JP2005194880A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2005194880A
JP2005194880A JP2003434814A JP2003434814A JP2005194880A JP 2005194880 A JP2005194880 A JP 2005194880A JP 2003434814 A JP2003434814 A JP 2003434814A JP 2003434814 A JP2003434814 A JP 2003434814A JP 2005194880 A JP2005194880 A JP 2005194880A
Authority
JP
Japan
Prior art keywords
movable core
core
magnetic
valve
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003434814A
Other languages
Japanese (ja)
Inventor
Tatsusuke Yamamoto
辰介 山本
Masaki Akutagawa
正毅 芥川
Yukio Yamaguchi
幸雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003434814A priority Critical patent/JP2005194880A/en
Publication of JP2005194880A publication Critical patent/JP2005194880A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve smoothly reciprocatingly moving a movable core by facilitating the processing of a tubular member covering the outer peripheries of a fixed core and the movable core. <P>SOLUTION: The tubular member 12 covers the outer peripheries of the movable core 26 and the fixed core 30 to form a magnetic circuit with the movable core 26 and the fixed core 30. A valve body 20 supports a valve member 22 so as to be reciprocatingly moved. A gap 110 formed at the entire outer periphery of the movable core 26 by the movable core 26 and the small diameter part 14 of the tubular member 12 is set approximately to such a size that does not come into contact with the small diameter part 14 of the movable core 26. The size of the gap 10 formed on the radial one side of the movable core is desirably be 50 μm or more. Also, the size of the gap 110 on one side is desirably set to 500 μm or less to secure a magnetic attractive force acting between the fixed core 30 and the movable core 26. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固定コアおよび可動コアの外周を筒状部材で覆う燃料噴射弁に関する。   The present invention relates to a fuel injection valve that covers the outer periphery of a fixed core and a movable core with a cylindrical member.

従来、特許文献1のように、固定コアおよび可動コアの外周を磁性パイプで覆う燃料噴射弁が知られている。   Conventionally, as in Patent Document 1, a fuel injection valve in which the outer periphery of a fixed core and a movable core is covered with a magnetic pipe is known.

特開2002−206468号公報JP 2002-206468 A

特許文献1に示された磁性パイプに限らず固定コアおよび可動コアの外周を筒状部材で覆い筒状部材で可動コアを支持する構成では、可動コアが往復移動するときの可動コアと筒状部材との摺動抵抗を低減するため、筒状部材の同軸度、真円度および面粗さの精度を確保することが必要になることがある。したがって、筒状部材の加工工数が増加し、製造コストが上昇するという問題がある。
本発明は上記問題を解決するためになされたものであり、固定コアおよび可動コアの外周を覆う筒状部材の加工を容易にし、可動コアを滑らかに往復移動させる燃料噴射弁を提供することを目的とする。
In the configuration in which the outer periphery of the fixed core and the movable core is covered with a cylindrical member and the movable core is supported by the cylindrical member, not limited to the magnetic pipe shown in Patent Document 1, the movable core and the cylindrical shape when the movable core reciprocates. In order to reduce the sliding resistance with the member, it may be necessary to ensure the accuracy of the coaxiality, roundness and surface roughness of the cylindrical member. Therefore, there is a problem that the number of processing steps for the cylindrical member increases and the manufacturing cost increases.
The present invention has been made to solve the above problems, and provides a fuel injection valve that facilitates the processing of a cylindrical member that covers the outer periphery of a fixed core and a movable core, and smoothly reciprocates the movable core. Objective.

請求項1記載の発明では、可動コアの外周全体に、可動コアの外周を覆う筒状部材と可動コアとが接触することを防止する程度のギャップが形成されている。可動コアの外周を覆う筒状部材と可動コアとが接触しないので、可動コアが滑らかに往復移動する。また、可動コアの外周を覆う筒状部材と可動コアとが接触しないので、筒状部材の加工が容易である。
また請求項1記載の発明では、可動コアとともに往復移動する弁部材が弁ボディに往復移動可能に支持されているので、可動コアの軸ずれを低減できる。
According to the first aspect of the present invention, a gap is formed on the entire outer periphery of the movable core so as to prevent the cylindrical member covering the outer periphery of the movable core from contacting the movable core. Since the cylindrical member that covers the outer periphery of the movable core does not contact the movable core, the movable core smoothly reciprocates. Moreover, since the cylindrical member which covers the outer periphery of a movable core and a movable core do not contact, a process of a cylindrical member is easy.
According to the first aspect of the present invention, since the valve member that reciprocates together with the movable core is supported by the valve body so as to be capable of reciprocating, the axial displacement of the movable core can be reduced.

請求項2記載の発明では、筒状部材の少なくとも可動コアの外周を覆う部分が磁性材で形成されている。前述したように、可動コアの外周を覆う筒状部材と可動コアとが接触しないので、例えば板状の磁性母材をプレス加工して磁性パイプを形成し、可動コアと向き合う磁性パイプの内周面を加工しないでそのまま用いることができる。したがって、筒状部材の製造が容易である。また、筒状部材の可動コアの外周を覆う部分が磁性材であるから、可動コアと筒状部材との間を流れる磁束量が増加する。したがって、可動コアを吸引する磁気吸引力が増加する。   According to the second aspect of the present invention, at least a portion covering the outer periphery of the movable core of the cylindrical member is formed of a magnetic material. As described above, since the cylindrical member that covers the outer periphery of the movable core does not contact the movable core, for example, a plate-like magnetic base material is pressed to form a magnetic pipe, and the inner periphery of the magnetic pipe facing the movable core The surface can be used as it is without being processed. Therefore, it is easy to manufacture the cylindrical member. Moreover, since the part which covers the outer periphery of the movable core of a cylindrical member is a magnetic material, the amount of magnetic flux which flows between a movable core and a cylindrical member increases. Accordingly, the magnetic attractive force for attracting the movable core increases.

ここで、可動コアの外周を覆う筒状部材と可動コアとのギャップが50μmより小さいと、筒状部材と可動コアとが接触しないようにギャップを管理することが困難である。また、筒状部材と可動コアとのギャップが500μmより大きいと、可動コアと筒状部材との間に流れる磁束量が減少し、固定コアと可動コアとの間に働く磁気吸引力が低下する。ここで可動コアと筒状部材との間に可動コアの全周に形成されるギャップの大きさとは、径方向の両側に形成されるギャップの片側のギャップの大きさを表すものとする。そこで請求項3記載の発明では、筒状部材と可動コアとのギャップを50μm以上500μm以下にすることにより、可動コアと筒状部材とが非接触になるギャップの管理を容易にするとともに、固定コアと可動コアとの間に働く磁気吸引力の低下を防止できる。   Here, when the gap between the cylindrical member covering the outer periphery of the movable core and the movable core is smaller than 50 μm, it is difficult to manage the gap so that the cylindrical member and the movable core do not contact each other. Further, when the gap between the cylindrical member and the movable core is larger than 500 μm, the amount of magnetic flux flowing between the movable core and the cylindrical member decreases, and the magnetic attractive force acting between the fixed core and the movable core decreases. . Here, the size of the gap formed on the entire circumference of the movable core between the movable core and the cylindrical member represents the size of the gap on one side of the gap formed on both sides in the radial direction. Therefore, in the invention described in claim 3, by making the gap between the cylindrical member and the movable core 50 μm or more and 500 μm or less, it is possible to easily manage the gap where the movable core and the cylindrical member are not in contact with each other and to fix the gap. A decrease in magnetic attractive force acting between the core and the movable core can be prevented.

ところで、請求項1記載の発明のように弁ボディが弁部材を往復移動可能に支持している構成では、弁ボディと弁部材との摺動クリアランスが15μmより大きいと、可動コアが軸ずれを起こし、筒状部材と接触する恐れがある。また、弁ボディと弁部材との摺動クリアランスが3μmより小さいと、弁ボディと弁部材との摺動抵抗が大きくなり弁部材の往復移動が妨げられる恐れがある。ここで弁ボディと弁部材との摺動クリアランスの大きさとは、径方向の両側に形成される摺動クリアランスの片側の摺動クリアランスの大きさを表すものとする。そこで請求項4記載の発明では、弁ボディと弁部材との摺動クリアランスを3μm以上15μm以下に設定している。その結果、可動コアの軸ずれを低減するとともに、弁ボディと弁部材との摺動抵抗を低減できる。   By the way, in the configuration in which the valve body supports the valve member so as to be able to reciprocate as in the first aspect of the invention, if the sliding clearance between the valve body and the valve member is larger than 15 μm, the movable core is displaced. There is a risk of waking up and coming into contact with the tubular member. Further, if the sliding clearance between the valve body and the valve member is smaller than 3 μm, the sliding resistance between the valve body and the valve member is increased, which may hinder the reciprocating movement of the valve member. Here, the size of the sliding clearance between the valve body and the valve member represents the size of the sliding clearance on one side of the sliding clearance formed on both sides in the radial direction. Therefore, in the invention described in claim 4, the sliding clearance between the valve body and the valve member is set to 3 μm or more and 15 μm or less. As a result, the axial displacement of the movable core can be reduced, and the sliding resistance between the valve body and the valve member can be reduced.

可動コアと向き合っている固定コアの対向側を流れる磁束は、主に可動コアとの間に流れ可動コアを吸引する磁気吸引力として作用する。一方、可動コアとの対向側から反可動コア側に離れた箇所の固定コアを流れる磁束においては、磁気吸引力として作用しない磁束の流れる割合が高くなる。そこで請求項5記載の発明では、固定コアの反可動コア側の外径を可動コアの外径よりも大きくすることにより固定コアの反可動コア側の磁路面積を可動コアの固定コアとの対向側の磁路面積よりも大きくしている。その結果、磁気吸引力として作用しない磁束が流れている割合の高い箇所の固定コアの磁路面積が大きくなるので、磁気吸引力として作用する磁束量が増加する。   The magnetic flux flowing on the opposite side of the fixed core facing the movable core mainly flows between the movable core and acts as a magnetic attractive force that attracts the movable core. On the other hand, in the magnetic flux flowing through the fixed core at a position away from the side facing the movable core toward the non-movable core, the ratio of the magnetic flux that does not act as a magnetic attractive force increases. Therefore, in the invention described in claim 5, the magnetic path area of the fixed core on the side of the non-movable core is made larger than the outer diameter of the movable core by increasing the outer diameter of the fixed core on the side of the movable core. It is larger than the magnetic path area on the opposite side. As a result, the magnetic path area of the fixed core at a high ratio where a magnetic flux that does not act as a magnetic attraction force is flowing increases, and the amount of magnetic flux that acts as a magnetic attraction force increases.

さらに、可動コアと向き合う対向部の対向端面側、つまり固定コアの可動コアと向き合う対向端面側は固定コアの大径部よりも径方向内側に凹んでいる。その結果、固定コアの対向端面の外径は大径部の外径よりも小さくなるので、固定コアの対向端面が可動コアの外周に設置されている磁性部材と向き合う面積が小さくなる。したがって、固定コアと可動コアとの間に流れる磁束の一部が可動コアの外周に設置された磁性部材と固定コアとの間に流れることを抑制できる。これにより、前述したように固定コアの反可動コア側に可動コアよりも外径の大きい大径部を設けたことにより増加した固定コアと可動コアとの間を流れる磁束の減少を低減できる。したがって、可動コアを吸引する磁気吸引力が増加し開弁応答性が向上する。   Furthermore, the opposing end surface side of the opposing portion facing the movable core, that is, the opposing end surface side facing the movable core of the fixed core is recessed radially inward from the large diameter portion of the fixed core. As a result, since the outer diameter of the opposed end surface of the fixed core is smaller than the outer diameter of the large diameter portion, the area where the opposed end surface of the fixed core faces the magnetic member installed on the outer periphery of the movable core is reduced. Accordingly, it is possible to suppress a part of the magnetic flux flowing between the fixed core and the movable core from flowing between the magnetic member installed on the outer periphery of the movable core and the fixed core. Thereby, as described above, the decrease in the magnetic flux flowing between the fixed core and the movable core, which is increased by providing the large-diameter portion having an outer diameter larger than that of the movable core on the non-movable core side of the fixed core, can be reduced. Therefore, the magnetic attractive force for attracting the movable core is increased, and the valve opening response is improved.

また請求項5記載の発明では、外径を大きくして固定コアの磁路面積を増加しているので、径の変化量が同じであれば、内径に比べ磁路面積の増加量を大きくすることができる。
また、固定コアの内周に可動コアおよび弁部材を一方向に付勢する付勢部材として例えばコイルスプリングを収容する場合、固定コアの内径が小さくなると固定コアの内周に収容するコイルスプリングの径が小さくなる。その結果、コイルスプリングのばね定数が上昇し付勢力の調整範囲が狭くなるので、付勢力の調整が困難になるという問題が生じる。これに対し請求項1記載の発明では、固定コアの内径を変更せず外径を大きくすることにより固定コアの磁路面積を大きくすることができるので、コイルスプリングの小径化を防止し、コイルスプリングのばね定数の上昇を防止できる。したがって、付勢力の調整範囲が広くなり、付勢力の調整が容易である。
In the invention of claim 5, the outer diameter is increased to increase the magnetic path area of the fixed core. Therefore, if the amount of change in diameter is the same, the increase amount of the magnetic path area is increased compared to the inner diameter. be able to.
Further, when a coil spring is accommodated as an urging member for urging the movable core and the valve member in one direction on the inner periphery of the fixed core, when the inner diameter of the fixed core is reduced, the coil spring accommodated on the inner periphery of the fixed core is reduced. The diameter becomes smaller. As a result, the spring constant of the coil spring rises and the adjustment range of the urging force becomes narrow, which causes a problem that adjustment of the urging force becomes difficult. On the other hand, in the first aspect of the present invention, the magnetic path area of the fixed core can be increased by increasing the outer diameter without changing the inner diameter of the fixed core. An increase in the spring constant of the spring can be prevented. Therefore, the adjustment range of the urging force is widened and the adjustment of the urging force is easy.

以下、本発明の複数の実施形態を図に基づいて説明する。
(第1実施形態)
本発明の第1実施形態による燃料噴射弁を図2に示す。燃料噴射弁10は、ガソリンエンジン用の燃料噴射弁である。
筒状部材としての磁性パイプ12は、全体が磁性材で形成されており、ほぼ均一の厚みで燃料入口から弁ボディ20の底部外壁まで有底筒状に形成されている。磁性パイプ12は、例えば図3に示すように、SUS等の板状の磁性母材200からプレス加工および絞り加工により1部材で一体に形成される。磁性パイプ12には燃料通路100が形成されており、この燃料通路100に、弁ボディ20、弁部材22、可動コア26、付勢部材としてのスプリング28および固定コア30等が収容されている。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
The fuel injection valve according to the first embodiment of the present invention is shown in FIG. The fuel injection valve 10 is a fuel injection valve for a gasoline engine.
The magnetic pipe 12 as a cylindrical member is entirely formed of a magnetic material, and is formed in a bottomed cylindrical shape from the fuel inlet to the bottom outer wall of the valve body 20 with a substantially uniform thickness. For example, as shown in FIG. 3, the magnetic pipe 12 is integrally formed as a single member from a plate-like magnetic base material 200 such as SUS by pressing and drawing. A fuel passage 100 is formed in the magnetic pipe 12, and a valve body 20, a valve member 22, a movable core 26, a spring 28 as a biasing member, a fixed core 30, and the like are accommodated in the fuel passage 100.

磁性パイプ12は、弁ボディ20および可動コア26の外周を覆う小径部14、固定コア30の外周を覆う中径部16、および燃料入口側の大径部18を燃料噴射側からこの順番で有している。小径部14および中径部16は、可動コア26および固定コア30の外周を覆う磁性部である。磁性パイプ12は段付き形状であり、小径部14と中径部16との間に、可動コア26と固定コア30との外径差に合わせて段差15が形成されている。   The magnetic pipe 12 has a small-diameter portion 14 covering the outer periphery of the valve body 20 and the movable core 26, an intermediate-diameter portion 16 covering the outer periphery of the fixed core 30, and a large-diameter portion 18 on the fuel inlet side in this order from the fuel injection side. doing. The small diameter portion 14 and the medium diameter portion 16 are magnetic portions that cover the outer periphery of the movable core 26 and the fixed core 30. The magnetic pipe 12 has a stepped shape, and a step 15 is formed between the small-diameter portion 14 and the medium-diameter portion 16 in accordance with the outer diameter difference between the movable core 26 and the fixed core 30.

弁ボディ20は小径部14の噴孔側先端の底部内側に溶接により固定されている。弁ボディ20は内周壁に弁部材22が着座可能な弁座21を有している。
弁部材22は可動コア26と結合し可動コア26とともに往復移動する。図1に示すように、弁部材22が弁ボディ20の内周面と摺動する箇所には、面取り23が周方向に4箇所形成されており、これら面取り23と弁ボディ20の内周面との間を燃料が流れる。そして面取り23と面取り23との間に、軸方向に延びる摺動部24が周方向に4箇所形成されている。摺動部24は弁ボディ20の内周壁と摺動する。第1実施形態では面取り23および摺動部24を周方向にそれぞれ4箇所形成したが、弁ボディ20に対する弁部材22の傾きを防止するためには、3箇所以上であればよい。
The valve body 20 is fixed to the inside of the bottom of the nozzle hole side tip of the small diameter portion 14 by welding. The valve body 20 has a valve seat 21 on the inner peripheral wall on which a valve member 22 can be seated.
The valve member 22 is coupled to the movable core 26 and reciprocates together with the movable core 26. As shown in FIG. 1, four chamfers 23 are formed in the circumferential direction where the valve member 22 slides with the inner peripheral surface of the valve body 20, and the chamfer 23 and the inner peripheral surface of the valve body 20 are formed. Fuel flows between the two. Between the chamfer 23 and the chamfer 23, four sliding portions 24 extending in the axial direction are formed in the circumferential direction. The sliding portion 24 slides with the inner peripheral wall of the valve body 20. In the first embodiment, the chamfer 23 and the sliding portion 24 are formed at four locations in the circumferential direction. However, in order to prevent the valve member 22 from being inclined with respect to the valve body 20, it is sufficient that the number is three or more.

可動コア26は弁部材22の反弁ボディ側端部に溶接等により固定され結合している。可動コア26と弁部材22との結合箇所には固定コア30側と弁ボディ20側とを連通する燃料通路102が形成されている。付勢部材としてのスプリング28は、固定コア30に直接係止されており、弁部材22が弁座21に着座する方向に可動コア26および弁部材22を付勢している。   The movable core 26 is fixedly coupled to the end of the valve member 22 on the side opposite to the valve body by welding or the like. A fuel passage 102 that communicates the fixed core 30 side and the valve body 20 side is formed at the joint between the movable core 26 and the valve member 22. The spring 28 as an urging member is directly locked to the fixed core 30 and urges the movable core 26 and the valve member 22 in the direction in which the valve member 22 is seated on the valve seat 21.

図2に示すように、固定コア30は円筒状に形成されており、磁性パイプ12内に収容されている。固定コア30は可動コア26に対し弁部材22と反対側に設置され可動コア26と向き合っている。
図1に示すように、固定コア30の可動コア26と向き合っている対向面32の面積は可動コア26の対向面27の面積とほぼ等しい。固定コア30は、対向面32から反可動コア側に軸方向に磁路面積の等しいストレート部34、ならびにストレート部34から反可動コア側に向けて外径が大きくなっているテーパ部35、ならびにテーパ部35の反可動コア側にストレート部34よりも磁路面積の大きい大径部36を有している。
As shown in FIG. 2, the fixed core 30 is formed in a cylindrical shape and is accommodated in the magnetic pipe 12. The fixed core 30 is installed on the side opposite to the valve member 22 with respect to the movable core 26 and faces the movable core 26.
As shown in FIG. 1, the area of the opposed surface 32 of the fixed core 30 facing the movable core 26 is substantially equal to the area of the opposed surface 27 of the movable core 26. The fixed core 30 includes a straight portion 34 having an equal magnetic path area in the axial direction from the facing surface 32 to the non-movable core side, a tapered portion 35 having an outer diameter increasing from the straight portion 34 toward the non-movable core side, and A large-diameter portion 36 having a magnetic path area larger than that of the straight portion 34 is provided on the side of the tapered portion 35 opposite to the movable core.

図2に示す磁性部材40、42は互いに磁気的に接続してコイル44の外周側に設置されている。磁性部材40は小径部14と磁気的に接続し、磁性部材42は中径部16と磁気的に接続している。磁性パイプ12、可動コア26、固定コア30、および磁性部材40、42は磁気回路を形成している。
コイル44を巻回しているスプール46は磁性パイプ12の外周に取付けられている。樹脂ハウジング50は磁性パイプ12およびコイル44の外周を覆っている。ターミナル52はコイル44と電気的に接続しており、コイル44に駆動電流を供給する。
The magnetic members 40 and 42 shown in FIG. 2 are magnetically connected to each other and installed on the outer peripheral side of the coil 44. The magnetic member 40 is magnetically connected to the small diameter portion 14, and the magnetic member 42 is magnetically connected to the medium diameter portion 16. The magnetic pipe 12, the movable core 26, the fixed core 30, and the magnetic members 40 and 42 form a magnetic circuit.
A spool 46 around which the coil 44 is wound is attached to the outer periphery of the magnetic pipe 12. The resin housing 50 covers the outer periphery of the magnetic pipe 12 and the coil 44. The terminal 52 is electrically connected to the coil 44 and supplies a drive current to the coil 44.

磁性パイプ12の図2において上方から燃料通路100に流入した燃料は、固定コア30内の燃料通路、可動コア26の燃料通路102、弁部材22の面取り23と弁ボディ20の内周面との間、弁部材22が弁座21から離座したときに弁部材22と弁座21との間に形成される開口を通り、噴孔20aから噴射される。   The fuel that has flowed into the fuel passage 100 from above in FIG. 2 of the magnetic pipe 12 flows between the fuel passage in the fixed core 30, the fuel passage 102 of the movable core 26, the chamfer 23 of the valve member 22, and the inner peripheral surface of the valve body 20. In the meantime, when the valve member 22 is separated from the valve seat 21, it passes through the opening formed between the valve member 22 and the valve seat 21, and is injected from the injection hole 20a.

以上のように構成した燃料噴射弁10において、コイル44への通電がオフされると、スプリング28によって弁部材22が図2の下方、つまり閉弁方向に移動して弁部材22が弁座21に着座し、噴孔20aが閉塞され燃料噴射が遮断される。
コイル44への通電をオンすると、磁性パイプ12、可動コア26、固定コア30、および磁性部材40、42からなる磁気回路を磁束が流れ、固定コア30と可動コア26との間に磁気吸引力が発生する。すると、可動コア26とともに弁部材22はスプリング28の付勢力に抗して固定コア30側に移動し、弁部材22が弁座21から離座する。これにより、燃料が噴孔20aから噴射される。弁部材22の最大リフト量は、可動コア26が固定コア30に係止されることにより規定される。
In the fuel injection valve 10 configured as described above, when energization to the coil 44 is turned off, the valve member 22 is moved downward in FIG. 2, that is, in the valve closing direction by the spring 28, and the valve member 22 is moved to the valve seat 21. The injection hole 20a is closed and fuel injection is shut off.
When energization of the coil 44 is turned on, magnetic flux flows through a magnetic circuit including the magnetic pipe 12, the movable core 26, the fixed core 30, and the magnetic members 40 and 42, and a magnetic attraction force is generated between the fixed core 30 and the movable core 26. Will occur. Then, together with the movable core 26, the valve member 22 moves toward the fixed core 30 against the urging force of the spring 28, and the valve member 22 is separated from the valve seat 21. Thereby, fuel is injected from the nozzle hole 20a. The maximum lift amount of the valve member 22 is defined by the movable core 26 being locked to the fixed core 30.

次に、可動コア26と小径部14とのギャップ110、ならびに弁ボディ20と弁部材22との摺動クリアランス112について説明する。
可動コア26の外周全体に、可動コア26と小径部14との間に形成されるギャップ110(図1の(B)に示すd)は、可動コア26が小径部14に接触しない程度の大きさに設定されており、50μm以上であることが望ましい。また、可動コア26と小径部14とのギャップが大きくなりすぎると、可動コア26と小径部14との間に流れる磁束量が減少し、固定コア30と可動コア26との間に働く磁気吸引力が低下する。したがって、可動コア26と小径部14とのギャップを500μm以下に設定し固定コア30と可動コア26との間に働く磁気吸引力を確保することが望ましい。ここで、可動コア26の外周全体に可動コア26と小径部14との間に形成されるギャップ110の大きさとは、径方向の両側に形成されるギャップ110の片側の大きさを表すものとする。
Next, the gap 110 between the movable core 26 and the small diameter portion 14 and the sliding clearance 112 between the valve body 20 and the valve member 22 will be described.
A gap 110 (d shown in FIG. 1B) formed on the entire outer periphery of the movable core 26 between the movable core 26 and the small diameter portion 14 is large enough that the movable core 26 does not contact the small diameter portion 14. The thickness is set to 50 μm or more. Further, if the gap between the movable core 26 and the small diameter portion 14 becomes too large, the amount of magnetic flux flowing between the movable core 26 and the small diameter portion 14 decreases, and magnetic attraction acting between the fixed core 30 and the movable core 26 is achieved. Power is reduced. Therefore, it is desirable that the gap between the movable core 26 and the small diameter portion 14 is set to 500 μm or less to ensure a magnetic attractive force acting between the fixed core 30 and the movable core 26. Here, the size of the gap 110 formed between the movable core 26 and the small diameter portion 14 on the entire outer periphery of the movable core 26 represents the size of one side of the gap 110 formed on both sides in the radial direction. To do.

弁ボディ20と弁部材22の摺動部24との間に径方向に形成される摺動クリアランス112は、可動コア26が軸ずれし小径部14と接触することを防止できる程度に設定されており、15μm以下であることが望ましい。また、摺動クリアランス112が小さくなりすぎると、弁ボディ20と弁部材22の摺動抵抗が増加し、弁部材22の滑らかな往復移動が妨げられる。したがって、摺動クリアランス112を3μm以上に設定することが望ましい。ここで弁ボディ20と弁部材22の摺動部24との間に径方向に形成される摺動クリアランス112の大きさとは、径方向の両側に形成される摺動クリアランス112の片側の大きさを表すものとする。   The sliding clearance 112 formed in the radial direction between the valve body 20 and the sliding portion 24 of the valve member 22 is set to such an extent that the movable core 26 can be prevented from being off-axis and contacting the small diameter portion 14. It is desirable that it is 15 μm or less. If the sliding clearance 112 becomes too small, the sliding resistance between the valve body 20 and the valve member 22 increases, and smooth reciprocation of the valve member 22 is hindered. Therefore, it is desirable to set the sliding clearance 112 to 3 μm or more. Here, the size of the sliding clearance 112 formed in the radial direction between the valve body 20 and the sliding portion 24 of the valve member 22 is the size of one side of the sliding clearance 112 formed on both sides in the radial direction. .

次に、固定コア30に流れる磁束について説明する。
可動コア26と向き合っている対向側である固定コア30の対向面32付近を流れる磁束は、主に可動コア26との間を流れ、可動コア26を固定コア30側に吸引する磁気吸引力として作用する。これに対し、固定コア30の反可動コア側である大径部36では、可動コア26との間を流れず磁気吸引力として作用しない磁束の含まれる割合が対向面32側よりも高くなっている。したがって、磁束が流れる総量としては、固定コア30の対向面32側よりも大径部36側の方が多い。そこで第1実施形態では、可動コア26の磁路面積を増加せず、固定コア30の反可動コア側である大径部36の外径を対向面32側よりも大きくし大径部36の磁路面積を可動コア26の対向面27側よりも大きくしている。これにより、可動コア26の重量を増加せずに、磁気吸引力として作用する磁束量を増加し、固定コア30に可動コア26を吸引する磁気吸引力を増加できる。したがって、開弁応答性が向上する。
Next, the magnetic flux flowing through the fixed core 30 will be described.
Magnetic flux that flows in the vicinity of the facing surface 32 of the fixed core 30, which is the facing side facing the movable core 26, mainly flows between the movable core 26 and serves as a magnetic attractive force that attracts the movable core 26 toward the fixed core 30. Works. On the other hand, in the large-diameter portion 36 on the side opposite to the movable core 30 of the fixed core 30, the ratio of the magnetic flux that does not flow between the movable core 26 and does not act as a magnetic attractive force is higher than that on the facing surface 32 side. Yes. Therefore, the total amount of magnetic flux flowing is larger on the large diameter portion 36 side than on the facing surface 32 side of the fixed core 30. Accordingly, in the first embodiment, the magnetic path area of the movable core 26 is not increased, and the outer diameter of the large diameter portion 36 on the side opposite to the movable core of the fixed core 30 is made larger than that of the opposing surface 32 side, so The magnetic path area is made larger than the facing surface 27 side of the movable core 26. Thereby, without increasing the weight of the movable core 26, the amount of magnetic flux acting as a magnetic attractive force can be increased, and the magnetic attractive force for attracting the movable core 26 to the fixed core 30 can be increased. Therefore, the valve opening response is improved.

また、固定コア30のストレート部34の磁路面積は固定コア30の反可動コア側の大径部36の磁路面積よりも小さく磁気絞りとして働くので、飽和吸引力の増加を抑制できる。したがって、残存磁束量が減少し、閉弁開始時に固定コア30と可動コア26との間に働く磁気吸引力が低下する。したがって、閉弁応答性が向上する。   Further, since the magnetic path area of the straight portion 34 of the fixed core 30 is smaller than the magnetic path area of the large-diameter portion 36 on the non-movable core side of the fixed core 30 and acts as a magnetic diaphragm, an increase in saturation attractive force can be suppressed. Accordingly, the amount of residual magnetic flux decreases, and the magnetic attractive force acting between the fixed core 30 and the movable core 26 at the start of valve closing decreases. Accordingly, the valve closing response is improved.

対向面32に対するテーパ部35のテーパ角度が大きくなると、吸引力が増加する。これは、テーパ角度が大きくなると、固定コア30の対向面32側の外周側面がストレート部34から大径部36に向けて急激に磁性パイプ12の内周面に近づかず、固定コア30の可動コア26との対向側から磁性パイプ12に磁束が漏れることを低減するからである。   As the taper angle of the taper portion 35 with respect to the facing surface 32 increases, the suction force increases. This is because when the taper angle is increased, the outer peripheral side surface of the fixed core 30 on the facing surface 32 side does not suddenly approach the inner peripheral surface of the magnetic pipe 12 from the straight portion 34 toward the large diameter portion 36, and the fixed core 30 is movable. This is because magnetic flux leakage from the side facing the core 26 to the magnetic pipe 12 is reduced.

(第2実施形態)
本発明の第2実施形態を図4に示す。第1実施形態と実質的に同一構成部分に同一符号を付す。
弁ボディ20と摺動する箇所の弁部材60の外周面には、軸に対して斜めにスプライン溝62が周方向に4個形成されている。スプライン溝62とスプライン溝62との間には、弁ボディ20の内周面と摺動する摺動部63が周方向に4箇所形成されている。第2実施形態ではスプライン溝62および摺動部63を周方向にそれぞれ4箇所形成したが、弁ボディ20に対する弁部材60の傾きを防止するためには、3箇所以上であればよい。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals.
Four spline grooves 62 are formed in the circumferential direction obliquely with respect to the shaft on the outer peripheral surface of the valve member 60 at a position sliding with the valve body 20. Between the spline groove 62 and the spline groove 62, four sliding portions 63 that slide on the inner peripheral surface of the valve body 20 are formed in the circumferential direction. In the second embodiment, four spline grooves 62 and four sliding portions 63 are formed in the circumferential direction. However, in order to prevent the valve member 60 from tilting with respect to the valve body 20, the number may be three or more.

スプライン溝62が軸に対して斜めに形成されているので、弁座21に着座する弁部材60の当接部64を加工するために弁部材60のスプライン溝62の周囲を加工治具で掴んでも、スプライン溝62の形状が当接部64に転写されない。
以上説明した本発明の上記複数の実施形態では、一体に形成された磁性パイプ12で固定コア30および可動コア26の外周を覆い、可動コア26の外周全体に磁性パイプ12と接触しない程度のギャップ110が形成されている。可動コア26が磁性パイプ12に接触しないので、可動コア26が滑らかに往復移動する。
また可動コア26および固定コア30の外周を磁性材が覆っているので、可動コア26を吸引する磁気吸引力が増加する。
Since the spline groove 62 is formed obliquely with respect to the shaft, the periphery of the spline groove 62 of the valve member 60 is gripped by a processing jig in order to process the contact portion 64 of the valve member 60 seated on the valve seat 21. However, the shape of the spline groove 62 is not transferred to the contact portion 64.
In the above-described plurality of embodiments of the present invention described above, the gap is such that the outer periphery of the fixed core 30 and the movable core 26 is covered with the integrally formed magnetic pipe 12 and the entire outer periphery of the movable core 26 is not in contact with the magnetic pipe 12. 110 is formed. Since the movable core 26 does not contact the magnetic pipe 12, the movable core 26 reciprocates smoothly.
Moreover, since the magnetic material covers the outer periphery of the movable core 26 and the fixed core 30, the magnetic attractive force for attracting the movable core 26 increases.

また、可動コア26が軸ずれを起こし磁性パイプ12に接触しないように、20〜30μm程度の通常の摺動クリアランスよりもギャップ110の大きさを大きく設定しているので、磁性パイプ12または可動コア26に加工誤差が生じても磁性パイプ12と可動コア26とが接触することを防止できる。したがって、可動コア26と磁性パイプ12との接触を防止するギャップ110の管理が容易であり、磁性パイプ12および可動コア26の加工が容易である。その結果、磁性パイプ12の同軸度、真円度、および可動コア26と摺動する摺動面粗さの加工精度を低下できる。したがって、例えばパイプのプレス加工および絞り加工で形成した磁性パイプ12の内周面を仕上げ加工することなく、筒状部材として使用できる。   In addition, the size of the gap 110 is set to be larger than the normal sliding clearance of about 20 to 30 μm so that the movable core 26 does not contact the magnetic pipe 12 due to the axis deviation. It is possible to prevent the magnetic pipe 12 and the movable core 26 from coming into contact with each other even if a machining error occurs in the magnetic flux 26. Therefore, it is easy to manage the gap 110 that prevents the movable core 26 and the magnetic pipe 12 from contacting each other, and the magnetic pipe 12 and the movable core 26 can be easily processed. As a result, the processing accuracy of the coaxiality and roundness of the magnetic pipe 12 and the roughness of the sliding surface sliding with the movable core 26 can be reduced. Therefore, it can be used as a cylindrical member without finishing the inner peripheral surface of the magnetic pipe 12 formed by, for example, pipe pressing and drawing.

また上記複数の実施形態では、可動コア26との対向側の固定コア30の磁路面積よりも反可動コア側の磁路面積を大きくしている。これにより、可動コア26の重量を増加することなく可動コア26を吸引する磁気吸引力が増加するので、開弁応答性が向上する。また、可動コア26と対向する側の固定コア30の磁路面積が反可動コア側に比べて小さくなり磁気絞りとして作用するので、飽和吸引力が低下する。その結果、残存磁束量が減少するので、閉弁応答性が向上する。   Further, in the above embodiments, the magnetic path area on the anti-movable core side is made larger than the magnetic path area of the fixed core 30 on the side facing the movable core 26. Thereby, since the magnetic attraction force which attracts the movable core 26 increases without increasing the weight of the movable core 26, the valve opening response is improved. In addition, since the magnetic path area of the fixed core 30 on the side facing the movable core 26 is smaller than that on the anti-movable core side and acts as a magnetic diaphragm, the saturation attractive force is reduced. As a result, the amount of residual magnetic flux decreases, and the valve closing response is improved.

また、固定コア30および可動コア26と磁気回路を形成する磁性パイプ12が固定コア30および可動コア26の外周を覆い、固定コア30を支持している。磁性パイプ12内で固定コア30の軸方向位置を調整すれば可動コア26と固定コア30とのギャップのばらつきを防止できる。あるいは、磁性パイプ12内で固定コア30の軸方向位置を調整することにより、可動コア26と固定コア30とのギャップを調整し、所望の噴射量を得ることができる。   The magnetic pipe 12 that forms a magnetic circuit with the fixed core 30 and the movable core 26 covers the outer periphery of the fixed core 30 and the movable core 26 and supports the fixed core 30. If the axial position of the fixed core 30 is adjusted in the magnetic pipe 12, variations in the gap between the movable core 26 and the fixed core 30 can be prevented. Alternatively, by adjusting the axial position of the fixed core 30 in the magnetic pipe 12, the gap between the movable core 26 and the fixed core 30 can be adjusted to obtain a desired injection amount.

(他の実施形態)
上記複数の実施形態では、磁性母材200から1部材の磁性パイプ12を形成したが、複数の磁性パイプを溶接等により結合し本発明で用いる磁性パイプを形成してもよい。また、固定コアと可動コアの外周を覆う磁性部の間に非磁性部を有する筒状部材を複合磁性材から形成してもよい。また、固定コアおよび可動コアの外周を覆う磁性部を有し、固定コアおよび可動コアと磁気回路を形成する筒状部材が形成されるのであれば、筒状部材の全てを磁性材で形成する必要はなく、例えば磁性部材と非磁性部材とを溶接等で結合して筒状部材を形成してもよい。また、筒状部材が固定コアおよび可動コアの外周を覆い固定コアおよび可動コアと磁気回路を形成するのであれば、筒状部材を全て非磁性材で形成してもよい。
また、固定コアの反可動コア側の磁路面積を可動コアの固定コアとの対向側の磁路面積よりも大きくしたが、固定コアと可動コアとの磁路面積を同じにしてもよい。
(Other embodiments)
In the above embodiments, one magnetic pipe 12 is formed from the magnetic base material 200, but a plurality of magnetic pipes may be joined by welding or the like to form a magnetic pipe used in the present invention. Moreover, you may form the cylindrical member which has a nonmagnetic part between the magnetic parts which cover the outer periphery of a fixed core and a movable core from a composite magnetic material. Further, if a cylindrical member that has a magnetic part covering the outer periphery of the fixed core and the movable core and forms a magnetic circuit with the fixed core and the movable core is formed, the entire cylindrical member is formed of a magnetic material. There is no need, for example, a cylindrical member may be formed by joining a magnetic member and a non-magnetic member by welding or the like. In addition, if the cylindrical member covers the outer periphery of the fixed core and the movable core and forms the magnetic circuit with the fixed core and the movable core, the cylindrical member may be entirely formed of a nonmagnetic material.
Further, although the magnetic path area of the fixed core on the side opposite to the movable core is larger than the magnetic path area of the movable core on the side facing the fixed core, the magnetic path areas of the fixed core and the movable core may be the same.

(A)は本発明の第1実施形態による可動コアおよび弁部材の周囲を示す断面図であり、(B)は(A)のB−B線断面図であり、(C)は(A)のC−C線断面図である。(A) is sectional drawing which shows the periphery of the movable core and valve member by 1st Embodiment of this invention, (B) is BB sectional drawing of (A), (C) is (A). It is a CC sectional view taken on the line. 第1実施形態による燃料噴射弁を示す断面図である。It is sectional drawing which shows the fuel injection valve by 1st Embodiment. 磁性パイプの製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of a magnetic pipe. 第2実施形態による燃料噴射弁を示す断面図である。It is sectional drawing which shows the fuel injection valve by 2nd Embodiment.

符号の説明Explanation of symbols

10 燃料噴射弁、12 磁性パイプ(筒状部材)、14 小径部(磁性部)、16 中径部(磁性部)、20 弁ボディ、21 弁座、20a 噴孔、26 可動コア、28 スプリング(付勢部材)、30 固定コア、44 コイル DESCRIPTION OF SYMBOLS 10 Fuel injection valve, 12 Magnetic pipe (cylindrical member), 14 Small diameter part (magnetic part), 16 Medium diameter part (magnetic part), 20 Valve body, 21 Valve seat, 20a Injection hole, 26 Movable core, 28 Spring ( Urging member), 30 fixed core, 44 coils

Claims (5)

固定コアと、
前記固定コアと向き合う可動コアと、
前記可動コアとともに往復移動し噴孔からの燃料噴射を断続する弁部材と、
前記弁部材が着座することにより前記噴孔からの燃料噴射を遮断し、前記弁部材が離座することにより前記噴孔からの燃料噴射を許容する弁座を有する弁ボディと、
通電することにより前記固定コアと前記可動コアとの間に磁気吸引力を発生させるコイルと、
前記固定コアおよび前記可動コアの外周を覆うように設けられ、前記固定コアおよび前記可動コアと磁気回路を形成する筒状部材と、
を備える燃料噴射弁であって、
前記弁ボディは前記弁部材を往復移動可能に支持しており、
前記可動コアの外周全体に、前記可動コアと前記筒状部材との接触を防止するギャップが前記筒状部材との間に形成されていることを特徴とする燃料噴射弁。
A fixed core;
A movable core facing the fixed core;
A valve member that reciprocates with the movable core and intermittently injects fuel from the nozzle hole;
A valve body having a valve seat that shuts off fuel injection from the nozzle hole when the valve member is seated, and permits fuel injection from the nozzle hole when the valve member is seated;
A coil that generates a magnetic attractive force between the fixed core and the movable core by energization;
A cylindrical member provided to cover the outer periphery of the fixed core and the movable core, and forming a magnetic circuit with the fixed core and the movable core;
A fuel injection valve comprising:
The valve body supports the valve member in a reciprocable manner,
A fuel injection valve, wherein a gap for preventing contact between the movable core and the cylindrical member is formed between the cylindrical member and the entire outer periphery of the movable core.
前記筒状部材の少なくとも前記可動コアの外周を覆う部分は磁性材で形成されていることを特徴とする請求項1記載の燃料噴射弁。   The fuel injection valve according to claim 1, wherein at least a portion of the cylindrical member covering an outer periphery of the movable core is formed of a magnetic material. 前記磁性部と前記可動コアとの間に形成される前記ギャップは50μm以上500μm以下であることを特徴とする請求項1または2記載の燃料噴射弁。   The fuel injection valve according to claim 1 or 2, wherein the gap formed between the magnetic part and the movable core is not less than 50 µm and not more than 500 µm. 前記弁ボディと前記弁部材との摺動クリアランスは3μm以上15μm以下であることを特徴とする請求項1から3のいずれか一項記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 3, wherein a sliding clearance between the valve body and the valve member is 3 µm or more and 15 µm or less. 前記固定コアは、前記可動コアと向き合う対向部と、前記対向部の反可動コア側に設けられ前記可動コアの外径よりも大きく前記可動コアの前記固定コアとの対向側よりも磁路面積の大きい大径部とを有し、前記対向部の前記可動コアと向き合う対向端面側は前記大径部よりも径方向内側に凹んでいることを特徴とする請求項1から4のいずれか一項記載の燃料噴射弁。   The fixed core has a facing portion facing the movable core and a magnetic path area which is provided on a side opposite to the movable core of the facing portion and larger than an outer diameter of the movable core than a side of the movable core facing the fixed core. The opposed end surface side of the opposed portion facing the movable core is recessed radially inward of the large diameter portion. The fuel injection valve according to item.
JP2003434814A 2003-12-26 2003-12-26 Fuel injection valve Pending JP2005194880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003434814A JP2005194880A (en) 2003-12-26 2003-12-26 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434814A JP2005194880A (en) 2003-12-26 2003-12-26 Fuel injection valve

Publications (1)

Publication Number Publication Date
JP2005194880A true JP2005194880A (en) 2005-07-21

Family

ID=34815126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003434814A Pending JP2005194880A (en) 2003-12-26 2003-12-26 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP2005194880A (en)

Similar Documents

Publication Publication Date Title
JP4618133B2 (en) solenoid valve
US7503347B2 (en) Linear solenoid valve
JP2009127692A (en) Linear solenoid device and solenoid valve
WO2011121839A1 (en) Electromagnetic fuel injection valve and method for manufacturing same
JP2006022721A (en) Fuel injection valve
JP2010180758A (en) Fuel injection valve
JP4161217B2 (en) Fuel injection valve
US6971627B2 (en) Solenoid valve
WO2017154815A1 (en) Fuel injection device
JP4058024B2 (en) Electromagnetic fuel injection valve
JP2001317429A (en) Fuel injection valve
JP5321473B2 (en) Fuel injection valve
JPWO2017056919A1 (en) Linear solenoid valve and method for manufacturing linear solenoid valve
JP2006307831A (en) Fuel injection valve
JP2013181409A (en) Electromagnetic fuel injection valve
US20230400117A1 (en) Solenoid valve
JP2006009757A (en) Method of manufacturing solenoid type fuel injection valve
JP2005194880A (en) Fuel injection valve
JP2006097727A (en) Linear solenoid valve
JP4123180B2 (en) Fuel injection valve
JP2006097723A (en) Linear solenoid valve
JP2020088043A (en) Electromagnetic solenoid
JP2005268698A (en) Electromagnetic actuator
US11948737B2 (en) Solenoid
JP7111550B2 (en) solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080716