JP2005194234A - Method for producing acrylonitrile - Google Patents

Method for producing acrylonitrile Download PDF

Info

Publication number
JP2005194234A
JP2005194234A JP2004002912A JP2004002912A JP2005194234A JP 2005194234 A JP2005194234 A JP 2005194234A JP 2004002912 A JP2004002912 A JP 2004002912A JP 2004002912 A JP2004002912 A JP 2004002912A JP 2005194234 A JP2005194234 A JP 2005194234A
Authority
JP
Japan
Prior art keywords
catalyst
reactor
mass
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004002912A
Other languages
Japanese (ja)
Other versions
JP4444673B2 (en
Inventor
Seigo Watanabe
聖午 渡辺
Motoo Yanagida
元男 柳田
Kenichi Miyagi
健一 宮氣
Masanori Yamaguchi
雅則 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2004002912A priority Critical patent/JP4444673B2/en
Publication of JP2005194234A publication Critical patent/JP2005194234A/en
Application granted granted Critical
Publication of JP4444673B2 publication Critical patent/JP4444673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economically advantageous method for producing acrylonitrile by which a high yield of the acrylonitrile is kept over a long period of time. <P>SOLUTION: The method for producing the acrylonitrile comprises using a granular catalyst comprising ≥85 mass% particles having 20-120 μm particle diameters, ≤5 mass% particles having <20 μm particle diameters, and 25-40 mass% particles having 20-44 μm particle diameters, and during the continuance of the reaction, extracting 0.05-1 mass% particles having 20-44 μm particle diameters per day based on the whole particles having 20-44 μm particle diameters in the reactor 2 from the reactor 2 to the exterior of the reactor 2, and supplying the granular catalyst comprising ≥85 mass% particles having 20-120 μm particle diameters, ≤5 mass% particles having <20 μm particle diameters, and 41-80 mass% particles having 20-44 μm particle diameters in an amount corresponding to 0.03-1 mass% of the whole granular catalyst in the reactor 2 per day. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プロピレンを分子状酸素およびアンモニアにより気相接触アンモ酸化してアクリロニトリルを製造する方法に関する。   The present invention relates to a process for producing acrylonitrile by vapor phase catalytic ammoxidation of propylene with molecular oxygen and ammonia.

アクリロニトリルは、「流動床アンモ酸化プロセス」として広く知られた方法により、現在工業的に合成されている。
プロピレンの気相接触アンモ酸化によりアクリロニトリルを合成する際に用いる触媒に関し、これまで数多くの提案がされている。これらは主に、活性、選択性等のいわゆる触媒特性を向上させるための技術に関するものである。
Acrylonitrile is currently industrially synthesized by a method widely known as the “fluidized bed ammoxidation process”.
Numerous proposals have been made regarding catalysts used in the synthesis of acrylonitrile by vapor-phase catalytic ammoxidation of propylene. These mainly relate to techniques for improving so-called catalytic properties such as activity and selectivity.

例えば、特公昭61−13701号公報(特許文献1)、特開昭59−204163号公報(特許文献2)、特開平1−228950号公報(特許文献3)、特開平10−43595号公報(特許文献4)、特開平10−156185号公報(特許文献5)、米国特許第5688739号明細書(特許文献6)等には、モリブデンおよびビスマスを主成分とする触媒が開示されている。これらは主に、アクリロニトリル収率の高い触媒を得るための触媒の構成元素およびその組成比を規定したものであるが、工業的に使用する際の留意点にまで言及されてはいない。   For example, Japanese Patent Publication No. 61-13701 (Patent Document 1), Japanese Patent Application Laid-Open No. 59-204163 (Patent Document 2), Japanese Patent Application Laid-Open No. 1-222850 (Patent Document 3), Japanese Patent Application Laid-Open No. 10-43595 ( Patent Document 4), Japanese Patent Application Laid-Open No. 10-156185 (Patent Document 5), US Pat. No. 5,688,739 (Patent Document 6), etc. disclose a catalyst mainly composed of molybdenum and bismuth. These mainly define the constituent elements of the catalyst for obtaining a catalyst having a high acrylonitrile yield and the composition ratio thereof, but are not mentioned to the point to be noted in industrial use.

通常、流動床アンモ酸化プロセスにおいては、反応中の触媒ロスを抑制するため、および触媒の良好な流動化状態を実現するために、触媒粒子の粒径について様々な工夫がなされている。
例えば、特開昭52−140490号公報(特許文献7)には、アンチモンを主成分とする流動床アンモ酸化反応用触媒の製造方法において、粒径20μm以下の粒子を5質量%以下に、また、粒径200μm以上の粒子を15質量%以下に調整する方法が開示されている。また、特開2002−233768号公報(特許文献8)には、粒径5〜150μmの範囲の触媒粒子を95質量%以上に、かつ粒径20〜30μmの範囲の触媒粒子を3〜30質量%に調整する方法が開示されている。
In general, in the fluidized bed ammoxidation process, various measures are taken with respect to the particle size of the catalyst particles in order to suppress catalyst loss during the reaction and to realize a good fluidized state of the catalyst.
For example, Japanese Patent Application Laid-Open No. 52-140490 (Patent Document 7) discloses that in a method for producing a fluidized bed ammoxidation reaction catalyst mainly composed of antimony, particles having a particle size of 20 μm or less are reduced to 5% by mass or less. A method of adjusting particles having a particle size of 200 μm or more to 15% by mass or less is disclosed. Japanese Patent Application Laid-Open No. 2002-233768 (Patent Document 8) discloses that 95% by mass or more of catalyst particles having a particle diameter of 5 to 150 μm and 3 to 30 mass of catalyst particles having a particle diameter of 20 to 30 μm. The method of adjusting to% is disclosed.

これらの方法は、粒径の小さな触媒粒子、特に粒径20μm以下の触媒粒子はその質量が小さいため、反応ガスに同伴されて反応器外へ飛散し易く、触媒反応に有効に使われ難いこと、および粒径の大きな触媒粒子、特に粒径150μm以上または200μm以上の触媒粒子はその質量が大きいため、反応器内で流動し難く、触媒反応に有効に使われ難いという知見に基づいたものである。
これらの方法は、流動床アンモ酸化プロセスにおける触媒粒子の流動化状態に着目した場合には、確かに有効と考えられる。しかしながら、目的とする反応生成物を長期間に渡りより高収率で製造し続けるためには、これらの方法だけではまだ不十分であり、工業的見地から更なる工夫が望まれる。
In these methods, catalyst particles having a small particle diameter, especially catalyst particles having a particle diameter of 20 μm or less, are small in mass, and therefore are easily entrained by the reaction gas and scattered outside the reactor, making it difficult to be used effectively for catalytic reactions. , And catalyst particles having a large particle size, particularly catalyst particles having a particle size of 150 μm or more or 200 μm or more, are based on the knowledge that they are difficult to flow in the reactor and difficult to be used effectively for catalytic reactions because of their large mass. is there.
These methods are certainly considered to be effective when focusing on the fluidized state of the catalyst particles in the fluidized bed ammoxidation process. However, in order to continue producing the target reaction product with a higher yield over a long period of time, these methods are still insufficient, and further contrivance is desired from an industrial standpoint.

すなわち、通常、流動床アンモ酸化プロセスによるアクリロニトリルの合成反応を長期間に渡り継続する場合、触媒の劣化は避けられない。そこで、工業的には、定期的にある割合で、反応器中の触媒を一部抜き出し、同時に等量相当の新品触媒を反応器内に補給する方法が採られている。しかしながら、この方法は長期間に渡りアクリロニトリル収率を高い水準に維持することに対しては有効であるが、相当な量の触媒補給を要するため経済性の点では好ましくなく、改善が望まれている。
特公昭61−13701号公報 特開昭59−204163号公報 特開平1−228950号公報 特開平10−43595号公報 特開平10−156185号公報 米国特許第5688739号明細書 特開昭52−140490号公報 特開2002−233768号公報
That is, usually, when the synthesis reaction of acrylonitrile by the fluidized bed ammoxidation process is continued for a long time, deterioration of the catalyst is inevitable. Therefore, industrially, a method is employed in which a part of the catalyst in the reactor is withdrawn periodically at a certain ratio, and at the same time, an equivalent amount of a new catalyst is replenished in the reactor. However, this method is effective for maintaining the acrylonitrile yield at a high level over a long period of time. However, since a considerable amount of catalyst replenishment is required, it is not preferable in terms of economy, and improvement is desired. Yes.
Japanese Patent Publication No. 61-13701 JP 59-204163 A JP-A-1-228950 JP-A-10-43595 JP-A-10-156185 US Pat. No. 5,688,739 Japanese Patent Laid-Open No. 52-140490 JP 2002-233768 A

本発明は、前記課題を解決するためになされたもので、経済的に有利な方法で長期間に渡り高いアクリロニトリル収率を持続することができる、流動床アンモ酸化プロセスによるアクリロニトリルの製造方法の提供を目的とする。   The present invention has been made to solve the above problems, and provides a method for producing acrylonitrile by a fluidized bed ammoxidation process capable of maintaining a high acrylonitrile yield over a long period of time in an economically advantageous manner. With the goal.

本発明者らは、該流動床アンモ酸化プロセスにおいて、粒径が20〜120μmの範囲に分布した粒子状触媒を用いてアクリロニトリルの合成反応を長期間継続して行った。長期間に渡り反応を継続したところ、触媒劣化によりアクリロニトリル収率は徐々に低下した。この実験後の触媒について、その粒径ごとに詳しく調べてみた結果、触媒粒子の粒径によりその劣化の程度が異なることがわかった。すなわち、粒径が小さいもの、特に20〜44μmの範囲の粒径のもので劣化の程度が大きいことを見出した。   In the fluidized bed ammoxidation process, the inventors of the present invention continuously carried out an acrylonitrile synthesis reaction for a long period of time using a particulate catalyst having a particle size distributed in the range of 20 to 120 μm. When the reaction was continued for a long time, the acrylonitrile yield gradually decreased due to catalyst deterioration. As a result of examining the catalyst after this experiment in detail for each particle diameter, it was found that the degree of deterioration differs depending on the particle diameter of the catalyst particles. That is, it has been found that the degree of deterioration is large when the particle size is small, particularly when the particle size is in the range of 20 to 44 μm.

そして、本発明者らは、本発明者らが見出したこの知見に基づき、本発明に至った。すなわち、長期間に渡り該反応を継続する際に、定期的にある割合で、反応器中の触媒を一部抜き出し、同時に等量相当の新品触媒を反応器内に補給する方法において、主に粒径20〜44μmの触媒粒子を選択的に抜き出し、同時に等量かつ同等粒径の新品触媒を補給する方法を採れば、単位時間当たりに補給する新品触媒量を比較的少なくしても長期間に渡りアクリロニトリル収率を高い水準に維持することができるという発明に至った。   And the present inventors came to this invention based on this knowledge which the present inventors discovered. That is, when the reaction is continued for a long period of time, a part of the catalyst in the reactor is periodically withdrawn at a certain ratio, and at the same time, an equivalent amount of new catalyst is replenished in the reactor. If a method of selectively extracting catalyst particles having a particle diameter of 20 to 44 μm and simultaneously supplying a new catalyst with an equal amount and an equivalent particle diameter is employed, a long period of time can be achieved even if a relatively small amount of new catalyst is supplied per unit time. In the meantime, the inventors have reached an invention in which the acrylonitrile yield can be maintained at a high level.

本発明のアクリロニトリルの製造方法は、粒子状触媒が収納された流動床反応器にて、プロピレンと、分子状酸素およびアンモニアとを反応させてアクリロニトリルを製造する方法において、前記粒子状触媒として、粒径20〜120μmの範囲の粒子の割合が85質量%以上であり、粒径20μm未満の粒子の割合が5質量%以下であり、かつ粒径20〜44μmの範囲の粒子の割合が25〜40質量%であるものを用い、反応継続中は、反応器内の粒子状触媒から、粒径20〜44μmの範囲の粒子を、1日当たり、反応器内のすべての粒径20〜44μmの粒子のうちの0.05〜1質量%に相当する量を反応器外へ抜き出し、かつ粒径20〜120μmの範囲の粒子の割合が85質量%以上であり、粒径20μm未満の粒子の割合が5質量%以下であり、かつ粒径20〜44μmの範囲の粒子の割合が41〜80質量%である粒子状触媒を、1日当たり、反応器内のすべての粒子状触媒の0.03〜1質量%に相当する量を反応器外から反応器内に補給することを特徴とする方法である。   The method for producing acrylonitrile of the present invention is a method for producing acrylonitrile by reacting propylene with molecular oxygen and ammonia in a fluidized bed reactor containing a particulate catalyst. The ratio of particles having a diameter in the range of 20 to 120 μm is 85% by mass or more, the ratio of particles having a particle diameter of less than 20 μm is 5% by mass or less, and the ratio of particles having a diameter of 20 to 44 μm is 25 to 40%. When the reaction is continued, particles having a particle size in the range of 20 to 44 μm are collected from the particulate catalyst in the reactor for all the particles having a particle size of 20 to 44 μm in the reactor per day. An amount corresponding to 0.05 to 1% by mass is extracted from the reactor, and the proportion of particles having a particle size in the range of 20 to 120 μm is 85% by mass or more, and the proportion of particles having a particle size of less than 20 μm is 5%. quality % Of the particulate catalyst having a particle size in the range of 20 to 44 μm and a ratio of 41 to 80% by mass of 0.03 to 1% by mass of all the particulate catalysts in the reactor per day. The method is characterized in that an amount corresponding to is supplied to the reactor from outside the reactor.

ここで、反応器内からの粒径20〜44μmの範囲の粒子の抜き出しは、連続的に行ってもよく、1〜30日に1回の頻度で行ってもよい。
また、反応器外から反応器内への粒子状触媒の補給は、連続的に行ってもよく、1〜30日に1回の頻度で行ってもよい。
また、前記粒子状触媒として、下記一般式(1)または下記一般式(2)で表される組成を有するものを用いることが望ましい。
Here, the extraction of the particles having a particle diameter in the range of 20 to 44 μm from the reactor may be performed continuously or may be performed once every 1 to 30 days.
Further, the replenishment of the particulate catalyst from the outside of the reactor into the reactor may be performed continuously or may be performed once every 1 to 30 days.
Moreover, it is desirable to use what has a composition represented by the following general formula (1) or the following general formula (2) as the particulate catalyst.

一般式(1):
Sba Febcdef (SiO2g
(式中、Sb、FeおよびOはそれぞれアンチモン、鉄および酸素を表し、Cはコバルト、ニッケル、マンガン、ウラン、セリウム、スズおよび銅からなる群より選ばれた少なくとも1種の元素を表し、Dはモリブデン、バナジウムおよびタングステンからなる群より選ばれた少なくとも1種の元素を表し、Eはマグネシウム、カルシウム、ストロンチウム、バリウム、ランタン、チタン、ジルコニウム、ニオブ、タンタル、クロム、レニウム、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銀、亜鉛、カドミウム、ホウ素、アルミニウム、ガリウム、インジウム、ナトリウム、カリウム、ルビジウム、セシウム、タリウム、ゲルマニウム、鉛、リン、ヒ素、ビスマス、セレンおよびテルルからなる群より選ばれた少なくとも1種の元素を表し、SiO2 はシリカを表し、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=10のとき、1≦b≦20、1≦c≦20、0≦d≦20、0≦e≦20、10≦g≦200であり、fは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
General formula (1):
Sb a Fe b C c D d E e O f (SiO 2) g
(Wherein Sb, Fe and O represent antimony, iron and oxygen, respectively, C represents at least one element selected from the group consisting of cobalt, nickel, manganese, uranium, cerium, tin and copper; D Represents at least one element selected from the group consisting of molybdenum, vanadium and tungsten, and E represents magnesium, calcium, strontium, barium, lanthanum, titanium, zirconium, niobium, tantalum, chromium, rhenium, ruthenium, osmium, rhodium Selected from the group consisting of iridium, palladium, platinum, silver, zinc, cadmium, boron, aluminum, gallium, indium, sodium, potassium, rubidium, cesium, thallium, germanium, lead, phosphorus, arsenic, bismuth, selenium and tellurium Small Represents Kutomo one element, SiO 2 represents silica, denotes a, b, c, d, e, f and g are atomic ratios of respective elements, and when a = 10, 1 ≦ b ≦ 20, (1 ≦ c ≦ 20, 0 ≦ d ≦ 20, 0 ≦ e ≦ 20, 10 ≦ g ≦ 200, and f is an atomic ratio of oxygen necessary to satisfy the valence of each component.)

一般式(2):
Moh Bii Fejklm (SiO2n
(式中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Fはナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Gはコバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、タングステン、銀、アルミニウム、リン、ホウ素、スズ、鉛、ガリウム、ゲルマニウム、ヒ素、アンチモン、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ホルミウム、エルビウム、ツリウムおよびイッテルビウムからなる群より選ばれた少なくとも1種の元素を表し、SiO2 はシリカを表し、h、i、j、k、l、mおよびnは各元素の原子比を表し、h=12のとき、0.1≦i≦5、0.1≦j≦10、0.01≦k≦3、0≦l≦20、10≦n≦200であり、mは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
General formula (2):
Mo h B i Fe j F k G l O m (SiO 2 ) n
(Wherein Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, F represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium; Is cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, tungsten, silver, aluminum, phosphorus, boron, tin, lead, gallium, germanium, arsenic, antimony, niobium, tantalum At least one selected from the group consisting of zirconium, indium, sulfur, selenium, tellurium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, holmium, erbium, thulium and ytterbium Represent elements, SiO 2 represents silica, represents h, i, j, k, l, m and n are the atomic ratios of respective elements, and when h = 12, 0.1 ≦ i ≦ 5,0. 1 ≦ j ≦ 10, 0.01 ≦ k ≦ 3, 0 ≦ l ≦ 20, 10 ≦ n ≦ 200, and m is an atomic ratio of oxygen necessary to satisfy the valence of each component. )

本発明のアクリロニトリルの製造方法によれば、経済的に有利な方法で長期間に渡り高いアクリロニトリル収率を持続することができる。   According to the method for producing acrylonitrile of the present invention, a high acrylonitrile yield can be maintained over a long period of time by an economically advantageous method.

以下、本発明について詳細に説明する。
アクリロニトリルは、粒子状触媒が収納された流動床反応器にて、プロピレンと、分子状酸素およびアンモニアとを反応させることによって製造される。
具体的には、例えば図1に示すような、粒子状触媒の流動層1が設けられた反応器2と、反応器2内にプロピレン、分子状酸素およびアンモニアを供給する原料ガススパージャー3と、反応器2内に配置され、アクリロニトリルを含むガスと触媒とを分離するサイクロン4とを具備する流動床反応器を用いることによって製造される。
Hereinafter, the present invention will be described in detail.
Acrylonitrile is produced by reacting propylene with molecular oxygen and ammonia in a fluidized bed reactor containing a particulate catalyst.
Specifically, for example, as shown in FIG. 1, a reactor 2 provided with a fluidized bed 1 of a particulate catalyst, a raw material gas sparger 3 for supplying propylene, molecular oxygen and ammonia into the reactor 2, It is produced by using a fluidized bed reactor which is arranged in the reactor 2 and which comprises a cyclone 4 for separating a gas containing acrylonitrile and a catalyst.

ここで、図1のパイプ型の原料ガススパージャー3は、反応器2の下方に向かって開口した複数のノズル孔5を有するものであり、ノズル孔5から導入されるガス6は、図2に示すイメージ図のように、一旦反応器2の下方に高速で吹き出した後、反応器2の上方に向かって上昇していく。
また、サイクロン4に導入されたガスに含まれる触媒は、図3に示すように、サイクロン4内を高速旋回する間にガスと分離され、ディップレッグ7を通って流動層1に戻される(図中破線)。アクリロニトリルを含むガスは、排出管8を通って反応器2から排出される。
Here, the pipe-type raw material gas sparger 3 in FIG. 1 has a plurality of nozzle holes 5 opened downward from the reactor 2, and the gas 6 introduced from the nozzle holes 5 corresponds to FIG. As shown in the image diagram shown in FIG. 1, once blown out at a high speed below the reactor 2, it rises above the reactor 2.
Further, as shown in FIG. 3, the catalyst contained in the gas introduced into the cyclone 4 is separated from the gas while rotating at high speed in the cyclone 4, and returned to the fluidized bed 1 through the dipleg 7. Middle dashed line). A gas containing acrylonitrile is discharged from the reactor 2 through the discharge pipe 8.

本発明で用いる触媒は、粒子状であることが必要であり、その形状としては球形が好ましい。ここでいう球形とは実質的に球形であることを示し、若干の歪みや窪みがあってもよい。また、10質量%以下の割合であれば、球形が2つ以上に割れたもの、球形が2つ以上引っ付いたもの等を含んでいてもよい。   The catalyst used in the present invention needs to be in the form of particles, and the shape is preferably spherical. The spherical shape here indicates that it is substantially spherical, and there may be some distortion or depression. Moreover, if it is a ratio of 10 mass% or less, you may include the thing by which the spherical shape was broken into two or more, the thing by which two or more spherical shapes were stuck, etc.

また、その大きさとしては、粒径20〜120μmの範囲の粒子の割合が85質量%以上であり、粒径20μm未満の粒子の割合が5質量%以下であり、かつ粒径20〜44μmの範囲の粒子の割合が25〜40質量%であることが重要である。
粒径が20μm未満の粒子は、その質量が小さいため、反応中に反応ガスに同伴されて反応器2外に飛散し易く、いわゆる触媒ロスを招く。触媒ロスは反応率、すなわちプロピレン転化率の低下につながる。したがって、粒径20μm未満の粒子の割合は少ないほど好ましい。粒径20μm未満の粒子は、5質量%以下であり、好ましくは3質量%以下である。
Moreover, as the size, the ratio of the particles having a particle diameter of 20 to 120 μm is 85% by mass or more, the ratio of the particles having a particle diameter of less than 20 μm is 5% by mass or less, and the particle diameter is 20 to 44 μm. It is important that the proportion of particles in the range is 25-40% by weight.
Particles having a particle size of less than 20 μm are small in mass, and thus are easily entrained by the reaction gas during the reaction and scattered outside the reactor 2, resulting in so-called catalyst loss. The catalyst loss leads to a decrease in the reaction rate, that is, the propylene conversion rate. Therefore, the smaller the proportion of particles having a particle size of less than 20 μm, the better. Particles having a particle size of less than 20 μm are 5% by mass or less, preferably 3% by mass or less.

粒径が120μmを超える粒子は、その質量が大きいため、反応器2内で良好に流動化し難い。そのため、粒径120μmを超える粒子の割合が多すぎると、流動化状態の悪化を招き、それがアクリロニトリル収率の低下を招く。したがって、粒径120μmを超える粒子の割合は少ないほど好ましい。粒径120μmを超える粒子は、好ましくは10質量%以下、より好ましくは5質量%以下である。
また、触媒ロスを抑えつつ良好な流動化状態を実現するためには、粒径20〜120μmの範囲の粒子が有効である。このうち特に20〜44μmの範囲の粒子の割合が重要である。粒径20〜120μmの範囲の粒子は、25〜40質量%であり、好ましくは28〜38質量%である。
Particles having a particle size exceeding 120 μm are difficult to fluidize well in the reactor 2 because of their large mass. For this reason, if the ratio of the particles having a particle size exceeding 120 μm is too large, the fluidized state is deteriorated, which causes a decrease in the acrylonitrile yield. Therefore, the smaller the proportion of particles with a particle size exceeding 120 μm, the better. The particles having a particle size exceeding 120 μm are preferably 10% by mass or less, more preferably 5% by mass or less.
Moreover, in order to implement | achieve a favorable fluidization state, suppressing a catalyst loss, the particle | grains of the particle size of 20-120 micrometers are effective. Of these, the proportion of particles in the range of 20 to 44 μm is particularly important. Particles having a particle size in the range of 20 to 120 μm are 25 to 40% by mass, preferably 28 to 38% by mass.

本発明のアクリロニトリルの製造方法の特徴は、反応器2内の粒子状触媒から、粒径20〜44μmの範囲の粒子を、1日当たり、反応器2内のすべての粒径20〜44μmの粒子のうちの0.05〜1質量%に相当する量を反応器外へ抜き出しながら、かつ粒径20〜120μmの範囲の粒子の割合が85質量%以上であり、粒径20μm未満の粒子の割合が5質量%以下であり、かつ粒径20〜44μmの範囲の粒子の割合が41〜80質量%である粒子状触媒を、1日当たり、反応器2内のすべての粒子状触媒の0.03〜1質量%に相当する量を反応器2外から反応器2内に補給しながら、プロピレンと、分子状酸素およびアンモニアとの反応を継続させることにある。   The acrylonitrile production method of the present invention is characterized in that particles having a particle size in the range of 20 to 44 μm are obtained from the particulate catalyst in the reactor 2 and all particles having a particle size of 20 to 44 μm in the reactor 2 per day. While the amount corresponding to 0.05 to 1% by mass is withdrawn from the reactor, the proportion of particles having a particle size of 20 to 120 μm is 85% by mass or more, and the proportion of particles having a particle size of less than 20 μm is 5% by mass or less and the proportion of particles having a particle size in the range of 20 to 44 μm is 41 to 80% by mass of 0.03 to 0.03 of all the particulate catalysts in the reactor 2 per day. The purpose is to continue the reaction of propylene with molecular oxygen and ammonia while supplying an amount corresponding to 1% by mass from outside the reactor 2 into the reactor 2.

1日当たりに反応器2内から抜き出す粒径20〜44μmの粒子の量は、反応器2内の全粒子状触媒における粒径20〜44μmの粒子の全量を基準として、0.05〜1質量%であり、好ましくは0.2〜0.6質量%である。ここで抜き出す量が少な過ぎると、劣化した触媒が反応器2内に蓄積されていくこととなり、アクリロニトリル収率の低下を招く。一方、抜き出す量を多くすることは、アクリロニトリル収率の低下を防ぐ点では有利であるが、その分補給する触媒量も多くなってしまうので経済的に不利である。したがって、不必要に多くの量を抜き出すことは工業的に見て好ましくない。   The amount of particles having a particle size of 20 to 44 μm extracted from the reactor 2 per day is 0.05 to 1% by mass based on the total amount of particles having a particle size of 20 to 44 μm in the total particulate catalyst in the reactor 2. Preferably, it is 0.2-0.6 mass%. If the amount extracted here is too small, the deteriorated catalyst will be accumulated in the reactor 2, leading to a decrease in the acrylonitrile yield. On the other hand, increasing the amount to be extracted is advantageous in terms of preventing a decrease in the acrylonitrile yield, but it is economically disadvantageous because the amount of catalyst to be replenished is increased accordingly. Therefore, extracting an unnecessarily large amount is not preferable from an industrial viewpoint.

反応器2内からの粒径20〜44μmの範囲の粒子を抜き出す際、粒径20〜44μmの範囲外の粒子も併せて抜き出すことは何ら妨げられるものではない。特に、粒径20μm未満の粒子については、粒径20〜44μmの粒子に比べ更に劣化の程度が大きいと考えられるので、積極的に抜き出すことが好ましい。
また、粒径44μmを超える粒子についても劣化の程度は小さいものの幾分かは劣化しているので、ある程度は抜き出すことが好ましい。ただし、粒径44μmを超える粒子を抜き出す割合、すなわち、反応器2内の全粒子状触媒における粒径44μmを超える粒子の全量のうちから抜き出す割合は、粒径20〜44μmの粒子の全量のうちから抜き出す割合を超えてはならない。また、この割合の差が大きいほど、すなわち、粒径44μmを超える粒子を抜き出す割合が小さいほど、補給する粒子状触媒の量を低減することができるので経済的に有利である。
When extracting particles having a particle diameter of 20 to 44 μm from the inside of the reactor 2, it is not impeded to extract particles outside the particle diameter of 20 to 44 μm. In particular, it is considered that particles having a particle size of less than 20 μm are more likely to be deteriorated than particles having a particle size of 20 to 44 μm, and therefore, it is preferable to actively extract the particles.
Further, since the particle size exceeding 44 μm is somewhat deteriorated although the degree of deterioration is small, it is preferably extracted to some extent. However, the ratio of extracting particles having a particle diameter of 44 μm, that is, the ratio of extracting all particles having a particle diameter exceeding 44 μm in the total particulate catalyst in the reactor 2 is the total amount of particles having a particle diameter of 20 to 44 μm. Do not exceed the rate of extraction from. Further, the larger the difference in proportion, that is, the smaller the proportion of particles with a particle size exceeding 44 μm, the more economically advantageous because the amount of particulate catalyst to be replenished can be reduced.

本発明において特定の割合で粒径20〜44μmの粒子を抜き出す方法としては、特に制限はないが、例えば通常の方法で反応器2内から一旦抜き出した粒子状触媒を篩い分けして、粒径20〜44μmの範囲外の粒子の全部または一部を再び反応器2内に戻す方法等が考えられる。また、通常の反応器2内には触媒捕集用のサイクロン4が設けられているので、その捕集効率を低減するように調整すると、小粒径の触媒粒子のみが選択的に反応ガスに同伴されて反応器2外に搬出される。サイクロン4の捕集効率の調整は、サイクロン4内に上向きに空気等の気体を吹き込むことで容易に実施することができ、本方法は粒径20〜44μmの粒子を選択的に抜き出す方法として操作の容易さの点で有利な方法である。   In the present invention, the method for extracting particles having a particle size of 20 to 44 μm at a specific ratio is not particularly limited. For example, the particulate catalyst once extracted from the reactor 2 by sieving by a usual method is screened to obtain a particle size. A method of returning all or part of the particles outside the range of 20 to 44 μm back into the reactor 2 is conceivable. In addition, since a cyclone 4 for collecting the catalyst is provided in the normal reactor 2, when adjusting so as to reduce the collection efficiency, only the catalyst particles having a small particle diameter are selectively converted into the reaction gas. Accompanied and carried out of the reactor 2. Adjustment of the collection efficiency of the cyclone 4 can be easily performed by blowing air or other gas upward into the cyclone 4, and this method is operated as a method for selectively extracting particles having a particle size of 20 to 44 μm. This is an advantageous method in terms of ease.

本発明において、反応器2内の粒子状触媒を抜き出す頻度としては特に制限はなく、常時連続的に抜き出してもよいし、数時間〜数十日間に1回の頻度で抜き出してもよい。また、連続的に抜き出すことと数時間〜数十日間に1回の頻度で抜き出すことを組み合わせてもよい。アクリロニトリル収率を常に一定水準に保つためには連続的に抜き出す方法が有利であり、そのためには、一定量を簡便に抜き出す設備等を付帯することが好ましい。前記したような、反応器2内設置のサイクロン4の捕集効率を低減させることで粒子状触媒を抜き出す方法が連続的に抜き出す方法として簡便かつ精度も高いので好ましい。サイクロン4の捕集効率を低減させる方法としては、特に制限はないが、例えばサイクロン4下部より上向き方向に空気等のガス流を吹き込む方法が制御性にも優れ好ましい。   In the present invention, the frequency with which the particulate catalyst in the reactor 2 is withdrawn is not particularly limited, and may be withdrawn continuously all the time or once every several hours to several tens of days. Moreover, you may combine extracting continuously and extracting once every several hours-dozens of days. In order to keep the acrylonitrile yield at a constant level at all times, a continuous extraction method is advantageous. For this purpose, it is preferable to attach equipment for easily extracting a constant amount. The method of extracting the particulate catalyst by reducing the collection efficiency of the cyclone 4 installed in the reactor 2 as described above is preferable because it is simple and highly accurate as a method of continuously extracting. The method of reducing the collection efficiency of the cyclone 4 is not particularly limited, but for example, a method of blowing a gas flow such as air upward from the lower part of the cyclone 4 is preferable because of excellent controllability.

数時間〜数十日間に1回の頻度で抜き出す場合、抜き出しと次の抜き出しとの間に、アクリロニトリル収率の低下が起こるので、その間隔はできるだけ短い方が好ましい。ただし、あまり間隔が短すぎると操作上の困難が生じるため、1〜30日間に1回の頻度が好ましく、1〜10日間に1回の頻度がより好ましい。   When extracting at a frequency of once every several hours to several tens of days, the yield of acrylonitrile decreases between the extraction and the next extraction. Therefore, the interval is preferably as short as possible. However, if the interval is too short, operational difficulties occur, and therefore the frequency is preferably once every 1 to 30 days, and more preferably once every 1 to 10 days.

本発明において、反応器2内の粒子状触媒の一部を抜き出した際には、同時に等量相当の粒子状触媒を反応器2内に補給することが重要である。その際、補給する粒子状触媒については、新品触媒が好ましいが、新品触媒と比べ実質的に大差がないのであれば、すなわち本質的に劣化していない触媒であれば、ある程度使用に供したものであっても構わない。   In the present invention, when a part of the particulate catalyst in the reactor 2 is extracted, it is important to replenish the reactor 2 with an equivalent amount of the particulate catalyst at the same time. At that time, a new catalyst is preferable for the particulate catalyst to be replenished. However, if the catalyst is not substantially different from that of the new catalyst, that is, if the catalyst is not essentially deteriorated, it is used to some extent. It does not matter.

本発明においては、反応器2内の粒子状触媒の粒径分布が長期に渡り好ましい状態(粒径20〜120μmの範囲の粒子の割合が85質量%以上、粒径20μm未満の粒子の割合が5質量%以下、かつ粒径20〜44μmの範囲の粒子の割合が25〜40質量%)に維持されていることが重要である。
すなわち、本発明においては、粒径20〜44μmの粒子を選択的に多めに抜き出すことに特徴があるので、反応器2内の粒子状触媒の粒径分布を好ましい状態に維持するためには、当然、粒径20〜44μmの範囲の粒子を多く含む粒子状触媒を補給しなければならない。
よって、補給する粒子状触媒における粒径20〜44μmの範囲の粒子の割合は41〜80質量%であり、好ましくは45〜70質量%である。
In the present invention, the particle size distribution of the particulate catalyst in the reactor 2 is preferable over a long period (the proportion of particles having a particle size in the range of 20 to 120 μm is 85 mass% or more and the proportion of particles having a particle size of less than 20 μm is It is important that the ratio of the particles in the range of 5 mass% or less and the particle size in the range of 20 to 44 μm is maintained at 25 to 40 mass%.
That is, in the present invention, there is a feature in selectively extracting a large amount of particles having a particle size of 20 to 44 μm. Therefore, in order to maintain the particle size distribution of the particulate catalyst in the reactor 2 in a preferable state, Naturally, it is necessary to replenish a particulate catalyst containing many particles having a particle size in the range of 20 to 44 μm.
Therefore, the proportion of particles in the range of 20 to 44 μm in the particulate catalyst to be replenished is 41 to 80% by mass, preferably 45 to 70% by mass.

また、補給する粒子状触媒の量については、基本的には抜き出した量と同等でよく、具体的には1日当たり、反応器2内の全粒子状触媒の0.03〜1質量%である。ただし、ここで重要なことは反応率、すなわちプロピレン転化率を一定水準に維持することであるので、状況に応じて抜き出した量に対して、補給する粒子状触媒の量を増減させても構わない。   Further, the amount of the particulate catalyst to be replenished may be basically the same as the amount withdrawn, specifically 0.03 to 1% by mass of the total particulate catalyst in the reactor 2 per day. . However, since it is important to maintain the reaction rate, that is, the propylene conversion rate at a certain level, the amount of the particulate catalyst to be replenished may be increased or decreased with respect to the amount extracted depending on the situation. Absent.

本発明において、反応器2内に粒子状触媒を補給する頻度としては特に限定はなく、常時連続的に補給してもよいし、数時間〜数十日間に1回の頻度で補給してもよい。アクリロニトリル収率を常に一定水準に保つためには前記の粒子状触媒の抜き出しを連続的に行いながら、それに合わせて同等量を連続的に補給することが好ましい。連続的に補給するためには、一定量を簡便に補給できる設備等を付帯することが好ましい。   In the present invention, the frequency of replenishing the particulate catalyst in the reactor 2 is not particularly limited, and may be continuously replenished or may be replenished once every several hours to several tens of days. Good. In order to always maintain the acrylonitrile yield at a constant level, it is preferable to continuously replenish the same amount while continuously extracting the particulate catalyst. In order to replenish continuously, it is preferable to attach a facility or the like that can easily replenish a certain amount.

また、数時間〜数十日間に1回の頻度で補給する場合、補給と次の補給との間にアクリロニトリル収率の低下が起こるので、その間隔はできるだけ短い方が好ましい。ただし、あまり間隔が短すぎると操作上の困難が生じるため、1〜30日間に1回の頻度が好ましく、1〜10日間に1回の頻度がより好ましい。また、プロピレン転化率をできるだけ安定に保つためには、前記の粒子状触媒の抜き出しの頻度および時期に合わせて粒子状触媒の補給を実施することが好ましい。   Further, when replenishing once every several hours to several tens of days, the acrylonitrile yield decreases between the replenishment and the next replenishment. Therefore, the interval is preferably as short as possible. However, if the interval is too short, operational difficulties occur, and therefore the frequency is preferably once every 1 to 30 days, and more preferably once every 1 to 10 days. In order to keep the propylene conversion rate as stable as possible, it is preferable to replenish the particulate catalyst in accordance with the frequency and timing of extraction of the particulate catalyst.

本発明における粒子状触媒は、下記一般式(1)または一般式(2)で表される組成を有することが望ましい。
一般式(1):
Sba Febcdef (SiO2g
(式中、Sb、FeおよびOはそれぞれアンチモン、鉄および酸素を表し、Cはコバルト、ニッケル、マンガン、ウラン、セリウム、スズおよび銅からなる群より選ばれた少なくとも1種の元素を表し、Dはモリブデン、バナジウムおよびタングステンからなる群より選ばれた少なくとも1種の元素を表し、Eはマグネシウム、カルシウム、ストロンチウム、バリウム、ランタン、チタン、ジルコニウム、ニオブ、タンタル、クロム、レニウム、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銀、亜鉛、カドミウム、ホウ素、アルミニウム、ガリウム、インジウム、ナトリウム、カリウム、ルビジウム、セシウム、タリウム、ゲルマニウム、鉛、リン、ヒ素、ビスマス、セレンおよびテルルからなる群より選ばれた少なくとも1種の元素を表し、SiO2 はシリカを表し、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=10のとき、1≦b≦20、1≦c≦20、0≦d≦20、0≦e≦20、10≦g≦200であり、fは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
The particulate catalyst in the present invention desirably has a composition represented by the following general formula (1) or general formula (2).
General formula (1):
Sb a Fe b C c D d E e O f (SiO 2) g
(Wherein Sb, Fe and O represent antimony, iron and oxygen, respectively, C represents at least one element selected from the group consisting of cobalt, nickel, manganese, uranium, cerium, tin and copper, and D Represents at least one element selected from the group consisting of molybdenum, vanadium and tungsten, and E represents magnesium, calcium, strontium, barium, lanthanum, titanium, zirconium, niobium, tantalum, chromium, rhenium, ruthenium, osmium, rhodium Selected from the group consisting of iridium, palladium, platinum, silver, zinc, cadmium, boron, aluminum, gallium, indium, sodium, potassium, rubidium, cesium, thallium, germanium, lead, phosphorus, arsenic, bismuth, selenium and tellurium Small Represents Kutomo one element, SiO 2 represents silica, denotes a, b, c, d, e, f and g are atomic ratios of respective elements, and when a = 10, 1 ≦ b ≦ 20, (1 ≦ c ≦ 20, 0 ≦ d ≦ 20, 0 ≦ e ≦ 20, 10 ≦ g ≦ 200, and f is an atomic ratio of oxygen necessary to satisfy the valence of each component.)

一般式(2):
Moh Bii Fejklm (SiO2n
(式中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Fはナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Gはコバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、タングステン、銀、アルミニウム、リン、ホウ素、スズ、鉛、ガリウム、ゲルマニウム、ヒ素、アンチモン、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ホルミウム、エルビウム、ツリウムおよびイッテルビウムからなる群より選ばれた少なくとも1種の元素を表し、SiO2 はシリカを表し、h、i、j、k、l、mおよびnは各元素の原子比を表し、h=12のとき、0.1≦i≦5、0.1≦j≦10、0.01≦k≦3、0≦l≦20、10≦n≦200であり、mは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
General formula (2):
Mo h B i Fe j F k G l O m (SiO 2 ) n
(Wherein Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, F represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium; Is cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, tungsten, silver, aluminum, phosphorus, boron, tin, lead, gallium, germanium, arsenic, antimony, niobium, tantalum At least one selected from the group consisting of zirconium, indium, sulfur, selenium, tellurium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, holmium, erbium, thulium and ytterbium Represent elements, SiO 2 represents silica, represents h, i, j, k, l, m and n are the atomic ratios of respective elements, and when h = 12, 0.1 ≦ i ≦ 5,0. 1 ≦ j ≦ 10, 0.01 ≦ k ≦ 3, 0 ≦ l ≦ 20, 10 ≦ n ≦ 200, and m is an atomic ratio of oxygen necessary to satisfy the valence of each component. )

本発明において、粒子状触媒を調製する方法としては、前記触媒構成成分を含む水性スラリーを調製し、得られた水性スラリーを乾燥し、得られた乾燥物を500〜750℃の範囲の温度で焼成する方法が特に好ましい。   In the present invention, as a method for preparing the particulate catalyst, an aqueous slurry containing the catalyst component is prepared, the obtained aqueous slurry is dried, and the obtained dried product is heated at a temperature in the range of 500 to 750 ° C. A method of firing is particularly preferable.

水性スラリーの調製に用いる原料としては、特に制限はなく、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用することができる。例えば、モリブデン原料としては、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。また、シリカ原料としては、コロイダルシリカが好ましく、市販のものから適宜選択して用いることができる。コロイダルシリカのコロイド粒径については、5〜80nmが好ましく、10〜40nmがより好ましい。コロイダルシリカにおけるシリカ含量についても特に制限はなく、10〜50質量%が特に好ましい。また、コロイド粒径および/またはシリカ含量の異なる複数種のコロイダルシリカを混合したものを用いてもよい。   There is no restriction | limiting in particular as a raw material used for preparation of aqueous slurry, Nitrate, carbonate, acetate, ammonium salt, an oxide, a halide, etc. of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, etc. can be used as the molybdenum raw material. Moreover, as a silica raw material, colloidal silica is preferable and it can select from a commercially available thing suitably and can be used. About the colloidal particle size of colloidal silica, 5-80 nm is preferable and 10-40 nm is more preferable. There is no restriction | limiting in particular also about the silica content in colloidal silica, and 10-50 mass% is especially preferable. Further, a mixture of a plurality of colloidal silicas having different colloidal particle diameters and / or silica contents may be used.

水性スラリーは、必要に応じて70〜105℃の範囲において熟成、濃縮等の加熱処理を施してもよい。
水性スラリーの乾燥方法としては、特に制限はないが、得られる乾燥物の形状として球形が好ましいこと、および粒径の調節が比較的容易であることから、スプレー乾燥が特に好ましい。
The aqueous slurry may be subjected to heat treatment such as aging and concentration in the range of 70 to 105 ° C. as necessary.
Although there is no restriction | limiting in particular as a drying method of an aqueous slurry, Since a spherical form is preferable as a shape of the dried material obtained and adjustment of a particle size is comparatively easy, spray drying is especially preferable.

続いて、得られた乾燥物を500〜750℃の範囲の温度で焼成することにより望ましい触媒活性構造が形成される。焼成の時間は、特に制限はないが、短すぎると良好な触媒が得られないため、少なくとも1時間以上が好ましい。焼成の方法についても特に制限はなく、汎用の焼成炉を用いることができ、工業的にはロータリーキルン、流動焼成炉等が好ましく用いられる。   Subsequently, a desired catalytically active structure is formed by calcining the obtained dried product at a temperature in the range of 500 to 750 ° C. The firing time is not particularly limited, but if it is too short, a good catalyst cannot be obtained. There is no restriction | limiting in particular also about the method of baking, A general purpose baking furnace can be used, and a rotary kiln, a fluidized baking furnace, etc. are used preferably industrially.

本発明において所望の粒径分布を有する粒子状触媒を得る方法としては、特に制限はないが、水性スラリーをスプレー乾燥機にて乾燥する際の、スラリーの濃度、粘度を適宜調節し、かつスプレー乾燥における噴霧条件を調節することである程度の粒径調整は可能である。更に所望の粒径分布により近づけるためには、得られた乾燥物または焼成物について篩い分け等の分級操作を施すことも有効である。   The method for obtaining a particulate catalyst having a desired particle size distribution in the present invention is not particularly limited, but when the aqueous slurry is dried with a spray dryer, the concentration and viscosity of the slurry are appropriately adjusted, and spraying is performed. A certain degree of particle size adjustment is possible by adjusting the spraying conditions in drying. Furthermore, in order to make it closer to the desired particle size distribution, it is also effective to perform classification operations such as sieving the obtained dried or fired product.

このようにして得られた粒子状触媒を用いて、プロピレンを分子状酸素およびアンモニアにより気相接触アンモ酸化してアクリロニトリルを製造するに際しては、流動床反応器を用いることが好ましい。原料ガス中のプロピレンの濃度は広い範囲で変えることができ、1〜20容量%が適当であり、特に3〜15容量%が好ましい。   When the acrylonitrile is produced by vapor phase catalytic ammoxidation of propylene with molecular oxygen and ammonia using the particulate catalyst thus obtained, it is preferable to use a fluidized bed reactor. The concentration of propylene in the raw material gas can be varied within a wide range, 1 to 20% by volume is appropriate, and 3 to 15% by volume is particularly preferable.

気相接触アンモ酸化を行う際の酸素源としては、空気を用いるのが工業的には有利であるが、必要に応じて純酸素で富化した空気も使用できる。原料ガス中のプロピレン対酸素のモル比は1:1.5〜1:3、プロピレン対アンモニアのモル比は1:1〜1:1.5が好ましい。また、原料ガスは不活性ガス、水蒸気等で希釈して用いることができる。反応圧力は常圧ないし数気圧の範囲である。反応温度は400〜500℃の範囲が好ましい。   It is industrially advantageous to use air as an oxygen source when performing vapor phase ammoxidation, but if necessary, air enriched with pure oxygen can also be used. The molar ratio of propylene to oxygen in the raw material gas is preferably 1: 1.5 to 1: 3, and the molar ratio of propylene to ammonia is preferably 1: 1 to 1: 1.5. The source gas can be diluted with an inert gas, water vapor or the like. The reaction pressure is in the range of normal pressure to several atmospheres. The reaction temperature is preferably in the range of 400 to 500 ° C.

以上説明した本発明のアクリロニトリルの製造方法にあっては、粒子状触媒として、粒径20〜120μmの範囲の粒子の割合が85質量%以上であり、粒径20μm未満の粒子の割合が5質量%以下であり、かつ粒径20〜44μmの範囲の粒子の割合が25〜40質量%であるものを用いているので、プロピレンと、分子状酸素およびアンモニアとの反応が効率よく進行し、アクリロニトリル収率が高い。
また、本発明のアクリロニトリルの製造方法にあっては、劣化の程度が比較的大きい粒径20〜44μmの範囲の粒子を、所定量、選択的に反応器2外へ抜き出しながら、かつ粒径20〜44μmの範囲の粒子が比較的多く含まれた補給用の粒子状触媒を所定量、反応器2外から反応器2内に補給しながら、プロピレンと、分子状酸素およびアンモニアとの反応を継続させているので、粒径20〜44μmの範囲の粒子を選択的に抜き出さない場合に比べ、補給する粒子状触媒の量を減らすことができる。
よって、経済的に有利な方法で長期間に渡り高いアクリロニトリル収率を持続することができる。
In the method for producing acrylonitrile of the present invention described above, the proportion of particles having a particle size in the range of 20 to 120 μm is 85 mass% or more as the particulate catalyst, and the proportion of particles having a particle size of less than 20 μm is 5 mass. %, And the proportion of particles having a particle size in the range of 20 to 44 μm is 25 to 40% by mass, so that the reaction of propylene with molecular oxygen and ammonia proceeds efficiently, and acrylonitrile The yield is high.
In the method for producing acrylonitrile of the present invention, a predetermined amount of particles having a relatively large degree of deterioration in the range of 20 to 44 μm are selectively extracted out of the reactor 2 and the particle size of 20 Continue the reaction of propylene with molecular oxygen and ammonia while supplying a predetermined amount of a particulate catalyst for replenishment containing a relatively large amount of particles in the range of ˜44 μm into the reactor 2 from outside the reactor 2 Therefore, the amount of the particulate catalyst to be replenished can be reduced as compared with the case where the particles having a particle diameter of 20 to 44 μm are not selectively extracted.
Therefore, a high acrylonitrile yield can be maintained over a long period of time by an economically advantageous method.

なお、本発明のアクリロニトリルの製造方法に用いられる流動床反応器は、図示例のものには限定されず、粒子状触媒の存在下、プロピレンと分子状酸素およびアンモニアとを反応させることができる流動床反応器であれば、どのようなものでも用いることができる。   The fluidized bed reactor used in the method for producing acrylonitrile of the present invention is not limited to the illustrated example, and a fluid capable of reacting propylene with molecular oxygen and ammonia in the presence of a particulate catalyst. Any bed reactor can be used.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこの実施例に限定されるものではない。
プロピレンのアンモ酸化によるアクリロニトリルの製造は、塔径が2インチで、サイクロンを内蔵した流動床反応器を用いて実施した。この際、プロピレン/アンモニア/空気/水蒸気=1/1.2/9.5/0.5(モル比)の混合ガスをガス線速度18cm/秒で反応器内に導入し、反応温度は440℃、反応圧力は200KPaとした。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Production of acrylonitrile by propylene ammoxidation was carried out using a fluidized bed reactor having a tower diameter of 2 inches and containing a cyclone. At this time, a mixed gas of propylene / ammonia / air / water vapor = 1 / 1.2 / 9.5 / 0.5 (molar ratio) was introduced into the reactor at a gas linear velocity of 18 cm / second, and the reaction temperature was 440. The reaction pressure was 200 KPa.

反応試験分析はガスクロマトグラフィーにより行った。
接触時間およびアクリロニトリルの収率は以下のように定義される。
アクリロニトリルの収率(%)=B/A×100
ここで、Aは供給したプロピレンのモル数、Bは生成したアクリロニトリルのモル数を表す。
粒子状触媒の粒径分布の測定は、レーザー回折式粒度分布測定装置を用いて行った。
Reaction test analysis was performed by gas chromatography.
The contact time and acrylonitrile yield are defined as follows:
Acrylonitrile yield (%) = B / A × 100
Here, A represents the number of moles of propylene supplied, and B represents the number of moles of produced acrylonitrile.
The particle size distribution of the particulate catalyst was measured using a laser diffraction type particle size distribution measuring apparatus.

[実施例1]
30質量%コロイダルシリカ4956.7質量部および純水3000質量部の混合液に、パラモリブデン酸アンモニウム1248.3質量部を溶解した(A液)。
別に、17質量%硝酸水溶液1300質量部に、硝酸鉄(III)476.1質量部、硝酸ニッケル685.2質量部、硝酸マグネシウム226.6質量部、硝酸コバルト171.4質量部、硝酸クロム94.3質量部、硝酸セリウム127.9質量部、硝酸ビスマス142.9質量部、硝酸ルビジウム5.2質量部および硝酸カリウム4.2質量部を溶解させた(B液)。
A液をよく撹拌しながら、そこにB液を混合し、水性スラリーを得た。
[Example 1]
In a mixed solution of 4956.7 parts by mass of 30% by mass colloidal silica and 3000 parts by mass of pure water, 1248.3 parts by mass of ammonium paramolybdate was dissolved (solution A).
Separately, to 1300 parts by mass of a 17% by mass nitric acid aqueous solution, 476.1 parts by mass of iron (III) nitrate, 685.2 parts by mass of nickel nitrate, 226.6 parts by mass of magnesium nitrate, 171.4 parts by mass of cobalt nitrate, 94% of chromium nitrate .3 parts by mass, 127.9 parts by mass of cerium nitrate, 142.9 parts by mass of bismuth nitrate, 5.2 parts by mass of rubidium nitrate, and 4.2 parts by mass of potassium nitrate were dissolved (Liquid B).
While the liquid A was well stirred, the liquid B was mixed there to obtain an aqueous slurry.

得られた水性スラリーをスプレー乾燥機を用いて乾燥し、球状の乾燥粉を得た。得られた乾燥粉を250℃で2時間、次いで450℃で3時間静置焼成した後、590℃で2時間流動焼成し、触媒(1)を得た。
得られた触媒(1)の組成は、原料仕込み量から以下のように算出された。
Mo12Bi0.5Fe2Ce0.5Cr0.4Ni4Mg1.5Co10.07Rb0.06(SiO242
(ここで、xは各元素の原子価を満足するのに必要な酸素の原子比である。)
触媒(1)の粒径分布を調べた結果、粒径20〜120μmの割合が98.5質量%、粒径20μm未満の割合が1.5質量%、粒径20〜44μmの割合が35.7質量%であった。
The obtained aqueous slurry was dried using a spray dryer to obtain a spherical dry powder. The obtained dried powder was calcined at 250 ° C. for 2 hours and then at 450 ° C. for 3 hours, and then fluidly calcined at 590 ° C. for 2 hours to obtain catalyst (1).
The composition of the obtained catalyst (1) was calculated from the raw material charge as follows.
Mo 12 Bi 0.5 Fe 2 Ce 0.5 Cr 0.4 Ni 4 Mg 1.5 Co 1 K 0.07 Rb 0.06 O x (SiO 2 ) 42
(Here, x is the atomic ratio of oxygen necessary to satisfy the valence of each element.)
As a result of examining the particle size distribution of the catalyst (1), the ratio of the particle size of 20 to 120 μm is 98.5 mass%, the ratio of the particle diameter of less than 20 μm is 1.5 mass%, and the ratio of the particle diameter of 20 to 44 μm is 35. It was 7 mass%.

また、触媒(1)を篩い分けすることで、粒径20〜120μmの割合が97.3質量%、粒径20μm未満の割合が2.7質量%、かつ粒径20〜44μmの割合が65質量%という粒径分布に調整し、触媒(2)を得た。
触媒(1)2500gを反応器に充填し、アクリロニトリル合成反応を行ったところ、アクリロニトリル収率は82.6%であった。
Further, by sieving the catalyst (1), the ratio of the particle diameter of 20 to 120 μm is 97.3% by mass, the ratio of the particle diameter of less than 20 μm is 2.7 mass%, and the ratio of the particle diameter of 20 to 44 μm is 65 The catalyst (2) was obtained by adjusting the particle size distribution to mass%.
When 2500 g of catalyst (1) was charged into the reactor and acrylonitrile synthesis reaction was carried out, the acrylonitrile yield was 82.6%.

該反応を7日間続けて行った時点で、反応器内から触媒を78.8g抜き出し、これを触媒(2)の調製のときと同様な操作で篩い分けし、粒径44〜120μmの範囲の粒子35.5gを即座に反応器内に戻した。
この操作は結果的には、粒径20〜120μmの割合が97.3質量%、粒径20μm未満の割合が2.7質量%、かつ粒径20〜44μmの割合が65質量%という粒径分布を有する触媒を43.3g反応器外に抜き出したことと同義である。また、7日間でこの量を抜き出したということは、反応器内に存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの0.45質量%に相当する量を反応器外に抜き出したことに相当する。
When the reaction was continued for 7 days, 78.8 g of the catalyst was extracted from the reactor, and this was sieved by the same operation as in the preparation of the catalyst (2), so that the particle size ranged from 44 to 120 μm. 35.5 g of particles were immediately returned to the reactor.
This operation resulted in a particle size of 97.3% by mass with a particle size of 20-120 μm, 2.7% by mass with a particle size of less than 20 μm, and 65% by mass with a particle size of 20-44 μm. This is synonymous with the extraction of the catalyst having a distribution out of the 43.3 g reactor. In addition, the extraction of this amount in 7 days means that the amount of particles in the range of 20 to 44 μm in the catalyst existing in the reactor is 0.45% by mass of the range of particles per day. This corresponds to the extraction of the amount corresponding to.

そして、前記抜き出し操作と合わせて、触媒(2)43.3gを反応器内に補給した。この補給量を1日当たりに換算すると、反応器内に存在する全触媒の0.25質量%に相当する量と見積もられる。
以後、7日経過するごとに上記と同様な触媒抜き出しおよび触媒補給の操作を行いながら、計42日間該反応を連続して行った。
42日目の触媒抜き出しおよび触媒補給を終えた後、分析した結果、アクリロニトリル収率は82.3%であった。
Together with the extraction operation, 43.3 g of catalyst (2) was supplied into the reactor. When this replenishment amount is converted per day, it is estimated that the amount corresponds to 0.25% by mass of the total catalyst present in the reactor.
Thereafter, the reaction was continuously carried out for a total of 42 days while performing the same catalyst extraction and catalyst replenishment operation every 7 days.
As a result of analysis after removing the catalyst and replenishing the catalyst on the 42nd day, the acrylonitrile yield was 82.3%.

[実施例2]
実施例1と同様にして触媒(1)および触媒(2)を得て、実施例1と同様にして反応を開始した。
該反応を14日間続けて行った時点で、反応器内から触媒を157.6g抜き出し、それを触媒(2)の調製のときと同様な操作で篩い分けし、粒径44〜120μmの範囲の粒子71gを即座に反応器内に戻した。
この操作は結果的には、粒径20〜120μmの割合が97.3質量%、粒径20μm未満の割合が2.7質量%、かつ粒径20〜44μmの割合が65質量%という粒径分布を有する触媒を86.6g反応器外に抜き出したことと同義である。また、14日間でこの量を抜き出したということは、反応器内に存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの0.45質量%に相当する量を反応器外に抜き出したことに相当し、その量は実施例1と同じである。
[Example 2]
Catalyst (1) and catalyst (2) were obtained in the same manner as in Example 1, and the reaction was started in the same manner as in Example 1.
When the reaction was continued for 14 days, 157.6 g of the catalyst was withdrawn from the reactor and sieved in the same manner as in the preparation of the catalyst (2), so that the particle size ranged from 44 to 120 μm. 71 g of particles were immediately returned to the reactor.
This operation resulted in a particle size of 97.3% by mass with a particle size of 20-120 μm, 2.7% by mass with a particle size of less than 20 μm, and 65% by mass with a particle size of 20-44 μm. This is synonymous with the extraction of the catalyst having a distribution outside the 86.6 g reactor. In addition, the extraction of this amount in 14 days means that the amount of particles in the range of 20 to 44 μm in the catalyst existing in the reactor is 0.45% by mass of the range of particles per day. This corresponds to the amount extracted from the reactor and is the same as in Example 1.

そして、前記抜き出し操作と合わせて、触媒(2)86.6gを反応器内に補給した。この補給量を1日当たりに換算すると、反応器内に存在する全触媒の0.25質量%に相当する量と見積もられ、これも実施例1と同じである。
以後、14日経過するごとに上記と同様な触媒抜き出しおよび触媒補給の操作を行いながら、計42日間該反応を連続して行った。
42日目の触媒抜き出しおよび触媒補給を終えた後、分析した結果、アクリロニトリル収率は82.1%であった。
Together with the extraction operation, 86.6 g of catalyst (2) was supplied into the reactor. When this replenishment amount is converted per day, it is estimated that it corresponds to 0.25% by mass of the total catalyst present in the reactor, and this is the same as in Example 1.
Thereafter, the reaction was continuously carried out for a total of 42 days while the same catalyst extraction and catalyst replenishment operation as described above was performed every 14 days.
As a result of analysis after removing the catalyst and replenishing the catalyst on the 42nd day, the acrylonitrile yield was 82.1%.

[実施例3]
実施例1と同様にして触媒(1)および触媒(2)を得て、実施例1と同様にして反応を開始した。
該反応を7日間続けて行った時点で、反応器内から触媒を140.1g抜き出し、それを触媒(2)の調製のときと同様な操作で篩い分けし、粒径44〜120μmの範囲の粒子63.1gを即座に反応器内に戻した。
この操作は結果的には、粒径20〜120μmの割合が97.3質量%、粒径20μm未満の割合が2.7質量%、かつ粒径20〜44μmの割合が65質量%という粒径分布を有する触媒を77g反応器外に抜き出したことと同義である。また、7日間でこの量を抜き出したということは、反応器内に存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの0.8質量%に相当する量を反応器外に抜き出したことに相当する。
[Example 3]
Catalyst (1) and catalyst (2) were obtained in the same manner as in Example 1, and the reaction was started in the same manner as in Example 1.
When the reaction was continued for 7 days, 140.1 g of the catalyst was withdrawn from the reactor and sieved by the same operation as in the preparation of the catalyst (2), and the particle size ranged from 44 to 120 μm. 63.1 g of particles were immediately returned to the reactor.
This operation resulted in a particle size of 97.3% by mass with a particle size of 20-120 μm, 2.7% by mass with a particle size of less than 20 μm, and 65% by mass with a particle size of 20-44 μm. This is equivalent to extracting 77 g of the catalyst having a distribution out of the reactor. In addition, the extraction of this amount in 7 days means that 0.8% by mass of the particles in the range per day for the particles in the range of 20 to 44 μm in the catalyst present in the reactor. This corresponds to the extraction of the amount corresponding to.

そして、前記抜き出し操作と合わせて、触媒(2)77gを反応器内に補給した。この補給量を1日当たりに換算すると、反応器内に存在する全触媒の0.44質量%に相当する量と見積もられる。
以後、7日経過するごとに上記と同様な触媒抜き出しおよび触媒補給の操作を行いながら、計42日間該反応を連続して行った。
42日目の触媒抜き出しおよび触媒補給を終えた後、分析した結果、アクリロニトリル収率は82.4%であった。
Together with the extraction operation, 77 g of catalyst (2) was supplied into the reactor. When this replenishment amount is converted per day, it is estimated that the amount corresponds to 0.44% by mass of the total catalyst present in the reactor.
Thereafter, the reaction was continuously carried out for a total of 42 days while performing the same catalyst extraction and catalyst replenishment operation every 7 days.
As a result of analysis after removing the catalyst and replenishing the catalyst on the 42nd day, the yield of acrylonitrile was 82.4%.

[実施例4]
実施例1と同様にして触媒(1)および触媒(2)を得て、実施例1と同様にして反応を開始した。
該反応を7日間続けて行った時点で、反応器内から触媒を26.2g抜き出し、それを触媒(2)の調製のときと同様な操作で篩い分けし、粒径44〜120μmの範囲の粒子11.8gを即座に反応器内に戻した。
この操作は結果的には、粒径20〜120μmの割合が97.3質量%、粒径20μm未満の割合が2.7質量%、かつ粒径20〜44μmの割合が65質量%という粒径分布を有する触媒を14.4g反応器外に抜き出したことと同義である。また、7日間でこの量を抜き出したということは、反応器内に存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの0.15質量%に相当する量を反応器外に抜き出したことに相当する。
[Example 4]
Catalyst (1) and catalyst (2) were obtained in the same manner as in Example 1, and the reaction was started in the same manner as in Example 1.
When the reaction was continued for 7 days, 26.2 g of the catalyst was extracted from the reactor and sieved by the same operation as in the preparation of the catalyst (2), and the particle size was in the range of 44 to 120 μm. 11.8 g of particles were immediately returned to the reactor.
This operation resulted in a particle size of 97.3% by mass with a particle size of 20-120 μm, 2.7% by mass with a particle size of less than 20 μm, and 65% by mass with a particle size of 20-44 μm. This is synonymous with the extraction of the catalyst having a distribution outside the 14.4 g reactor. In addition, the extraction of this amount in 7 days means that 0.15% by mass of the particles in the range per day for the particles in the range of 20 to 44 μm in the catalyst present in the reactor. This corresponds to the extraction of the amount corresponding to.

そして、前記抜き出し操作と合わせて、触媒(2)14.4gを反応器内に補給した。この補給量を1日当たりに換算すると、反応器内に存在する全触媒の0.08質量%に相当する量と見積もられる。
以後、7日経過するごとに上記と同様な触媒抜き出しおよび触媒補給の操作を行いながら、計42日間該反応を連続して行った。
42日目の触媒抜き出しおよび触媒補給を終えた後、分析した結果、アクリロニトリル収率は81.5%であった。
Then, together with the extraction operation, 14.4 g of catalyst (2) was supplied into the reactor. When this replenishment amount is converted per day, it is estimated that the amount corresponds to 0.08% by mass of the total catalyst present in the reactor.
Thereafter, the reaction was continuously carried out for a total of 42 days while performing the same catalyst extraction and catalyst replenishment operation every 7 days.
As a result of analysis after removing the catalyst and replenishing the catalyst on the 42nd day, the acrylonitrile yield was 81.5%.

[比較例1]
実施例1と同様にして触媒(1)および触媒(2)を得て、実施例1と同様にして反応を開始した。
該反応を7日間続けて行った時点で、反応器内から触媒を3.5g抜き出し、それを触媒(2)の調製のときと同様な操作で篩い分けし、粒径44〜120μmの範囲の粒子1.6gを即座に反応器内に戻した。
この操作は結果的には、粒径20〜120μmの割合が97.3質量%、粒径20μm未満の割合が2.7質量%、かつ粒径20〜44μmの割合が65質量%という粒径分布を有する触媒を1.9g反応器外に抜き出したことと同義である。また、7日間でこの量を抜き出したということは、反応器内に存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの0.02質量%に相当する量を反応器外に抜き出したことに相当する。
[Comparative Example 1]
Catalyst (1) and catalyst (2) were obtained in the same manner as in Example 1, and the reaction was started in the same manner as in Example 1.
When the reaction was continued for 7 days, 3.5 g of the catalyst was withdrawn from the reactor and sieved by the same operation as in the preparation of the catalyst (2), so that the particle size ranged from 44 to 120 μm. 1.6 g of particles were immediately returned to the reactor.
This operation resulted in a particle size of 97.3% by mass with a particle size of 20-120 μm, 2.7% by mass with a particle size of less than 20 μm, and 65% by mass with a particle size of 20-44 μm. It is synonymous with extracting 1.9 g of the catalyst having a distribution out of the reactor. In addition, the extraction of this amount in 7 days means that 0.02% by mass of the particles in the range per day for the particles in the range of 20 to 44 μm in the catalyst existing in the reactor. This corresponds to the extraction of the amount corresponding to.

そして、前記抜き出し操作と合わせて、触媒(2)1.9gを反応器内に補給した。この補給量を1日当たりに換算すると、反応器内に存在する全触媒の0.01質量%に相当する量と見積もられる。
以後、7日経過するごとに上記と同様な触媒抜き出しおよび触媒補給の操作を行いながら、計42日間該反応を連続して行った。
42日目の触媒抜き出しおよび触媒補給を終えた後、分析した結果、アクリロニトリル収率は78.9%であった。
Together with the extraction operation, 1.9 g of catalyst (2) was supplied into the reactor. When this replenishment amount is converted per day, it can be estimated as an amount corresponding to 0.01% by mass of the total catalyst present in the reactor.
Thereafter, the reaction was continuously carried out for a total of 42 days while performing the same catalyst extraction and catalyst replenishment operation every 7 days.
As a result of analysis after removing the catalyst and replenishing the catalyst on the 42nd day, the yield of acrylonitrile was 78.9%.

[比較例2]
実施例1と同様にして触媒(1)を得て、実施例1と同様にして反応を開始した。
該反応を7日間続けて行った時点で、反応器内から触媒を43.3g抜き出した。すなわち、粒径20〜120μmの割合が98.5質量%、粒径20μm未満の割合が1.5質量%、かつ粒径20〜44μmの割合が35.7質量%という触媒(1)と同じ粒径分布を有する触媒を43.3g反応器外に抜き出した。また、7日間でこの量を抜き出したということは、反応器内に存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの0.25質量%に相当する量を反応器外に抜き出したことに相当する。
[Comparative Example 2]
The catalyst (1) was obtained in the same manner as in Example 1, and the reaction was started in the same manner as in Example 1.
When the reaction was continued for 7 days, 43.3 g of catalyst was extracted from the reactor. That is, it is the same as the catalyst (1) in which the ratio of the particle diameter of 20 to 120 μm is 98.5 mass%, the ratio of the particle diameter of less than 20 μm is 1.5 mass%, and the ratio of the particle diameter of 20 to 44 μm is 35.7 mass%. A catalyst having a particle size distribution was extracted from the 43.3 g reactor. In addition, when this amount was extracted in 7 days, 0.25% by mass of the particles in the range per day for the particles having a particle size of 20 to 44 μm in the catalyst existing in the reactor. This corresponds to the extraction of the amount corresponding to.

そして、前記抜き出し操作と合わせて、触媒(1)を43.3g反応器内に補給した。この補給量を1日当たりに換算すると、反応器内に存在する全触媒の0.25質量%に相当する量と見積もられる。
以後、7日経過するごとに上記と同様な触媒抜き出しおよび触媒補給の操作を行いながら、計42日間該反応を連続して行った。
42日目の触媒抜き出しおよび触媒補給を終えた後、分析した結果、アクリロニトリル収率は80.2%であった。
Together with the extraction operation, 43.3 g of the catalyst (1) was supplied into the reactor. When this replenishment amount is converted per day, it is estimated that the amount corresponds to 0.25% by mass of the total catalyst present in the reactor.
Thereafter, the reaction was continuously carried out for a total of 42 days while performing the same catalyst extraction and catalyst replenishment operation every 7 days.
As a result of analysis after removing the catalyst and replenishing the catalyst on the 42nd day, the acrylonitrile yield was 80.2%.

[実施例5]
実施例1と同様にして触媒(1)および触媒(2)を得て、実施例1と同様にして反応を開始した。
該反応を42日間続けて行った時点で、反応器内から触媒を472.8g抜き出し、それを触媒(2)の調製のときと同様な操作で篩い分けし、粒径44〜120μmの範囲の粒子213.1gを即座に反応器内に戻した。
この操作は結果的には、粒径20〜120μmの割合が97.3質量%、粒径20μm未満の割合が2.7質量%、かつ粒径20〜44μmの割合が65質量%という粒径分布を有する触媒を259.7g反応器外に抜き出したことと同義である。また、42日間でこの量を抜き出したということは、反応器内のに存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの0.45質量%に相当する量を反応器外に抜き出したことに相当し、その量は実施例1と同じである。
[Example 5]
Catalyst (1) and catalyst (2) were obtained in the same manner as in Example 1, and the reaction was started in the same manner as in Example 1.
When the reaction was continued for 42 days, 472.8 g of the catalyst was withdrawn from the reactor and sieved in the same manner as in the preparation of the catalyst (2), so that the particle size was in the range of 44 to 120 μm. 213.1 g of particles were immediately returned to the reactor.
This operation resulted in a particle size of 97.3% by mass with a particle size of 20-120 μm, 2.7% by mass with a particle size of less than 20 μm, and 65% by mass with a particle size of 20-44 μm. This is the same as extracting 259.7 g of the catalyst having a distribution out of the reactor. In addition, the extraction of this amount in 42 days means that 0.45 mass of particles in the range per day for the particles in the range of 20 to 44 μm in the catalyst present in the reactor. The amount corresponding to% is equivalent to that extracted from the reactor, and the amount is the same as in Example 1.

そして、前記抜き出し操作と合わせて、触媒(2)259.7gを反応器内に補給した。この補給量を1日当たりに換算すると、反応器内に存在する全触媒の0.25質量%に相当する量と見積もられ、これも実施例1と同じである。
42日目の触媒抜き出しおよび触媒補給を終えた後、分析した結果、アクリロニトリル収率は81.3%であった。
Together with the extraction operation, 259.7 g of catalyst (2) was supplied into the reactor. When this replenishment amount is converted per day, it is estimated that it corresponds to 0.25% by mass of the total catalyst present in the reactor, and this is the same as in Example 1.
As a result of analysis after removing the catalyst and replenishing the catalyst on the 42nd day, the yield of acrylonitrile was 81.3%.

[実施例6]
20質量%シリカゾル1915部に85質量%リン酸3.3部を加えた。この液に攪拌下、パラモリブデン酸アンモニウム212.5部を640部の水に溶解したものを加え、50℃に加温した(C液)。
別に、10質量%硝酸105部に硝酸ビスマス105.2部を溶解し、この液に硝酸コバルト126.2部、硝酸セリウム62.8部、硝酸鉄(III)87.6部、硝酸カリウム2.9部および水312部を順次加え、50℃に加温した(D液)。
[Example 6]
To 1915 parts of 20% by mass silica sol, 3.3 parts of 85% by mass phosphoric acid was added. A solution prepared by dissolving 212.5 parts of ammonium paramolybdate in 640 parts of water was added to this liquid with stirring, and the mixture was heated to 50 ° C. (solution C).
Separately, 105.2 parts of bismuth nitrate is dissolved in 105 parts of 10% by weight nitric acid, and 126.2 parts of cobalt nitrate, 62.8 parts of cerium nitrate, 87.6 parts of iron (III) nitrate, 2.9 parts of potassium nitrate are dissolved in this solution. And 312 parts of water were sequentially added and heated to 50 ° C. (solution D).

別に、61質量%硝酸930.5部を水843部と混合し、そこへ電解鉄粉104.7部を少しずつ加え溶解させた。この液に三酸化アンチモン324.4部を加え、100℃で2時間加熱した。次いでこの液にホウ酸10.2部を水194部に溶解したもの、および85質量%リン酸8.9部を加えた。得られた液を乾燥した後、950℃で3時間焼成し、更に粉砕した。得られた粉砕物400部に水600部を加え、ボールミルで16時間粉砕することにより、液状物を得て50℃に加温した(E液)。
攪拌下、C液とD液を混合し、次いでE液831.1部を加え、スラリー状物を得た。
Separately, 930.5 parts of 61% by mass nitric acid was mixed with 843 parts of water, and 104.7 parts of electrolytic iron powder was added little by little to dissolve. To this solution, 324.4 parts of antimony trioxide was added and heated at 100 ° C. for 2 hours. Next, 10.2 parts of boric acid dissolved in 194 parts of water and 8.9 parts of 85% by mass phosphoric acid were added to this solution. The obtained liquid was dried, calcined at 950 ° C. for 3 hours, and further pulverized. 600 parts of water was added to 400 parts of the obtained pulverized product, and pulverized with a ball mill for 16 hours to obtain a liquid product and heated to 50 ° C. (solution E).
C and D were mixed with stirring, and then 831.1 parts of E was added to obtain a slurry.

得られた水性スラリーをスプレー乾燥機を用いて乾燥し、球状の乾燥粉を得た。
得られた乾燥物を、250℃で2時間、次いで400℃で2時間予備焼成した後、530℃で3時間流動焼成炉にて焼成することで触媒(3)を得た。
得られた触媒3の組成は、原料仕込み量から以下のように算出された。
Sb10Mo8.5Fe10Co3Ce1Bi1.50.20.750.55x(SiO245
(ここで、xは他の各成分の原子価を満足するのに必要な酸素の原子比である。)
触媒(3)の粒径分布を調べた結果、粒径20〜120μmの割合が97.9質量%、粒径20μm未満の割合が2.1質量%、粒径20〜44μmの割合が32.5質量%であった。
また、触媒(3)を篩い分けすることで、粒径20〜120μmの割合が97.7質量%、粒径20μm未満の割合が2.3質量%、かつ粒径20〜44μmの割合が56質量%という粒径分布に調整し、触媒(4)を得た。
触媒(3)2500gを反応器に充填し、アクリロニトリル合成反応を行ったところ、アクリロニトリル収率は81.1%であった。
The obtained aqueous slurry was dried using a spray dryer to obtain a spherical dry powder.
The obtained dried product was pre-calcined at 250 ° C. for 2 hours and then at 400 ° C. for 2 hours, and then calcined at 530 ° C. for 3 hours in a fluid calcination furnace to obtain a catalyst (3).
The composition of the obtained catalyst 3 was calculated from the raw material charge as follows.
Sb 10 Mo 8.5 Fe 10 Co 3 Ce 1 Bi 1.5 K 0.2 B 0.75 P 0.55 O x (SiO 2 ) 45
(Here, x is the atomic ratio of oxygen necessary to satisfy the valences of the other components.)
As a result of examining the particle size distribution of the catalyst (3), the ratio of the particle size of 20 to 120 μm was 97.9 mass%, the ratio of the particle diameter of less than 20 μm was 2.1 mass%, and the ratio of the particle diameter of 20 to 44 μm was 32. It was 5 mass%.
Further, by sieving the catalyst (3), the ratio of the particle diameter of 20 to 120 μm is 97.7 mass%, the ratio of the particle diameter of less than 20 μm is 2.3 mass%, and the ratio of the particle diameter of 20 to 44 μm is 56. The catalyst (4) was obtained by adjusting the particle size distribution to mass%.
When 2500 g of catalyst (3) was charged into the reactor and acrylonitrile synthesis reaction was carried out, the acrylonitrile yield was 81.1%.

反応器に内蔵されたサイクロンに対して下部から上方向に空気流を吹き込むことでサイクロンの捕集効率を低減させた状態で、該反応を35日間継続して行った。また、サイクロンの捕集効率を低減させたことにより反応ガスに同伴されて反応器外に飛散してくる触媒についてはすべてフィルターにより採取した。
反応継続中、毎日、触媒(4)を2.6g反応器内に補給した。この補給量を1日当たりに換算すると、反応器内に存在する全触媒の0.10質量%に相当する量と見積もられる。
The reaction was continued for 35 days in a state where the cyclone collection efficiency was reduced by blowing an air flow upward from the bottom to the cyclone built in the reactor. In addition, all the catalysts that were entrained by the reaction gas and scattered outside the reactor due to the reduced cyclone collection efficiency were collected by a filter.
During the course of the reaction, 2.6 g of catalyst (4) was replenished into the reactor every day. When this replenishment amount is converted per day, it is estimated that the amount corresponds to 0.10% by mass of the total catalyst present in the reactor.

反応を35日間続けて行った時点で、その35日間で反応器外に飛散した触媒の総量は91gであり、その粒径分布は、粒径20〜120μmの割合が69質量%、粒径20μm未満の割合が31質量%、かつ粒径20〜44μmの割合が68質量%であった。
この方法は、結果的には、粒径20〜120μmの割合が69質量%、粒径20μm未満の割合が31質量%、かつ粒径20〜44μmの割合が68質量%という粒径分布を有する触媒91gを35日間かけて連続的に反応器外に抜き出したことと同義である。また、35日間でこの量を抜き出したということは、反応器内に存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの0.22質量%に相当する量を連続的に反応器外に抜き出したことに相当する。
35日目の触媒補給を終えた後、分析した結果、アクリロニトリル収率は80.5%であった。
When the reaction was continued for 35 days, the total amount of catalyst scattered out of the reactor in the 35 days was 91 g, and the particle size distribution was 69% by mass with a particle size of 20 to 120 μm and a particle size of 20 μm. The ratio of less than 31% by mass and the ratio of the particle size of 20 to 44 μm was 68% by mass.
As a result, this method has a particle size distribution in which the proportion of the particle size of 20 to 120 μm is 69 mass%, the proportion of the particle size of less than 20 μm is 31 mass%, and the proportion of the particle size of 20 to 44 μm is 68 mass%. This is synonymous with the fact that 91 g of catalyst was continuously withdrawn from the reactor over 35 days. In addition, the extraction of this amount in 35 days means that the amount of particles in the range of 20 to 44 μm in the catalyst existing in the reactor is 0.22% by mass of the range of particles per day. This corresponds to the continuous extraction of the amount corresponding to.
As a result of analysis after the replenishment of the catalyst on the 35th day, the acrylonitrile yield was 80.5%.

[比較例3]
実施例6と同様にして触媒(3)を得て、サイクロン捕集効率を低減させることなく、その他は実施例6と同様にして反応を開始した。
反応継続中、毎日、反応器内から触媒2.6gを抜き出すとともに、触媒(3)を2.6g反応器内に補給した。
すなわち、毎日、粒径20〜120μmの割合が97.9質量%、粒径20μm未満の割合が2.1質量%、かつ粒径20〜44μmの割合が32.5質量%という触媒(3)と同じ粒径分布を有する触媒を2.6g反応器外に抜き出したこととなり、これは反応器内に存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの0.10質量%に相当する量を反応器外に抜き出したことに相当する。
[Comparative Example 3]
The catalyst (3) was obtained in the same manner as in Example 6, and the reaction was started in the same manner as in Example 6 without reducing the cyclone collection efficiency.
While the reaction was continued, 2.6 g of catalyst was withdrawn from the reactor every day and 2.6 g of catalyst (3) was replenished into the reactor.
That is, the catalyst having a particle size of 20 to 120 μm every day, 97.9% by mass, a particle size of less than 20 μm of 2.1% by mass, and a particle size of 20 to 44 μm of 32.5% by mass (3) The catalyst having the same particle size distribution as 2.6 g was extracted out of the reactor, and this was within the range of 20 to 44 μm in the catalyst existing in the reactor per day. This corresponds to the extraction of an amount corresponding to 0.10% by mass of the particles out of the reactor.

また、前記触媒補給量を1日当たりに換算すると、反応器内に存在する全触媒の0.10質量%に相当する量と見積もられる。
このようにして、触媒抜き出しおよび触媒補給の操作を行いながら、計35日間該反応を連続して行った。
35日目の触媒補給を終えた後、分析した結果、アクリロニトリル収率は77.9%であった。
Further, when the catalyst replenishment amount is converted per day, it can be estimated as an amount corresponding to 0.10% by mass of the total catalyst present in the reactor.
In this way, the reaction was continuously performed for a total of 35 days while performing the operation of removing the catalyst and supplying the catalyst.
As a result of analysis after the replenishment of the catalyst on the 35th day, the acrylonitrile yield was 77.9%.

[比較例4]
実施例6と同様にして触媒(3)を得て、比較例3と同様にして反応を開始した。
反応継続中、毎日、反応器内から触媒42.5gを抜き出すとともに、触媒(3)を42.5g反応器内に補給した。
すなわち、毎日、粒径20〜120μmの割合が97.9質量%、粒径20μm未満の割合が2.1質量%、かつ粒径20〜44μmの割合が32.5質量%という触媒(3)と同じ粒径分布を有する触媒を42.5g反応器外に抜き出したこととなり、これは反応器内に存在する触媒の中で粒径20〜44μmの範囲の粒子について、1日当たり、その範囲の粒子のうちの1.7質量%に相当する量を反応器外に抜き出したことに相当する。
[Comparative Example 4]
A catalyst (3) was obtained in the same manner as in Example 6, and the reaction was started in the same manner as in Comparative Example 3.
While the reaction was continued, 42.5 g of catalyst was withdrawn from the reactor every day and 42.5 g of catalyst (3) was replenished into the reactor.
That is, the catalyst having a particle size of 20 to 120 μm every day, 97.9% by mass, a particle size of less than 20 μm of 2.1% by mass, and a particle size of 20 to 44 μm of 32.5% by mass (3) 42.5 g of the catalyst having the same particle size distribution was extracted out of the reactor, and this was within the range of 20 to 44 μm of the particles existing in the reactor per day. This corresponds to the extraction of an amount corresponding to 1.7% by mass of the particles out of the reactor.

また、前記触媒補給量を1日当たりに換算すると、反応器内に存在する全触媒の1.7質量%に相当する量と見積もられる。
このようにして、触媒抜き出しおよび触媒補給の操作を行いながら、計35日間該反応を連続して行った。
35日目の触媒補給を終えた後、分析した結果、アクリロニトリル収率は80.5%であった。
この結果は、実施例6と同等であるが、実施例6に比べ非常に多量の補給触媒を要しており、経済的には著しく不利な方法と言える。
Further, when the catalyst replenishment amount is converted per day, it can be estimated as an amount corresponding to 1.7% by mass of the total catalyst present in the reactor.
In this way, the reaction was continuously performed for a total of 35 days while performing the operation of removing the catalyst and supplying the catalyst.
As a result of analysis after the replenishment of the catalyst on the 35th day, the acrylonitrile yield was 80.5%.
Although this result is equivalent to Example 6, it requires a very large amount of replenishment catalyst as compared with Example 6, and can be said to be a significantly disadvantageous method economically.

このように本発明によるアクリロニトリルの製造方法であれば、長期間に渡り、また、経済的に有利に高いアクリロニトリル収率を持続することができ、その工業的価値は高い。   As described above, according to the method for producing acrylonitrile according to the present invention, a high acrylonitrile yield can be sustained over a long period of time and economically advantageously, and its industrial value is high.

アクリロニトリルの製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the manufacturing apparatus of acrylonitrile. 原料ガススパージャーノズル孔の一例を示す断面図である。It is sectional drawing which shows an example of a source gas sparger nozzle hole. サイクロンの一例を示す斜視図である。It is a perspective view which shows an example of a cyclone.

符号の説明Explanation of symbols

1 流動層(粒子状触媒)
2 反応器
3 原料ガススパージャー
4 サイクロン
5 原料ガススパージャーノズル孔
6 原料ガス
7 ディップレッグ
8 排出管
1 Fluidized bed (particulate catalyst)
2 Reactor 3 Raw material gas sparger 4 Cyclone 5 Raw material gas sparger nozzle hole 6 Raw material gas 7 Dipreg 8 Discharge pipe

Claims (7)

粒子状触媒が収納された流動床反応器にて、プロピレンと、分子状酸素およびアンモニアとを反応させてアクリロニトリルを製造する方法において、
前記粒子状触媒として、粒径20〜120μmの範囲の粒子の割合が85質量%以上であり、粒径20μm未満の粒子の割合が5質量%以下であり、かつ粒径20〜44μmの範囲の粒子の割合が25〜40質量%であるものを用い、
反応継続中は、反応器内の粒子状触媒から、粒径20〜44μmの範囲の粒子を、1日当たり、反応器内のすべての粒径20〜44μmの粒子のうちの0.05〜1質量%に相当する量を反応器外へ抜き出し、かつ
粒径20〜120μmの範囲の粒子の割合が85質量%以上であり、粒径20μm未満の粒子の割合が5質量%以下であり、かつ粒径20〜44μmの範囲の粒子の割合が41〜80質量%である粒子状触媒を、1日当たり、反応器内のすべての粒子状触媒の0.03〜1質量%に相当する量を反応器外から反応器内に補給することを特徴とするアクリロニトリルの製造方法。
In a method for producing acrylonitrile by reacting propylene, molecular oxygen and ammonia in a fluidized bed reactor containing a particulate catalyst,
As the particulate catalyst, the proportion of particles having a particle size of 20 to 120 μm is 85% by mass or more, the proportion of particles having a particle size of less than 20 μm is 5% by mass or less, and the particle size is in the range of 20 to 44 μm. Using a particle ratio of 25-40% by mass,
During the reaction, from the particulate catalyst in the reactor, particles having a particle size in the range of 20 to 44 μm are added to 0.05 to 1 mass of all particles having a particle size of 20 to 44 μm in the reactor per day. %, The proportion of particles having a particle size in the range of 20 to 120 μm is 85% by mass or more, the proportion of particles having a particle size of less than 20 μm is 5% by mass or less, and A particulate catalyst having a particle ratio of 41 to 80% by mass in the range of 20 to 44 μm in diameter is equivalent to 0.03 to 1% by mass of all the particulate catalysts in the reactor per day. A method for producing acrylonitrile, wherein the reactor is replenished from outside.
反応器内からの粒径20〜44μmの範囲の粒子の抜き出しを連続的に行うことを特徴とする請求項1記載のアクリロニトリルの製造方法。   2. The method for producing acrylonitrile according to claim 1, wherein particles having a particle diameter of 20 to 44 [mu] m are continuously extracted from the reactor. 反応器内からの粒径20〜44μmの範囲の粒子の抜き出しを1〜30日に1回の頻度で行うことを特徴とする請求項1記載のアクリロニトリルの製造方法。   2. The method for producing acrylonitrile according to claim 1, wherein particles having a particle size in the range of 20 to 44 [mu] m are extracted from the reactor at a frequency of once every 1 to 30 days. 反応器外から反応器内への粒子状触媒の補給を連続的に行うことを特徴とする請求項1記載のアクリロニトリルの製造方法。   2. The process for producing acrylonitrile according to claim 1, wherein the particulate catalyst is continuously supplied from the outside of the reactor into the reactor. 反応器外から反応器内への粒子状触媒の補給を1〜30日に1回の頻度で行うことを特徴とする請求項1記載のアクリロニトリルの製造方法。   The method for producing acrylonitrile according to claim 1, wherein the particulate catalyst is replenished from outside the reactor into the reactor at a frequency of once every 1 to 30 days. 前記粒子状触媒として、下記一般式(1)で表される組成を有するものを用いることを特徴とする請求項1ないし5いずれか一項に記載のアクリロニトリルの製造方法。
一般式(1):
Sba Febcdef (SiO2g
(式中、Sb、FeおよびOはそれぞれアンチモン、鉄および酸素を表し、Cはコバルト、ニッケル、マンガン、ウラン、セリウム、スズおよび銅からなる群より選ばれた少なくとも1種の元素を表し、Dはモリブデン、バナジウムおよびタングステンからなる群より選ばれた少なくとも1種の元素を表し、Eはマグネシウム、カルシウム、ストロンチウム、バリウム、ランタン、チタン、ジルコニウム、ニオブ、タンタル、クロム、レニウム、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銀、亜鉛、カドミウム、ホウ素、アルミニウム、ガリウム、インジウム、ナトリウム、カリウム、ルビジウム、セシウム、タリウム、ゲルマニウム、鉛、リン、ヒ素、ビスマス、セレンおよびテルルからなる群より選ばれた少なくとも1種の元素を表し、SiO2 はシリカを表し、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=10のとき、1≦b≦20、1≦c≦20、0≦d≦20、0≦e≦20、10≦g≦200であり、fは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
The method for producing acrylonitrile according to any one of claims 1 to 5, wherein a catalyst having a composition represented by the following general formula (1) is used as the particulate catalyst.
General formula (1):
Sb a Fe b C c D d E e O f (SiO 2) g
(Wherein Sb, Fe and O represent antimony, iron and oxygen, respectively, C represents at least one element selected from the group consisting of cobalt, nickel, manganese, uranium, cerium, tin and copper; D Represents at least one element selected from the group consisting of molybdenum, vanadium and tungsten, and E represents magnesium, calcium, strontium, barium, lanthanum, titanium, zirconium, niobium, tantalum, chromium, rhenium, ruthenium, osmium, rhodium Selected from the group consisting of iridium, palladium, platinum, silver, zinc, cadmium, boron, aluminum, gallium, indium, sodium, potassium, rubidium, cesium, thallium, germanium, lead, phosphorus, arsenic, bismuth, selenium and tellurium Small Represents Kutomo one element, SiO 2 represents silica, denotes a, b, c, d, e, f and g are atomic ratios of respective elements, and when a = 10, 1 ≦ b ≦ 20, (1 ≦ c ≦ 20, 0 ≦ d ≦ 20, 0 ≦ e ≦ 20, 10 ≦ g ≦ 200, and f is an atomic ratio of oxygen necessary to satisfy the valence of each component.)
前記粒子状触媒として、下記一般式(2)で表される組成を有するものを用いることを特徴とする請求項1ないし5いずれか一項に記載のアクリロニトリルの製造方法。
一般式(2):
Moh Bii Fejklm (SiO2n
(式中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Fはナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Gはコバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、タングステン、銀、アルミニウム、リン、ホウ素、スズ、鉛、ガリウム、ゲルマニウム、ヒ素、アンチモン、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ホルミウム、エルビウム、ツリウムおよびイッテルビウムからなる群より選ばれた少なくとも1種の元素を表し、SiO2 はシリカを表し、h、i、j、k、l、mおよびnは各元素の原子比を表し、h=12のとき、0.1≦i≦5、0.1≦j≦10、0.01≦k≦3、0≦l≦20、10≦n≦200であり、mは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
The method for producing acrylonitrile according to any one of claims 1 to 5, wherein a catalyst having a composition represented by the following general formula (2) is used as the particulate catalyst.
General formula (2):
Mo h B i Fe j F k G l O m (SiO 2 ) n
(Wherein Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, F represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium; Is cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, tungsten, silver, aluminum, phosphorus, boron, tin, lead, gallium, germanium, arsenic, antimony, niobium, tantalum At least one selected from the group consisting of zirconium, indium, sulfur, selenium, tellurium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, holmium, erbium, thulium and ytterbium Represent elements, SiO 2 represents silica, represents h, i, j, k, l, m and n are the atomic ratios of respective elements, and when h = 12, 0.1 ≦ i ≦ 5,0. 1 ≦ j ≦ 10, 0.01 ≦ k ≦ 3, 0 ≦ l ≦ 20, 10 ≦ n ≦ 200, and m is an atomic ratio of oxygen necessary to satisfy the valence of each component. )
JP2004002912A 2004-01-08 2004-01-08 Method for producing acrylonitrile Expired - Lifetime JP4444673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002912A JP4444673B2 (en) 2004-01-08 2004-01-08 Method for producing acrylonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002912A JP4444673B2 (en) 2004-01-08 2004-01-08 Method for producing acrylonitrile

Publications (2)

Publication Number Publication Date
JP2005194234A true JP2005194234A (en) 2005-07-21
JP4444673B2 JP4444673B2 (en) 2010-03-31

Family

ID=34817967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002912A Expired - Lifetime JP4444673B2 (en) 2004-01-08 2004-01-08 Method for producing acrylonitrile

Country Status (1)

Country Link
JP (1) JP4444673B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143140A1 (en) * 2019-01-10 2020-07-16 清华大学 Separation system for slurry bed reactor
JP2020200274A (en) * 2019-06-11 2020-12-17 旭化成株式会社 Method for producing acrylonitrile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143140A1 (en) * 2019-01-10 2020-07-16 清华大学 Separation system for slurry bed reactor
JP2020200274A (en) * 2019-06-11 2020-12-17 旭化成株式会社 Method for producing acrylonitrile

Also Published As

Publication number Publication date
JP4444673B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US7132384B2 (en) Process for producing composite oxide catalyst
JP4030740B2 (en) Method for producing ammoxidation catalyst
KR101431293B1 (en) Fluidized-bed catalyst for the production of acrylonitrile and process for the production of acrylonitrile
JP4242197B2 (en) Catalyst for acrylonitrile synthesis
TWI454312B (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
KR20160032037A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP4098185B2 (en) Catalyst for synthesizing acrylonitrile, method for producing the same, and method for producing acrylonitrile
JP5210834B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP2009285581A (en) Ammoxidation catalyst for fluidized-beds and manufacturing method of acrylonitrile or methacrylonitrile using it
EP2098288A1 (en) Catalyst for producing acrylonitrile and process for producing acrlyonitrile
JP4588533B2 (en) Catalyst for acrylonitrile synthesis
JP5011178B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
KR101524392B1 (en) Method for producing unsaturated nitrile
JP4503444B2 (en) Catalyst for producing acrylonitrile and method for producing acrylonitrile
JP5210835B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP4444673B2 (en) Method for producing acrylonitrile
WO2019008924A1 (en) Method for producing unsaturated nitrile
JP4823950B2 (en) Method for producing catalyst for acrylonitrile production
JP4989857B2 (en) Method for refilling molded body
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP5011177B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP4606897B2 (en) Method for producing composite oxide catalyst for fluidized bed ammoxidation process
WO2018225854A1 (en) Method for producing unsaturated nitrile
JP2005162707A (en) Method for improving selectivity of ammoxidation and method for producing unsaturated nitrile using the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

R150 Certificate of patent or registration of utility model

Ref document number: 4444673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term