JP2005194552A - Hybrid eb cell and method for evaporating film deposition material using the same - Google Patents

Hybrid eb cell and method for evaporating film deposition material using the same Download PDF

Info

Publication number
JP2005194552A
JP2005194552A JP2004000392A JP2004000392A JP2005194552A JP 2005194552 A JP2005194552 A JP 2005194552A JP 2004000392 A JP2004000392 A JP 2004000392A JP 2004000392 A JP2004000392 A JP 2004000392A JP 2005194552 A JP2005194552 A JP 2005194552A
Authority
JP
Japan
Prior art keywords
forming material
film
crucible
deposition material
film deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004000392A
Other languages
Japanese (ja)
Other versions
JP4086786B2 (en
Inventor
Koichi Kakimoto
浩一 柿本
Hiroshi Takahashi
弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiko Engineering Co Ltd
Original Assignee
Eiko Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiko Engineering Co Ltd filed Critical Eiko Engineering Co Ltd
Priority to JP2004000392A priority Critical patent/JP4086786B2/en
Publication of JP2005194552A publication Critical patent/JP2005194552A/en
Application granted granted Critical
Publication of JP4086786B2 publication Critical patent/JP4086786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correctly focus an electron beam on a film deposition material as a target by improving a heating means for a film deposition material as a target, thus to stably evaporate the film deposition material with high efficiency, and to form a semiconductor film having high purity. <P>SOLUTION: The hybrid EB cell comprises: a crucible 7 storing a film deposition material 11; a heater 9 heating the film deposition material 11 in the crucible 7 to a temperature lower than its melting point; and an electron gun 1 converging accelerated electrons on the film deposition material 11 in the crucible 7, so as to be emitted. While heating the film deposition material 11 stored in the crucible 7 to a temperature lower than its melting point by the heater 9, accelerated electrons are converged on the film deposition material 11 in the crucible 7, so as to be emitted from the electron gun 1, and, by the energy of the electrons, the film deposition material 11 is heated, melted and evaporated, and the vapor is emitted toward the surface of a solid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、真空蒸着装置や分子線エピタキシー装置において、基板等の固体の表面に向けて成膜材料の分子を発射させるEBセルに関し、例えば、Si、Ge、GaAs等の半導体を蒸発して基板上に成膜するに当たり、高純度の成膜材料を効率良く発射するため、坩堝に収納した成膜材料を加熱する加熱手段が複数あるハイブリッドEBセルに関する。   The present invention relates to an EB cell that emits molecules of a film-forming material toward a solid surface such as a substrate in a vacuum deposition apparatus or a molecular beam epitaxy apparatus. For example, the substrate is formed by evaporating a semiconductor such as Si, Ge, or GaAs. The present invention relates to a hybrid EB cell having a plurality of heating means for heating a film-forming material stored in a crucible in order to efficiently emit a high-purity film-forming material when forming a film thereon.

真空蒸着装置や分子線エピタキシー(MBE)装置では、一般に分子線源として抵抗加熱方式のクヌードセンセル(Kセル)が用いられており、これにより原料を蒸発または昇華させて発射している。これに対し、Si等の半導体やMoのような高融点材料には、電子ビームの照射による衝撃により成膜材料を加熱、蒸発させるEBガンを使用した電子衝撃型の分子線源セル、いわゆるEBセルが使用される。   In a vacuum vapor deposition apparatus and a molecular beam epitaxy (MBE) apparatus, a resistance heating type Knudsen cell (K cell) is generally used as a molecular beam source, and the raw material is vaporized or sublimated for firing. On the other hand, for semiconductors such as Si and high melting point materials such as Mo, an electron impact type molecular beam source cell using an EB gun that heats and evaporates a film-forming material by impact by electron beam irradiation, a so-called EB. A cell is used.

前記のEBガンは、フィラメントで発生させた熱電子をアノードで10KeV程度のエネルギーに加速し、これを電子レンズで収束して電子線として、ターゲットである成膜材料に焦点を合わせて照射する。成膜材料は加速された電子線により衝撃を受けて加熱し、蒸発または昇華して基板等の固体表面に向けて発射される。この場合、ターゲットである成膜材料は、水冷される銅製の坩堝の中に収納された炭素等からなる炉床に収納する。   The EB gun accelerates the thermoelectrons generated by the filament to an energy of about 10 KeV at the anode, converges it with an electron lens, and irradiates it with a focus on a film forming material as a target. The film forming material is impacted by an accelerated electron beam, heated, evaporated or sublimated, and fired toward a solid surface such as a substrate. In this case, the film forming material as a target is stored in a hearth made of carbon or the like stored in a copper crucible to be water cooled.

半導体装置の小型、薄型化の要請に伴い、より高純度の半導体膜の成膜が要請されている。
従来、EBセルでは電子銃から発射された電子が水冷された室温に近い温度の成膜材料の表面に飛来し、成膜材料が電子の有するエネルギーにより衝撃されて加熱溶融され、蒸発または昇華すると考えられていた。
しかし、このような状況下において半導体材料や導体材料を蒸発しようとすると、ターゲットである成膜材料の電流が流れにくく、電子線の焦点が合わなくなるという、いわゆるデフォーカス現象が起こることが分かった。デフォーカス現象が起こると、ターゲットである成膜材料が効率良く蒸発出来ず、成膜速度が極端に低くなるという課題があった。
平尾孝、吉田哲久、早川茂共著「薄膜技術の新潮流」工業調査会1997年刊
With the demand for miniaturization and thinning of semiconductor devices, the formation of higher purity semiconductor films has been demanded.
Conventionally, in an EB cell, electrons emitted from an electron gun fly to the surface of a film-forming material having a temperature close to room temperature, which is water-cooled. It was thought.
However, it has been found that when a semiconductor material or a conductor material is evaporated in such a situation, the current of the film forming material that is the target is difficult to flow, and a so-called defocus phenomenon occurs in which the focus of the electron beam becomes out of focus. . When the defocus phenomenon occurs, there is a problem that the film forming material as a target cannot be efficiently evaporated, and the film forming speed becomes extremely low.
Published by Takashi Hirao, Tetsuhisa Yoshida, and Shigeru Hayakawa, “New Trends in Thin Film Technology” Industrial Research Institute 1997

本発明は、前記従来のEBセルにおける課題に鑑み、ターゲットである成膜材料の加熱手段を見直すことで、電子線がターゲットである成膜材料に正確に焦点を合わせることが出来るようにし、それ故成膜材料を効率良く安定して蒸発することが可能で、高純度の半導体膜を形成するのに好適なハイブリッドEBセルを提供することを目的とする。   In view of the problems in the conventional EB cell, the present invention allows the electron beam to be accurately focused on the target film forming material by reviewing the heating means for the target film forming material. Therefore, an object of the present invention is to provide a hybrid EB cell that can efficiently and stably evaporate a film forming material and is suitable for forming a high-purity semiconductor film.

本発明では、前記の目的を達成するため、ターゲットである成膜材料11を水冷したり或いは常温中に保持することなく、その融点に近い温度まで加熱した状態で、電子銃1から成膜材料11に収束した電子線を照射する。これにより、成膜材料11の電気伝導度を高くし、よって成膜材料11中に電子がチャージされるのを防止し、電子線のデフォーカス現象が起こるのを防止したものである。   In the present invention, in order to achieve the above object, the film forming material 11 as a target is heated from the electron gun 1 to a temperature close to its melting point without being cooled with water or kept at room temperature. 11 is irradiated with an electron beam converged to 11. As a result, the electrical conductivity of the film forming material 11 is increased, thereby preventing electrons from being charged into the film forming material 11 and preventing the defocusing phenomenon of the electron beam from occurring.

本発明によるハイブリッドEBセルの構成をより正確に説明すると、このハイブリッドEBセルは、成膜材料11を収納する坩堝7と、この坩堝7の中の成膜材料11をその融点以下の温度に加熱するヒータ9と、この坩堝7の中の成膜材料11に向けて加速した電子を収束して発射する電子銃1とを有する。   The hybrid EB cell according to the present invention will be described in more detail. The hybrid EB cell heats the crucible 7 containing the film forming material 11 and the film forming material 11 in the crucible 7 to a temperature below its melting point. And the electron gun 1 that converges and emits the accelerated electrons toward the film forming material 11 in the crucible 7.

電子銃1から坩堝7の中に収納された成膜材料11に向けて焦点を合わせて収束した電子線を照射したときに、成膜材料11で焦点が合わなくなるデフォーカスが起こる原因について検討した。その結果、蒸発時における成膜材料11の電気伝導度が小さいために、電流が流れにくく、成膜材料11の中に電子がチャージしてしまうことがその最大の原因であることを突き止めた。   The reason why defocusing that causes the film forming material 11 to become out of focus occurs when the focused electron beam is irradiated from the electron gun 1 toward the film forming material 11 stored in the crucible 7 is focused. . As a result, since the electric conductivity of the film forming material 11 at the time of evaporation was small, it was found that the current was difficult to flow and that the electron was charged in the film forming material 11 was the biggest cause.

シリコン、ゲルマニウム、ヒ化ガリウム等に代表される半導体は、水冷された常温に近い状態では、電気伝導度が小さいために、電流が流れにくい。これに対して例えば図3に示すように、シリコンの融点1685K、ゲルマニウムの融点1183K、ヒ化ガリウムの融点1465Kでは、真性キャリア密度が約1019cm-3となり、電気伝導度が常温下の固体の状態に比べて飛躍的に大きくなる。 A semiconductor typified by silicon, germanium, gallium arsenide, or the like has a low electric conductivity in a state close to water-cooled room temperature, so that a current hardly flows. On the other hand, for example, as shown in FIG. 3, when the melting point of silicon is 1865K, the melting point of germanium is 1183K, and the melting point of gallium arsenide is 1465K, the intrinsic carrier density is about 10 19 cm -3 and the electrical conductivity is a solid at room temperature. Compared to the state of

そこで本発明では、成膜材料11を水冷しながら電子線を照射して蒸発するという従来の常識的な手法を排し、ヒータ9で成膜材料11をその融点に近い温度、具体的には融点直下の温度から融点より400度程度低い温度に加熱した状態で、電子銃1で成膜材料11に電子線を収束して照射し、成膜材料11を加熱、溶融、蒸発させるようにしたものである。これにより成膜材料11中の電気伝導度を高くして成膜材料11中の電流の流れを良好にすることで、電子のチャージをなくし、成膜材料11に電子線の焦点が合うようにしたものである。   Therefore, in the present invention, the conventional common-sense method of evaporating by irradiating the electron beam while cooling the film forming material 11 with water is eliminated, and the film forming material 11 is heated to a temperature close to its melting point by the heater 9, specifically, The electron gun 1 converges and irradiates the electron beam on the film forming material 11 with the electron gun 1 heated from a temperature just below the melting point to about 400 degrees lower than the melting point, thereby heating, melting and evaporating the film forming material 11. Is. As a result, the electric conductivity in the film forming material 11 is increased and the current flow in the film forming material 11 is improved, so that the charge of electrons is eliminated and the film material 11 is focused on the electron beam. It is a thing.

さらにこのような観点から、坩堝7は高純度のカーボンとし、これをカーボン製の支持部材により支持し、且つこの支持部材を介して接地する。これにより、高温下においても、成膜材料11とカーボン製の坩堝7との電気的な接触抵抗を抑制することが出来、電子銃1から電子線を成膜材料11に安定して照射することが出来るようになる。これにより、成膜速度の変動を抑制することが可能である。   Furthermore, from such a viewpoint, the crucible 7 is made of high-purity carbon, is supported by a carbon support member, and is grounded through the support member. Accordingly, electrical contact resistance between the film forming material 11 and the carbon crucible 7 can be suppressed even at high temperatures, and the electron beam 1 can be stably irradiated with the electron beam from the electron gun 1. Will be able to. Thereby, it is possible to suppress the fluctuation | variation of the film-forming speed | rate.

このように、本発明によるハイブリッドEBセルでは、成膜材料11中の電子のチャージを少なくし、成膜材料11中の電流の流れを良好にすることで、成膜材料11に電子線の焦点が合うようにしたので、成膜材料を効率良く安定して蒸発することが可能で、高純度の半導体膜を形成するのに好適なハイブリッドEBセルを得ることが出来る。   As described above, in the hybrid EB cell according to the present invention, the electron charge in the film forming material 11 is reduced, and the current flow in the film forming material 11 is improved, so that the electron beam is focused on the film forming material 11. Therefore, the film forming material can be efficiently and stably evaporated, and a hybrid EB cell suitable for forming a high-purity semiconductor film can be obtained.

本発明では、成膜材料11を水冷しながら電子線を照射して蒸発するという従来の常識的な手法を排し、ヒータ9で成膜材料11をその融点に近い温度に加熱した状態で、成膜材料11を電子衝撃により加熱、溶融、蒸発させることで、その目的を達成するものである。
以下、このような本発明の実施例について、図面を参照しながら具体例を挙げて詳細に説明する。
In the present invention, the conventional common-sense technique of evaporating by irradiating an electron beam while water-cooling the film-forming material 11 is eliminated, and the film-forming material 11 is heated to a temperature close to its melting point by the heater 9, The purpose is achieved by heating, melting, and evaporating the film forming material 11 by electron impact.
Hereinafter, examples of the present invention will be described in detail with specific examples with reference to the drawings.

図1は、本発明の一実施例によるハイブリッドEBセルを示す概念図である。図示はしていないが、電源系統以外は、減圧された真空チャンバの内部等の真空空間に置かれる。
半導体等の蒸発材料11を収納した坩堝7は、高純度カーボンからなる容器状のもので、この坩堝7は、その周囲に接触させたカーボン製のバネ15とこのバネ15を坩堝7に固定したカーボン製のネジ16により電気的に接続され、接地されている。坩堝7の周囲にはヒータ9が配置され、また坩堝7の底部には温度測定用の熱電対10の測温接点が接触している。坩堝7の開口部はシャッタ8により開閉される。
FIG. 1 is a conceptual diagram illustrating a hybrid EB cell according to an embodiment of the present invention. Although not shown, the parts other than the power supply system are placed in a vacuum space such as the inside of a decompressed vacuum chamber.
The crucible 7 containing the evaporation material 11 such as a semiconductor is a container made of high-purity carbon, and the crucible 7 is fixed to the crucible 7 with a carbon spring 15 brought into contact with the periphery of the crucible 7. It is electrically connected and grounded by a carbon screw 16. A heater 9 is disposed around the crucible 7, and a temperature measuring contact of a thermocouple 10 for temperature measurement is in contact with the bottom of the crucible 7. The opening of the crucible 7 is opened and closed by the shutter 8.

この坩堝7の中の蒸発材料11に向けて電子銃1が配置されている。この電子銃1の基本的な構成は、加熱電源5により加熱されることにより、熱電子を放出するフィラメント2と、このフィラメント2で放出された熱電子を収束して電子線とするウエネルト3である。フィラメント2とウエネルト3には、バイアス電源6が接続され、これらは10KeV程度の高電圧のバイアス電圧が印加される。さらに、電子銃1の先端側には、電子線を電磁偏向または電場偏向して電子線の蒸発材料11に対する照射位置を決定するための電子偏向レンズ4が設けられている。図1において、電子銃1の発射口から坩堝7内の蒸発材料11への電子の照射点までの距離はDである。   The electron gun 1 is disposed toward the evaporation material 11 in the crucible 7. The basic configuration of the electron gun 1 is a filament 2 that emits thermoelectrons when heated by a heating power source 5 and a Wehnelt 3 that converges the thermoelectrons emitted by the filament 2 to form an electron beam. is there. A bias power source 6 is connected to the filament 2 and the Wehnelt 3, and a high bias voltage of about 10 KeV is applied to them. Further, an electron deflection lens 4 for determining the irradiation position of the electron beam on the evaporation material 11 by electromagnetic deflection or electric field deflection of the electron beam is provided on the tip side of the electron gun 1. In FIG. 1, the distance from the launch port of the electron gun 1 to the electron irradiation point on the evaporation material 11 in the crucible 7 is D.

他方、前記坩堝7の開口部に対向してその真上に蒸発材料11の蒸気を被着させる固体物質としての基板12が設置されている。また、この坩堝7の開口部に対向して、水晶振動子等により基板に飛来する蒸気の量を計測する膜厚計13が設置される。図1において、蒸発材料11への電子の照射点から膜厚計13までの距離はT/Xtalである。   On the other hand, a substrate 12 as a solid substance on which the vapor of the evaporating material 11 is deposited is disposed immediately above the opening of the crucible 7. In addition, a film thickness meter 13 for measuring the amount of vapor flying on the substrate by a quartz crystal vibrator or the like is installed facing the opening of the crucible 7. In FIG. 1, the distance from the electron irradiation point to the evaporation material 11 to the film thickness meter 13 is T / Xtal.

このような装置において、フラメント9で坩堝7の中の蒸発材料11をその融点よりやや低い温度に加熱しながら、前記電子銃1から10KeV程度のエネルギーが与えられた電子線を照射する。例えば代表的な半導体であるシリコンの融点は1685K、ゲルマニウムの融点は1183K、ヒ化ガリウムの融点は1465Kであるので、蒸発材料11はそれら融点の直下の温度から融点より400度程度低い温度の範囲に加熱する。   In such an apparatus, while the evaporating material 11 in the crucible 7 is heated to a temperature slightly lower than its melting point by the fragment 9, the electron gun 1 is irradiated with an electron beam having an energy of about 10 KeV. For example, since the melting point of silicon, which is a typical semiconductor, is 1685K, the melting point of germanium is 1183K, and the melting point of gallium arsenide is 1465K, the evaporating material 11 has a temperature range from a temperature immediately below these melting points to about 400 degrees below the melting point. Heat to.

既に述べた通り、半導体は、水冷された常温に近い状態では、電気伝導度が小さいために、電流が流れにくい。これに対して半導体をその融点近い温度まで加熱すると、真性キャリア密度が増大し、電気伝導度が常温下の固体の状態に比べて飛躍的に大きくなる。
図2は、本発明によるハイブリッドEBセルと、従来のEBセルとの動作の違いを説明する概念図である。図2(a)に示すように、半導体は、水冷された常温に近い状態では、電気伝導度が小さいために、電流が流れにくい。このため、蒸発材料11の中に負の電荷がチャージされ、デフォーカス状態となる。これに対し、図2(b)に示すように、蒸発材料11をヒータ9でその融点近い温度まで加熱すると、電気伝導度が大きくなるため、電流の流れがよくなり、負の電荷がチャージされず、フォーカス状態が維持される。
As already described, a semiconductor has a low electrical conductivity in a state close to room temperature that is water-cooled, so that a current hardly flows. On the other hand, when the semiconductor is heated to a temperature close to its melting point, the intrinsic carrier density is increased, and the electric conductivity is dramatically increased as compared with a solid state at room temperature.
FIG. 2 is a conceptual diagram illustrating a difference in operation between the hybrid EB cell according to the present invention and a conventional EB cell. As shown in FIG. 2 (a), a semiconductor is less likely to pass current because of its low electrical conductivity in a water-cooled state close to room temperature. For this reason, a negative charge is charged in the evaporation material 11 and a defocused state is obtained. On the other hand, as shown in FIG. 2B, when the evaporation material 11 is heated with the heater 9 to a temperature close to its melting point, the electrical conductivity increases, so that the current flow is improved and negative charges are charged. Instead, the focus state is maintained.

次に、本発明によるハイブリッドEBセルを使用したシリコンの蒸着試験の結果を示すが、その時のハイブリッドEBセルの動作条件は次の通りであった。
真空度=0.9〜1.2×10-6Torr
蒸発材料と膜厚計との距離T/Xtal=140mm
電子銃発射口と蒸発材料との距離D=320mm
高純度カーボン坩堝の容積=2cc
坩堝の底面温度=1260℃
フィラメントバイアス電圧=4.75kV
エミッション電流=46.5mA
フィラメント電流=30A
この条件での蒸発試験の結果では、電子線のデフォーカス現象が発生せず、連続して安定したシリコンの蒸発が可能であった。
Next, the results of the silicon vapor deposition test using the hybrid EB cell according to the present invention will be shown. The operating conditions of the hybrid EB cell at that time were as follows.
Degree of vacuum = 0.9 to 1.2 × 10 −6 Torr
Distance between evaporation material and film thickness meter T / Xtal = 140mm
Distance between electron gun launcher and evaporation material D = 320mm
High purity carbon crucible volume = 2cc
Crucible bottom temperature = 1260 ° C
Filament bias voltage = 4.75 kV
Emission current = 46.5mA
Filament current = 30A
As a result of the evaporation test under these conditions, the defocusing phenomenon of the electron beam did not occur, and the silicon could be evaporated continuously and stably.

本発明の一実施例によるハイブリッドEBセルを示す概念図である。1 is a conceptual diagram illustrating a hybrid EB cell according to an embodiment of the present invention. 本発明によるハイブリッドEBセルと、従来のEBセルとの動作の違いを説明する概念図である。It is a conceptual diagram explaining the difference in operation | movement of the hybrid EB cell by this invention, and the conventional EB cell. 代表的な半導体としてシリコン、ゲルマニウム、ヒ化ガリウムの温度と真性キャリア密度との関係を示すグラフである。It is a graph which shows the relationship between the temperature and intrinsic carrier density of silicon, germanium, and gallium arsenide as typical semiconductors.

符号の説明Explanation of symbols

1 電子銃
7 坩堝
9 ヒータ
11 成膜材料
12 基板
1 Electron gun 7 Crucible 9 Heater 11 Film forming material 12 Substrate

Claims (3)

成膜材料(11)を蒸発または昇華させて、固体の表面に向けて発射し、固体の表面に成膜材料(11)を凝着させるためのハイブリッドEBセルであって、成膜材料(11)を収納する坩堝(7)と、この坩堝(7)の中の成膜材料(11)をその融点以下の温度に加熱するヒータ(9)と、この坩堝(7)の中の成膜材料(11)に向けて加速した電子を収束して発射する電子銃(1)とを有することを特徴とするハイブリッドEBセル。 A hybrid EB cell for evaporating or sublimating a film forming material (11) and firing it toward a solid surface to adhere the film forming material (11) to the solid surface. ), A heater (9) for heating the film forming material (11) in the crucible (7) to a temperature below its melting point, and the film forming material in the crucible (7). A hybrid EB cell comprising: an electron gun (1) that converges and emits electrons accelerated toward (11). 坩堝(7)は、高純度のカーボンからなり、このカーボン製の坩堝(7)がカーボン製の支持部材により支持され、且つこの支持部材を介して接地されていることを特徴とする請求項1に記載のハイブリッドEBセル。 The crucible (7) is made of high-purity carbon, and the carbon crucible (7) is supported by a carbon support member and is grounded through the support member. The hybrid EB cell described in 1. 成膜材料(11)を蒸発または昇華させて、固体の表面に向けて発射し、固体の表面に成膜材料(11)を凝着させるための成膜材料蒸発方法であって、坩堝(7)の中に収納された成膜材料(11)をヒータ(9)で融点以下の温度に加熱しながら、電子銃(1)から前記坩堝(7)の中の成膜材料(11)に向けて加速した電子を収束して発射し、この電子のエネルギにより成膜材料(11)を加熱、溶融、蒸発してその蒸気を固体表面に向けて発射することを特徴とするハイブリッドEBセルを使用した成膜材料蒸発方法。 A film-forming material evaporation method for evaporating or sublimating a film-forming material (11) and firing the film-forming material (11) toward a solid surface to adhere the film-forming material (11) to the solid surface. ) While the film-forming material (11) stored in is heated to a temperature below the melting point by the heater (9), the electron-gun (1) is directed toward the film-forming material (11) in the crucible (7). The hybrid EB cell is used, in which the accelerated electrons are converged and emitted, and the film-forming material (11) is heated, melted and evaporated by the energy of the electrons, and the vapor is emitted toward the solid surface. Deposited film material evaporation method.
JP2004000392A 2004-01-05 2004-01-05 Hybrid EB cell and deposition material evaporation method using the same Expired - Fee Related JP4086786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000392A JP4086786B2 (en) 2004-01-05 2004-01-05 Hybrid EB cell and deposition material evaporation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000392A JP4086786B2 (en) 2004-01-05 2004-01-05 Hybrid EB cell and deposition material evaporation method using the same

Publications (2)

Publication Number Publication Date
JP2005194552A true JP2005194552A (en) 2005-07-21
JP4086786B2 JP4086786B2 (en) 2008-05-14

Family

ID=34816244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000392A Expired - Fee Related JP4086786B2 (en) 2004-01-05 2004-01-05 Hybrid EB cell and deposition material evaporation method using the same

Country Status (1)

Country Link
JP (1) JP4086786B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732129A2 (en) * 2005-06-06 2006-12-13 CreaTec Fischer & Co. GmbH High temperature evaporator cell and method of evaporating high-melting materials
WO2009015796A3 (en) * 2007-07-27 2009-06-25 Createc Fischer & Co Gmbh High temperature evaporator cell having parallel-connected heating zones
US7700166B2 (en) 2005-06-06 2010-04-20 Createc Fischer & Co. Gmbh Process for evaporating high-melting materials
WO2011071154A1 (en) * 2009-12-10 2011-06-16 住友化学株式会社 Silicon film and lithium secondary cell
WO2015092998A1 (en) * 2013-12-20 2015-06-25 株式会社アルバック Electron gun device and vacuum deposition device
WO2019111901A1 (en) * 2017-12-08 2019-06-13 住友化学株式会社 Vapor deposition source, electron beam vacuum deposition apparatus, and manufacturing method for electronic device
CN111415858A (en) * 2020-03-12 2020-07-14 中国科学院长春光学精密机械与物理研究所 Preparation method and application of AlN or AlGaN thin film material
DE102020111081A1 (en) 2020-04-23 2021-10-28 VON ARDENNE Asset GmbH & Co. KG Method, control device and processing device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732129A2 (en) * 2005-06-06 2006-12-13 CreaTec Fischer & Co. GmbH High temperature evaporator cell and method of evaporating high-melting materials
EP1732129A3 (en) * 2005-06-06 2007-08-01 CreaTec Fischer & Co. GmbH High temperature evaporator cell and method of evaporating high-melting materials
US7700166B2 (en) 2005-06-06 2010-04-20 Createc Fischer & Co. Gmbh Process for evaporating high-melting materials
WO2009015796A3 (en) * 2007-07-27 2009-06-25 Createc Fischer & Co Gmbh High temperature evaporator cell having parallel-connected heating zones
WO2011071154A1 (en) * 2009-12-10 2011-06-16 住友化学株式会社 Silicon film and lithium secondary cell
CN105555994A (en) * 2013-12-20 2016-05-04 株式会社爱发科 Electron gun device and vacuum deposition device
WO2015092998A1 (en) * 2013-12-20 2015-06-25 株式会社アルバック Electron gun device and vacuum deposition device
TWI568868B (en) * 2013-12-20 2017-02-01 愛發科股份有限公司 Electron gun apparatus and deposition apparatus
JPWO2015092998A1 (en) * 2013-12-20 2017-03-16 株式会社アルバック Electron gun apparatus and vacuum deposition apparatus
WO2019111901A1 (en) * 2017-12-08 2019-06-13 住友化学株式会社 Vapor deposition source, electron beam vacuum deposition apparatus, and manufacturing method for electronic device
JP2019104946A (en) * 2017-12-08 2019-06-27 住友化学株式会社 Vapor deposition source, electron beam vacuum deposition apparatus and method for manufacturing electronic device
US20200377991A1 (en) * 2017-12-08 2020-12-03 Sumitomo Chemical Company, Limited Vapor deposition source, electron beam vacuum deposition apparatus, and manufacturing method for electronic device
JP7058499B2 (en) 2017-12-08 2022-04-22 住友化学株式会社 Manufacturing method of thin-film deposition source, electron beam vacuum-film deposition equipment and electronic devices
CN111415858A (en) * 2020-03-12 2020-07-14 中国科学院长春光学精密机械与物理研究所 Preparation method and application of AlN or AlGaN thin film material
DE102020111081A1 (en) 2020-04-23 2021-10-28 VON ARDENNE Asset GmbH & Co. KG Method, control device and processing device

Also Published As

Publication number Publication date
JP4086786B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP5808417B2 (en) Apparatus for forming an electron beam
US8357241B2 (en) Method of organic material vacuum evaporation and apparatus thereof
US20090084988A1 (en) Single wafer implanter for silicon-on-insulator wafer fabrication
TWI498934B (en) Vacuum processing apparatus
JPS5941510B2 (en) Beryllium oxide film and its formation method
TW201937521A (en) Ion source and indirectly heated cathode ion source
JP5150626B2 (en) Electron beam evaporator
JP4086786B2 (en) Hybrid EB cell and deposition material evaporation method using the same
JP2016177870A (en) Ion beam device, ion injection device and ion beam discharge method
JP2011518954A (en) Deposition system
US3494852A (en) Collimated duoplasmatron-powered deposition apparatus
US5180477A (en) Thin film deposition apparatus
JP2019121422A (en) Surface processing device
JPS63472A (en) Vacuum device for forming film
JPH11335820A (en) Vapor deposition and vapor deposition device
JPH10214787A (en) Molecular beam cell for si and molecular beam epitaxy system
JP6901328B2 (en) Indirect heat deposition source
JP5962979B2 (en) Deposition equipment
JPH0770741A (en) Evaporation source
JP3162684B2 (en) Electron impact evaporation source
JP6931671B2 (en) Indirect heat deposition source
JPH0469809B2 (en)
JP4515158B2 (en) Electron beam gun and plasma equipment
US3544756A (en) Apparatus for vaporising high melting materials such as quartz or the like
JP2008050667A (en) Thin-film-forming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees