JP2005191309A - Method for manufacturing ceramic green sheet for multilayer electronic component - Google Patents

Method for manufacturing ceramic green sheet for multilayer electronic component Download PDF

Info

Publication number
JP2005191309A
JP2005191309A JP2003431469A JP2003431469A JP2005191309A JP 2005191309 A JP2005191309 A JP 2005191309A JP 2003431469 A JP2003431469 A JP 2003431469A JP 2003431469 A JP2003431469 A JP 2003431469A JP 2005191309 A JP2005191309 A JP 2005191309A
Authority
JP
Japan
Prior art keywords
ceramic
green sheet
paint
coating
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003431469A
Other languages
Japanese (ja)
Other versions
JP3922458B2 (en
Inventor
Naomi Yoshiike
直美 吉池
Ryuji Hosogaya
隆二 細萱
Hisashi Sato
久志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003431469A priority Critical patent/JP3922458B2/en
Publication of JP2005191309A publication Critical patent/JP2005191309A/en
Application granted granted Critical
Publication of JP3922458B2 publication Critical patent/JP3922458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a green sheet for a multilayer electronic component wherein stable electrostatic capacity and stable withstand voltage property can be ensured, and further, quality defect, such as film coating defect by grinding powder and defect by shortcircuit can be reduced. <P>SOLUTION: In the method for manufacturing a ceramic green sheet for a multilayer electronic component, ceramic paint 43 is spread on one surface side of a film support 19 which runs into one direction by using an extrusion type spreading head 10. Ceramic paint 43 is used whose flow index n is at least 0.4 when flow of the ceramic paint 43 is applied to the Ostwald's flow equation; shearing stress=k×(shear rate)<SP>n</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層電子部品用セラミックグリーンシートの製造方法に関し、特に、積層セラミックコンデンサ用グリーンシートの製造に適した方法に関する。   The present invention relates to a method for producing a ceramic green sheet for a multilayer electronic component, and more particularly to a method suitable for producing a green sheet for a multilayer ceramic capacitor.

積層セラミックコンデンサなどの積層セラミック電子部品の製造に当たっては、一方向に走行するフィルム支持体上に、押出し型塗布ヘッドにより、セラミック粉、有機バインダー、可塑剤、溶剤等を含むセラミック塗料を塗布してグリーンシートを成形し、その上にパラジウム、銀、ニッケル等の電極を、スクリーン印刷により形成する。   In the production of multilayer ceramic electronic components such as multilayer ceramic capacitors, a ceramic coating containing ceramic powder, organic binder, plasticizer, solvent, etc. is applied on a film support that runs in one direction by an extrusion coating head. A green sheet is formed, and an electrode such as palladium, silver, or nickel is formed thereon by screen printing.

次に、所望の積層構造になるように、グリーンシートをフィルム支持体から剥離し、所定枚数積層し、プレス切断工程を経てセラミックグリーンチップを得る。このようにして得られたセラミックグリーンチップ中のバインダーをバーンアウトし、1000℃〜1400℃で焼成し、得られた焼成体に銀、銀−パラジウム、ニッケル、銅等の端子電極を形成し、セラミック電子部品を得る。   Next, the green sheet is peeled from the film support so as to have a desired laminated structure, a predetermined number of layers are laminated, and a ceramic green chip is obtained through a press cutting step. The binder in the ceramic green chip thus obtained is burned out and fired at 1000 ° C. to 1400 ° C., and terminal electrodes such as silver, silver-palladium, nickel and copper are formed on the obtained fired body, Obtain ceramic electronic components.

セラミック塗料の塗布にあたっては、フィルム支持体の張力と、押出し型塗布ヘッドの吐出圧力とのバランスとで塗膜を形成する技術が知られている(例えば、特許文献1)。   A technique for forming a coating film by applying a balance between the tension of a film support and the discharge pressure of an extrusion-type coating head is known for applying a ceramic paint (for example, Patent Document 1).

ところが、フィルム支持体の張力は、フィルム支持体の押出し型塗布ヘッドに対する入口角と出口角の合力で決まり、張力と、ヘッドから吐出されるセラミック塗料の圧力とがバランスした状態で塗膜が形成される。   However, the tension of the film support is determined by the resultant force of the entrance angle and the exit angle of the film support with respect to the extrusion coating head, and the coating film is formed in a state where the tension and the pressure of the ceramic paint discharged from the head are balanced. Is done.

このため、吐出するセラミック塗料の圧力が小さかったり、幅方向の圧力バランスが悪いと、フィルム支持体の変形により幅方向の厚みムラに伴い、ピンホールが多数発生し静電容量のバラツキが大きくなったり、耐電圧不良の発生が顕著になる。又、フィルム支持体の変形により押出し型塗布ヘッドヘ接触し(特に幅方向両端部)、フィルム支持体の削れが発生し、その削れ粉による塗膜欠陥を発生させ、ショート不良などの品質欠陥を生じてしまうなどの問題があった。
特開平09−129505号公報
For this reason, if the pressure of the ceramic paint to be discharged is low or the pressure balance in the width direction is poor, a large number of pinholes are generated due to uneven thickness in the width direction due to deformation of the film support, resulting in large variations in capacitance. Or withstand voltage failure becomes prominent. Also, due to deformation of the film support, it contacts the extrusion coating head (especially at both ends in the width direction), and the film support is scraped, resulting in coating film defects due to the scraped powder, resulting in quality defects such as short circuit defects. There was a problem such as.
JP 09-129505 A

本発明の課題は、ピンホールの発生を抑制し、安定した静電容量、及び、安定した耐電圧特性確保できるようにした積層電子部品用グリーンシートの製造方法を提供することである。   An object of the present invention is to provide a method for producing a green sheet for a laminated electronic component that suppresses the generation of pinholes and ensures a stable capacitance and stable withstand voltage characteristics.

本発明のもう一つの課題は、フィルム支持体の削れを抑制し、その削れ粉による塗膜欠陥及びショート不良などの品質欠陥を低減し得る積層電子部品用グリーンシートの製造方法を提供することである。   Another object of the present invention is to provide a method for producing a green sheet for a laminated electronic component, which can suppress scraping of the film support and reduce quality defects such as coating film defects and short-circuit defects due to the shaving powder. is there.

上述した課題を解決するため、本発明は、一方向に走行するフィルム支持体の一面側に、押出し型塗布ヘッドを用いてセラミック塗料を塗布する積層電子部品用セラミックグリーンシートの製造方法において、セラミック塗料の流動をオストワルドの流動方程式;
ずり応力=k・(ずり速度)n
に当てはめた場合、その流動指数nが0.4以上であるセラミック塗料を用いる。
In order to solve the above-mentioned problems, the present invention provides a method for producing a ceramic green sheet for a laminated electronic component in which a ceramic coating is applied to one side of a film support that runs in one direction using an extrusion-type coating head. Ostwald's flow equation for paint flow;
Shear stress = k ・ (Shear rate) n
Is applied, the ceramic paint whose flow index n is 0.4 or more is used.

セラミック塗料のn値が0.4以上であると、塗料の流動性が良好となることから、ピンホールの発生を抑制し、安定した静電容量、及び、安定した耐電圧特性確保でき、さらに、フィルム支持体の削れを抑制し、その削れ粉による塗膜欠陥及びショート不良などの品質欠陥を低減し得ることがわかった。   If the n value of the ceramic paint is 0.4 or more, the fluidity of the paint will be good, so the generation of pinholes can be suppressed, and stable capacitance and stable withstand voltage characteristics can be secured. It was found that the film support can be prevented from being scraped and quality defects such as coating film defects and short-circuit defects due to the scraped powder can be reduced.

好ましくは、押出し型塗布ヘッドの吐出圧力(△P)を0.5〜5.O(kg/cm2)の範囲にする。こうすることにより、厚みバラツキに起因する容量変動、及び、ショート不良の発生を更に低減させた積層電子部品用セラミックグリーンシートを製造し、高信頼度の積層セラミックチップコンデンサを得ることができる。 Preferably, the discharge pressure (ΔP) of the extrusion type coating head is set in the range of 0.5 to 5.O (kg / cm 2 ). By doing so, it is possible to manufacture a ceramic green sheet for multilayer electronic components in which capacitance fluctuations due to thickness variations and occurrence of short-circuit defects are further reduced, and a highly reliable multilayer ceramic chip capacitor can be obtained.

なお、積層電子部品用セラミックグリーンシートの製造方法とは技術分野を異にする磁気記録媒体の製造方法において、塗布される塗布液の流動をオストワルドの流動方程式に当てはめた場合、その流動指数nが0.4以上である塗布液を用いる点は知られている(特開平5−62185号公報)。しかし、この技術は、磁気記録媒体製造上の特有の問題点、即ち、磁性塗料の塗布厚みを一定化し、磁気記録特性のばらつきを抑制しようとするものであるから、ピンホールの発生を抑制し、安定した静電容量、及び、安定した耐電圧特性確保できるようにすること、及び、フィルム支持体の削れを抑制し、その削れ粉による塗膜欠陥及びショート不良などの品質欠陥を低減することなど、積層電子部品用セラミックグリーンシート製造に特有の問題点を解決しようとする本発明とは、課題が異なる。   In the magnetic recording medium manufacturing method, which is different from the manufacturing method of ceramic green sheets for multilayer electronic components, when the flow of the applied coating liquid is applied to the Ostwald flow equation, the flow index n is The point of using a coating solution of 0.4 or more is known (Japanese Patent Laid-Open No. 5-62185). However, this technique has a particular problem in the manufacture of magnetic recording media, that is, it attempts to keep the coating thickness of the magnetic paint constant and to suppress variations in magnetic recording characteristics, thereby suppressing the occurrence of pinholes. To ensure stable electrostatic capacity and stable withstand voltage characteristics, and to prevent film support scraping and to reduce quality defects such as coating film defects and short-circuit defects due to the scraped powder. The problems are different from those of the present invention which attempts to solve problems peculiar to the production of ceramic green sheets for laminated electronic components.

以上述べたように、本発明によれば、次のような効果を得ることができる。
(a)ピンホールの発生を抑制し、安定した静電容量、及び、安定した耐電圧特性確保できるようにした積層電子部品用グリーンシートの製造方法を提供することができる。
(b)フィルム支持体の削れを抑制し、その削れ粉による塗膜欠陥及びショート不良などの品質欠陥を低減し得る積層電子部品用グリーンシートの製造方法を提供することができる。
As described above, according to the present invention, the following effects can be obtained.
(A) It is possible to provide a method for manufacturing a green sheet for a laminated electronic component that can suppress the generation of pinholes and ensure a stable capacitance and stable withstand voltage characteristics.
(B) It is possible to provide a method for producing a green sheet for a laminated electronic component that can suppress scraping of the film support and reduce quality defects such as coating film defects and short-circuit defects due to the scraping powder.

本発明の他の目的、構成及び利点については、添付図面を参照し、更に詳しく説明する。添付図面は、単に、例示に過ぎない。   Other objects, configurations and advantages of the present invention will be described in more detail with reference to the accompanying drawings. The accompanying drawings are merely examples.

図1は本発明に係るグリーンシートの製造方法の実施に用いられる塗布装置を示す図である。図示された塗布装置は、塗布ヘッド10と、複数のローラ121〜127、151、152、161、162とを含む。ローラ121〜127は案内ローラ、ローラ151、152はサクションローラ、ローラ161は蛇行修正ローラである。参照符号11は繰り出しリール、14は乾燥炉、17は巻き取りリールである。塗布ヘッド10は、一方向Fに走行するフィルム支持体19の一面側aにセラミック塗料17aを塗布する。フィルム支持体19は、たとえば、PETフィルムによって構成される。   FIG. 1 is a view showing a coating apparatus used for carrying out a method for producing a green sheet according to the present invention. The illustrated coating apparatus includes a coating head 10 and a plurality of rollers 121 to 127, 151, 152, 161, 162. The rollers 121 to 127 are guide rollers, the rollers 151 and 152 are suction rollers, and the roller 161 is a meandering correction roller. Reference numeral 11 is a feeding reel, 14 is a drying furnace, and 17 is a take-up reel. The coating head 10 applies a ceramic paint 17a to one surface side a of the film support 19 that travels in one direction F. The film support 19 is made of, for example, a PET film.

ローラ121〜127、151、152、161、162のそれぞれは、フィルム支持体19のセラミック塗料17aを塗布する面とは反対側の面bにのみ接触するように配置される。グリーンシート面を均一にするため、サクションローラ151ー152間でテンションをコントロールし、塗布ヘッド10の追い込み寸法、ノズル角度を制御する。   Each of the rollers 121-127, 151, 152, 161, 162 is disposed so as to contact only the surface b of the film support 19 opposite to the surface to which the ceramic paint 17a is applied. In order to make the green sheet surface uniform, the tension is controlled between the suction rollers 151 and 152, and the driving size of the coating head 10 and the nozzle angle are controlled.

塗布ヘッド10は、一方向Fに走行するフィルム支持体19の一面a側にセラミック塗料17aを塗布するから、フィルム支持体19の上にグリーンシート43を連続して形成できる。   Since the coating head 10 applies the ceramic paint 17a to the one surface a side of the film support 19 that travels in one direction F, the green sheet 43 can be continuously formed on the film support 19.

ローラ121〜127、151、152、161、162のそれぞれは、フィルム支持体19のセラミック塗料を塗布する面とは反対側の他面bにのみ接触するように配置されている。このような配置によれば、ローラ121〜127、151、152、161、162が塗布形成されたグリーンシート43に接触することがない。   Each of the rollers 121-127, 151, 152, 161, 162 is disposed so as to contact only the other surface b of the film support 19 opposite to the surface to which the ceramic paint is applied. According to such an arrangement, the rollers 121 to 127, 151, 152, 161, and 162 do not come into contact with the green sheet 43 on which the coating is formed.

グリーンシート43の成形後、フィルム支持体19は乾燥炉14を経て乾燥され、巻き取りリール17に巻き取られる。   After the green sheet 43 is formed, the film support 19 is dried through the drying furnace 14 and wound up on the take-up reel 17.

図2は塗布ヘッドの断面図である。塗布ヘッドは、押出し型ヘッドである。参照符号46はセラミック塗料排出用スリット、47は上流側ノズル、48は下流側ノズル、49はセラミック塗料だまりである。このような押出し型塗布ヘッドは公知である。図2において、参照符号A1はフィルム支持体19の走行方向を示している。   FIG. 2 is a sectional view of the coating head. The coating head is an extrusion type head. Reference numeral 46 is a slit for discharging ceramic paint, 47 is an upstream nozzle, 48 is a downstream nozzle, and 49 is a pool of ceramic paint. Such extrusion type coating heads are known. In FIG. 2, reference symbol A <b> 1 indicates the traveling direction of the film support 19.

セラミック塗料17aは、誘電体セラミック粉、有機バインダ、可塑剤及び溶剤等を混合してペースト化することによって得られる。更に、焼結助剤として、SiO2を含むことができる。誘電体セラミック粉は、一般式
[Ba(l-x)・Cax・O]mTiO2+αMgO+βMnO
で表される誘電体セラミック材料を用いることができる。ただし、α、β、m、およびxは、それぞれ、
0.001≦α≦0.05
0.001≦β≦0.025
1.000<m≦1.035、及び
0.02≦x≦0.15
となるように選ぶ。超薄型、例えば、3.5μm以下のグリーンシートを製造しようとした場合は、上記誘電体セラミック化合物は、平均粒径が0.3μm〜0.8μm以下となるように分級する。
The ceramic paint 17a is obtained by mixing a dielectric ceramic powder, an organic binder, a plasticizer, a solvent and the like into a paste. Furthermore, SiO 2 can be included as a sintering aid. Dielectric ceramic powder is a general formula
[Ba (l-x) ・ Cax ・ O] mTiO 2 + αMgO + βMnO
A dielectric ceramic material represented by the following can be used. Where α, β, m, and x are
0.001 ≦ α ≦ 0.05
0.001 ≦ β ≦ 0.025
1.000 <m ≦ 1.035, and 0.02 ≦ x ≦ 0.15
Choose to be. When an ultra-thin, for example, 3.5 μm or less green sheet is to be manufactured, the dielectric ceramic compound is classified so that the average particle size is 0.3 μm to 0.8 μm.

セラミック塗料は、その流動をオストワルドの流動方程式;
ずり応力=k・(ずり速度)n
に当てはめた場合、その流動指数nが0.4以上であるものを用いる。セラミック塗料のn値は、有機溶剤の混合量を変えることによって調製することができる。
Ceramic paints have an Ostwald flow equation;
Shear stress = k ・ (Shear rate) n
When the above is applied, those having a flow index n of 0.4 or more are used. The n value of the ceramic paint can be prepared by changing the mixing amount of the organic solvent.

セラミック塗料のn値が0.4以上であると、塗料の流動性が良好となることから、ピンホールの発生を抑制し、安定した静電容量、及び、安定した耐電圧特性確保でき、さらに、フィルム支持体の削れを抑制し、その削れ粉による塗膜欠陥及びショート不良などの品質欠陥を低減し得る。   If the n value of the ceramic paint is 0.4 or more, the fluidity of the paint will be good, so the generation of pinholes can be suppressed, and stable capacitance and stable withstand voltage characteristics can be secured. In addition, the film support can be prevented from being scraped, and quality defects such as coating film defects and short-circuit defects due to the scraped powder can be reduced.

次に、実験データを挙げて、本発明の内容を更に具体的に説明する。まず、上述した誘電体セラミック粉と、有機バインダ及び可塑剤及び溶剤等とを、ボールミルにより湿式混合し、セラミック塗料を調製した。   Next, the contents of the present invention will be described more specifically with reference to experimental data. First, the above-described dielectric ceramic powder, an organic binder, a plasticizer, a solvent, and the like were wet mixed by a ball mill to prepare a ceramic paint.

セラミック塗料の調製にあたって、有機溶剤の混合量を変えて、そのn値を調整した。そして、n値がそれぞれ、0.2、0.3、0.4、0.8、及び0.95の5種類のセラミック塗料を調製し、このセラミック塗料を、押出し型塗布ヘッド10により、シート幅100mm、塗布スピード:50.0(m/min)で、厚さ3.0(μm)及び1.5(μm)のグリーンシートを作製した。   In the preparation of the ceramic paint, the n value was adjusted by changing the mixing amount of the organic solvent. Then, five types of ceramic paints having n values of 0.2, 0.3, 0.4, 0.8, and 0.95 were prepared, respectively, and this ceramic paint was applied to the sheet by the extrusion coating head 10. Green sheets having a width of 100 mm, a coating speed of 50.0 (m / min), and thicknesses of 3.0 (μm) and 1.5 (μm) were produced.

その上に内部電極層を印刷により設け、そのものを100層積層し、最外層となる保護層(セラミックシート:内部電極なし)を積層し、グリーンチップに切断した。得られたグリーンチップを焼成し、その後、端部電極を付与して、(L=3.2)×(W=1.6)×(T=1.6mm)の積層セラミックチップコンデンサ(所謂3216形状)を製造した。得られた積層セラミックチップコンデンサについて、不良率(%)、ピンホールの有無、容量ばらつき及び耐電圧不良を評価した。塗料の流動性(n値)は、コーンプレート型粘度計(コーン角度0.5°、コーン径4cm、最大ずり速度4000s-1)にて測定した値から求めた。その評価結果を、表1に示す。   An internal electrode layer was provided thereon by printing, 100 layers were laminated, and a protective layer (ceramic sheet: no internal electrode) as the outermost layer was laminated and cut into green chips. The obtained green chip is fired, and then an end electrode is provided, so that (L = 3.2) × (W = 1.6) × (T = 1.6 mm) multilayer ceramic chip capacitor (so-called 3216). Shape). The obtained multilayer ceramic chip capacitors were evaluated for defect rate (%), presence / absence of pinholes, capacitance variation and withstand voltage failure. The fluidity (n value) of the paint was determined from the values measured with a cone plate viscometer (cone angle 0.5 °, cone diameter 4 cm, maximum shear rate 4000 s-1). The evaluation results are shown in Table 1.

Figure 2005191309
表1を参照すると、セラミック塗料のn値をそれぞれ0.2、0.3とした比較例3、4は、厚みバラツキが10%以上、ショート不良率が90%以上にも達し、ピンホール、容量バラツキ及び耐電圧不良が多発した。
Figure 2005191309
Referring to Table 1, in Comparative Examples 3 and 4 where the n value of the ceramic paint was 0.2 and 0.3, respectively, the thickness variation reached 10% or more, and the short-circuit defect rate reached 90% or more. There were frequent variations in capacity and poor withstand voltage.

これに対して、セラミック塗料のn値をそれぞれ0.4、0.8、0.95とした実施例1、2、3は、厚みバラツキが5%以下であり、ショート不良も10%以下に低減されている。   On the other hand, in Examples 1, 2, and 3 in which the n value of the ceramic coating was set to 0.4, 0.8, and 0.95, the thickness variation was 5% or less, and the short circuit defect was 10% or less. Has been reduced.

また、セラミック塗料のn値を、それぞれ、0.4、0.8、0.95とした実施例4、5、6は、厚みバラツキが5%以下であり、ショート不良も15%以下に低減できた。上記の結果から、セラミック塗料のn値が0.4以上とすることが好ましい条件である。最も好ましい範囲は、セラミック塗料のn値が0.8以上の範囲である。   Further, in Examples 4, 5, and 6 in which the n value of the ceramic coating was set to 0.4, 0.8, and 0.95, the thickness variation was 5% or less, and the short-circuit defect was also reduced to 15% or less. did it. From the above results, it is a preferable condition that the n value of the ceramic coating is 0.4 or more. The most preferable range is a range in which the n value of the ceramic paint is 0.8 or more.

次に、走行するフィルム支持体の背面を支持しない状態で、フィルム支持体に対して押出し型塗布ヘッドを相対的に押し付けて塗布する方法においては、押出し型塗布ヘッド3から吐出されるセラミック塗料の吐出圧力△Pが、塗料を転移させるため設定するフィルム支持体1の進入角度θ及びフィルム支持体張力Tにより生ずる力F、F=T・sinθとバランスする所で塗料の転移が安定となり、一定膜厚の塗膜を得ることができる。   Next, in a method in which the extrusion coating head is relatively pressed against the film support without applying the back surface of the traveling film support, the ceramic paint discharged from the extrusion coating head 3 is applied. The transfer of the paint becomes stable and constant at a place where the discharge pressure ΔP balances the entrance angle θ of the film support 1 set to transfer the paint and the force F and F = T · sin θ generated by the film support tension T. A coating film having a film thickness can be obtained.

上述したように、塗膜の膜厚t1は、フィルム支持体1の進入角度θ及びフィルム支持体張力Tによって定まる力Fと、吐出圧力△Pとのバランスにより決定されるものであるが、フィルム支持体1の進入角度θ及びフィルム支持体張力Tの2変数を持つ力Fを可変調整することよりも、吐出圧力△Pを調整する方が容易で、かつ、確実である。3μm以下の膜厚を有する塗膜を得ようとする場合、セラミック塗料の吐出圧力△Pを0.5〜5.0Kg/cm2の範囲に設定することが好ましいことがわかった。次に、この点について、実験データを挙げて具体的に説明する。 As described above, the film thickness t1 of the coating film is determined by the balance between the force F determined by the entrance angle θ of the film support 1 and the film support tension T and the discharge pressure ΔP. It is easier and more reliable to adjust the discharge pressure ΔP than to variably adjust the force F having two variables of the entry angle θ of the support 1 and the film support tension T. When it was going to obtain the coating film which has a film thickness of 3 micrometers or less, it turned out that it is preferable to set the discharge pressure (DELTA) P of a ceramic coating material in the range of 0.5-5.0 kg / cm < 2 >. Next, this point will be specifically described with reference to experimental data.

押出し型塗布ヘッドの吐出圧力(△P)を変えて検討した。但し、セラミック塗料のn値を0.8、シートの厚みを3.0μmに一定とした以外は、前記記載の積層セラミックチップコンデンサ製造方法と同一とし、吐出圧力(△P)を変える方法として、押出し型塗布ヘッドのギャップで調整した。結果を表2に示す。   The discharge pressure (ΔP) of the extrusion type coating head was changed and examined. However, except that the ceramic paint n value was kept constant at 0.8 and the sheet thickness was kept constant at 3.0 μm, the same method as the multilayer ceramic chip capacitor manufacturing method described above, and the method of changing the discharge pressure (ΔP), Adjustment was made by the gap of the extrusion type coating head. The results are shown in Table 2.

Figure 2005191309
表2を参照すると、比較例5、6は、シート厚み3.0μm、及び、セラミック塗料のn値0.8の条件で、厚みバラツキが8%以上、ショート不良率が50%以上に達し、ピンホールの発生、容量バラツキ及び耐電圧不良が多発した。
Figure 2005191309
Referring to Table 2, Comparative Examples 5 and 6 have a thickness variation of 8% or more and a short-circuit defect rate of 50% or more under the condition that the sheet thickness is 3.0 μm and the n value of the ceramic paint is 0.8. Pinholes, capacity variations, and withstand voltage failures occurred frequently.

これに対して、吐出圧力を0.5〜5.O(kg/cm2)の範囲に設定した実施例7、8、9では、比較例5、6と同じシート厚み3.0μm、セラミック塗料のn値0.8の条件で、厚みバラツキを3.5%以下とすることができ、ショート不良も10%以下に低減できる。 On the other hand, in Examples 7, 8, and 9 in which the discharge pressure was set in the range of 0.5 to 5.0 (kg / cm 2 ), the same sheet thickness of 3.0 μm as in Comparative Examples 5 and 6, ceramic paint Under the condition of the n value of 0.8, the thickness variation can be 3.5% or less, and the short-circuit failure can be reduced to 10% or less.

以上、好ましい実施例を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種種の変形態様を採り得ることは自明である。   Although the contents of the present invention have been specifically described above with reference to the preferred embodiments, it is obvious that those skilled in the art can take various modifications based on the basic technical idea and teachings of the present invention. It is.

本発明に係るグリーンシートの製造方法の実施に用いられる塗布装置を示す図である。It is a figure which shows the coating device used for implementation of the manufacturing method of the green sheet which concerns on this invention. 塗布ヘッドの断面図である。It is sectional drawing of a coating head.

符号の説明Explanation of symbols

10 塗布ヘッド
121〜127 案内ローラ
151、152 サクションローラ
161、162 蛇行修正ローラ
17a セラミック塗料
19 フィルム支持体
DESCRIPTION OF SYMBOLS 10 Application | coating heads 121-127 Guide roller 151, 152 Suction roller 161, 162 Meander correction roller 17a Ceramic coating material
19 Film support

Claims (2)

一方向に走行するフィルム支持体の一面側に、押出し型塗布ヘッドを用いてセラミック塗料を塗布する積層電子部品用セラミックグリーンシートの製造方法であって、
前記セラミック塗料の流動をオストワルドの流動方程式
ずり応力=k・(ずり速度)n
に当てはめた場合、その流動指数nが0.4以上であるセラミック塗料を用いることを特徴とする積層電子部品用セラミックグリーンシートの製造方法。
A method for producing a ceramic green sheet for a laminated electronic component in which a ceramic coating is applied to one surface side of a film support traveling in one direction using an extrusion-type coating head,
The flow of the ceramic paint is Ostwald's flow equation. Shear stress = k · (shear rate) n
When applied to the above, a ceramic paint having a flow index n of 0.4 or more is used.
請求項1に記載された製造方法であって、
前記セラミック塗料において、前記押出し型塗布ヘッドから吐出される前記セラミック塗料の吐出圧力△Pを0.5〜5.0Kg/cm2の範囲にすることを特徴とする積層電子部品用セラミックグリーンシートの製造方法。
A manufacturing method according to claim 1,
In the ceramic paint, a ceramic green sheet for laminated electronic parts, wherein a discharge pressure ΔP of the ceramic paint discharged from the extrusion coating head is in a range of 0.5 to 5.0 kg / cm 2 . Production method.
JP2003431469A 2003-12-25 2003-12-25 Method for producing ceramic green sheet for laminated electronic component Expired - Lifetime JP3922458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431469A JP3922458B2 (en) 2003-12-25 2003-12-25 Method for producing ceramic green sheet for laminated electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431469A JP3922458B2 (en) 2003-12-25 2003-12-25 Method for producing ceramic green sheet for laminated electronic component

Publications (2)

Publication Number Publication Date
JP2005191309A true JP2005191309A (en) 2005-07-14
JP3922458B2 JP3922458B2 (en) 2007-05-30

Family

ID=34789483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431469A Expired - Lifetime JP3922458B2 (en) 2003-12-25 2003-12-25 Method for producing ceramic green sheet for laminated electronic component

Country Status (1)

Country Link
JP (1) JP3922458B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148517A (en) * 2011-01-20 2012-08-09 Murata Mfg Co Ltd Method for producing ceramic green sheet and production device therefor
CN113263605A (en) * 2015-06-29 2021-08-17 康宁股份有限公司 Production line, method, and sintered product
US11577427B2 (en) 2015-06-29 2023-02-14 Corning Incorporated Manufacturing system, process, article, and furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148517A (en) * 2011-01-20 2012-08-09 Murata Mfg Co Ltd Method for producing ceramic green sheet and production device therefor
CN113263605A (en) * 2015-06-29 2021-08-17 康宁股份有限公司 Production line, method, and sintered product
CN113263605B (en) * 2015-06-29 2023-02-03 康宁股份有限公司 Production line, method, and sintered product
US11577427B2 (en) 2015-06-29 2023-02-14 Corning Incorporated Manufacturing system, process, article, and furnace
US11629915B2 (en) 2015-06-29 2023-04-18 Corning Incorporated Method of manufacturing ceramic tape
US11745385B2 (en) 2015-06-29 2023-09-05 Corning Incorporated Manufacturing system, process, article, and furnace
US11768032B2 (en) 2015-06-29 2023-09-26 Corning Incorporated Method of manufacturing ceramic tape
US11919196B2 (en) 2015-06-29 2024-03-05 Corning Incorporated Manufacturing system, process, article, and furnace
US11953264B2 (en) 2015-06-29 2024-04-09 Corning Incorporated Manufacturing line, process, and sintered article

Also Published As

Publication number Publication date
JP3922458B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
US7131174B2 (en) Ceramic electronic device and method of production of same
US7641727B2 (en) Electrode level difference absorbing print paste and method of producing electronic device
US11335511B2 (en) Ceramic laminate including a protrusion and multilayer ceramic capacitor
JP5980549B2 (en) Multilayer ceramic electronic components
US20120257322A1 (en) Monolithic ceramic capacitor
JP2012124139A (en) Conductive paste for internal electrode, and multilayer ceramic electronic component having the same
KR102000686B1 (en) Laminated ceramic electronic parts
EP1593660A1 (en) Coating composition for green sheet, method for producing same, green sheet, method for producing same, electronic component and method for producing same
WO2018016386A1 (en) Method for manufacturing stacked-type electronic component
US20170334230A1 (en) Gravure printing plate, gravure printing method, and manufacturing method for electronic component
JP2000076930A (en) Conductive paste for internal electrode of laminated ceramic capacitor and manufacture of laminated ceramic capacitor using the same
JP2014154543A (en) Conductive paste composition, multilayer ceramic capacitor using the same, and method of manufacturing multilayer ceramic capacitor using the same
JP3922458B2 (en) Method for producing ceramic green sheet for laminated electronic component
CN115394554A (en) Multilayer electronic component and method for manufacturing same
TW202119441A (en) Electrically conductive paste composition for laminated ceramic capacitor internal electrode, method for manufacturing said electrically conductive paste composition for laminated ceramic capacitor internal electrode, and electrically conductive paste
JP2006253651A (en) Multi-layer ceramic capacitor and its manufacturing method
JP4277465B2 (en) Application method
JP2009283627A (en) Ceramic electronic component and manufacturing method thereof
US7338854B2 (en) Method for manufacturing multilayer ceramic capacitor
JP3807610B2 (en) Ceramic electronic component and method for manufacturing the same
JP2003264120A (en) Ceramic electronic component and its manufacturing method
US11990284B2 (en) Multilayered electronic component
JPH11144993A (en) Manufacture of ceramics sheet
US12002623B2 (en) Multilayered electronic component
JPH08276414A (en) Ceramic print coating apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Ref document number: 3922458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

EXPY Cancellation because of completion of term