備しており、受圧部材は、受圧に伴い受圧部材が変形する方向において伸縮可能な構造とされていることを特徴とするものである。
A fuel cell power generation system according to a fifth aspect includes a fuel cell having a fuel electrode and an oxidant electrode;
A gas supply passage for fuel that supplies fuel gas to the fuel electrode of the fuel cell, a gas supply passage for oxidant gas that supplies oxidant gas to the oxidant electrode of the fuel cell, a gas supply passage for fuel and oxidation In a fuel cell power generation system comprising a fuel cell gas control valve provided upstream of the fuel cell in at least one of the gas supply passages for the agent gas,
Gas control valve for fuel cell
A body with a containment chamber;
A primary-side passage that is provided in the body so as to communicate with the storage chamber and is supplied with gas;
A secondary passage provided in the body so as to communicate with the storage chamber and from which the gas is discharged;
The storage chamber is disposed in the storage chamber of the body and is divided into a first chamber that communicates with the secondary passage and a second chamber that does not communicate with the secondary passage and is deformed as the gas pressure in the first chamber is received. A pressure receiving member,
A throttle opening provided between the primary side passage and the secondary side passage has a throttle opening, and a gas flow rate in the primary side passage is throttled by the throttle opening and supplied to the secondary side passage through the first chamber, and a pressure receiving member A throttle opening variable mechanism that adjusts the throttle opening according to the received pressure,
And an elastic member that exerts an urging force that urges the pressure receiving member in a direction to increase or decrease the throttle opening of the throttle opening varying mechanism, and the pressure receiving member is in a direction in which the pressure receiving member is deformed in response to pressure reception. It is characterized by having a stretchable structure.

この場合、燃料電池用ガス制御バルブによれば、1次側通路のガスのガス流量が絞り開度可変機構の絞り開度により絞られ、第1室に至り、更には2次側通路に至る。このように1次側通路のガスのガス流量が絞り開度可変機構の絞り開度により絞られるため、第1室及び2次側通路のガスの2次圧は1次側通路のガスの1次圧よりも減圧される。ここで、第1室のガス圧力が受圧部材に作用する。このような受圧に伴い受圧部材が変形する。このとき当該変形方向において受圧部材は伸縮すると共に、受圧部材の受圧に伴い絞り開度可変機構の絞り開度が調整される。なお、弾性部材としては付勢部材を例示することができ、具体的には、コイルバネや板バネ等のバネ、ゴムや樹脂等の有機系材料、発泡材料、空気バネ等の気体バネ等の少なくとも1種を例示することができる。   In this case, according to the fuel cell gas control valve, the gas flow rate of the gas in the primary side passage is throttled by the throttle opening degree of the throttle opening varying mechanism, leading to the first chamber, and further to the secondary side passage. . Since the gas flow rate of the gas in the primary side passage is thus throttled by the throttle opening degree of the throttle opening varying mechanism, the secondary pressure of the gas in the first chamber and the secondary side passage is 1 of the gas in the primary side passage. The pressure is reduced from the next pressure. Here, the gas pressure in the first chamber acts on the pressure receiving member. The pressure receiving member is deformed along with such pressure reception. At this time, the pressure receiving member expands and contracts in the deformation direction, and the throttle opening of the throttle opening varying mechanism is adjusted with the pressure received by the pressure receiving member. As the elastic member, an urging member can be exemplified, specifically, a spring such as a coil spring or a leaf spring, an organic material such as rubber or resin, a foam material, a gas spring such as an air spring, or the like. One type can be exemplified.

本発明によれば、膜状で広面積をもつダイヤフラムの代わりに、伸縮可能な受圧部材が用いられているため、絞り開度の大きさを維持する変形量を確保しつつ、受圧部材の径サイズの小型化を図るのに有利となる。ひいてはガス制御バルブのサイズの小型化を図るのに有利となる。   According to the present invention, since a pressure-receiving member that can be expanded and contracted is used instead of a membrane-like diaphragm having a large area, the diameter of the pressure-receiving member is secured while ensuring a deformation amount that maintains the size of the throttle opening. This is advantageous for reducing the size. As a result, it is advantageous to reduce the size of the gas control valve.

(実施形態1)
本発明を燃料電池発電システムに適用した実施形態1について、図1〜図4を参照して具体的に説明する。この燃料電池発電システムは、車両用、定置用、携帯用等の用途に使用することができる。本実施形態に係るガス制御バルブ1は、燃料電池100の燃料極101のガス入口101cの上流側に設けられるものである。ガス制御バルブ1は燃料ガス(例えば水素ガスまたは水素含有ガス)用のガス減圧弁であり、図1に示すように、収容室20をもつと共に収容室20の下方に壁部で仕切られたバルブ室23をもつボディ2と、ボディ2の収容室20を第1室21と第2室22とに区画する変形可能な受圧部材3と、燃料電池100の燃料極101で使用される活物質を含むガス(燃料ガス)が供給される1次側通路である高圧通路61と、燃料電池100の燃料極101に繋がる2次側通路である低圧通路71と、高圧通路61と低圧通路71との間に設けられた絞り孔40をもち受圧部材3の変形に伴い絞り孔40の絞り開度Lを可変とする絞り開度可変機構4とを備えている。絞り開度Lは、ガス制御バルブ1が用いられる用途、流れるガスの組成等によっても相違するものの、例えば2ミリメートル以下,1ミリメートル以下とすることができる。燃料ガスの主要成分が水素ガスである場合には、粘性が低く流れ易いため、絞り開度Lは小さくて済む。なお、図1は絞り開度Lを誇張して示す。
(Embodiment 1)
Embodiment 1 in which the present invention is applied to a fuel cell power generation system will be specifically described with reference to FIGS. This fuel cell power generation system can be used for applications such as vehicle use, stationary use, and portable use. The gas control valve 1 according to the present embodiment is provided on the upstream side of the gas inlet 101 c of the fuel electrode 101 of the fuel cell 100. The gas control valve 1 is a gas pressure reducing valve for fuel gas (for example, hydrogen gas or hydrogen-containing gas). As shown in FIG. 1, the gas control valve 1 has a storage chamber 20 and is partitioned by a wall portion below the storage chamber 20. A body 2 having a chamber 23, a deformable pressure receiving member 3 that partitions the housing chamber 20 of the body 2 into a first chamber 21 and a second chamber 22, and an active material used in the fuel electrode 101 of the fuel cell 100. A high-pressure passage 61 that is a primary-side passage to which gas (fuel gas) is supplied, a low-pressure passage 71 that is a secondary-side passage connected to the fuel electrode 101 of the fuel cell 100, and the high-pressure passage 61 and the low-pressure passage 71. There is provided a throttle opening varying mechanism 4 having a throttle hole 40 provided between them and changing the throttle opening L of the throttle hole 40 in accordance with the deformation of the pressure receiving member 3. The throttle opening L can be set to, for example, 2 millimeters or less and 1 millimeter or less, although it varies depending on the application in which the gas control valve 1 is used, the composition of the flowing gas, and the like. When the main component of the fuel gas is hydrogen gas, the throttle opening L can be small because the viscosity is low and the gas easily flows. FIG. 1 exaggerates the throttle opening L.

高圧通路61はガス供給源65(例えばガスタンク)と収容室20の第1室21とに繋がる。ガス供給源65の高圧の燃料ガスが高圧通路61に供給される。燃料ガスとしては純水素ガスまたは水素含有ガス等を使用できる。低圧通路71は収容室20の第1室21に繋がる。ここで、高圧及び低圧は燃料ガスの相対的な高低の意味である。従って、高圧とは低圧通路71のガス圧力よりも高圧という意味である。低圧とは高圧通路61のガス圧力よりも低圧という意味である。例えば、高圧通路61のガスの圧力は1〜3MPaにすることができ、低圧通路71のガスの圧力は10〜900kPa、100〜400kPaにすることができる。但しこれらに限定されるものではない。   The high-pressure passage 61 is connected to a gas supply source 65 (for example, a gas tank) and the first chamber 21 of the storage chamber 20. The high-pressure fuel gas from the gas supply source 65 is supplied to the high-pressure passage 61. As the fuel gas, pure hydrogen gas or hydrogen-containing gas can be used. The low pressure passage 71 is connected to the first chamber 21 of the storage chamber 20. Here, the high pressure and the low pressure mean the relative height of the fuel gas. Therefore, high pressure means higher pressure than the gas pressure in the low pressure passage 71. Low pressure means a pressure lower than the gas pressure in the high pressure passage 61. For example, the gas pressure in the high-pressure passage 61 can be 1 to 3 MPa, and the gas pressure in the low-pressure passage 71 can be 10 to 900 kPa and 100 to 400 kPa. However, it is not limited to these.

高圧通路61は絞り孔40の上流に設けられており、低圧通路71は絞り孔40の下流に設けられている。絞り孔40の絞り開度Lは、燃料電池100の燃料極101において使用される活物質を含む高圧通路61のガス(燃料ガス)の流量を制限して減圧し、低圧通路71に供給する。   The high pressure passage 61 is provided upstream of the throttle hole 40, and the low pressure passage 71 is provided downstream of the throttle hole 40. The throttle opening L of the throttle hole 40 is reduced in pressure by limiting the flow rate of the gas (fuel gas) in the high-pressure passage 61 containing the active material used in the fuel electrode 101 of the fuel cell 100 and supplied to the low-pressure passage 71.

図1に示すように、受圧部材3はシール部材3sを介してボディ2に保持されており、絞り孔40に対向する位置に配置された先端部30と、先端部30に同軸的に連設された円筒形状をなす蛇腹部31と、蛇腹部31に同軸的に径外方向に延設された鍔部32とをもつ。蛇腹部31は樹脂または金属を基材として形成されているものの、複数の山谷を有する蛇腹構造をもつため、高い伸縮性を有する。このように蛇腹部31、ひいては受圧部材3を樹脂または金属を基材として形成すれば、第1室21のガス圧力が高いときであっても、受圧部材3のガスバリヤ性を向上させるのに有利となる。   As shown in FIG. 1, the pressure receiving member 3 is held by the body 2 through a seal member 3 s and is coaxially connected to the tip portion 30 disposed at a position facing the throttle hole 40 and the tip portion 30. It has a bellows portion 31 having a cylindrical shape and a collar portion 32 that extends coaxially to the bellows portion 31 in the radially outward direction. Although the bellows portion 31 is formed using a resin or metal as a base material, it has a bellows structure having a plurality of peaks and valleys, and thus has high stretchability. Thus, if the bellows portion 31, and thus the pressure receiving member 3 is formed of resin or metal as a base material, it is advantageous for improving the gas barrier property of the pressure receiving member 3 even when the gas pressure in the first chamber 21 is high. It becomes.

図3に示すように、受圧部材3は、第1室21に対面する表出面3aと、第2室22に対面する背向面3bとをもつ。表出面3aは第1室21に対面するため、表出面3aには、第1室21のガス圧力(2次圧)が作用する。背向面3bは第1室21に対面しないため、背向面3bには、第1室21のガス圧力(2次圧)が直接的には作用しない。受圧部材3の表出面3aにおいては、蛇腹部31は、第1蛇腹面31aと、第1蛇腹面31aと逆方向に指向する第2蛇腹面31bとを有する。受圧部材3は、第1室21と第2室22とを仕切る仕切部材としても機能することができる。   As shown in FIG. 3, the pressure receiving member 3 has an exposed surface 3 a that faces the first chamber 21 and a back surface 3 b that faces the second chamber 22. Since the exposed surface 3a faces the first chamber 21, the gas pressure (secondary pressure) of the first chamber 21 acts on the exposed surface 3a. Since the back surface 3b does not face the first chamber 21, the gas pressure (secondary pressure) of the first chamber 21 does not directly act on the back surface 3b. On the exposed surface 3a of the pressure receiving member 3, the bellows portion 31 has a first bellows surface 31a and a second bellows surface 31b oriented in the opposite direction to the first bellows surface 31a. The pressure receiving member 3 can also function as a partition member that partitions the first chamber 21 and the second chamber 22.

図1に示すように、受圧部材3の蛇腹部31は、絞り孔40から遠ざかる方向に向けて先端部30から延設されている。蛇腹部31はほぼ円筒形状をなしているため、蛇腹部31の軸長方向の一端部31r(蛇腹部31のうち第1支持部42側の端部)の径と、蛇腹部31の軸長方向の他端部31t(蛇腹部31のうち可動体92側の端部)の径とは、同じ程度とされている。ボディ2は収容室20を有する。受圧部材3は、ボディ2の収容室20を、活物質を含む燃料ガスが流入する第1室21と、燃料ガスが流入されない第2室22とに仕切って区画するため、仕切部材として機能することができる。第2室22は大気開放ポート22mを介して大気に連通する。このように第2室22は大気開放とされるため、高圧状態にならない。受圧部材3の鍔部32は、ボディ2に保持されている。   As shown in FIG. 1, the bellows portion 31 of the pressure receiving member 3 extends from the distal end portion 30 in a direction away from the throttle hole 40. Since the bellows portion 31 has a substantially cylindrical shape, the diameter of one end portion 31r in the axial length direction of the bellows portion 31 (the end portion on the first support portion 42 side of the bellows portion 31) and the axial length of the bellows portion 31 are included. The diameter of the other end portion 31t in the direction (the end portion of the bellows portion 31 on the movable body 92 side) is approximately the same. The body 2 has a storage chamber 20. The pressure receiving member 3 functions as a partition member because the storage chamber 20 of the body 2 is partitioned and divided into a first chamber 21 into which fuel gas containing an active material flows and a second chamber 22 into which fuel gas does not flow. be able to. The second chamber 22 communicates with the atmosphere via the atmosphere opening port 22m. Since the second chamber 22 is thus opened to the atmosphere, it does not enter a high pressure state. The flange portion 32 of the pressure receiving member 3 is held by the body 2.

図1に示すように、絞り開度可変機構4は、燃料電池100に供給される活物質を含むガス(燃料ガス)の流量を制限するようにボディ2に形成された絞り孔40と、絞り孔40を開閉するピストン状の可動バルブ体41と、受圧部材3の先端部30の中央域を挟持するようにリング形状のシール部材43sを介して設けられた第1支持部42及び第2支持部43とを有する。可動バルブ体41は互いに背向する受圧面47及びバルブ面44をもつ。なお本実施形態によれば、受圧面47は可動バルブ体41の図示下面とされている。バルブ面44は可動バルブ体41の図示上面とされている。   As shown in FIG. 1, the throttle opening varying mechanism 4 includes a throttle hole 40 formed in the body 2 so as to limit the flow rate of a gas (fuel gas) containing an active material supplied to the fuel cell 100, and a throttle. A piston-like movable valve body 41 that opens and closes the hole 40, and a first support part 42 and a second support provided via a ring-shaped seal member 43s so as to sandwich the central region of the tip part 30 of the pressure receiving member 3 Part 43. The movable valve body 41 has a pressure receiving surface 47 and a valve surface 44 that face each other. According to this embodiment, the pressure receiving surface 47 is the lower surface of the movable valve body 41 in the figure. The valve surface 44 is the illustrated upper surface of the movable valve body 41.

絞り孔40は、絞り孔40を1周するリング形状の弁座部49を片面側つまり下面側にもつ。第2支持部43の軸部48は、第2支持部43から遠ざかるように下方に向けて延設されており、絞り孔40に挿通されている。   The throttle hole 40 has a ring-shaped valve seat portion 49 that goes around the throttle hole 40 on one side, that is, the lower side. The shaft portion 48 of the second support portion 43 extends downward so as to move away from the second support portion 43, and is inserted through the throttle hole 40.

受圧部材3用のバネ7及びバルブバネ8の付勢力により、第2支持部43の軸部48の先端部48a(下端部)は、可動バルブ体41のバルブ面44に当接する。ここで、絞り孔40の弁座部49と可動バルブ体41のバルブ面44との間は、絞り孔40の絞り開度Lとされる。可動バルブ体41のバルブ面44は、絞り孔40の全閉時において、絞り孔40の弁座部49に着座できるように弁座部49に対面する。なお、バネ7及びバルブバネ8は図面において模式的に記載されている。   Due to the biasing force of the spring 7 for the pressure receiving member 3 and the valve spring 8, the distal end portion 48 a (lower end portion) of the shaft portion 48 of the second support portion 43 abuts on the valve surface 44 of the movable valve body 41. Here, the opening degree L of the throttle hole 40 is set between the valve seat portion 49 of the throttle hole 40 and the valve surface 44 of the movable valve body 41. The valve surface 44 of the movable valve body 41 faces the valve seat portion 49 so as to be seated on the valve seat portion 49 of the throttle hole 40 when the throttle hole 40 is fully closed. The spring 7 and the valve spring 8 are schematically shown in the drawing.

図1に示すように、可動バルブ体41がボディ2のバルブ室23に矢印Y2、Y1方向(上下方向)に移動可能に嵌合されている。可動バルブ体41は受圧部材3の図示下方に配置されており、これの横断面が円形状をなす円柱形状とされているが、角柱形状でも良い。可動バルブ体41は一般的には金属製であり、実質的に剛体として機能する。可動バルブ体41の受圧面47はボディ2の壁面2fに対面すると共に、可動バルブ体41のバルブ面44は絞り孔40に対面する。   As shown in FIG. 1, a movable valve body 41 is fitted in the valve chamber 23 of the body 2 so as to be movable in the directions of arrows Y2 and Y1 (up and down directions). The movable valve body 41 is disposed below the pressure receiving member 3 in the figure, and the cross section of the movable valve body 41 is a circular cylindrical shape, but may be a prismatic shape. The movable valve body 41 is generally made of metal and substantially functions as a rigid body. The pressure receiving surface 47 of the movable valve body 41 faces the wall surface 2 f of the body 2, and the valve surface 44 of the movable valve body 41 faces the throttle hole 40.

図1に示すように、ボディ2の収容室20の第2室22には、コイルバネで形成された受圧部材3用のバネ7(受圧部材用の弾性部材)がほぼ同軸的に設けられている。バネ7は付勢部材として機能することができる。バネ7の一端部7aは、絞り開度可変機構4の第1支持部42の着座面42hに着座し、バネ7の他端部7bは後述の可動体92のリング状の着座面92hに着座する。この結果、受圧部材3用のバネ7は、受圧部材3を矢印Y1方向(図示下方向)に付勢しており、ひいては可動バルブ体41を弁座部49から離間させるように付勢する。即ち、バネ7は絞り孔40の絞り開度Lを増加させる方向に可動バルブ体41を付勢する。   As shown in FIG. 1, in the second chamber 22 of the housing chamber 20 of the body 2, a spring 7 for the pressure receiving member 3 (elastic member for the pressure receiving member) formed of a coil spring is provided substantially coaxially. . The spring 7 can function as a biasing member. One end portion 7a of the spring 7 is seated on a seating surface 42h of the first support portion 42 of the aperture opening varying mechanism 4, and the other end portion 7b of the spring 7 is seated on a ring-shaped seating surface 92h of the movable body 92 described later. To do. As a result, the spring 7 for the pressure receiving member 3 biases the pressure receiving member 3 in the direction of the arrow Y1 (the downward direction in the figure), and thus biases the movable valve body 41 away from the valve seat portion 49. That is, the spring 7 biases the movable valve body 41 in the direction in which the throttle opening L of the throttle hole 40 is increased.

図1に示すように、可動バルブ体41の受圧面47とボディ2のバルブ室23の壁面2fとの間には、コイルバネで形成された付勢部材として機能するバルブバネ8(可動バルブ体用の弾性部材)が設けられている。バルブバネ8により可動バルブ体41は矢印Y2方向に付勢されており、つまり、可動バルブ体41のバルブ面44が弁座部49に接近する方向に付勢されている。即ち、バルブバネ8は絞り孔40の絞り開度Lを減少させる方向に可動バルブ体41を付勢する。   As shown in FIG. 1, between the pressure receiving surface 47 of the movable valve body 41 and the wall surface 2f of the valve chamber 23 of the body 2, the valve spring 8 (functioning for the movable valve body) functioning as an urging member formed of a coil spring. Elastic member). The movable valve body 41 is urged by the valve spring 8 in the direction of the arrow Y2, that is, the valve surface 44 of the movable valve body 41 is urged in a direction approaching the valve seat portion 49. That is, the valve spring 8 urges the movable valve body 41 in the direction in which the throttle opening L of the throttle hole 40 is decreased.

前述したように、バルブバネ8及びバネ7は、互いに逆向きの付勢力を発揮する。このため可動バルブ体41のバルブ面44と第2支持部43の軸部48の先端部48aとの接触性は、確保されている。本実施形態によれば、受圧部材3用のバネ7のバネ荷重はバルブバネ8のバネ荷重よりも大きく設定されている。これはガスが導入されていないとき、絞り孔40を開放状態に維持するためである。   As described above, the valve spring 8 and the spring 7 exhibit urging forces in opposite directions. For this reason, the contact property between the valve surface 44 of the movable valve body 41 and the distal end portion 48 a of the shaft portion 48 of the second support portion 43 is ensured. According to this embodiment, the spring load of the spring 7 for the pressure receiving member 3 is set to be larger than the spring load of the valve spring 8. This is to keep the throttle hole 40 open when no gas is introduced.

前記した受圧部材3は、第1室21及び第2室22の差圧に応じて、矢印Y2(上方向)、矢印Y1方向(下方向)に変形可能とされている。矢印Y2方向は第1室21の容積を増加させる方向、絞り孔40の絞り開度Lを減少させる方向を意味する。矢印Y1方向は第1室21の容積を減少させる方向、絞り孔40の絞り開度Lを増加させる方向を意味する。図1から理解できるように、絞り孔40の下流に位置する第1室21(低圧通路71を経て燃料電池100に繋がる)の圧力が受圧部材3に作用する。   The above-described pressure receiving member 3 can be deformed in the direction of the arrow Y2 (upward) and the direction of arrow Y1 (downward) in accordance with the differential pressure between the first chamber 21 and the second chamber 22. The arrow Y2 direction means a direction in which the volume of the first chamber 21 is increased and a direction in which the throttle opening L of the throttle hole 40 is decreased. The arrow Y1 direction means a direction in which the volume of the first chamber 21 is decreased and a direction in which the throttle opening L of the throttle hole 40 is increased. As can be understood from FIG. 1, the pressure in the first chamber 21 (connected to the fuel cell 100 via the low pressure passage 71) located downstream of the throttle hole 40 acts on the pressure receiving member 3.

図1に示すように、受圧部材3用のバネ7の付勢力を調整するアクチュエータ9がボディ2の取付部2uに設けられている。アクチュエータ9はモータ(例えば直流モータ)であり、アクチュエータ本体90と、アクチュエータ本体90から突出する回転可能な駆動軸91とをもつ。駆動軸91の外周部には雄螺子部91cが形成されている。アクチュエータ9と受圧部材3との間には、つまり、アクチュエータ9とバネ7との間には駆動力伝達機構としてのピストン状の可動体92が設けられている。可動体92は、着座面92hをもつ大径部92aと、大径部92aに一体的な筒形状の小径部92cとをもつ。   As shown in FIG. 1, an actuator 9 that adjusts the urging force of the spring 7 for the pressure receiving member 3 is provided on the attachment portion 2 u of the body 2. The actuator 9 is a motor (for example, a DC motor), and has an actuator main body 90 and a rotatable drive shaft 91 protruding from the actuator main body 90. A male screw portion 91 c is formed on the outer peripheral portion of the drive shaft 91. A piston-like movable body 92 as a driving force transmission mechanism is provided between the actuator 9 and the pressure receiving member 3, that is, between the actuator 9 and the spring 7. The movable body 92 has a large diameter portion 92a having a seating surface 92h and a cylindrical small diameter portion 92c integrated with the large diameter portion 92a.

図2に示すように、可動体92の外壁には、ボディ2の被係合部2mと係合する係合部92mが設けられており、可動体92は図1に示す矢印Y1,Y2方向(絞り孔40の開放方向、閉鎖方向)に直動できるものの、可動体92の周方向(図2に示す矢印R1方向,R2方向)には回動できないように設定されている。可動体92の小径部92cの中央域に形成された孔93の内周部には、雌螺子部93cが形成されている。雌螺子部93cと雄螺子部91cとは互いに螺進退可能に螺合している。   As shown in FIG. 2, an engaging portion 92m that engages with the engaged portion 2m of the body 2 is provided on the outer wall of the movable body 92, and the movable body 92 is in the directions of arrows Y1 and Y2 shown in FIG. Although it can move linearly (opening direction and closing direction of the throttle hole 40), it is set so that it cannot rotate in the circumferential direction (arrow R1 direction, R2 direction shown in FIG. 2) of the movable body 92. A female screw portion 93 c is formed on the inner peripheral portion of the hole 93 formed in the central region of the small diameter portion 92 c of the movable body 92. The female screw portion 93c and the male screw portion 91c are screwed together so as to be able to advance and retract.

アクチュエータ9が一方向に駆動して駆動軸91がこれの軸芯91pの周りで一方向に回転すると、可動体92が矢印Y1方向(絞り孔40の開放方向)に移動し、受圧部材3用のバネ7の付勢力が大きくなる。これに対して、アクチュエータ9が他方向に駆動して駆動軸91がこれの軸芯91pの周りで他方向に回転すると、可動体92が矢印Y2方向(絞り孔40の閉鎖方向)に向けて移動し、受圧部材3用のバネ7の付勢力が小さくなる。   When the actuator 9 is driven in one direction and the drive shaft 91 rotates in one direction around the shaft core 91p, the movable body 92 moves in the direction of the arrow Y1 (opening direction of the throttle hole 40), and for the pressure receiving member 3 The urging force of the spring 7 is increased. On the other hand, when the actuator 9 is driven in the other direction and the drive shaft 91 rotates in the other direction around the shaft core 91p, the movable body 92 is directed in the direction of the arrow Y2 (the closing direction of the throttle hole 40). The urging force of the spring 7 for the pressure receiving member 3 is reduced.

本実施形態によれば、受圧部材3用のバネ7の長さをKA、バルブバネ8の長さをKBとすると、KA>KBの関係に設定されている。また、受圧部材3用のバネ7のバネ定数をK1、バルブバネ8のバネ数をK2とすると、K1>K2の関係に設定されている。なお、受圧部材3用のバネ7、バルブバネ8の材質としては特に限定されず、金属(例えば鉄系、ステンレス鋼系、チタン系、アルミニウム系)、セラミックス、硬質樹脂等の少なくとも1種を採用することができる。   According to this embodiment, when the length of the spring 7 for the pressure receiving member 3 is KA and the length of the valve spring 8 is KB, the relationship of KA> KB is set. Further, assuming that the spring constant of the spring 7 for the pressure receiving member 3 is K1 and the number of springs of the valve spring 8 is K2, the relation of K1> K2 is set. The material of the spring 7 and the valve spring 8 for the pressure receiving member 3 is not particularly limited, and at least one of metal (for example, iron-based, stainless steel-based, titanium-based, aluminum-based), ceramics, hard resin, etc. is employed. be able to.

上記した本実施形態に係るガス制御バルブ1を使用する際には、高圧の燃料ガスを装填したガス供給源65から、相対的に高圧の燃料ガスが高圧通路61に供給される。その高圧のガスは、絞り孔40の絞り開度Lにより流量が制限される。このため、絞り孔40の下流に位置する第1室21の圧力は、絞り孔40の絞り開度Lにより高圧通路61の圧力よりも減圧される。絞り孔40により減圧されて設定圧に低圧化されたガスは、収容室20の第1室21を通過し、ポート2kを介して低圧通路71に至り、更に燃料電池100の燃料極101に供給され、発電反応に使用される。   When the gas control valve 1 according to this embodiment described above is used, a relatively high pressure fuel gas is supplied to the high pressure passage 61 from the gas supply source 65 loaded with the high pressure fuel gas. The flow rate of the high-pressure gas is limited by the throttle opening L of the throttle hole 40. For this reason, the pressure in the first chamber 21 located downstream of the throttle hole 40 is reduced more than the pressure in the high-pressure passage 61 by the throttle opening degree L of the throttle hole 40. The gas decompressed by the throttle hole 40 and reduced to the set pressure passes through the first chamber 21 of the storage chamber 20, reaches the low pressure passage 71 via the port 2 k, and is further supplied to the fuel electrode 101 of the fuel cell 100. And used for power generation reaction.

本実施形態によれば、図1から理解できるように、絞り孔40により減圧された第1室21の圧力(2次圧)と第2室22の圧力(実質的に大気圧)との差圧に基づいて、受圧部材3の蛇腹部31が矢印Y1,Y2方向において伸縮変形する。この場合、図1から理解できるように、受圧部材3の先端部30に付設されている第2支持部43が受圧する受圧力、受圧部材3の先端部30の外周領域30kが受圧する受圧力が、受圧部材3の蛇腹部31の伸縮変形に効率よく寄与する。   According to this embodiment, as can be understood from FIG. 1, the difference between the pressure in the first chamber 21 (secondary pressure) reduced by the throttle hole 40 and the pressure in the second chamber 22 (substantially atmospheric pressure). Based on the pressure, the bellows portion 31 of the pressure receiving member 3 expands and contracts in the directions of the arrows Y1 and Y2. In this case, as can be understood from FIG. 1, the pressure receiving pressure received by the second support portion 43 attached to the distal end portion 30 of the pressure receiving member 3, and the pressure receiving pressure received by the outer peripheral region 30 k of the distal end portion 30 of the pressure receiving member 3. However, it contributes efficiently to the expansion and contraction of the bellows portion 31 of the pressure receiving member 3.

ここで、絞り孔40により減圧された第1室21の圧力と第2室22の圧力との差圧に基づいて、受圧部材3が受ける矢印Y2方向(上向き、絞り孔40の閉鎖方向)に向かう力をF1とする。更に、バルブバネ8が可動バルブ体41を矢印Y2方向(上向き,絞り孔40の閉鎖方向)に付勢する力をF2とする。可動バルブ体41のバルブ面44が矢印Y1方向に向かう下向きの圧力と、可動バルブ体41の受圧面47がバルブ室23のガス圧により上向きに受圧する圧力との差を力F3(上向きと仮定する)とする。また、受圧部材3用のバネ7がこれのバネ荷重(付勢力)により、受圧部材3、第1支持部42及び第2支持部43を介して可動バルブ体41を矢印Y1方向に向かう(下向き,絞り孔40の開放方向)に付勢する力をF4とする。   Here, based on the pressure difference between the pressure in the first chamber 21 and the pressure in the second chamber 22 decompressed by the throttle hole 40, the pressure receiving member 3 receives in the direction of arrow Y2 (upward, the closing direction of the throttle hole 40). Let F1 be the heading force. Further, the force by which the valve spring 8 urges the movable valve body 41 in the arrow Y2 direction (upward, the closing direction of the throttle hole 40) is defined as F2. The difference between the pressure at which the valve surface 44 of the movable valve body 41 is directed downward in the direction of the arrow Y1 and the pressure at which the pressure receiving surface 47 of the movable valve body 41 is received upward by the gas pressure in the valve chamber 23 is assumed to be a force F3 (assumed to be upward). ). Further, the spring 7 for the pressure receiving member 3 moves the movable valve body 41 in the arrow Y1 direction (downward) via the pressure receiving member 3, the first support portion 42, and the second support portion 43 due to the spring load (biasing force) thereof. , The force urging in the opening direction of the throttle hole 40 is F4.

基本的には、矢印Y2方向に向かう上向きの力F1+力F2+力F3の合計と、矢印Y1方向に向かう下向きの力F4とが均衡した時点において、可動バルブ体41の位置が保持される。この均衡により基本的には絞り孔40の絞り開度Lは決定される。矢印Y2方向に向かう上向きの力F1+力F2+力F3の合計、矢印Y1方向に向かう下向きの力F4の大きさが変化すると、可動バルブ体4の均衡する位置が変化するため、絞り孔40の絞り開度Lが変化する。
換言すれば、受圧部材3の受圧に応じて絞り孔40の絞り開度Lが変化する。
Basically, the position of the movable valve body 41 is maintained when the sum of the upward force F1 + force F2 + force F3 in the direction of the arrow Y2 and the downward force F4 in the direction of the arrow Y1 are balanced. This balance basically determines the throttle opening L of the throttle hole 40. When the sum of the upward force F1 + force F2 + force F3 in the direction of the arrow Y2 and the magnitude of the downward force F4 in the direction of the arrow Y1 change, the position at which the movable valve body 4 is balanced changes. The opening degree L changes.
In other words, the throttle opening L of the throttle hole 40 changes according to the pressure received by the pressure receiving member 3.

ここで、アクチュエータ9の駆動量を調整すれば、矢印Y1,Y2方向における可動体92の移動位置を調整することができ、ひいては、バネ7の付勢力を増加させる方向または減少させる方向に調整することができる。これにより受圧部材3、第1支持部42及び第2支持部43を介して可動バルブ体41を矢印Y1方向に向かう(下向き,絞り孔40の開放方向)ように付勢する力F4を調整することができ、それに応じて絞り孔40の絞り開度Lが調整される。   Here, if the driving amount of the actuator 9 is adjusted, the moving position of the movable body 92 in the directions of the arrows Y1 and Y2 can be adjusted, and consequently, the biasing force of the spring 7 is adjusted to be increased or decreased. be able to. As a result, the force F4 that urges the movable valve body 41 in the direction of the arrow Y1 (downward, in the opening direction of the throttle hole 40) via the pressure receiving member 3, the first support portion 42, and the second support portion 43 is adjusted. The throttle opening L of the throttle hole 40 is adjusted accordingly.

以上の説明から理解できるように本実施形態によれば、受圧部材3は、受圧に伴い受圧部材3が変形する方向(矢印Y1,Y2方向)において伸縮可能な構造とされた蛇腹部31を有する。このため、絞り開度Lを得るための伸縮量を充分に確保しつつ、受圧部材3の径サイズD10を小さくすることができる。殊に、受圧部材3の蛇腹部31の径サイズD11を小さくできる。故に、ガス制御バルブ1の径サイズの小型化を図るのに有利である。   As can be understood from the above description, according to the present embodiment, the pressure receiving member 3 has the bellows portion 31 having a structure that can be expanded and contracted in a direction (arrow Y1, Y2 direction) in which the pressure receiving member 3 is deformed with pressure reception. . For this reason, it is possible to reduce the diameter D10 of the pressure receiving member 3 while sufficiently securing an expansion / contraction amount for obtaining the throttle opening L. In particular, the diameter size D11 of the bellows portion 31 of the pressure receiving member 3 can be reduced. Therefore, it is advantageous to reduce the diameter size of the gas control valve 1.

更に本実施形態によれば、受圧部材3は伸縮性に富む蛇腹部31を有するため、絞り開度Lの大きさを良好に確保しつつ、受圧部材3の径サイズD10、蛇腹部31の径サイズD11を小さくすることができる。このため、第1室21の圧力が受圧部材3に作用しているとしても、受圧部材3が受ける受圧力が過剰に増大することを抑えることができる。このため、受圧部材3の受圧力に抗して駆動するアクチュエータ9の定格、動力の小型化を図るのに有利となる。   Furthermore, according to this embodiment, since the pressure receiving member 3 has the bellows part 31 which is rich in elasticity, the diameter size D10 of the pressure receiving member 3 and the diameter of the bellows part 31 are secured while ensuring the size of the throttle opening L. The size D11 can be reduced. For this reason, even if the pressure of the first chamber 21 acts on the pressure receiving member 3, it is possible to suppress an excessive increase in the pressure receiving pressure received by the pressure receiving member 3. For this reason, it is advantageous to reduce the rating and power of the actuator 9 that is driven against the pressure received by the pressure receiving member 3.

図10に模式的に示す参考形態のように、蛇腹部31をもつ受圧部材3に代えて、膜状のダイヤフラム3Xを用いる参考形態に係るガス制御バルブ1Xも考えられる。この参考形態に係るガス制御バルブ1Xによれば、膜状のダイヤフラム3Xが用いられているため、絞り開度Lを得るためのダイヤフラム3Xの弾性変形量を良好に確保するためには、膜状のダイヤフラム3Xが径サイズを大きく設定する必要がある。つまり、膜状のダイヤフラム3Xの径方向の小型化には限界があり、ガス制御バルブ1Xの径サイズの小型化を図るのに限界がある。このように、図10に示す参考形態によれば、膜状のダイヤフラム3Xの径サイズを大きく設定する必要があるため、第1室21のガス圧力を受圧するダイヤフラム3Xの受圧力が大きくなりがちである。このためダイヤフラム3Xを付勢するバネ7の付勢力を調整するアクチュエータ9の定格、動力の小型化を図るのに不利であった。   As in the reference embodiment schematically shown in FIG. 10, a gas control valve 1 </ b> X according to the reference embodiment using a membrane-like diaphragm 3 </ b> X instead of the pressure receiving member 3 having the bellows portion 31 is also conceivable. According to the gas control valve 1X according to this reference embodiment, the membrane-like diaphragm 3X is used. Therefore, in order to ensure a good elastic deformation amount of the diaphragm 3X for obtaining the throttle opening L, the membrane-like diaphragm 3X is used. The diaphragm 3X needs to have a large diameter size. In other words, there is a limit to reducing the size of the membrane diaphragm 3X in the radial direction, and there is a limit to reducing the diameter of the gas control valve 1X. As described above, according to the reference form shown in FIG. 10, since the diameter size of the membrane-like diaphragm 3X needs to be set large, the pressure received by the diaphragm 3X that receives the gas pressure in the first chamber 21 tends to increase. It is. For this reason, it is disadvantageous to reduce the rating and power of the actuator 9 that adjusts the biasing force of the spring 7 that biases the diaphragm 3X.

ここで、下流側でガス消費量が急激に変動し、絞り開度Lが急激に小さくなったとき等には、ダイヤフラム3Xがハンチング的な振動を発生させるおそれがある。この点本実施形態によれば、受圧部材3の蛇腹部31においては矢印Y1,Y2方向における伸縮性が高いため、上記したハンチング的な振動を発生させる要因が生じたとしても、上記したハンチング的な振動を抑制する効果を期待することができる。   Here, the diaphragm 3X may generate hunting-like vibrations when the gas consumption is rapidly changed on the downstream side and the throttle opening L is rapidly reduced. In this respect, according to the present embodiment, the bellows portion 31 of the pressure receiving member 3 has high stretchability in the directions of the arrows Y1 and Y2, and therefore the above-described hunting-like effect is generated even if a factor causing the above-described hunting vibration occurs. The effect which suppresses a special vibration can be anticipated.

ここで、図4は低圧通路71のガス流量と低圧通路71の2次圧P2との関係を示す。特性線Aは、受圧部材3用のバネ7の一端部7aがある位置に存在する場合における圧力特性を示す。特性線Bは、受圧部材3用のバネ7の一端部7aが別のある位置に存在する場合における圧力特性を示す。特性線A,特性線Bによれば、ガス流量が増加すれば、低圧通路71の2次圧P2が次第に低下している。   Here, FIG. 4 shows the relationship between the gas flow rate in the low pressure passage 71 and the secondary pressure P2 in the low pressure passage 71. A characteristic line A indicates a pressure characteristic when the one end portion 7a of the spring 7 for the pressure receiving member 3 exists at a certain position. A characteristic line B indicates a pressure characteristic when one end portion 7a of the spring 7 for the pressure receiving member 3 is present at a certain position. According to the characteristic line A and the characteristic line B, as the gas flow rate increases, the secondary pressure P2 in the low pressure passage 71 gradually decreases.

本実施形態によれば、上記したようにアクチュエータ9の駆動量を調整すれば、可動体92の位置を調整でき、ひいては受圧部材3用のバネ7の付勢力を調整でき、これにより絞り孔40の絞り開度Lを適宜調整することができる。これにより低圧通路71の燃料ガスの流量−設定圧力(2次圧)の特性を変化させることができる。この結果、低圧通路71の燃料ガスの流量−設定圧力(2次圧)の特性について、図4に示す特性線C,Dに示すように、複数の形態を実現することが可能である。   According to the present embodiment, if the drive amount of the actuator 9 is adjusted as described above, the position of the movable body 92 can be adjusted, and consequently the biasing force of the spring 7 for the pressure receiving member 3 can be adjusted. The throttle opening L can be adjusted as appropriate. As a result, the characteristics of the flow rate of the fuel gas in the low pressure passage 71 and the set pressure (secondary pressure) can be changed. As a result, the fuel gas flow rate in the low pressure passage 71—the set pressure (secondary pressure) characteristics can be realized in a plurality of forms as indicated by characteristic lines C and D shown in FIG.

更に、図5に示す特性線Eに示すように、ガス流量が増加するとき低圧通路71の2次圧P2を次第に増加させるように目標が設定されるときであっても、あるいは、図4に示す特性線Fに示すようにガス流量が増加するものの、低圧通路71の2次圧P2を一定域に維持したりする目標が設定されるときであっても、アクチュエータ9の駆動量を調整すれば、上記した目標に良好に対応することができる。   Further, as shown by the characteristic line E shown in FIG. 5, even when the target is set so as to gradually increase the secondary pressure P2 of the low pressure passage 71 when the gas flow rate increases, Although the gas flow rate increases as shown by the characteristic line F shown, the drive amount of the actuator 9 can be adjusted even when the target for maintaining the secondary pressure P2 of the low pressure passage 71 in a certain range is set. Thus, it is possible to cope with the above-mentioned goal satisfactorily.

燃料電池発電システムによれば、低圧通路71における2次圧を頻繁に変化させる傾向がある。殊に、車載の燃料電池発電システムによれば、車両負荷に応じて、低圧通路71における2次圧を頻繁に変化させる傾向がある。この点本実施形態によれば、受圧部材3用のバネ7の付勢力の増減をアクチュエータ9の駆動により行うため、応答性が良好であり、受圧部材3用のバネ7の付勢力を速い速度で増減させることができる。従って、絞り孔40の絞り開度Lを迅速に調整することができ、ひいては低圧通路71に係るガス流量−2次圧の特性を迅速に調整することができる。よって、車載の燃料電池発電システムに適する。殊に、受圧部材3用のバネ7の付勢力を調整するのはアクチュエータ9であり、パイロット弁を介さないため、応答性を高めることができる。   According to the fuel cell power generation system, the secondary pressure in the low pressure passage 71 tends to change frequently. In particular, according to the on-vehicle fuel cell power generation system, the secondary pressure in the low pressure passage 71 tends to change frequently in accordance with the vehicle load. In this respect, according to the present embodiment, the urging force of the spring 7 for the pressure receiving member 3 is increased / decreased by driving the actuator 9, so that the responsiveness is good and the urging force of the spring 7 for the pressure receiving member 3 is increased at a high speed. Can be increased or decreased. Therefore, the throttle opening degree L of the throttle hole 40 can be quickly adjusted, and the characteristics of the gas flow rate and the secondary pressure related to the low pressure passage 71 can be quickly adjusted. Therefore, it is suitable for an on-vehicle fuel cell power generation system. In particular, it is the actuator 9 that adjusts the urging force of the spring 7 for the pressure-receiving member 3, and the response can be improved because it does not involve a pilot valve.

(実施形態2)
図6は実施形態を示す。本実施形態は前記した実施形態1と基本的には同様の構成、作用効果を有する。共通の機能を奏する部位には共通の符号を付する。以下、異なる部分を中心として説明する。図1を準用して説明すると、受圧部材3はシール部材3sを介してボディ2に保持されており、絞り孔40に対向する位置に配置された先端部30と、先端部30に同軸的に連設された円筒形状をなす蛇腹部31と、蛇腹部31に同軸的に径外方向に延設された鍔部32とをもつ。更に本実施形態によれば、図6に示すように、アクチュエータ9の駆動軸91の先端の駆動位置N(N1〜Nn)と、ガス流量−設定圧力の特性との関係を予めマップ化し、そのマップをメモリなどの記憶媒体の所定のエリアに格納しておく。そして、燃料電池発電システムの制御装置からガス流量信号が出力されると、低圧通路71の圧力を、そのガス流量を実現できる2次圧力となるように、アクチュエータ9の駆動軸91の駆動位置を制御する。これにより受圧部材3用のバネ7の付勢力の増減をアクチュエータ9の駆動により行う。このため、応答性が良好であり、受圧部材3用のバネ7の付勢力を速い速度で増減させることができる。従って、絞り孔40の絞り開度Lを迅速に調整することができ、ひいては低圧通路71に係るガス流量−設定圧力の特性を迅速に調整することができる。よって、車載の燃料電池発電システムに適する。これにより燃料電池発電システムの制御性、燃費などの格段の向上を期待することができる。なお、駆動位置Nとしては、例えば、回転センサ、位置センサの出力値、ステッピングモータの場合にはステップ数で把握される。
(Embodiment 2)
FIG. 6 shows an embodiment. This embodiment has basically the same configuration and function as the first embodiment. The parts having common functions are denoted by common reference numerals. In the following, different parts will be mainly described. Referring to FIG. 1, the pressure receiving member 3 is held by the body 2 via the seal member 3 s and is coaxial with the distal end portion 30 disposed at a position facing the throttle hole 40 and the distal end portion 30. It has the bellows part 31 which makes the continuous cylindrical shape, and the collar part 32 extended coaxially to the bellows part 31 in the radial direction. Furthermore, according to the present embodiment, as shown in FIG. 6, the relationship between the drive position N (N 1 to N n ) at the tip of the drive shaft 91 of the actuator 9 and the characteristics of the gas flow rate and the set pressure is previously mapped. The map is stored in a predetermined area of a storage medium such as a memory. When the gas flow rate signal is output from the control device of the fuel cell power generation system, the drive position of the drive shaft 91 of the actuator 9 is set so that the pressure of the low pressure passage 71 becomes the secondary pressure that can realize the gas flow rate. Control. Accordingly, the biasing force of the spring 7 for the pressure receiving member 3 is increased or decreased by driving the actuator 9. For this reason, the responsiveness is good, and the urging force of the spring 7 for the pressure receiving member 3 can be increased or decreased at a high speed. Therefore, the throttle opening degree L of the throttle hole 40 can be adjusted quickly, and consequently the gas flow rate-set pressure characteristic of the low pressure passage 71 can be adjusted quickly. Therefore, it is suitable for an on-vehicle fuel cell power generation system. This can be expected to significantly improve the controllability and fuel consumption of the fuel cell power generation system. The driving position N is grasped by, for example, a rotation sensor, an output value of the position sensor, or the number of steps in the case of a stepping motor.

(実施形態3)
図7は実施形態3を示す。本実施形態は前記した実施形態1と基本的には同様の構成、作用効果を有する。共通の機能を奏する部位には共通の符号を付する。以下、異なる部分を中心として説明する。受圧部材3はシール部材3sを介してボディ2に保持されており、絞り孔40に対向する位置に配置された先端部30と、先端部30に同軸的に連設された円筒形状をなす蛇腹部31と、蛇腹部31に同軸的に径外方向に延設された鍔部32とをもつ。
(Embodiment 3)
FIG. 7 shows a third embodiment. This embodiment has basically the same configuration and function as the first embodiment. The parts having common functions are denoted by common reference numerals. In the following, different parts will be mainly described. The pressure receiving member 3 is held by the body 2 via a seal member 3 s, and has a distal end portion 30 disposed at a position facing the throttle hole 40 and a cylindrical bellows coaxially connected to the distal end portion 30. It has the part 31 and the collar part 32 extended coaxially to the bellows part 31 in the radial direction.

更に、アクチュエータ9Bは直動タイプであり、リニヤソレノイドで形成されたアクチュエータ本体90Bと、アクチュエータ本体90Bにより矢印Y1,Y2方向に沿って直動される非回転式の駆動軸91Bとを有する。上記したようにアクチュエータ9Bの駆動量を調整すれば、駆動軸91Bが直動し、矢印Y1,Y2方向における可動体92の位置を調整できる。ひいては受圧部材3用のバネ7の付勢力を調整でき、絞り孔40の絞り開度Lを適宜調整することができる。これにより低圧通路71の燃料ガスの流量−設定圧力(2次圧)の特性を変化させることができる。   Further, the actuator 9B is a direct-acting type, and has an actuator main body 90B formed of a linear solenoid, and a non-rotating drive shaft 91B that is linearly moved along the directions of arrows Y1 and Y2 by the actuator main body 90B. If the drive amount of the actuator 9B is adjusted as described above, the drive shaft 91B moves linearly, and the position of the movable body 92 in the directions of the arrows Y1 and Y2 can be adjusted. As a result, the urging force of the spring 7 for the pressure receiving member 3 can be adjusted, and the throttle opening L of the throttle hole 40 can be adjusted as appropriate. As a result, the characteristics of the flow rate of the fuel gas in the low pressure passage 71 and the set pressure (secondary pressure) can be changed.

(実施形態4)
図8は実施形態4を示す。本実施形態は前記した実施形態1と基本的には同様の構成、作用効果を有するものである。実施形態1と共通の機能を奏する部位には共通の符号を付する。以下、異なる部分を中心として説明する。本実施形態によれば、図8に示すように、受圧部材3用のバネ7の付勢力を調整するためのアクチュエータが設けられていない。従って受圧部材3用のバネ7の付勢力は固定的である。受圧部材3用のバネ7の一端部7aは、絞り開度可変機構4の第1支持部42の着座面42hに着座し、受圧部材3用のバネ7の他端部7bはボディ2の壁面2hに着座する。この結果、受圧部材3用のバネ7は、受圧部材3を矢印Y1方向(図示下方向)に付勢している。
(Embodiment 4)
FIG. 8 shows a fourth embodiment. The present embodiment has basically the same configuration and function as the first embodiment. The parts having the same functions as those of the first embodiment are denoted by the same reference numerals. In the following, different parts will be mainly described. According to the present embodiment, as shown in FIG. 8, the actuator for adjusting the biasing force of the spring 7 for the pressure receiving member 3 is not provided. Therefore, the biasing force of the spring 7 for the pressure receiving member 3 is fixed. One end 7 a of the spring 7 for the pressure receiving member 3 is seated on the seating surface 42 h of the first support portion 42 of the throttle opening varying mechanism 4, and the other end 7 b of the spring 7 for the pressure receiving member 3 is the wall surface of the body 2. Sit in 2h. As a result, the spring 7 for the pressure receiving member 3 urges the pressure receiving member 3 in the arrow Y1 direction (the downward direction in the figure).

(適用形態)
図9は適用形態を示す。この適用形態によれば、燃料電池発電システムは、車載用または定置用であり、図9に示すように、燃料極101及び酸化剤極102を有する燃料電池100と、発電前の燃料ガスを燃料電池100の燃料極101に供給する燃料用のガス供給通路5と、発電前の酸化剤ガス(一般的には空気)を燃料電池100の酸化剤極102に供給する酸化剤ガス用のガス供給通路103と、発電後の燃料オフガスを弁104を介して通過させる燃料オフガス用のガス排出通路105と、発電後の酸化剤オフガスを通過させる酸化剤オフガス用のガス排出通路106とを備えている。
(Application form)
FIG. 9 shows an application form. According to this application mode, the fuel cell power generation system is for in-vehicle use or stationary use, and as shown in FIG. 9, the fuel cell 100 having the fuel electrode 101 and the oxidant electrode 102 and the fuel gas before power generation are used as fuel. Gas supply passage 5 for fuel supplied to the fuel electrode 101 of the battery 100 and gas supply for oxidant gas for supplying the oxidant gas (generally air) before power generation to the oxidant electrode 102 of the fuel cell 100 A passage 103, a gas discharge passage 105 for fuel off-gas through which the fuel off-gas after power generation passes through the valve 104, and a gas discharge passage 106 for oxidant off-gas through which the oxidant off-gas after power generation passes are provided. .

ガス供給通路5は燃料電池100の燃料極101のガス入口の上流に位置する。酸化剤ガス用のガス供給通路103には、酸化剤ガスを燃料電池100の酸化剤極102に供給するガス供給源であるコンプレッサ107が設けられている。燃料用のガス供給通路5において、高圧燃料ガス源であるガス供給源55側に減圧バルブ108が設けられ、更に、減圧バルブ108の下流に位置するように前記したガス制御バルブ1が設けられている。   The gas supply passage 5 is located upstream of the gas inlet of the fuel electrode 101 of the fuel cell 100. The gas supply passage 103 for the oxidant gas is provided with a compressor 107 which is a gas supply source for supplying the oxidant gas to the oxidant electrode 102 of the fuel cell 100. In the gas supply passage 5 for fuel, the pressure reducing valve 108 is provided on the side of the gas supply source 55 which is a high pressure fuel gas source, and further, the gas control valve 1 is provided so as to be positioned downstream of the pressure reducing valve 108. Yes.

この適用形態によれば、ガス供給源55から吐出される相対的に高圧の燃料ガスは減圧バルブ108で減圧され、更にガス制御バルブ1を介して所定の設定圧力まで減圧され、燃料電池100の燃料極101に供給され、発電反応に使用される。また酸化剤ガス(一般的には空気)はコンプレッサ107の駆動により燃料電池100の酸化剤極102に供給され、発電反応に使用される。   According to this application mode, the relatively high pressure fuel gas discharged from the gas supply source 55 is decompressed by the decompression valve 108, and further decompressed to a predetermined set pressure via the gas control valve 1. It is supplied to the fuel electrode 101 and used for power generation reaction. The oxidant gas (generally air) is supplied to the oxidant electrode 102 of the fuel cell 100 by driving the compressor 107 and used for the power generation reaction.

前述したように、本適用形態によれば、ガス制御バルブ1の受圧部材3用のバネ7の付勢力の増減をアクチュエータ9の駆動により行う。このため応答性が良好であり、受圧部材3用のバネ7の付勢力を速い速度で増減させることができる。従って、ガス制御バルブ1の絞り孔40の絞り開度Lを迅速に調整することができ、ひいては低圧通路71に係るガス流量−設定圧力の特性を迅速に調整することができる。よって、車載用または定置用の燃料電池発電システムに適する。   As described above, according to this application mode, the urging force of the spring 7 for the pressure receiving member 3 of the gas control valve 1 is increased or decreased by driving the actuator 9. Therefore, the responsiveness is good, and the urging force of the spring 7 for the pressure receiving member 3 can be increased or decreased at a high speed. Therefore, the throttle opening L of the throttle hole 40 of the gas control valve 1 can be quickly adjusted, and the gas flow rate-set pressure characteristic of the low pressure passage 71 can be quickly adjusted. Therefore, it is suitable for an on-vehicle or stationary fuel cell power generation system.

(その他)
上記した実施形態1によれば、蛇腹部31、ひいては受圧部材3は樹脂や金属を基材として形成されているが、これに限らず、金属のみで形成することもできる。この場合、ガスバリヤ性を更に高めることができる。更には、受圧部材3をゴムで形成するものの、受圧部材3の内部にガスバリヤ性が高い樹脂(例えばポリアミド、ポリイミド等)や金属(例えば金属シート、金属蒸着層等)で形成されたガスバリヤ層を埋設することにしても良い。なおガス圧力が低いときには、受圧部材3はゴムを基材として形成しても良い。
(Other)
According to the first embodiment described above, the bellows portion 31 and the pressure receiving member 3 are formed using resin or metal as a base material. However, the present invention is not limited thereto, and can be formed using only metal. In this case, the gas barrier property can be further improved. Furthermore, although the pressure receiving member 3 is formed of rubber, a gas barrier layer formed of a resin (for example, polyamide, polyimide, etc.) or metal (for example, a metal sheet, a metal vapor deposition layer, etc.) having a high gas barrier property is provided inside the pressure receiving member 3. It may be buried. When the gas pressure is low, the pressure receiving member 3 may be formed using rubber as a base material.

上記した実施形態1によれば、受圧部材3用のバネ7及びバルブバネ8はコイルバネとされているが、これに限らず、板バネなどの他の種類のバネとしても良く、あるいは、ゴムや軟質樹脂等で形成しても良い。上記した実施形態1によれば、絞り開度Lは、例えば2ミリメートル以下,1ミリメートル以下,500マイクロメートルとされているが、これに限られるものではなく、上記した値よりも更に大きくすることもできる。   According to the first embodiment described above, the spring 7 and the valve spring 8 for the pressure receiving member 3 are coil springs, but are not limited thereto, and may be other types of springs such as a leaf spring, or may be rubber or soft. You may form with resin etc. According to Embodiment 1 described above, the aperture opening L is, for example, 2 millimeters or less, 1 millimeter or less, and 500 micrometers, but is not limited to this, and should be larger than the above value. You can also.

上記した実施形態1によれば、受圧部材3の蛇腹部31はほぼ円筒形状をなしているが、これに限らず、受圧部材を円錐筒形状としても良い。この場合、蛇腹部31の軸長方向の一端部31r(蛇腹部31のうち第1支持部42側の端部)の径を相対的に小さくし、蛇腹部31の軸長方向の他端部31t(蛇腹部31のうち可動体92側の端部)の径を相対的に大きくするように、円錐筒形状とすることができる。   According to Embodiment 1 described above, the bellows portion 31 of the pressure receiving member 3 has a substantially cylindrical shape, but the present invention is not limited to this, and the pressure receiving member may have a conical cylinder shape. In this case, the diameter of the one end portion 31r in the axial length direction of the bellows portion 31 (the end portion of the bellows portion 31 on the first support portion 42 side) is relatively small, and the other end portion in the axial length direction of the bellows portion 31 is obtained. A conical cylinder shape can be formed so that the diameter of 31t (the end of the bellows portion 31 on the movable body 92 side) is relatively large.

上記した実施形態1によれば、ガス制御バルブ1はガス圧力及びガス流量を調整できるが、ガス圧力を調整するガス制御バルブでも良いし、ガス流量を調整するガス制御バルブでも良い。   According to the first embodiment described above, the gas control valve 1 can adjust the gas pressure and the gas flow rate, but it may be a gas control valve that adjusts the gas pressure or a gas control valve that adjusts the gas flow rate.

上記した実施形態1によれば、ガス制御バルブ1は燃料電池100の燃料極101に送られる燃料ガスの制御バルブとして使用されているが、これに限らず、燃料電池100の酸化剤極(空気極)102に送られる酸化剤ガスの制御バルブとして使用しても良い。上記した実施形態1によれば、ガス制御バルブ1は燃料電池発電システムに適用されているが、これに限らず、ガスの圧力、流量等を制御する他のシステム、装置、設備等に適用しても良いものである。その他、本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できるものである。   According to the first embodiment described above, the gas control valve 1 is used as a control valve for the fuel gas sent to the fuel electrode 101 of the fuel cell 100. However, the present invention is not limited to this, and the oxidant electrode (air) of the fuel cell 100 is used. The electrode may be used as a control valve for the oxidant gas sent to the electrode 102. According to the first embodiment described above, the gas control valve 1 is applied to a fuel cell power generation system, but is not limited thereto, and is applied to other systems, devices, facilities, etc. that control the pressure, flow rate, etc. of the gas. It is good. In addition, the present invention is not limited to the embodiment described above and shown in the drawings, and can be implemented with appropriate modifications without departing from the scope of the invention.

本発明はガスの圧力、流量等を制御するシステム、装置、設備等に適用することができ、例えば燃料電池発電システムに適用することができる。   The present invention can be applied to a system, apparatus, facility, and the like that control the pressure, flow rate, and the like of a gas. For example, the present invention can be applied to a fuel cell power generation system.

実施形態1に係り、ガス制御バルブを模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a gas control valve according to the first embodiment. ガス制御バルブの可動体付近を模式的に示す断面図である。It is sectional drawing which shows typically the movable body vicinity of a gas control valve. 受圧部材の蛇腹部の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the bellows part of a pressure receiving member. 低圧通路の2次圧とガス流量との関係を示すグラフである。It is a graph which shows the relationship between the secondary pressure of a low pressure channel | path, and a gas flow rate. 低圧通路の2次圧とガス流量との関係を示すグラフである。It is a graph which shows the relationship between the secondary pressure of a low pressure channel | path, and a gas flow rate. 実施形態2に係り、アクチュエータの駆動位置と低圧通路のガス流量及び2次圧との関係に係るマップを示す構成図である。FIG. 10 is a configuration diagram illustrating a map relating to a relationship between an actuator driving position, a gas flow rate in a low-pressure passage, and a secondary pressure according to the second embodiment. 実施形態3に係り、ガス制御バルブを模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a gas control valve according to a third embodiment. 実施形態4に係り、ガス制御バルブの要部付近を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing the vicinity of a main part of a gas control valve according to a fourth embodiment. 適用形態に係り、燃料電池発電システムを模式的に示す構成図である。It is a block diagram which shows a fuel cell power generation system typically in connection with an application form. 参考形態に係り、ガス制御バルブの要部付近を模式的に示す断面図である。It is sectional drawing which concerns on a reference form and shows typically the principal part vicinity of a gas control valve.

符号の説明Explanation of symbols

図中、1はガス制御バルブ、20は収容室、21は第1室、22は第2室、23はバルブ室、3は受圧部材、31は蛇腹部、61は高圧通路(1次側通路)、71は低圧通路(2次側通路)、4は絞り開度可変機構、40は絞り孔、41は可動バルブ体、6は高圧通路(1次側通路)、7は受圧部材用のバネ(弾性部材)、8はバルブバネ(可動バルブ体用の弾性部材)、100は燃料電池、101は燃料極、102は酸化剤極、5は燃料用のガス供給通路、103は酸化剤ガス用のガス供給通路を示す。   In the figure, 1 is a gas control valve, 20 is a storage chamber, 21 is a first chamber, 22 is a second chamber, 23 is a valve chamber, 3 is a pressure receiving member, 31 is a bellows portion, 61 is a high pressure passage (primary side passage) ), 71 is a low pressure passage (secondary side passage), 4 is a throttle opening variable mechanism, 40 is a throttle hole, 41 is a movable valve body, 6 is a high pressure passage (primary side passage), and 7 is a spring for a pressure receiving member. (Elastic member), 8 is a valve spring (elastic member for a movable valve body), 100 is a fuel cell, 101 is a fuel electrode, 102 is an oxidant electrode, 5 is a gas supply passage for fuel, and 103 is for oxidant gas. A gas supply passage is shown.

Claims (5)

収容室をもつボディと、
前記収容室に連通するように前記ボディに設けられガスが供給される1次側通路と、
前記収容室に連通するように前記ボディに設けられ前記ガスが吐出される2次側通路と、
前記ボディの前記収容室に配設され前記収容室を前記2次側通路に連通する第1室と前記2次側通路に連通しない第2室とに区画すると共に前記第1室のガスの圧力を受圧するに伴い変形する受圧部材と、
前記1次側通路と前記2次側通路との間に設けられた絞り開度をもち前記1次側通路のガス流量を前記絞り開度により絞って前記第1室を経て前記2次側通路に供給すると共に前記受圧部材の受圧に伴い前記絞り開度を調整する絞り開度可変機構と、
前記絞り開度可変機構の前記絞り開度を増加または減少させる方向に前記受圧部材を付勢する付勢力を発揮する弾性部材とを具備しており、
前記受圧部材は、受圧に伴い前記受圧部材が変形する方向において伸縮可能な構造とされていることを特徴とするガス制御バルブ。
A body with a containment chamber;
A primary-side passage that is provided in the body so as to communicate with the storage chamber and is supplied with gas;
A secondary passage that is provided in the body so as to communicate with the storage chamber and from which the gas is discharged;
The pressure of the gas in the first chamber is divided into a first chamber that is disposed in the storage chamber of the body and communicates with the secondary passage and a second chamber that does not communicate with the secondary passage. A pressure receiving member that deforms as the pressure is received;
The secondary side passage has a throttle opening provided between the primary side passage and the secondary side passage, and the gas flow rate in the primary side passage is throttled by the throttle opening to pass through the first chamber. A throttle opening varying mechanism that adjusts the throttle opening in accordance with pressure received by the pressure receiving member;
An elastic member that exerts a biasing force that biases the pressure receiving member in a direction to increase or decrease the throttle opening of the throttle opening variable mechanism;
The gas control valve according to claim 1, wherein the pressure receiving member has a structure capable of expanding and contracting in a direction in which the pressure receiving member is deformed in accordance with pressure reception.
請求項1において、前記受圧部材は、少なくとも一部に蛇腹構造を有することを特徴とするガス制御バルブ。   The gas control valve according to claim 1, wherein the pressure receiving member has a bellows structure at least partially. 請求項1または請求項2において、前記弾性部材の付勢力を調整するアクチュエータが設けられていることを特徴とするガス制御バルブ。   3. The gas control valve according to claim 1, wherein an actuator for adjusting a biasing force of the elastic member is provided. 請求項1〜請求項3のうちのいずれか一項において、前記絞り開度可変機構は、絞り孔と、前記絞り孔を開閉する方向に動作する可動バルブ体と、前記絞り孔を閉鎖する方向に前記可動バルブ体を付勢する可動バルブ体用の弾性部材とを有することを特徴とするガス制御バルブ。   The throttle opening variable mechanism according to any one of claims 1 to 3, wherein the throttle opening varying mechanism includes a throttle hole, a movable valve body that operates in a direction to open and close the throttle hole, and a direction in which the throttle hole is closed. And a movable valve body elastic member for biasing the movable valve body. 燃料極及び酸化剤極を有する燃料電池と、
前記燃料電池の燃料極に燃料ガスを供給する燃料用のガス供給通路と、
前記燃料電池の前記酸化剤極に酸化剤ガスを供給する酸化剤ガス用のガス供給通路と、
前記燃料用のガス供給通路及び前記酸化剤ガス用のガス供給通路のうちの少なくとも一方において前記燃料電池の上流に設けられた燃料電池用ガス制御バルブとを具備する燃料電池発電システムにおいて、
前記燃料電池用ガス制御バルブは、
収容室をもつボディと、
前記収容室に連通するように前記ボディに設けられガスが供給される1次側通路と、
前記収容室に連通するように前記ボディに設けられ前記ガスが吐出される2次側通路と、
前記ボディの前記収容室に配設され前記収容室を前記2次側通路に連通する前記第1室と前記2次側通路に連通しない第2室とに区画すると共に前記第1室のガスの圧力を受圧するに伴い変形する受圧部材と、
前記1次側通路と前記2次側通路との間に設けられた絞り開度をもち前記1次側通路のガス流量を絞り開度により絞って前記第1室を経て前記2次側通路に供給すると共に前記受圧部材の受圧に伴い前記絞り開度を調整する絞り開度可変機構と、
前記絞り開度可変機構の前記絞り開度を増加または減少させる方向に前記受圧部材を付勢する付勢力を発揮する弾性部材とを具備しており、
前記受圧部材は、受圧に伴い前記受圧部材が変形する方向において伸縮可能な構造とされていることを特徴とする燃料電池発電システム。
A fuel cell having a fuel electrode and an oxidant electrode;
A fuel gas supply passage for supplying fuel gas to the fuel electrode of the fuel cell;
A gas supply passage for an oxidant gas for supplying an oxidant gas to the oxidant electrode of the fuel cell;
A fuel cell power generation system comprising a fuel cell gas control valve provided upstream of the fuel cell in at least one of the gas supply passage for fuel and the gas supply passage for oxidant gas;
The fuel cell gas control valve is
A body with a containment chamber;
A primary-side passage that is provided in the body so as to communicate with the storage chamber and is supplied with gas;
A secondary passage that is provided in the body so as to communicate with the storage chamber and from which the gas is discharged;
The housing is disposed in the housing chamber of the body, and the housing chamber is divided into a first chamber communicating with the secondary side passage and a second chamber not communicating with the secondary side passage, and the gas in the first chamber is divided. A pressure receiving member that deforms as pressure is received;
The throttle opening provided between the primary side passage and the secondary side passage has a throttle opening, and the gas flow rate in the primary side passage is throttled by the throttle opening to pass through the first chamber to the secondary side passage. A throttle opening variable mechanism for supplying and adjusting the throttle opening in accordance with the pressure received by the pressure receiving member;
An elastic member that exerts a biasing force that biases the pressure receiving member in a direction to increase or decrease the throttle opening of the throttle opening variable mechanism;
The fuel cell power generation system according to claim 1, wherein the pressure receiving member has a structure that can be expanded and contracted in a direction in which the pressure receiving member is deformed in accordance with pressure reception.
JP2004004325A 2004-01-09 2004-01-09 Gas control valve and fuel cell power generation system Pending JP2005195145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004004325A JP2005195145A (en) 2004-01-09 2004-01-09 Gas control valve and fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004004325A JP2005195145A (en) 2004-01-09 2004-01-09 Gas control valve and fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2005195145A true JP2005195145A (en) 2005-07-21

Family

ID=34818973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004004325A Pending JP2005195145A (en) 2004-01-09 2004-01-09 Gas control valve and fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2005195145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371930B2 (en) 2011-08-30 2016-06-21 Horiba Stec, Co., Ltd. Fluid control valve
CN110017870A (en) * 2019-03-29 2019-07-16 山东钢铁集团日照有限公司 A kind of differential pressure flow signal detection amplifying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371930B2 (en) 2011-08-30 2016-06-21 Horiba Stec, Co., Ltd. Fluid control valve
CN110017870A (en) * 2019-03-29 2019-07-16 山东钢铁集团日照有限公司 A kind of differential pressure flow signal detection amplifying device

Similar Documents

Publication Publication Date Title
US8770221B2 (en) Pressure regulating valve
JP4485781B2 (en) Valve with pressure balancing piston and method related thereto
JP2008014628A (en) Temperature expansion valve
WO2007022614A1 (en) Solenoid isolation valve
CN111720580B (en) Fluid control valve
CN103003607A (en) Gas pressure regulating valve
JPWO2010035323A1 (en) Pressure reducing valve
CN109595098B (en) Mixing ratio multi-opening regulating valve of liquid rocket engine
JP2010121780A (en) Valve
WO2007111040A1 (en) Control valve for variable displacement compressor
JP2011196464A (en) Ball valve type valve device
JP2005195145A (en) Gas control valve and fuel cell power generation system
JP2008196599A (en) Solenoid valve
JP2005307972A (en) Regulator for fluid
JP2010127446A (en) Diaphragm-driven valve
JP2005196656A (en) Valve for controlling gas, and fuel battery power generation system
JP2005189949A (en) Fuel cell power generation system and gas pressure reducing valve for the same
JP2004265363A (en) Gas pressure reducing valve
JP2005309983A (en) Gas control valve and fuel cell system
JP3869673B2 (en) Liquid control valve
WO2012118071A1 (en) Fluid control valve
JP2005195147A (en) Gas control valve and fuel cell power generation system
JP2007004582A (en) Pressure adjusting valve and fuel cell power generation system
JP6270649B2 (en) Flow regulating valve and pressure regulating device
JP7437911B2 (en) fluid control device