JP2005192038A - Heat insulation waveguide - Google Patents

Heat insulation waveguide Download PDF

Info

Publication number
JP2005192038A
JP2005192038A JP2003432734A JP2003432734A JP2005192038A JP 2005192038 A JP2005192038 A JP 2005192038A JP 2003432734 A JP2003432734 A JP 2003432734A JP 2003432734 A JP2003432734 A JP 2003432734A JP 2005192038 A JP2005192038 A JP 2005192038A
Authority
JP
Japan
Prior art keywords
waveguide
plate
dielectric plate
heat insulating
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003432734A
Other languages
Japanese (ja)
Inventor
Tomokazu Yamagishi
智和 山岸
Katsuo Tsuchiya
克夫 土屋
Hisato Ito
久人 伊藤
Toshio Maki
敏夫 槇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPC Electronics Corp
Original Assignee
SPC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPC Electronics Corp filed Critical SPC Electronics Corp
Priority to JP2003432734A priority Critical patent/JP2005192038A/en
Publication of JP2005192038A publication Critical patent/JP2005192038A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a small heat insulation waveguide with satisfactory insulation performance, short length in the transmitting direction and the weight of which is reduced. <P>SOLUTION: A radio wave through hole 14 is opened in the board thickness direction of a dielectric board 13. A metal layer 16 is supported on an internal surface of the radio wave through hole 14 of the dielectric board 13 and all the surfaces of both board surfaces of the dielectric board 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロ波やミリ波の導波管回路において、断熱を目的として使用される断熱導波管に関するものである。   The present invention relates to a heat insulating waveguide used for heat insulation in a microwave or millimeter wave waveguide circuit.

レーダー等の高電力マイクロ波を給電する導波管回路において、該マイクロ波は損失のある回路を通過する際に熱に変換されるので、熱的に制限を受ける回路が近接して配置される時は、発熱する回路に対する「冷却」と、熱が近接回路に悪影響を与えないための「断熱」が必要不可欠な技術となっている。   In a waveguide circuit that feeds high-power microwaves such as radar, the microwaves are converted into heat when passing through a lossy circuit, so the circuits that are thermally limited are placed close together At times, “cooling” for heat-generating circuits and “heat insulation” to prevent heat from adversely affecting adjacent circuits are indispensable technologies.

例えば、図16乃至図18は従来の導波管回路の構成を示したもので、図16は従来の導波管回路の回路図、図17は従来の導波管回路の斜視図、図18は従来の接続導波管として用いた断熱導波管の斜視図である。   For example, FIGS. 16 to 18 show the configuration of a conventional waveguide circuit, FIG. 16 is a circuit diagram of the conventional waveguide circuit, FIG. 17 is a perspective view of the conventional waveguide circuit, and FIG. These are the perspective views of the heat insulation waveguide used as the conventional connection waveguide.

この導波管回路においては、図16に示すように、両端の端子1,2の間に導波管形マイクロ波増幅器3と導波管サーキュレータ4が接続導波管5を介して縦続接続されている。この場合には、導波管サーキュレータ4の損失と端子2からの反射に起因して導波管サーキュレータ4のダミーロード6に消費されるマイクロ波の発熱が、導波管形マイクロ波増幅器3に伝達されて熱雑音の増大や利得変動さらには寿命劣化などを引き起こすので、通常、発熱する回路(この場合には、導波管サーキュレータ4とダミーロード6)に対し、水冷や空冷などの強制冷却機構を設けていた。   In this waveguide circuit, as shown in FIG. 16, a waveguide type microwave amplifier 3 and a waveguide circulator 4 are connected in cascade via a connection waveguide 5 between terminals 1 and 2 at both ends. ing. In this case, the heat generated by the microwaves consumed by the dummy load 6 of the waveguide circulator 4 due to the loss of the waveguide circulator 4 and the reflection from the terminal 2 is generated in the waveguide microwave amplifier 3. Since this is transmitted to cause an increase in thermal noise, gain fluctuations, and life deterioration, for example, forced cooling such as water cooling or air cooling is usually applied to a circuit that generates heat (in this case, the waveguide circulator 4 and the dummy load 6). A mechanism was provided.

しかしながら、強制冷却機構を設けると、水の配管や冷却ファンの取り付け等、装置が大掛りになるだけでなく、コスト的にも不利となる問題点があった。   However, when the forced cooling mechanism is provided, there is a problem that not only the apparatus becomes large, such as the installation of a water pipe and a cooling fan, but also disadvantageous in terms of cost.

そこで、図17に示すように、発熱回路と近接回路とを熱的に遮断する目的で、接続導波管5として断熱効果のある材質を使った断熱導波管5Aを用いることが提案されている。断熱導波管5Aは、伝送方向の長さがLとなっている。この断熱導波管5Aの片側には、方形の電波通過孔7の長辺がAで、短辺がBの導波管形マイクロ波増幅器3が接続されている。断熱導波管5Aの反対側には、導波管サーキュレータ4が接続されている。   Therefore, as shown in FIG. 17, it has been proposed to use a heat insulating waveguide 5A made of a material having a heat insulating effect as the connection waveguide 5 for the purpose of thermally blocking the heat generating circuit and the adjacent circuit. Yes. The heat insulating waveguide 5A has a length L in the transmission direction. On one side of the heat insulating waveguide 5A, a waveguide type microwave amplifier 3 having a rectangular radio wave passage hole 7 having a long side A and a short side B is connected. A waveguide circulator 4 is connected to the opposite side of the heat insulating waveguide 5A.

このような断熱導波管5Aの効果について説明する。ここでは、説明を簡単にする目的で、図16の端子2からの反射波はなしとしている。導波管サーキュレータ4は、その高周波損失に起因して発熱するが、この熱は熱伝導率の低いステンレス鋼で作られた断熱導波管5Aを介して導波管形マイクロ波増幅器3に伝達される。  The effect of such a heat insulating waveguide 5A will be described. Here, in order to simplify the description, the reflected wave from the terminal 2 in FIG. The waveguide circulator 4 generates heat due to its high-frequency loss, but this heat is transmitted to the waveguide-type microwave amplifier 3 via the heat insulating waveguide 5A made of stainless steel having low thermal conductivity. Is done.

実例として、図18を用いて3GHz帯のステンレス鋼で作られた断熱導波管5Aの効果を説明する。この断熱導波管5Aの電波通過孔8の長辺Aは96mm、短辺Bは27mm、導波管の外形寸法は長辺Xが130mm、短辺Yが60mm、長さLが70mmで、ステンレス鋼の熱伝導率を27〔W/(m・K)〕、伝熱量を100Wとすると、この断熱導波管5Aにより50Kの温度差を付けることができる。即ち、断熱導波管5Aの導波管サーキュレータ4側端面温度が80℃の時、該断熱導波管5Aの導波管形マイクロ波増幅器3側端面の温度を30℃に抑えることができる。   As an example, the effect of the heat insulating waveguide 5A made of 3 GHz stainless steel will be described with reference to FIG. The long side A of the radio wave passage hole 8 of the heat insulating waveguide 5A is 96 mm, the short side B is 27 mm, and the external dimensions of the waveguide are the long side X is 130 mm, the short side Y is 60 mm, and the length L is 70 mm. When the thermal conductivity of stainless steel is 27 [W / (m · K)] and the heat transfer amount is 100 W, a temperature difference of 50 K can be provided by the heat insulating waveguide 5A. That is, when the temperature of the end surface of the heat insulating waveguide 5A on the waveguide circulator 4 side is 80 ° C., the temperature of the end surface of the heat insulating waveguide 5A on the side of the waveguide type microwave amplifier 3 can be suppressed to 30 ° C.

このように、断熱導波管5Aを使うことで熱的効果は得られるものの、この断熱導波管5Aを構成するステンレス鋼等は加工が困難で、コスト高になるうえ、大型で重くなる等の問題点を有している。   As described above, although the thermal effect can be obtained by using the heat insulating waveguide 5A, the stainless steel or the like constituting the heat insulating waveguide 5A is difficult to process, is costly, and is large and heavy. Have the following problems.

以上説明したように、従来技術における断熱導波管5Aは熱伝導率の低い金属を材料として製作されるため、以下の問題点があった。   As described above, the heat insulating waveguide 5A according to the conventional technique has the following problems because it is made of a metal having low thermal conductivity.

(イ)熱伝導率の低い金属として、その入手性から一般的に鉄系が選ばれるが、加工性が悪くコスト高になる。 (A) As a metal having low thermal conductivity, an iron-based material is generally selected from its availability, but the workability is poor and the cost is high.

(ロ)熱伝導率の低い金属は、一般的に比重が大きく重くなる。 (B) A metal having low thermal conductivity generally has a large specific gravity and is heavy.

(ハ)熱伝導率の低い金属を使っても、十分な断熱効果を得るためには断熱導波管5Aの長さを十分に長くする必要があり、大型化が避けられない。 (C) Even if a metal having low thermal conductivity is used, in order to obtain a sufficient heat insulating effect, it is necessary to sufficiently lengthen the heat insulating waveguide 5A, and an increase in size is inevitable.

(ニ)断熱導波管5Aを利用してインピーダンス整合を行う場合、該断熱導波管5Aに整合素子として 金属ポストや金属アイリスなどを仕込む必要があるが、このような加工は困難なので一般的には行っていない。 (D) When impedance matching is performed using the heat insulating waveguide 5A, it is necessary to prepare a metal post or metal iris as a matching element in the heat insulating waveguide 5A. Not going to.

かかる問題点を解決する断熱導波管5Aとして、図19に示す構造のものが提案されている(特許文献1参照。)。  As a heat insulating waveguide 5A for solving such problems, a structure shown in FIG. 19 has been proposed (see Patent Document 1).

この断熱導波管5Aは、プラスチックやセラミックス等の誘電体管9の内面に金属層10が支持され、誘電体管9の端部のフランジ部11の端面にも金属層10に連続させて金属層12を設けた構造になっている。  In this heat insulating waveguide 5A, a metal layer 10 is supported on the inner surface of a dielectric tube 9 such as plastic or ceramics, and the end surface of the flange portion 11 at the end of the dielectric tube 9 is also connected to the metal layer 10 to be metal. The layer 12 is provided.

このような誘電体管9を用いた断熱導波管5Aによれば、熱伝導率の低い金属を使用した断熱導波管5Aに比べて断熱性能が著しく良くなる利点がある。
特開昭59−74704号公報(第2図)
The heat insulating waveguide 5A using such a dielectric tube 9 has an advantage that the heat insulating performance is remarkably improved as compared with the heat insulating waveguide 5A using a metal having low thermal conductivity.
JP 59-74704 (FIG. 2)

しかしながら、誘電体管9を用いた断熱導波管5Aも、伝送方向の長さが長くなり、大型化し、設置面積を広く必要とし、且つ重量も重くなる問題点があった。   However, the heat insulating waveguide 5A using the dielectric tube 9 also has a problem in that the length in the transmission direction is increased, the size is increased, a large installation area is required, and the weight is increased.

本発明の目的は、断熱性能が良く、しかも伝送方向の長さが短く、軽量化した小型の断熱導波管を提供することにある。   An object of the present invention is to provide a small heat-insulating waveguide that has good heat insulating performance, is short in the transmission direction, and is lightweight.

上記の目的を達成する本発明の構成を示すと、次の通りである。   The configuration of the present invention that achieves the above object is as follows.

本発明の断熱導波管は、誘電体板の板厚方向に電波通過孔があけられ、該電波通過孔の内面及び誘電体板の両板面の全面または電波通過孔につながる一部の両板面に金属層が支持されていることを特徴とする。   In the heat insulating waveguide of the present invention, a radio wave passage hole is formed in the thickness direction of the dielectric plate, and both of the inner surface of the radio wave passage hole and the entire surface of both plates of the dielectric plate or a part of the radio wave passage hole are connected. A metal layer is supported on the plate surface.

この場合、電波通過孔の寸法は、接続される導波管の口径よりも小さくすることができる。   In this case, the size of the radio wave passage hole can be made smaller than the diameter of the waveguide to be connected.

また本発明の断熱導波管は、誘電体板の板厚方向に電波通過孔があけられ、該誘電体板の両板面の全面または電波通過孔につながる一部の両板面に金属層が支持され、誘電体板には電波通過孔の内壁に沿った周囲の部分に所定間隔で多数のスルーホールが板厚方向に設けられ、各スルーホール内の導体で誘電体板の両板面の金属層は電位を等しくするように電気的に接続されていることを特徴とする。   The heat insulating waveguide of the present invention has a radio wave passage hole in the thickness direction of the dielectric plate, and a metal layer on the entire plate surface of the dielectric plate or a part of both plate surfaces connected to the radio wave passage hole. The dielectric plate is provided with a plurality of through holes in the thickness direction at predetermined intervals in the peripheral portion along the inner wall of the radio wave passage hole, and both plate surfaces of the dielectric plate are formed by conductors in each through hole. The metal layers are electrically connected so as to have the same potential.

さらに本発明の断熱導波管は、誘電体板の両板面の相対応する空所部を除いた周囲の部分に金属層が支持され、誘電体板には空所部の周囲の部分に所定間隔で多数のスルーホールが板厚方向に設けられ、各スルーホール内の導体で誘電体板の両板面の金属層は電位を等しくするように電気的に接続されていることを特徴とする。   Furthermore, in the heat insulating waveguide according to the present invention, the metal layer is supported on the peripheral portion of the dielectric plate excluding the corresponding void portions on both plate surfaces, and the dielectric plate is provided on the peripheral portion of the void portion. A large number of through holes are provided in the plate thickness direction at predetermined intervals, and the metal layers on both surfaces of the dielectric plate are electrically connected by conductors in each through hole so as to equalize the potential. To do.

この場合、空所部内の誘電体板の板面には、該誘電体板の板面の金属層につながってインピーダンス整合用金属パターンが突設されていることが好ましい。   In this case, it is preferable that an impedance matching metal pattern is provided on the plate surface of the dielectric plate in the void portion so as to be connected to the metal layer on the plate surface of the dielectric plate.

また、各断熱導波管の金属層は、使用周波数帯の高周波電流の浸透厚さに対し5倍以上の厚さを有していることが好ましい。   Moreover, it is preferable that the metal layer of each heat insulation waveguide has the thickness of 5 times or more with respect to the penetration thickness of the high frequency current of a use frequency band.

以上説明したように本発明の断熱導波管は、誘電体板を用いて、その板厚方向に電波通過孔をあけ、該電波通過孔の内面及び誘電体板の両板面の全面または電波通過孔につながる一部の両板面に金属層を支持させた構造なので、断熱性能が良く、しかも伝送方向の長さが短く、軽量化した小型の断熱導波管を得ることができる。また、通常のプリント基板製造技術の流用で断熱導波管を製作できるので、加工性が容易で、コストも大幅に低減することができる。   As described above, the heat insulating waveguide of the present invention uses a dielectric plate and has a radio wave passage hole in its thickness direction, and the entire inner surface of the radio wave passage hole and both surfaces of the dielectric plate or the radio wave. Since the metal layer is supported on a part of both plate surfaces connected to the passage hole, it is possible to obtain a small heat-insulating waveguide with good heat insulation performance, short length in the transmission direction, and light weight. Further, since the heat insulating waveguide can be manufactured by diverting a normal printed circuit board manufacturing technique, the processability is easy and the cost can be greatly reduced.

この場合、電波通過孔の寸法を、接続される導波管の口径よりも小さくすると、接続される導波管に対するインピーダンス整合を必要とする時に、断熱導波管自身に整合部を付加することができて、容易にマッチングをとることができる。   In this case, if the size of the radio wave passage hole is made smaller than the diameter of the connected waveguide, a matching portion is added to the heat insulating waveguide itself when impedance matching with the connected waveguide is required. Can be easily matched.

また本発明の断熱導波管は、誘電体板を用いて、その板厚方向に電波通過孔をあけ、該誘電体板の両板面の全面または電波通過孔につながる一部の両板面に金属層を支持させ、誘電体板には電波通過孔の内壁に沿った周囲の部分に所定間隔で多数のスルーホールを板厚方向に設け、各スルーホール内の導体で誘電体板の両板面の金属層を電位を等しくするように電気的に接続したので、断熱性能が良く、しかも伝送方向の長さが短く、軽量化した小型の断熱導波管を得ることができる。また、通常のプリント基板製造技術の流用で断熱導波管を製作できるので、加工性が容易で、コストも大幅に低減することができる。   Further, the heat insulating waveguide of the present invention uses a dielectric plate, opens a radio wave passage hole in the thickness direction of the dielectric plate, and covers both plate surfaces of the dielectric plate or a part of both plate surfaces connected to the radio wave passage hole. The dielectric plate is provided with a large number of through holes in the thickness direction at predetermined intervals around the inner wall of the radio wave passage hole in the dielectric plate, and both conductors of the dielectric plate are formed by conductors in each through hole. Since the metal layers on the plate surfaces are electrically connected so as to have the same potential, it is possible to obtain a small heat-insulating waveguide with good heat insulation performance, short length in the transmission direction, and light weight. Further, since the heat insulating waveguide can be manufactured by diverting a normal printed circuit board manufacturing technique, the processability is easy and the cost can be greatly reduced.

さらに本発明の断熱導波管は、誘電体板を用いて、この誘電体板の両板面の相対応する空所部を除いた周囲の部分に金属層を支持させ、誘電体板には空所部の周囲の部分に所定間隔で多数のスルーホールを板厚方向に設け、各スルーホール内の導体で誘電体板の両板面の金属層は電位を等しくするように電気的に接続したので、断熱性能が良く、しかも伝送方向の長さが短く、軽量化した小型の断熱導波管を得ることができる。また、通常のプリント基板製造技術の流用で断熱導波管を製作できるので、加工性が容易で、コストも大幅に低減することができる。   Furthermore, the heat insulating waveguide of the present invention uses a dielectric plate to support a metal layer on the peripheral portion of the dielectric plate excluding the corresponding voids on both plate surfaces. A large number of through-holes are provided in the plate thickness direction at predetermined intervals around the void, and the metal layers on both sides of the dielectric plate are electrically connected by the conductor in each through-hole so that the potentials are equal. Therefore, it is possible to obtain a small heat-insulating waveguide that has good heat insulating performance, is short in the transmission direction, and is lightweight. Further, since the heat insulating waveguide can be manufactured by diverting a normal printed circuit board manufacturing technique, the processability is easy and the cost can be greatly reduced.

この場合、空所部内の誘電体板の板面に、該誘電体板の板面の金属層につながってインピーダンス整合用金属パターンを突設すると、接続される導波管に対するインピーダンス整合を必要とする時に、断熱導波管自身に整合部を付加することができて、容易にマッチングをとることができる。   In this case, if a metal pattern for impedance matching is projected on the plate surface of the dielectric plate in the void portion and connected to the metal layer on the plate surface of the dielectric plate, impedance matching to the connected waveguide is required. When this is done, a matching portion can be added to the heat insulating waveguide itself, and matching can be easily achieved.

本発明で金属層は、使用周波数帯の高周波電流の浸透厚さに対し5倍以上の厚さを有していることが好ましい。   In the present invention, the metal layer preferably has a thickness of 5 times or more the penetration thickness of the high-frequency current in the operating frequency band.

本発明では、断熱導波管材料として誘電体板を使う。この誘電体板の使用による優位性について説明する。   In the present invention, a dielectric plate is used as the heat insulating waveguide material. The superiority of this dielectric plate will be described.

断熱導波管の断熱効果は、該断熱導波管の接続端での温度差で評価できる。式1と式2は、該断熱導波管の物性定数と寸法及び伝熱量の間系を示すもので良く知られている。   The heat insulating effect of the heat insulating waveguide can be evaluated by the temperature difference at the connection end of the heat insulating waveguide. Equations (1) and (2) are well known to show the system between the physical constants, dimensions, and heat transfer amount of the heat insulating waveguide.

ΔT=Q・R 〔K〕 ……式1
R=L/(λ・S) 〔K/W〕 ……式2
ここで、ΔTは断熱導波管の接続端での温度差〔K〕、Qは伝熱量〔W〕、Rは断熱導波管の熱抵抗〔K/W〕、Lは断熱導波管の長さ〔m〕、λは断熱導波管の熱伝導率〔W/(m・K)〕、Sは断熱導波管の接続面の表面積である。
ΔT = Q · R [K] ...... Equation 1
R = L / (λ · S) [K / W] ...... Formula 2
Here, ΔT is the temperature difference [K] at the connection end of the adiabatic waveguide, Q is the heat transfer amount [W], R is the thermal resistance of the adiabatic waveguide [K / W], and L is the adiabatic waveguide. The length [m], λ is the thermal conductivity [W / (m · K)] of the heat insulating waveguide, and S is the surface area of the connection surface of the heat insulating waveguide.

1式と2式から3式を導出し、説明を分かり易くする。   3 formulas are derived from 1 formula and 2 formulas to make the explanation easy to understand.

ΔT=(Q・L)/(λ・S) 〔K〕 ……式3
断熱効果を評価する場合、一定の伝熱量を許容した時、断熱導波管の接続端間の温度差が大きいほど優れていると言える。式3から下記のことが明らかになる。
ΔT = (Q · L) / (λ · S) [K] ...... Equation 3
When the heat insulation effect is evaluated, when a certain amount of heat transfer is allowed, it can be said that the larger the temperature difference between the connection ends of the heat insulation waveguide, the better. From Equation 3, the following becomes clear.

(a)熱伝導率λは、小さいほど良い。 (A) The smaller the thermal conductivity λ, the better.

(b)表面積Sは、小さいほど良い。 (B) The smaller the surface area S, the better.

(c)長さLは、長いほど良い。(しかし、大型化を招く。)
まず、低熱伝導率は金属から誘電体に変更することで実現し、小表面積はほとんどの熱伝導に関与する金属導体の断面積が支配的になるので、該金属導体の厚さを薄くすることで実現できる。
(C) The longer the length L, the better. (However, it causes an increase in size.)
First, low thermal conductivity is realized by changing from metal to dielectric, and the small surface area is dominated by the cross-sectional area of the metal conductor that participates in most heat conduction, so the thickness of the metal conductor should be reduced. Can be realized.

上記2定数を決めることで、断熱導波管の接続端での温度差ΔTは十分大きくなるので、長さLは入手性の良い市販の誘電体基板等を使うことができる。 By determining the above two constants, the temperature difference ΔT at the connection end of the heat insulating waveguide becomes sufficiently large, so that a commercially available dielectric substrate having a highly available length L can be used.

次に、具体例について説明する。   Next, a specific example will be described.

図1及び図2は本発明に係る断熱導波管の最良の形態における第1例を示したもので、図1は本例の断熱導波管の使用状態の縦断面図、図2は本例の断熱導波管の斜視図である。なお、前述した図17及び図18と対応する部分には、同一符号を付けて示している。   1 and 2 show a first example of the best mode of the heat insulating waveguide according to the present invention. FIG. 1 is a longitudinal sectional view of the heat insulating waveguide of this example in use, and FIG. It is a perspective view of the example heat insulation waveguide. Note that portions corresponding to those in FIGS. 17 and 18 described above are denoted by the same reference numerals.

この断熱導波管5Aは、誘電体板13が用いられている。誘電体板13の材質は本例ではガラスエポキシで、長辺(横方向)と短辺(縦方向)の寸法がX,Yで、板厚がLとなっている。この誘電体板13には、板厚方向に方形の電波通過孔14があけられている。該電波通過孔14の内面及び誘電体板13の両板面の全面または電波通過孔14につながる一部の両板面に銅製の導体膜で構成された金属層15,16が張りつけて支持されている。電波通過孔14の長辺寸法(横方向寸法)と短辺寸法(縦方向寸法)はA,B、金属層15,16の厚さはTとなっている。   A dielectric plate 13 is used for the heat insulating waveguide 5A. The material of the dielectric plate 13 is glass epoxy in this example, and the dimensions of the long side (horizontal direction) and the short side (vertical direction) are X and Y, and the plate thickness is L. The dielectric plate 13 has a rectangular radio wave passage hole 14 in the thickness direction. Metal layers 15 and 16 made of a copper conductive film are attached to and supported by the inner surface of the radio wave passage hole 14 and the entire surface of both plates of the dielectric plate 13 or a part of both plate surfaces connected to the radio wave passage hole 14. ing. The long side dimension (horizontal dimension) and the short side dimension (vertical dimension) of the radio wave passage hole 14 are A and B, and the thicknesses of the metal layers 15 and 16 are T.

このような断熱導波管5Aの両板面には、本例では導波管形マイクロ波増幅器3と導波管サーキュレータ4の各導波管がフランジ3F,4Fを介して接続されている。誘電体板13の方形の電波通過孔14は、両側の導波管形マイクロ波増幅器3と導波管サーキュレータ4の各導波管の方形の電波通過孔と同じ大きさになっている。   In this example, the waveguides of the waveguide type microwave amplifier 3 and the waveguide circulator 4 are connected to both plate surfaces of the heat insulating waveguide 5A via flanges 3F and 4F. The rectangular radio wave passage hole 14 of the dielectric plate 13 has the same size as the rectangular radio wave passage hole of each waveguide of the waveguide type microwave amplifier 3 and the waveguide circulator 4 on both sides.

断熱導波管5Aの口径をA,B、金属層15,16の厚さをT、伝熱量をQとした時の温度差ΔTを求めるために式4を示す。   In order to obtain the temperature difference ΔT when the diameter of the heat insulating waveguide 5A is A and B, the thickness of the metal layers 15 and 16 is T, and the heat transfer amount is Q, Expression 4 is shown.

ΔT=(Q・L1)/(λ1・S1+λ2・S2) 〔K〕 ……式4
ここで、L1は誘電体板13の厚さ、λ1は誘電体板13の熱伝導率、S1は誘電体板13の接続面表面積、λ2は金属層15,16の熱伝導率、S2は金属層15,16の断面積である。
ΔT = (Q · L1) / (λ1 · S1 + λ2 · S2) [K].
Here, L1 is the thickness of the dielectric plate 13, λ1 is the thermal conductivity of the dielectric plate 13, S1 is the surface area of the connecting surface of the dielectric plate 13, λ2 is the thermal conductivity of the metal layers 15 and 16, and S2 is the metal It is a cross-sectional area of the layers 15 and 16.

式3は従来技術の断熱導波管5Aを用いた時の温度差ΔTであり、式4は本発明の断熱導波管5Aを用いた時の温度差ΔTである。両者を比較して、同一の温度差ΔTと伝熱量Qを得るために必要な断熱導波管5Aの長さLとL1を比較することで、本発明の効果がわかる。   Equation 3 is the temperature difference ΔT when using the conventional heat insulating waveguide 5A, and Equation 4 is the temperature difference ΔT when using the heat insulating waveguide 5A of the present invention. The effect of the present invention can be understood by comparing the lengths L and L1 of the heat insulating waveguide 5A necessary for obtaining the same temperature difference ΔT and heat transfer amount Q by comparing the two.

この時、導波管形マイクロ波増幅器3と導波管サーキュレータ4の各導波管間を通過するマイクロ波は金属層15で構成された導波管を損失なく通過できるので、回路のマイクロ波特性は悪影響を受けることがない。   At this time, the microwave passing between the waveguides of the waveguide type microwave amplifier 3 and the waveguide circulator 4 can pass through the waveguide formed of the metal layer 15 without loss. The property is not adversely affected.

この時の断熱効果を式4により求めると、温度差ΔTを50K得るために必要な誘電体板の厚さLは3.5mmで、従来技術の断熱導波管5Aの長さL=70mmに対し、大幅に小型化できる。   When the heat insulation effect at this time is obtained by Equation 4, the thickness L of the dielectric plate necessary for obtaining the temperature difference ΔT of 50K is 3.5 mm, and the length L of the conventional heat insulation waveguide 5A is L = 70 mm. On the other hand, the size can be greatly reduced.

計算に用いた物性定数と寸法および伝熱量は、下記のとおりである。   The physical property constants, dimensions, and heat transfer used for the calculation are as follows.

λ1=0.4〔W/(m・K)〕、
λ2=398〔W/(m・K)〕、
S1=0.0052m
S2=0.0000123m
T=50μm、
Q=100W
図3乃至図5は本発明に係る断熱導波管の最良の形態における第2例を示したもので、図3は本例の断熱導波管の使用状態の縦断面図、図4は本例の断熱導波管の斜視図、図5は本例の断熱導波管の等価回路である。なお、前述した図1及び図2と対応する部分には、同一符号を付けて示している。
λ1 = 0.4 [W / (m · K)],
λ2 = 398 [W / (m · K)],
S1 = 0.0052m 2 ,
S2 = 0.0000123 m 2 ,
T = 50 μm,
Q = 100W
3 to 5 show a second example of the best mode of the heat insulating waveguide according to the present invention. FIG. 3 is a longitudinal sectional view of the heat insulating waveguide of this example in use, and FIG. FIG. 5 is a perspective view of the heat insulating waveguide of the example, and FIG. 5 is an equivalent circuit of the heat insulating waveguide of the present example. The parts corresponding to those in FIGS. 1 and 2 described above are denoted by the same reference numerals.

本例の断熱導波管5Aの第1例の断熱導波管5Aとの違いは、本例の断熱導波管5Aはの導波管口径の短辺寸法(縦方向寸法)をCに縮小していることで、他は同じである。   The difference between the heat insulating waveguide 5A of this example and the heat insulating waveguide 5A of the first example is that the short side dimension (vertical dimension) of the waveguide diameter of the heat insulating waveguide 5A of this example is reduced to C. The other is the same.

このように導波管口径の短辺寸法を部分的に縮小し、伝送基本モードであるTE10モードに対し電磁界的不連続を発生させた時の等価回路は、図5のように容量性リアクタンスが分岐接続された回路になることは良く知られていることである。この容量性リアクタンスを装荷する目的は、導波管形マイクロ波増幅器3と導波管サーキュレータ4の各導波管のインピーダンスに整合させるためである。   In this way, when the short side dimension of the waveguide diameter is partially reduced and an electromagnetic discontinuity is generated with respect to the TE10 mode, which is the fundamental transmission mode, an equivalent circuit is shown in FIG. It is well known that the circuit becomes a branch-connected circuit. The purpose of loading this capacitive reactance is to match the impedance of each waveguide of the waveguide type microwave amplifier 3 and the waveguide circulator 4.

図6乃至図8は本発明に係る断熱導波管の最良の形態における第3例を示したもので、図6は本例の断熱導波管の使用状態の縦断面図、図7は本例の断熱導波管の斜視図、図8は本例の断熱導波管の等価回路である。なお、前述した図1及び図2と対応する部分には、同一符号を付けて示している。   6 to 8 show a third example of the best mode of the heat insulating waveguide according to the present invention. FIG. 6 is a longitudinal sectional view of the heat insulating waveguide of this example in use, and FIG. FIG. 8 is a perspective view of the heat insulating waveguide of the example, and FIG. 8 is an equivalent circuit of the heat insulating waveguide of the present example. The parts corresponding to those in FIGS. 1 and 2 described above are denoted by the same reference numerals.

本例の断熱導波管5Aの第1例の断熱導波管5Aとの違いは、本例の断熱導波管5Aはの導波管口径の長辺寸法(横方向寸法)をDに縮小していることで、他は同じである。   The difference between the heat insulation waveguide 5A of this example and the heat insulation waveguide 5A of the first example is that the long side dimension (lateral dimension) of the waveguide diameter of the heat insulation waveguide 5A of this example is reduced to D. The other is the same.

このように導波管口径の長辺寸法を部分的に縮小し、伝送基本モードであるTE10モードに対し電磁界的不連続を発生させた時の等価回路は、図8のように誘導性リアクタンスが分岐接続された回路になることは良く知られていることである。この誘導性リアクタンスを装荷する目的は、導波管形マイクロ波増幅器3と導波管サーキュレータ4の各導波管のインピーダンスに整合させるためである。   In this way, when the long side dimension of the waveguide diameter is partially reduced and an electromagnetic discontinuity is generated with respect to the TE10 mode, which is a fundamental transmission mode, an equivalent circuit is shown in FIG. It is well known that the circuit becomes a branch-connected circuit. The purpose of loading this inductive reactance is to match the impedance of each waveguide of the waveguide type microwave amplifier 3 and the waveguide circulator 4.

図9及び図10は本発明に係る断熱導波管の最良の形態における第4例を示したもので、図9は本例の断熱導波管の使用状態の縦断面図、図10は本例の断熱導波管の斜視図である。なお、前述した図1及び図2と対応する部分には、同一符号を付けて示している。   9 and 10 show a fourth example of the best mode of the heat insulating waveguide according to the present invention. FIG. 9 is a longitudinal sectional view of the heat insulating waveguide of this example in use, and FIG. It is a perspective view of the example heat insulation waveguide. The parts corresponding to those in FIGS. 1 and 2 described above are denoted by the same reference numerals.

本例の断熱導波管5Aの第1例の断熱導波管5Aとの違いは、電波通過孔14の内面に金属層15を設けずに、代わりに誘電体板13の電波通過孔14の内壁に沿った周囲の部分に、所定間隔で多数のスルーホール17が板厚方向に設けられ、各スルーホール17内の導体18で誘電体板13の両板面の金属層16が電位を等しくするように電気的に接続されている。即ち、スルーホール17内の導体18は、誘電体板13の両側に張られた金属層16同士を最短で接続し、高周波的に接地電位を同一にしている。   The difference between the heat insulation waveguide 5A of the first example and the heat insulation waveguide 5A of the present example is that the metal layer 15 is not provided on the inner surface of the radio wave passage hole 14, but instead of the radio wave passage hole 14 of the dielectric plate 13. A large number of through holes 17 are provided in the plate thickness direction at predetermined intervals around the inner wall, and the metal layers 16 on both plate surfaces of the dielectric plate 13 are equal in potential with the conductors 18 in each through hole 17. To be electrically connected. That is, the conductor 18 in the through-hole 17 connects the metal layers 16 stretched on both sides of the dielectric plate 13 with each other at the shortest to make the ground potential the same in terms of high frequency.

このため、比較的低い周波数では管内波長が長いので、マイクロ波特性は実用上問題なく伝送できる。なお、スルーホール17のピッチ(間隔)は、使用周波数帯に応じ細かくしたり、電波通過孔14の回りに2重、3重にするなど電気的要求性能によって最適化すれば良い。   For this reason, since the guide wavelength is long at a relatively low frequency, the microwave characteristics can be transmitted without any practical problem. Note that the pitch (interval) of the through holes 17 may be optimized according to the required electrical performance, such as finer according to the frequency band used, or double or triple around the radio wave passage hole 14.

図11及び図12は本発明に係る断熱導波管の最良の形態における第5例を示したもので、図11は本例の断熱導波管の使用状態の縦断面図、図12は本例の断熱導波管の斜視図である。なお、前述した図1及び図2と対応する部分には、同一符号を付けて示している。   11 and 12 show a fifth example of the best mode of the heat insulating waveguide according to the present invention. FIG. 11 is a longitudinal sectional view of the heat insulating waveguide of this example in use, and FIG. It is a perspective view of the example heat insulation waveguide. The parts corresponding to those in FIGS. 1 and 2 described above are denoted by the same reference numerals.

本例の断熱導波管5Aの第1例の断熱導波管5Aとの違いは、誘電体板13に電波通過孔14を設けず、代わりに誘電体板13の両板面の相対応する方形の空所部19を除いた周囲の部分に銅製の導体膜で構成された金属層16が支持されている。誘電体板13には、空所部19の周囲の部分に所定間隔で多数のスルーホール17が板厚方向に設けられ、各スルーホール17内の導体18で誘電体板13の両板面の金属層16は電位を等しくするように電気的に接続されている。この場合、誘電体板13は誘電体損失が小さい例えばテトラフルオロエチレン等で形成されている。   The difference between the heat insulating waveguide 5A of the first example and the heat insulating waveguide 5A of the present example is that the radio wave passage hole 14 is not provided in the dielectric plate 13, but instead corresponds to the both plate surfaces of the dielectric plate 13. A metal layer 16 made of a copper conductive film is supported on the peripheral portion excluding the rectangular void portion 19. The dielectric plate 13 is provided with a large number of through holes 17 at predetermined intervals around the void portion 19 in the plate thickness direction, and the conductors 18 in each through hole 17 are provided on both plate surfaces of the dielectric plate 13. The metal layer 16 is electrically connected so as to have the same potential. In this case, the dielectric plate 13 is made of, for example, tetrafluoroethylene having a small dielectric loss.

このような断熱導波管5Aでは、誘電体板13がテトラフルオロエチレン等の誘電体損失が小さい材質の場合、動作周波数の管内波長に比べ十分小さい誘電体厚さLであれば、インピーダンスの不連続は実用上無視できる。 この時のLは、目安として管内波長の1/30程度とすればよい。   In such a heat insulating waveguide 5A, when the dielectric plate 13 is made of a material having a small dielectric loss such as tetrafluoroethylene, the impedance is not reduced if the dielectric thickness L is sufficiently smaller than the in-tube wavelength of the operating frequency. The continuity can be ignored in practice. At this time, L may be about 1/30 of the guide wavelength.

図13乃至図15は本発明に係る断熱導波管の最良の形態における第6例を示したもので、図13は本例の断熱導波管の使用状態の縦断面図、図14は本例の断熱導波管の斜視図、図15は本例の断熱導波管の等価回路である。なお、前述した本発明の第5例を示す図11及び図12と対応する部分には、同一符号を付けて示している。   FIGS. 13 to 15 show a sixth example of the best mode of the heat insulating waveguide according to the present invention. FIG. 13 is a longitudinal sectional view of the heat insulating waveguide of this example in use, and FIG. The perspective view of the heat insulation waveguide of an example and FIG. 15 are the equivalent circuits of the heat insulation waveguide of this example. Note that portions corresponding to those in FIGS. 11 and 12 showing the fifth example of the present invention described above are denoted by the same reference numerals.

本例の断熱導波管5Aの第5例の断熱導波管5Aとの違いは、誘電体板13の両板面のうち、片側(若しくは両側)の空所部19に、金属層16に連続させて金属層からなる四角形のインピーダンス整合用金属パターン20が突設されている。   The difference between the heat insulating waveguide 5A of the fifth example and the heat insulating waveguide 5A of the present example is that the space 19 on one side (or both sides) of the both surfaces of the dielectric plate 13 is formed on the metal layer 16. A rectangular impedance matching metal pattern 20 made of a metal layer is continuously provided.

この金属層からなるインピーダンス整合用金属パターン20の突出部が、伝送基本モードであるTE10モードに対し電磁界的不連続を発生させた時の等価回路は、図15のように容量性リアクタンスが分岐接続された回路になることは良く知られていることである。この容量性リアクタンスを装荷する目的は、導波管形マイクロ波増幅器3と導波管サーキュレータ4の各導波管のインピーダンスに整合させるためである。   The equivalent circuit when the protruding portion of the impedance matching metal pattern 20 made of this metal layer generates an electromagnetic discontinuity with respect to the TE10 mode which is the basic transmission mode has a capacitive reactance branching as shown in FIG. It is well known to be a connected circuit. The purpose of loading this capacitive reactance is to match the impedance of each waveguide of the waveguide type microwave amplifier 3 and the waveguide circulator 4.

上記説明の誘電体板13は、通常プリント基板として使われているものをそのまま流用すると、外形加工やスルーホール形成およびパターン形成などは従来のプリント基板製造技術で対応できるので、特別な製造設備などは不要である。   When the dielectric plate 13 described above is used as a normal printed circuit board as it is, the outer shape processing, through-hole formation, pattern formation, etc. can be handled by the conventional printed circuit board manufacturing technology. Is unnecessary.

上記各例では、誘電体板13に方形の電波通過孔14をあけるか、誘電体板13の両板面の金属層16に方形の空所部19を設けた例について示したが、本発明はこれに限定されるものではなく、例えば誘電体板13に円形の電波通過孔14をあけるか、誘電体板13の両板面の金属層16に円形の空所部19を設ける等の構造の断熱導波管にも本発明を適用することができる。   In each of the above-described examples, a rectangular radio wave passage hole 14 is formed in the dielectric plate 13 or a rectangular void portion 19 is provided in the metal layer 16 on both plate surfaces of the dielectric plate 13. However, the structure is not limited to this. For example, a structure in which a circular radio wave passage hole 14 is formed in the dielectric plate 13 or a circular void portion 19 is provided in the metal layers 16 on both plate surfaces of the dielectric plate 13. The present invention can also be applied to other heat insulating waveguides.

本発明に係る断熱導波管の第1例における使用状態の縦断面図である。It is a longitudinal cross-sectional view of the use condition in the 1st example of the heat insulation waveguide which concerns on this invention. 第1例の断熱導波管の斜視図である。It is a perspective view of the heat insulation waveguide of the 1st example. 本発明に係る断熱導波管の第2例における使用状態の縦断面図である。It is a longitudinal cross-sectional view of the use condition in the 2nd example of the heat insulation waveguide which concerns on this invention. 第2例の断熱導波管の斜視図である。It is a perspective view of the heat insulation waveguide of the 2nd example. 第2例の断熱導波管の等価回路図である。It is an equivalent circuit schematic of the heat insulation waveguide of the 2nd example. 本発明に係る断熱導波管の第3例における使用状態の縦断面図である。It is a longitudinal cross-sectional view of the use condition in the 3rd example of the heat insulation waveguide which concerns on this invention. 第3例の断熱導波管の斜視図である。It is a perspective view of the heat insulation waveguide of the 3rd example. 第3例の断熱導波管の等価回路図である。It is an equivalent circuit schematic of the heat insulation waveguide of the 3rd example. 本発明に係る断熱導波管の第4例における使用状態の縦断面図である。It is a longitudinal cross-sectional view of the use condition in the 4th example of the heat insulation waveguide which concerns on this invention. 第4例の断熱導波管の斜視図である。It is a perspective view of the heat insulation waveguide of the 4th example. 本発明に係る断熱導波管の第5例における使用状態の縦断面図である。It is a longitudinal cross-sectional view of the use condition in the 5th example of the heat insulation waveguide which concerns on this invention. 第5例の断熱導波管の斜視図である。It is a perspective view of the heat insulation waveguide of the 5th example. 本発明に係る断熱導波管の第6例における使用状態の縦断面図である。It is a longitudinal cross-sectional view of the use condition in the 6th example of the heat insulation waveguide which concerns on this invention. 第6例の断熱導波管の斜視図である。It is a perspective view of the heat insulation waveguide of the 6th example. 第6例の断熱導波管の等価回路図である。It is an equivalent circuit schematic of the heat insulation waveguide of the 6th example. 従来の導波管回路の回路図である。It is a circuit diagram of the conventional waveguide circuit. 従来の導波管回路の斜視図である。It is a perspective view of the conventional waveguide circuit. 従来の断熱導波管の斜視図である。It is a perspective view of the conventional heat insulation waveguide. 従来の他の断熱導波管の縦断面図である。It is a longitudinal cross-sectional view of the other conventional heat insulation waveguide.

符号の説明Explanation of symbols

1,2 端子
3 導波管形マイクロ波増幅器
4 導波管サーキュレータ
5 接続導波管
5A 断熱導波管
6 ダミーロード
7 電波通過孔
8 電波通過孔
9 誘電体管
10 金属層
11 フランジ部
12 金属層
13 誘電体板
14 電波通過孔
15,16 金属層
17 スルーホール
18 導体
19 空所部
20 インピーダンス整合用金属パターン
DESCRIPTION OF SYMBOLS 1, 2 Terminal 3 Waveguide type | mold microwave amplifier 4 Waveguide circulator 5 Connection waveguide 5A Thermal insulation waveguide 6 Dummy load 7 Radio wave passage hole 8 Radio wave passage hole 9 Dielectric tube 10 Metal layer 11 Flange part 12 Metal Layer 13 Dielectric plate 14 Radio wave passage hole 15, 16 Metal layer 17 Through hole 18 Conductor 19 Cavity 20 Metal pattern for impedance matching

Claims (6)

誘電体板の板厚方向に電波通過孔があけられ、前記電波通過孔の内面及び前記誘電体板の両板面の全面または前記電波通過孔につながる一部の前記両板面に金属層が支持されていることを特徴とする断熱導波管。    A radio wave passage hole is formed in the thickness direction of the dielectric plate, and metal layers are formed on the inner surface of the radio wave passage hole and the entire surface of both plates of the dielectric plate or on a part of both plate surfaces connected to the radio wave passage hole A heat-insulating waveguide characterized by being supported. 前記電波通過孔の寸法は、接続される導波管の口径よりも小さくなっていることを特徴とする請求項1に記載の断熱導波管。    2. The heat insulating waveguide according to claim 1, wherein a dimension of the radio wave passage hole is smaller than a diameter of the waveguide to be connected. 誘電体板の板厚方向に電波通過孔があけられ、前記誘電体板の両板面の全面または前記電波通過孔につながる一部の前記両板面に金属層が支持され、前記誘電体板には前記電波通過孔の内壁に沿った周囲の部分に所定間隔で多数のスルーホールが板厚方向に設けられ、前記各スルーホール内の導体で前記誘電体板の両板面の前記金属層は電位を等しくするように電気的に接続されていることを特徴とする断熱導波管。    A radio wave passage hole is formed in the thickness direction of the dielectric plate, and a metal layer is supported on the entire surface of both plate surfaces of the dielectric plate or a part of both plate surfaces connected to the radio wave passage hole, and the dielectric plate Has a plurality of through holes provided in the plate thickness direction at a predetermined interval in a peripheral portion along the inner wall of the radio wave passage hole, and the metal layers on both plate surfaces of the dielectric plate are conductors in the through holes. Are electrically connected so as to equalize the electric potential. 誘電体板の両板面の相対応する空所部を除いた周囲の部分に金属層が支持され、前記誘電体板には前記空所部の周囲の部分に所定間隔で多数のスルーホールが板厚方向に設けられ、前記各スルーホール内の導体で前記誘電体板の両板面の前記金属層は電位を等しくするように電気的に接続されていることを特徴とする断熱導波管。    A metal layer is supported on a peripheral portion of the dielectric plate excluding the corresponding void portions on both plate surfaces, and the dielectric plate has a plurality of through holes at predetermined intervals in the peripheral portion of the void portion. A heat-insulating waveguide provided in the plate thickness direction, wherein the metal layers on both plate surfaces of the dielectric plate are electrically connected by conductors in the through holes so as to equalize the potential. . 前記空所部内の前記誘電体板の板面には、該誘電体板の板面の前記金属層につながってインピーダンス整合用金属パターンが突設されていることを特徴とする請求項4に記載の断熱導波管。   5. The impedance matching metal pattern projects from the plate surface of the dielectric plate in the void portion so as to connect to the metal layer on the plate surface of the dielectric plate. Insulated waveguide. 前記金属層は、使用周波数帯の高周波電流の浸透厚さに対し5倍以上の厚さを有していることを特徴とする請求項1乃至5のいずれか1項に記載の断熱導波管。
6. The heat insulating waveguide according to claim 1, wherein the metal layer has a thickness that is five times or more the penetration thickness of a high-frequency current in a use frequency band. .
JP2003432734A 2003-12-26 2003-12-26 Heat insulation waveguide Pending JP2005192038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003432734A JP2005192038A (en) 2003-12-26 2003-12-26 Heat insulation waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432734A JP2005192038A (en) 2003-12-26 2003-12-26 Heat insulation waveguide

Publications (1)

Publication Number Publication Date
JP2005192038A true JP2005192038A (en) 2005-07-14

Family

ID=34790346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432734A Pending JP2005192038A (en) 2003-12-26 2003-12-26 Heat insulation waveguide

Country Status (1)

Country Link
JP (1) JP2005192038A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303076A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Waveguide connection structure
WO2011052694A1 (en) * 2009-10-29 2011-05-05 京セラ株式会社 Mode polarization converter
JP2012238948A (en) * 2011-05-10 2012-12-06 Nec Corp Waveguide connection structure
JP2015109302A (en) * 2013-12-03 2015-06-11 東京エレクトロン株式会社 Plasma processing apparatus
WO2016147695A1 (en) * 2015-03-17 2016-09-22 ソニー株式会社 Connector device and communication system
GB2613354A (en) * 2021-11-30 2023-06-07 Draexlmaier Lisa Gmbh Thermal isolator for microwave components with waveguide flanges

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303076A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Waveguide connection structure
WO2011052694A1 (en) * 2009-10-29 2011-05-05 京セラ株式会社 Mode polarization converter
JP5343134B2 (en) * 2009-10-29 2013-11-13 京セラ株式会社 Mode polarization converter
JP2012238948A (en) * 2011-05-10 2012-12-06 Nec Corp Waveguide connection structure
JP2015109302A (en) * 2013-12-03 2015-06-11 東京エレクトロン株式会社 Plasma processing apparatus
KR20150064690A (en) * 2013-12-03 2015-06-11 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus
KR101597054B1 (en) 2013-12-03 2016-02-23 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus
WO2016147695A1 (en) * 2015-03-17 2016-09-22 ソニー株式会社 Connector device and communication system
US10374279B2 (en) 2015-03-17 2019-08-06 Sony Semiconductor Solutions Corporation Connector device and communication system
GB2613354A (en) * 2021-11-30 2023-06-07 Draexlmaier Lisa Gmbh Thermal isolator for microwave components with waveguide flanges

Similar Documents

Publication Publication Date Title
TWI710163B (en) Radio frequency connection arrangement
JP5007281B2 (en) Dielectric waveguide slot antenna
US8803639B2 (en) Vacuum insulating chamber including waveguides separated by an air gap and including two planar reflectors for controlling radiation power from the air gap
JP6143971B2 (en) Coaxial microstrip line conversion circuit
US20130082899A1 (en) High-frequency line-waveguide converter
JP2013513274A (en) Microwave transition device between a microstrip line and a rectangular waveguide.
US6608535B2 (en) Suspended transmission line with embedded signal channeling device
JP4854622B2 (en) Connection structure of rectangular waveguide section and differential line section
JP6167008B2 (en) Connection structure with waveguide
CN109616764A (en) Substrate integrates gap waveguide circular polarized antenna
US10014833B2 (en) Splitter/combiner system for RF waves
WO2018016071A1 (en) Coaxial line-waveguide converter
JP2005354698A (en) Finline type microwave band-pass filter
JP2005192038A (en) Heat insulation waveguide
JPH10303611A (en) Coupling structure for high frequency transmission line and multi-layer wiring board having the same
Elsheikh et al. Geometrical modeling of strip-loaded CPW and its application to all CPW air-bridge free wilkinson power dividers
Ashraf et al. A DR loaded substrate integrated waveguide antenna for 60 GHz high speed wireless communication systems
JP6035673B2 (en) Multilayer transmission line plate and antenna module having electromagnetic coupling structure
Sun et al. Wideband excitation technology of substrate integrated waveguide TE30 mode and its antenna application
Cowsigan et al. Substrate integrated waveguide cavity backed antenna for IoT applications
Hung et al. Bandwidth enhancement on waveguide transition to conductor backed CPW with high dielectric constant substrate
Rana et al. H-plane horn antenna using corrugated substrate integrated waveguide
JP2007266866A (en) Waveguide converter
JP4869306B2 (en) Transmission line structure
JP3843081B2 (en) NRD guide converter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A131 Notification of reasons for refusal

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060724

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A02 Decision of refusal

Effective date: 20070207

Free format text: JAPANESE INTERMEDIATE CODE: A02