JP2005194114A - Dielectric porcelain composition for electronic device - Google Patents

Dielectric porcelain composition for electronic device Download PDF

Info

Publication number
JP2005194114A
JP2005194114A JP2003435694A JP2003435694A JP2005194114A JP 2005194114 A JP2005194114 A JP 2005194114A JP 2003435694 A JP2003435694 A JP 2003435694A JP 2003435694 A JP2003435694 A JP 2003435694A JP 2005194114 A JP2005194114 A JP 2005194114A
Authority
JP
Japan
Prior art keywords
oxide
solid solution
dielectric
value
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003435694A
Other languages
Japanese (ja)
Other versions
JP4678569B2 (en
Inventor
Takeshi Shimada
武司 島田
Kazuhiro Kura
和寛 倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2003435694A priority Critical patent/JP4678569B2/en
Publication of JP2005194114A publication Critical patent/JP2005194114A/en
Application granted granted Critical
Publication of JP4678569B2 publication Critical patent/JP4678569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric porcelain composition for electronic devices which has a high Qf<SB>0</SB>value in the vicinity of a relative dielectric constant εr of 39 and has such dielectric characteristics that the temperature coefficient τf of resonance frequency is small and has a value controllable in the positive and negative directions in a wide range. <P>SOLUTION: In a La-Pr-Al-Ga-Sr-Ti oxide dielectric porcelain, the content of each element is squeezed into a specified range and a part of Sr is substituted by Ca. Thereby, a dielectric porcelain composition of which the main phase is a (1-x)(La<SB>1-y</SB>Ln<SB>y</SB>)(Al<SB>1-z</SB>Ga<SB>z</SB>)O<SB>3</SB>-x(Sr<SB>1-m</SB>Ca<SB>m</SB>)TiO<SB>3</SB>solid solution and in which an Al-Ga-Sr oxide solid solution and/or an Al-Ga oxide solid solution and an Sr oxide have precipitated at the grain boundary, is yielded, achieving the purpose. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、誘電体共振器、誘電体フィルタ、移相器等に用いられるマイクロ波・ミリ波用電子デバイスに最適な特性を有する誘電体磁器組成物に関し、粒界にAl-Ga-Sr系酸化物の固溶体、及び/又は、Al-Ga系酸化物の固溶体とSr酸化物が存在する新規な電子デバイス用誘電体磁器組成物に関する。   The present invention relates to a dielectric porcelain composition having optimum characteristics for microwave / millimeter wave electronic devices used in dielectric resonators, dielectric filters, phase shifters, etc., and Al-Ga-Sr system at grain boundaries. The present invention relates to a novel dielectric ceramic composition for electronic devices in which a solid solution of an oxide and / or a solid solution of an Al-Ga oxide and an Sr oxide are present.

誘電体磁器組成物は、マイクロ波及びミリ波等の高周波領域を対象とする電子デバイスにおいて広く利用される。これらの用途に要求される特性としては、(1)誘電体中では波長が1/εr1/2に短縮されるので、小型化の要求に対して比誘電率εrが大きいこと、(2)高周波での誘電損失が小さいこと、すなわち高Qf値であること、(3)共振周波数の温度係数τfが小さく安定していることである。また、温度係数τfについては、所定の範囲で制御可能であることも重要である。 Dielectric ceramic compositions are widely used in electronic devices intended for high frequency regions such as microwaves and millimeter waves. The characteristics required for these applications are as follows: (1) In the dielectric, the wavelength is shortened to 1 / εr 1/2 , so the relative permittivity εr is large for the demand for miniaturization, (2) The dielectric loss at high frequency is small, that is, the Qf value is high, and (3) the temperature coefficient τf of the resonance frequency is small and stable. It is also important that the temperature coefficient τf can be controlled within a predetermined range.

従来、このような高周波用誘電体磁器組成物としては、例えば、La-Ti-Al-O系(非特許文献1)が知られているが、その特性は、εr=36、Qf0値=45,000GHz、τf=-2ppm/℃であり、Qf0値が低い。
Japan, J.appl,phys,Vol.36(1997)6814
Conventionally, as such a high-frequency dielectric ceramic composition, for example, La-Ti-Al-O system (Non-Patent Document 1) is known, the characteristics are εr = 36, Qf 0 value = 45,000 GHz, τf = -2 ppm / ° C, and Qf 0 value is low.
Japan, J.appl, phys, Vol.36 (1997) 6814

また、Ba(Zn1/3Nb2/3)O3系(非特許文献2)では、εr=41、Qf0値=86,000GHz、τf=+31ppm/℃の特性が得られているが、τfの小さい誘電体磁器組成物は得られていない。
エレクトロニク・セラミクス1993年9月号3頁
In addition, in the Ba (Zn 1/3 Nb 2/3 ) O 3 system (non-patent document 2), εr = 41, Qf 0 value = 86,000 GHz, τf = + 31 ppm / ° C., A dielectric ceramic composition having a small τf has not been obtained.
Electronic Ceramics September 1993, page 3

近年、高い誘電率とQf値を有する材料として、Ln-Al-Ca-Ti系酸化物誘電体磁器(特許文献1)、La-Al-Sr-Ti系酸化物誘電体磁器(特許文献2)が提案されている。これらの材料は、比誘電率εrが30〜48でQf0値が20,000〜75,000(1GHzにおける値)の優れた特性を有しているものの、τfの小さい誘電体磁器組成物は得られていない。
特許2625074号公報 特開平11-130528号公報
In recent years, Ln-Al-Ca-Ti-based oxide dielectric ceramics (Patent Document 1), La-Al-Sr-Ti-based oxide dielectric ceramics (Patent Document 2) as materials having a high dielectric constant and Qf value Has been proposed. Although these materials have excellent characteristics such as a relative dielectric constant εr of 30 to 48 and a Qf 0 value of 20,000 to 75,000 (value at 1 GHz), a dielectric ceramic composition having a small τf has not been obtained. .
Japanese Patent No. 2625074 Japanese Patent Laid-Open No. 11-130528

また、Ln-Al-Ca-Sr-Ba-Ti系酸化物誘電体磁器において、結晶相としてα-Al2O3を含むことにより、Qf値を向上させることが提案されている(特許文献3)。この材料は、Qf値が30,000以上の優れた特性を有しているものの、τfが正または負に比較的大きな値となっている。
特開平11-106255号公報
In addition, in the Ln-Al-Ca-Sr-Ba-Ti-based oxide dielectric ceramic, it has been proposed to improve the Qf value by including α-Al 2 O 3 as a crystal phase (Patent Document 3). ). This material has excellent characteristics such as a Qf value of 30,000 or more, but τf is a relatively large value, positive or negative.
Japanese Patent Laid-Open No. 11-106255

これらの材料は、比誘電率εrとQf値についての向上は図られているものの、τfの特性については十分とは言えず、さらに、τfを制御するという発想もなされていない。   Although these materials have improved relative permittivity εr and Qf values, the characteristics of τf are not sufficient, and the idea of controlling τf is not made.

先に、出願人は、εr=35〜45、Qf0値=50,000GHz以上、τf=0±10ppm/℃の誘電特性を有するマイクロ波用誘電体磁器組成物を提案した(特許文献4)。この組成物は、La-Al-Sr-Ti系酸化物において、特定量のGaを添加することによりQf0値を向上させ、更に特定量のPrを添加することにより、τf値を0±10ppm/℃にすることができる。
WO 02/36519 A1公報
The applicant previously proposed a dielectric ceramic composition for microwaves having dielectric properties of εr = 35 to 45, Qf 0 value = 50,000 GHz or more, and τf = 0 ± 10 ppm / ° C. (Patent Document 4). This composition improves the Qf 0 value by adding a specific amount of Ga in the La-Al-Sr-Ti-based oxide, and further increases the τf value by adding a specific amount of Pr to 0 ± 10 ppm. / ° C.
WO 02/36519 A1 Gazette

本願出願人による上述の提案によれば、先述した誘電体磁器組成物に要求される特性(1)〜(3)をほぼ満足することが可能であるが、温度係数τfを所定の範囲で制御することが困難であり、特に、正の方向での制御ができないという問題があった。   According to the above-mentioned proposal by the applicant of the present application, it is possible to substantially satisfy the characteristics (1) to (3) required for the dielectric ceramic composition described above, but the temperature coefficient τf is controlled within a predetermined range. In particular, there is a problem that control in the positive direction is not possible.

この発明は、比誘電率εrが39近傍において高いQf0値を有し、共振周波数の温度係数τfが小さく、かつその値を正負の方向の広い範囲でコントロールすることが可能な誘電特性を有する電子デバイス用誘電体磁器組成物の提供を目的としている。 This invention has a high Qf 0 value when the relative dielectric constant εr is in the vicinity of 39, the temperature coefficient τf of the resonance frequency is small, and has a dielectric characteristic capable of controlling the value in a wide range in the positive and negative directions. The object is to provide a dielectric ceramic composition for electronic devices.

発明者らは、La-Al-Sr-Ti系酸化物において、共振周波数の温度係数τfが小さく、かつその値を正負の方向の広い範囲で制御可能な構成からなる誘電体磁器組成物を目的に、鋭意検討した結果、La-Pr-Al-Ga-Sr-Ti系酸化物誘電体磁器において、それぞれの元素の含有量を特定範囲に絞り込むとともに、Srの一部をCaで置換することによって、(1-x)(La1-yLny)(Al1-zGaz)O3-x(Sr1-mCam)TiO3固溶体を主相とし、その粒界にAl-Ga-Sr系酸化物の固溶体、及び/又は、Al-Ga系酸化物の固溶体とSr酸化物が析出した組織となり、比誘電率εrが39近傍において、
Qf0値が57,000以上の高特性を有し、かつ共振周波数の温度係数τfを、
-8ppm/℃〜6ppm/℃の範囲でコントロールすることができることを知見し、この発明を完成した。
The inventors have aimed for a dielectric ceramic composition having a structure in which the temperature coefficient τf of the resonance frequency is small and its value can be controlled in a wide range in the positive and negative directions in La-Al-Sr-Ti-based oxides. In addition, as a result of intensive studies, in the La-Pr-Al-Ga-Sr-Ti-based oxide dielectric porcelain, the content of each element is narrowed down to a specific range, and a part of Sr is replaced by Ca. , Al-Ga- in (1-x) (La 1 -y Ln y) (Al 1-z Ga z) a O 3 -x (Sr 1-m Ca m) TiO 3 solid solution as a main phase, the grain boundary Sr-based oxide solid solution and / or Al-Ga-based oxide solid solution and Sr oxide precipitated structure, relative permittivity εr near 39,
Qf 0 value has a high characteristic of 57,000 or more, and the temperature coefficient τf of the resonance frequency,
The present invention was completed by discovering that it can be controlled in the range of -8 ppm / ° C to 6 ppm / ° C.

すなわち、この発明は、(1-x)(La1-yLny)(Al1-zGaz)O3-x(Sr1-mCam)TiO3固溶体(但し、LnはPr、Ndの少なくとも一種、x、y、z、mが下記値を満足する)を主相とし、粒界にAl-Ga-Sr系酸化物の固溶体、またはAl-Ga系酸化物の固溶体とSr酸化物、あるいはAl-Ga-Sr系酸化物の固溶体及びAl-Ga系酸化物の固溶体とSr酸化物が存在することを特徴とする電子デバイス用誘電体磁器組成物である。
0.5≦x≦0.6、0<y≦0.2、0<z≦0.05、0<m≦0.3
That is, the present invention is, (1-x) (La 1-y Ln y) (Al 1-z Ga z) O 3 -x (Sr 1-m Ca m) TiO 3 solid solution (where, Ln is Pr, Nd At least one of x, y, z, and m satisfy the following values), and a solid solution of an Al-Ga-Sr oxide or a solid solution of an Al-Ga oxide and an Sr oxide at the grain boundary. Or a dielectric ceramic composition for an electronic device, characterized by the presence of a solid solution of Al-Ga-Sr-based oxide and a solid solution of Al-Ga-based oxide and Sr oxide.
0.5 ≦ x ≦ 0.6, 0 <y ≦ 0.2, 0 <z ≦ 0.05, 0 <m ≦ 0.3

また、この発明は、上記構成において、粒界にα-Al2O3が実質的に存在しないことを特徴とする電子デバイス用誘電体磁器組成物である。 The present invention also provides the dielectric ceramic composition for an electronic device, characterized in that α-Al 2 O 3 does not substantially exist at the grain boundary in the above configuration.

この発明によれば、電子デバイス用誘電体磁器として、比誘電率εrが39近傍で、Qf0値が57,000以上であり、かつ共振周波数の温度係数τfを-8ppm/℃〜6ppm/℃の範囲でコントロールすることができる。 According to the present invention, as a dielectric ceramic for an electronic device, the relative dielectric constant εr is in the vicinity of 39, the Qf 0 value is 57,000 or more, and the temperature coefficient τf of the resonance frequency is in the range of −8 ppm / ° C. to 6 ppm / ° C. Can be controlled.

この発明によれば、La-Ln-Al-Ga-Sr-Ti系酸化物誘電体磁器において、Srの一部をCaで置換することにより、温度係数τfをコントロールすることができるとともに、仮焼時の反応性が向上し、従来のLa-Al-Sr-Ti系酸化物誘電体磁器では困難であった1200℃〜1300℃の温度で仮焼することが可能となる。   According to the present invention, in the La-Ln-Al-Ga-Sr-Ti-based oxide dielectric ceramic, the temperature coefficient τf can be controlled by replacing part of Sr with Ca, and calcining is performed. The reactivity at the time is improved, and calcination can be performed at a temperature of 1200 ° C. to 1300 ° C., which has been difficult with conventional La—Al—Sr—Ti oxide dielectric ceramics.

この発明による誘電体磁器組成物は、(1-x)(La1-yLny)(Al1-zGaz)O3-x(Sr1-mCam)TiO3固溶体を主相とし、粒界に特定の酸化物固溶体、すなわちAl-Ga-Sr系酸化物の固溶体、及び/又は、Al-Ga系酸化物の固溶体とSr酸化物が存在することを特徴とする。 The dielectric ceramic composition according to the invention, (1-x) (La 1-y Ln y) (Al 1-z Ga z) a O 3 -x (Sr 1-m Ca m) TiO 3 solid solution as a main phase In addition, a specific oxide solid solution, that is, a solid solution of an Al—Ga—Sr-based oxide and / or a solid solution of an Al—Ga-based oxide and an Sr oxide exist in the grain boundary.

この発明において、(1-x)(La1-yLny)(Al1-zGaz)O3-x(Sr1-mCam)TiO3固溶体の成分、Ln、x、y、z、m限定理由は、次のとおりである。Lnは、Pr、Ndの少なくとも一種、あるいは二種である。LnはPrを用いることにより正の方向へτfを移動させることができ、Ndを用いることによって負の方向へτfを移動させることができる。 In the present invention, (1-x) (La 1-y Ln y) (Al 1-z Ga z) O 3 -x (Sr 1-m Ca m) components of TiO 3 solid solution, Ln, x, y, z The reasons for limiting m are as follows. Ln is at least one or two of Pr and Nd. Ln can move τf in the positive direction by using Pr, and τf can be moved in the negative direction by using Nd.

xは、(La1-yLny)(Al1-zGaz)O3の成分範囲を(1-x)、(Sr1-mCam)TiO3の成分範囲を(x)で示し、0.5≦x≦0.6が好ましい範囲である。xが0.5未満では比誘電率εrが低下し、0.6を超えると比誘電率εrが増加し、Qf0値が低下し57,000未満となり好ましくない。 x is indicated by (La 1-y Ln y) (Al 1-z Ga z) a component range of O 3 (1-x), the component range of (Sr 1-m Ca m) TiO 3 (x) 0.5 ≦ x ≦ 0.6 is a preferable range. When x is less than 0.5, the relative dielectric constant εr decreases, and when it exceeds 0.6, the relative dielectric constant εr increases, and the Qf 0 value decreases to less than 57,000.

yは、LaとLnの成分範囲を示し、0<y≦0.2が好ましい範囲である。yが0.2を超えるとQf0値が低下するとともに、τfが大きくなるため好ましくない。 y represents the component range of La and Ln, and 0 <y ≦ 0.2 is a preferable range. If y exceeds 0.2, the Qf 0 value decreases and τf increases, which is not preferable.

zは、AlとGaの成分範囲を示し、0<z≦0.05が好ましい範囲である。zが0.05を超えると、Qf0値が低下するため好ましくない。特にこの発明におけるGaは、非常に重要な元素であり、Gaが存在することによって、上記Lnの置換効果及び下記Caの置換効果を得ることができる。すなわち、Gaが存在しない成分系で、Srの一部をCaに添加しても、Qf0値は低く、τfの制御も行うことができない。 z represents the component range of Al and Ga, and 0 <z ≦ 0.05 is a preferable range. If z exceeds 0.05, the Qf 0 value decreases, which is not preferable. In particular, Ga in the present invention is a very important element, and the presence of Ga makes it possible to obtain the above Ln substitution effect and the following Ca substitution effect. That is, even if a part of Sr is added to Ca in a component system in which Ga does not exist, the Qf 0 value is low and τf cannot be controlled.

mは、SrとCaの成分範囲を示し、0<m≦0.3が好ましい範囲である。mが0.3を超えるとτfが大きくなり過ぎるため好ましくない。Srの一部をCaで置換することにより、温度係数τfをコントロールすることができるとともに、仮焼時の反応性を向上させることができ、従来、La-Al-Sr-Ti系酸化物誘電体磁器では困難であった1200℃〜1300℃の温度で仮焼することが可能となる。   m represents a component range of Sr and Ca, and 0 <m ≦ 0.3 is a preferable range. If m exceeds 0.3, τf becomes too large. By replacing part of Sr with Ca, the temperature coefficient τf can be controlled and the reactivity during calcination can be improved. Conventionally, La-Al-Sr-Ti oxide dielectrics It is possible to calcine at a temperature of 1200 ° C to 1300 ° C, which was difficult with porcelain.

この発明においては、各元素を上記の成分範囲に限定することにより、(1-x)(La1-yLny)(Al1-zGaz)O3-x(Sr1-mCam)TiO3固溶体を主相とし、その粒界に、
(1)Al-Ga-Sr系酸化物の固溶体、
(2)Al-Ga系酸化物の固溶体とSr酸化物、
(3)Al-Ga-Sr系酸化物の固溶体及びAl-Ga系酸化物の固溶体とSr酸化物、
のいずれかが析出し、存在する。
In the present invention, by the respective elements to limit the component range of the, (1-x) (La 1-y Ln y) (Al 1-z Ga z) O 3 -x (Sr 1-m Ca m ) TiO 3 solid solution as the main phase, at its grain boundary,
(1) Al-Ga-Sr oxide solid solution,
(2) Al-Ga oxide solid solution and Sr oxide,
(3) Al-Ga-Sr oxide solid solution and Al-Ga oxide solid solution and Sr oxide,
Either of which is deposited and present.

上記粒界の存在は、誘電体磁器組成物の焼結体のEPMA分析によって確認することができる。しかしながら、Sr酸化物については、全てが主相に含有されていないことは確認できるものの、粒界にAl-Ga-Sr系酸化物の固溶体として存在するのか、Al-Ga系酸化物の固溶体とSr酸化物として存在するのかの区別をつけ難いため、上記(1)〜(3)を限定する。   The presence of the grain boundary can be confirmed by EPMA analysis of the sintered body of the dielectric ceramic composition. However, although it can be confirmed that all of the Sr oxide is not contained in the main phase, whether it exists as a solid solution of the Al-Ga-Sr oxide at the grain boundary or the solid solution of the Al-Ga oxide. Since it is difficult to distinguish whether it exists as Sr oxide, the above (1) to (3) are limited.

この発明の誘電体磁器組成物は、後述の実施例によって立証するごとく、少なくともAlはGaと酸化物の固溶体を形成し、粒界に存在することは明確である。従って、本磁器組成物にはAlはα-Al2O3として存在することはなく、構成上、α-Al2O3は実質的に存在しないことを特徴とする。 In the dielectric ceramic composition of the present invention, it is clear that at least Al forms a solid solution of Ga and oxide and exists at the grain boundary, as will be demonstrated by the examples described later. Therefore, Al is not present as α-Al 2 O 3 in the present porcelain composition, and α-Al 2 O 3 is substantially absent from the constitution.

この発明の誘電体磁器組成物の製造方法は、原料粉の配合、湿式又は乾式混合、乾燥、仮焼、湿式又は乾式粉砕、乾燥、造粒、成形、焼結の各工程並びに各装置を適宜選定する公知の方法による焼結体を得ることで容易に製造できる。   The method for producing a dielectric ceramic composition according to the present invention includes mixing of raw material powder, wet or dry mixing, drying, calcining, wet or dry grinding, drying, granulation, molding, sintering, and each device as appropriate. It can manufacture easily by obtaining the sintered compact by the well-known method to select.

実施例1
出発原料として、La2O3、Nd2O3、Pr6O11、Al2O3、Ga2O3、SrCO3、CaCO3、TiO2の高純度粉末を準備した。各粉末を表1の如く配合し、純水中で混合した後乾燥し、平均粒径0.7〜1.4μmの混合粉を得た。
Example 1
As starting materials, high-purity powders of La 2 O 3 , Nd 2 O 3 , Pr 6 O 11 , Al 2 O 3 , Ga 2 O 3 , SrCO 3 , CaCO 3 , and TiO 2 were prepared. Each powder was blended as shown in Table 1, mixed in pure water and dried to obtain a mixed powder having an average particle size of 0.7 to 1.4 μm.

次いで、該混合粉を組成に応じて1100℃〜1300℃で2〜6時間仮焼した。得られた仮焼粉を湿式粉砕によって0.6〜1.5μmに粉砕した後、粉砕粉を乾燥させた。さらに、乾燥粉にPVAを添加し、混合した後、造粒装置によって造粒した。   Next, the mixed powder was calcined at 1100 ° C. to 1300 ° C. for 2 to 6 hours depending on the composition. The obtained calcined powder was pulverized to 0.6 to 1.5 μm by wet pulverization, and then the pulverized powder was dried. Further, PVA was added to the dried powder, mixed, and granulated by a granulator.

得られた造粒粉を一軸プレス装置により、成形密度2〜4g/cm3に成形した。得られた成形体を300℃〜700℃で脱バインダー後、酸素濃度50〜100%の雰囲気中において、1500℃〜1800℃で10〜50時間焼結し、焼結体を得た。 The obtained granulated powder was molded to a molding density of 2 to 4 g / cm 3 with a uniaxial press machine. The obtained molded body was debindered at 300 ° C. to 700 ° C. and then sintered at 1500 ° C. to 1800 ° C. for 10 to 50 hours in an atmosphere having an oxygen concentration of 50 to 100% to obtain a sintered body.

得られた焼結体をφ10mm×4〜9mmに加工して試験片を得た。得られた試験片をネットワークアナライザを用い、H&C法によって比誘電率、Qf値、τf値を測定した。測定結果を表1に示す。   The obtained sintered body was processed into φ10 mm × 4 to 9 mm to obtain a test piece. The obtained test piece was measured for relative permittivity, Qf value, and τf value by H & C method using a network analyzer. Table 1 shows the measurement results.

試験片No.1〜43がこの発明による実施例、No.44〜56は比較例である。No.44はxが実施例No.1と同様で、y(Ln)、z(Ga)、m(Ca)を含まない場合、No.45〜49は実施例No.1〜5組成においてz(Ga)を含まない場合、No.50は実施例No.1組成においてm(Ca)を含まない場合、No.51、52は実施例No.1組成においてxが範囲外である場合、No.53は実施例No.1組成においてy(Ln)を含まない場合、xが範囲外である場合、No.54は実施例No.1組成においてy(Ln)が範囲外である場合、No.55は実施例No.1組成においてz(Ga)が範囲外である場合、No.55は実施例No.1組成においてm(Ca)が範囲外である場合を示す比較例である。   Test pieces Nos. 1 to 43 are examples according to the present invention, and Nos. 44 to 56 are comparative examples. No. 44 is the same as in Example No. 1, and when y (Ln), z (Ga), m (Ca) is not included, No. 45-49 is z in Example No. 1-5 composition. When (Ga) is not included, No. 50 is when Example No. 1 composition does not contain m (Ca), No. 51 and 52 are when Example No. 1 composition is x out of range, No. .53 does not include y (Ln) in the composition of Example No. 1, when x is out of range, No. 54 does not contain y (Ln) in the composition of Example No. 1, .55 is a comparative example showing a case where z (Ga) is out of range in the composition of Example No. 1, and No. 55 is a comparative example showing a case where m (Ca) is out of range in the composition of Example No. 1.

表1から明らかなように、この発明による試験片は、比誘電率39近傍におけるQf値が57,000〜88,000であり、また、τf値は-8ppm/℃〜6ppm/℃の範囲であって、組成を選択することにより、τfを上記範囲内で制御することができることが明らかである。   As apparent from Table 1, the test piece according to the present invention had a Qf value in the vicinity of a relative dielectric constant of 39, 57,000 to 88,000, and a τf value in the range of -8 ppm / ° C. to 6 ppm / ° C. It is apparent that τf can be controlled within the above range by selecting.

実施例2
実施例1における試験片No.1のEPMA分析の結果を図1、その模式図を図2〜図6に示す。図1上段左はBEI(組成像、図2に模式図を示す)、上段中央はAlの特性X線像(図3に模式図を示す)、上段右はGaの特性X線像(図4に模式図を示す)、中段左はTiの特性X線像(図5に模式図を示す)、中段中央はLaの特性X線像(図6に模式図を示す)、中段右はSrの特性X線像、下段左はCaの特性X線像である。
Example 2
The results of EPMA analysis of test piece No. 1 in Example 1 are shown in FIG. 1, and schematic diagrams thereof are shown in FIGS. The upper left of Fig. 1 is BEI (composition image, schematic diagram is shown in Fig. 2), the upper middle is the characteristic X-ray image of Al (schematic diagram is shown in Fig. 3), the upper right is the characteristic X-ray image of Ga (Fig. 4). The middle left is a characteristic X-ray image of Ti (schematic diagram is shown in FIG. 5), the middle middle is a characteristic X-ray image of La (schematic diagram in FIG. 6), the middle right is Sr Characteristic X-ray image, lower left is a characteristic X-ray image of Ca.

図1上段左の組成像において、白く見える部分(図2の模式図の地部分全体で細黒線で囲まれる部分)が主相であり、グレーの部分(同模式図の太黒線及び太黒線で囲まれる部分)が粒界である。Al及びGaの特性X線像では、組成像における粒界部分と同じ部分(図3,図4の模式図の線枠内)が白くなっている。これは、粒界にAl及びGaが存在していることを示している。逆に、Ti及びLaの特性X線像では、組成像における粒界部分と同じ部分(図5,図6の模式図の線枠内)が黒くなっている。これは、粒界にTi及びLaが存在しないことを示す。   In the composition image on the left in the upper part of FIG. 1, the part that appears white (the part surrounded by a thin black line in the entire ground part of the schematic diagram in FIG. 2) is the main phase, and the gray part (the black line and thick line in the schematic diagram). The part surrounded by the black line) is the grain boundary. In the characteristic X-ray images of Al and Ga, the same part as the grain boundary part in the composition image (in the schematic frame in FIGS. 3 and 4) is white. This indicates that Al and Ga exist at the grain boundaries. On the contrary, in the characteristic X-ray images of Ti and La, the same part as the grain boundary part in the composition image (within the line frame in the schematic diagrams of FIGS. 5 and 6) is black. This indicates that Ti and La are not present at the grain boundaries.

Sr酸化物については、このEPMAによる特性X線像では、粒界に存在する化学形が明確ではない。しかし、EPMAによる定量組成分析により、一部のSrが粒界に含有されていることを確認している。   As for Sr oxide, the chemical form existing at the grain boundary is not clear in the characteristic X-ray image by EPMA. However, a quantitative composition analysis by EPMA confirms that some Sr is contained in the grain boundaries.

従って、粒界には、(1)Al-Ga-Sr系酸化物の固溶体、(2)Al-Ga系酸化物の固溶体とSr酸化物、(3)Al-Ga-Sr系酸化物の固溶体及びAl-Ga系酸化物の固溶体とSr酸化物、のいずれかの形態でAl,Ga,Srが存在していると判断できる。   Therefore, the grain boundaries include (1) a solid solution of Al-Ga-Sr oxide, (2) a solid solution of Al-Ga oxide and Sr oxide, and (3) a solid solution of Al-Ga-Sr oxide. In addition, it can be determined that Al, Ga, and Sr are present in any form of a solid solution of an Al—Ga-based oxide and an Sr oxide.

実施例3
Caの置換量を種々変化させた各試験片のX線回折結果を図7に示す。図7において、最も上に位置するX線回折パターンがm=0の場合(試験片No.43)、その下がm=0.05の場合(試験片No.1)、その下がm=0.10の場合(試験片No.2)。その下がm=0.20の場合(試験片No.4)、そして最も下に位置するのがm=0.30の場合(試験片No.6)である。それぞれの試験片は1300℃で4時間仮焼されたものである。
Example 3
FIG. 7 shows the X-ray diffraction results of the test pieces with various substitution amounts of Ca. In FIG. 7, when the X-ray diffraction pattern located at the top is m = 0 (test piece No. 43), below it is m = 0.05 (test piece No. 1), below it is m = 0.10. Case (test piece No. 2). Below that is m = 0.20 (test piece No. 4), and the lowest position is when m = 0.30 (test piece No. 6). Each specimen was calcined at 1300 ° C for 4 hours.

図7から明らかなように、上のパターンから下のパターンに行くに従い、回折ピークがシャープになっていることが分かる。これは、Caの置換量の増加に伴って、仮焼時の反応性が向上していること示す。すなわち、Srの一部をCaで置換することによって、仮焼時の反応性を向上させることができ、従来、La-Al-Sr-Ti系酸化物誘電体磁器では困難であった1200℃〜1300℃の温度で仮焼することが可能となる。
As is clear from FIG. 7, it can be seen that the diffraction peak becomes sharper from the upper pattern to the lower pattern. This indicates that the reactivity during calcination is improved with an increase in the amount of Ca substitution. That is, by replacing a part of Sr with Ca, the reactivity at the time of calcination can be improved. Conventionally, it has been difficult with a La-Al-Sr-Ti-based oxide dielectric ceramic, starting from 1200 ° C It is possible to calcine at a temperature of 1300 ° C.

Figure 2005194114
Figure 2005194114

この発明によると、比誘電率εrが39近傍において、Qf0値が57,000以上であり、かつ共振周波数の温度係数τfを-8ppm/℃〜6ppm/℃の範囲でコントロール可能であるという優れた誘電特性を有する電子デバイス用誘電体磁器組成物が得られ、近年、携帯端末電子機器に要求される、小型化、高性能化に対応できる。 According to this invention, the dielectric constant εr is near 39, the Qf 0 value is 57,000 or more, and the temperature coefficient τf of the resonance frequency can be controlled in the range of −8 ppm / ° C. to 6 ppm / ° C. A dielectric ceramic composition for electronic devices having characteristics can be obtained, and it can cope with the downsizing and high performance required for portable terminal electronic devices in recent years.

この発明の電子デバイス用誘電体磁器組成物のEPMA分析結果を示す組成像と特性X線像の図である。It is a figure of the composition image and characteristic X-ray image which show the EPMA analysis result of the dielectric material ceramic composition for electronic devices of this invention. 図1のBEI(組成像)を示す模式図である。FIG. 2 is a schematic diagram showing BEI (composition image) of FIG. 図1のAlの特性X線像を示す模式図である。FIG. 2 is a schematic diagram showing a characteristic X-ray image of Al in FIG. 図1のGaの特性X線像を示す模式図である。FIG. 2 is a schematic diagram showing a characteristic X-ray image of Ga in FIG. 図1のTiの特性X線像を示す模式図である。FIG. 2 is a schematic diagram showing a characteristic X-ray image of Ti in FIG. 図1のLaの特性X線像を示す模式図である。FIG. 2 is a schematic diagram showing a characteristic X-ray image of La in FIG. この発明の電子デバイス用誘電体磁器組成物のX線回折結果を示すグラフである。It is a graph which shows the X-ray-diffraction result of the dielectric material ceramic composition for electronic devices of this invention.

Claims (2)

(1-x)(La1-yLny)(Al1-zGaz)O3-x(Sr1-mCam)TiO3固溶体(但し、LnはPr、Ndの一種又は二種、x、y、z、mが下記値を満足する)を主相とし、粒界にAl-Ga-Sr系酸化物の固溶体、またはAl-Ga系酸化物の固溶体とSr酸化物、あるいはAl-Ga-Sr系酸化物の固溶体及びAl-Ga系酸化物の固溶体とSr酸化物が存在する電子デバイス用誘電体磁器組成物。
0.5≦x≦0.6、0<y≦0.2、0<z≦0.05、0<m≦0.3
(1-x) (La 1 -y Ln y) (Al 1-z Ga z) O 3 -x (Sr 1-m Ca m) TiO 3 solid solution (where, Ln is Pr, Nd of one or two, x, y, z, and m satisfy the following values) as the main phase, and a solid solution of Al-Ga-Sr oxide or a solid solution of Al-Ga oxide and Sr oxide or Al- A dielectric ceramic composition for electronic devices in which a solid solution of Ga-Sr-based oxide and a solid solution of Al-Ga-based oxide and Sr oxide are present.
0.5 ≦ x ≦ 0.6, 0 <y ≦ 0.2, 0 <z ≦ 0.05, 0 <m ≦ 0.3
前記粒界にα-Al2O3 が実質的に存在しない請求項1に記載の電子デバイス用誘電体磁器組成物。 2. The dielectric ceramic composition for an electronic device according to claim 1, wherein α-Al 2 O 3 is not substantially present at the grain boundary.
JP2003435694A 2003-12-26 2003-12-26 Dielectric ceramic composition for electronic devices Expired - Fee Related JP4678569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435694A JP4678569B2 (en) 2003-12-26 2003-12-26 Dielectric ceramic composition for electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435694A JP4678569B2 (en) 2003-12-26 2003-12-26 Dielectric ceramic composition for electronic devices

Publications (2)

Publication Number Publication Date
JP2005194114A true JP2005194114A (en) 2005-07-21
JP4678569B2 JP4678569B2 (en) 2011-04-27

Family

ID=34815684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435694A Expired - Fee Related JP4678569B2 (en) 2003-12-26 2003-12-26 Dielectric ceramic composition for electronic devices

Country Status (1)

Country Link
JP (1) JP4678569B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137153A1 (en) * 2005-06-24 2006-12-28 Hitachi Metals, Ltd. Dielectric ceramic composition for electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278927A (en) * 1998-01-14 1999-10-12 Kyocera Corp Dielectric porcelain composition, production of dielectric porcelain and dielectric resonator
JP2003034573A (en) * 2000-11-20 2003-02-07 Kyocera Corp Dielectric ceramic and dielectric resonator using the same
JP2004256360A (en) * 2003-02-26 2004-09-16 Nippon Tungsten Co Ltd Microwave dielectric porcelain composition and its manufacturing method
JP2005514298A (en) * 2000-10-30 2005-05-19 株式会社Neomax Dielectric porcelain composition for microwave

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278927A (en) * 1998-01-14 1999-10-12 Kyocera Corp Dielectric porcelain composition, production of dielectric porcelain and dielectric resonator
JP2005514298A (en) * 2000-10-30 2005-05-19 株式会社Neomax Dielectric porcelain composition for microwave
JP2003034573A (en) * 2000-11-20 2003-02-07 Kyocera Corp Dielectric ceramic and dielectric resonator using the same
JP2004256360A (en) * 2003-02-26 2004-09-16 Nippon Tungsten Co Ltd Microwave dielectric porcelain composition and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137153A1 (en) * 2005-06-24 2006-12-28 Hitachi Metals, Ltd. Dielectric ceramic composition for electronic device
US7648935B2 (en) 2005-06-24 2010-01-19 Hitachi Metals, Ltd. Dielectric porcelain composition for use in electronic devices
KR101118425B1 (en) 2005-06-24 2012-03-06 히타치 긴조쿠 가부시키가이샤 Dielectric ceramic composition for electronic device

Also Published As

Publication number Publication date
JP4678569B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP2009084109A (en) Dielectric porcelain composition
JP2000007429A (en) Dielectric material and its production
JPH11106255A (en) Dielectric ceramic composition and its production
JP4465663B2 (en) Dielectric porcelain composition
JP4678569B2 (en) Dielectric ceramic composition for electronic devices
WO1996008019A1 (en) Dielectric procelain composition and its manufacture
US7648935B2 (en) Dielectric porcelain composition for use in electronic devices
JP2006265062A (en) Dielectric ceramic composition
JP4505795B2 (en) Method for producing dielectric ceramic composition for electronic device
JP4507169B2 (en) Dielectric ceramic composition for electronic devices
US7910509B2 (en) Dielectric porcelain composition for use in electronic devices
JP5187997B2 (en) Dielectric porcelain, method of manufacturing the same, and dielectric resonator using the same
JPH10324566A (en) Dielectric ceramic composition, its production and dielectric resonator and dielectric filter using that
JP4721091B2 (en) Dielectric ceramic composition for electronic devices
JP3830342B2 (en) Dielectric porcelain and dielectric resonator using the same
JP4383951B2 (en) High frequency dielectric ceramic composition and method for producing the same
JP2007063076A (en) Dielectric ceramic composition
JP2737395B2 (en) Dielectric porcelain composition
JPH0971464A (en) Dielectric porcelain composition
JPH087651A (en) Dielectric composition for high frequency
JP2005298230A (en) Ceramic porcelain composition, its manufacturing method and manufacturing method of ceramic sintered compact
JP2007063077A (en) Method of manufacturing dielectric ceramic composition
JPH08337468A (en) Dielectric porcelain composition
WO2007017950A1 (en) Dielectric ceramic composition for electronic device
KR20080026553A (en) Dielectric ceramic composition for electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070606

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees