JP2005190917A - Controlling raw fuel control device and method - Google Patents

Controlling raw fuel control device and method Download PDF

Info

Publication number
JP2005190917A
JP2005190917A JP2003433322A JP2003433322A JP2005190917A JP 2005190917 A JP2005190917 A JP 2005190917A JP 2003433322 A JP2003433322 A JP 2003433322A JP 2003433322 A JP2003433322 A JP 2003433322A JP 2005190917 A JP2005190917 A JP 2005190917A
Authority
JP
Japan
Prior art keywords
raw fuel
reformer
flow rate
fuel flow
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003433322A
Other languages
Japanese (ja)
Other versions
JP4337546B2 (en
Inventor
Shigemasa Suzuki
茂政 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003433322A priority Critical patent/JP4337546B2/en
Publication of JP2005190917A publication Critical patent/JP2005190917A/en
Application granted granted Critical
Publication of JP4337546B2 publication Critical patent/JP4337546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw fuel control device 40 and a raw fuel control method for a reformer capable of appropriately controlling a raw fuel flow rate control valve 5 even below 30% of the measuring upper limit or less than the measuring lower limit of a raw fuel flowmeter 6, and capable of appropriately continuing an operation of the reformer 1 even in a comparatively unstable range in measurment of the raw fuel flowmeter 6. <P>SOLUTION: On the basis of a raw fuel flow rate measurement value PV1 measured by the raw fuel flowmeter 6 and a raw fuel flow rate set value SV1, and a reformer temperature measurement value PV2 measured with a thermometer 9 provided in the reformer 1 and a reformer temperature set value SV2, the opening of the raw fuel flow rate control valve 5 is controlled to increase or decrease according to the temperature of the reformer 1 prior to the indicated value of the raw fuel flowmeter 6. According to the indicated value PV5 of a pressure gauge 42 disposed on the downstream side of the reformer 1, a function for controlling the opening of the raw fuel flow rate control valve 5 to increase or decrease can be added. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原燃料を水素リッチなガスへ改質する改質器へ供給される原燃料の制御を行なう原燃料制御装置および原燃料制御方法に関する。   The present invention relates to a raw fuel control apparatus and a raw fuel control method for controlling raw fuel supplied to a reformer that reforms raw fuel into a hydrogen-rich gas.

近年、燃料電池の開発が進められている。燃料電池は使用する電解質の種類により種々の型が存在しており、通常、空気を酸化ガスとして用い、天然ガス等の炭化水素系の原燃料を水蒸気改質して生成した水素を含むガスを燃料ガスとして用いている。このため、上述のような燃料電池を備えた燃料電池発電装置には、原燃料の改質を行ない、燃料ガスを生成する改質器が設けられている。例えば、燃料としてメタンを用いた場合の改質器におけるメタンの改質反応(水蒸気改質反応)は吸熱反応であるため、燃料電池からの燃料オフガスをバーナへ供給して炉内で燃焼させて触媒層の温度を上げることにより、水素に富む(水素リッチな)改質ガスを生成している。   In recent years, fuel cells have been developed. There are various types of fuel cells depending on the type of electrolyte to be used. Usually, air is used as an oxidizing gas, and gas containing hydrogen produced by steam reforming a hydrocarbon-based raw fuel such as natural gas is used. Used as fuel gas. For this reason, the fuel cell power generation apparatus provided with the fuel cell as described above is provided with a reformer that reforms the raw fuel and generates fuel gas. For example, the reforming reaction of methane (steam reforming reaction) in the reformer when methane is used as the fuel is an endothermic reaction, so the fuel off-gas from the fuel cell is supplied to the burner and burned in the furnace. By raising the temperature of the catalyst layer, a reformed gas rich in hydrogen (hydrogen-rich) is generated.

図5は、特許文献1に記載された燃料電池の制御装置を示す。図5において、符号1は改質器(水素発生装置)、1aは改質器1の改質器反応管、1bは改質器1の炉体、2は改質器1に取付けられ改質器反応管1aを加熱するバーナ、3は電池排ガス(オフガス)をバーナ2で燃焼させるための燃焼用空気流量を制御するための燃焼用空気流量調節弁、4は燃焼用空気流量調節弁3が制御する燃焼用空気の流量を測定するための燃焼用空気流量計、5は原燃料を制御するための原燃料流量調節弁、6は改質器1へ流入される原燃料の流量を測定する原燃料流量計、7は原燃料とスチームとを混合して改質器1へ送るためのバルブ、8A、8Bは原料スチームの調節弁と流量計、9は改質器反応管1aの温度を改質器1の温度として測定する温度計、30は原燃料流量の基準流量(後述)を補正するための補正量を演算する補正原燃料流量演算装置、31は原燃料流量の基準流量と補正量とから、原燃料流量を補正するために、原燃料流量調節弁5を駆動する原燃料流量調節弁駆動装置である。   FIG. 5 shows a fuel cell control device described in Patent Document 1. In FIG. 5, reference numeral 1 is a reformer (hydrogen generator), 1a is a reformer reaction tube of the reformer 1, 1b is a furnace body of the reformer 1, and 2 is attached to the reformer 1 for reforming. A burner for heating the reactor reaction tube 1a, 3 is a combustion air flow rate control valve for controlling the combustion air flow rate for burning the battery exhaust gas (off gas) in the burner 2, and 4 is a combustion air flow rate control valve 3 A combustion air flow meter for measuring the flow rate of combustion air to be controlled, 5 is a raw fuel flow rate control valve for controlling raw fuel, and 6 is a flow rate of raw fuel flowing into the reformer 1. A raw fuel flow meter, 7 is a valve for mixing raw fuel and steam and sending them to the reformer 1, 8A and 8B are raw material steam control valves and flow meters, and 9 is the temperature of the reformer reaction tube 1a. A thermometer for measuring the temperature of the reformer 1, 30 is for correcting a reference flow rate (described later) of the raw fuel flow rate. A corrected raw fuel flow rate calculating device 31 for calculating a correction amount, 31 is a raw fuel flow rate control valve drive for driving the raw fuel flow rate control valve 5 to correct the raw fuel flow rate from the reference flow rate and the correction amount of the raw fuel flow rate Device.

図6は、図5中の補正空気流量演算装置10Aおよび空気調節弁駆動装置11Aのブロック図である。図6に示されるように、補正空気流量演算装置10Aは、燃料電池の発電出力から改質器1の設定温度を定める関数器(FX)12Aと、関数器12Aにより定められた設定温度から改質器1の測定温度、すなわち温度計9の出力値を減算する減算器13Aと、減算器13Aの出力より温度制御用の補正量(補正空気流量)を演算する補正量演算器14Aとから構成されている。補正量演算器14Aには比例積分微分動作(Proportional position action Integral action Derivative action : PID)制御器が用いられている。空気調節弁駆動装置11Aは、燃料電池の発電出力から燃焼空気過剰率を設定する関数器(FX)15Aと、電池電流と原燃料流量計6の出力である原燃料の流量と関数器15Aの出力である燃焼空気過剰率とから燃焼用空気流量の基準流量を演算する基準流量演算器16Aと、基準流量演算器16Aにより演算された基準流量に補正空気流量演算装置10Aにより得られた補正空気流量を加算して燃焼用空気流量を求める加算器17Aと、加算器17Aで求められた燃焼用空気流量から燃焼用空気流量計4の出力である燃焼用空気の流量の測定値(燃焼用空気流量)を減算して最終的な燃焼用空気流量を求める減算器18Aと、減算器18Aで求められた最終的な燃焼用空気流量に対応して調節弁駆動信号を演算する駆動信号演算器19Aとから構成されている。   FIG. 6 is a block diagram of the correction air flow rate calculation device 10A and the air regulating valve driving device 11A in FIG. As shown in FIG. 6, the corrected air flow rate calculation device 10 </ b> A includes a function unit (FX) 12 </ b> A that determines the set temperature of the reformer 1 from the power generation output of the fuel cell, and a set temperature determined by the function unit 12 </ b> A A subtractor 13A that subtracts the measured temperature of the mass device 1, that is, the output value of the thermometer 9, and a correction amount calculator 14A that calculates a correction amount (corrected air flow rate) for temperature control from the output of the subtractor 13A. Has been. As the correction amount calculator 14A, a proportional position / integral action (PID) controller is used. The air control valve driving device 11A includes a function unit (FX) 15A for setting an excess ratio of combustion air based on the power generation output of the fuel cell, a battery current and the flow rate of the raw fuel as the output of the raw fuel flow meter 6, and the function unit 15A. The reference flow rate calculator 16A that calculates the reference flow rate of the combustion air flow rate from the excess combustion air ratio that is the output, and the corrected air flow rate obtained by the corrected air flow rate calculation device 10A to the reference flow rate calculated by the reference flow rate calculator 16A An adder 17A that adds the flow rate to obtain the combustion air flow rate, and a measured value of the flow rate of combustion air that is the output of the combustion air flow meter 4 from the combustion air flow rate obtained by the adder 17A (combustion air flow rate) Subtractor 18A for subtracting the flow rate) to obtain the final combustion air flow rate, and drive signal calculator 19A for calculating the control valve drive signal in accordance with the final combustion air flow rate obtained by subtractor 18A. It is constructed from.

上述された従来の燃料電池の制御装置は、流入される原燃料を加熱して改質し、燃料電池等で利用した水素燃料ガス(オフガス)を得ると共に、流入された燃焼用空気によりオフガスを燃焼させて上記原燃料を加熱する改質器1を有する制御装置において、改質器1の測定温度を設定温度に維持しつつ上記原燃料を加熱するために、燃料電池の発電出力と改質器1の上記測定温度とに基づいて燃焼用空気流量を制御する燃焼用空気流量制御手段と、燃料電池の発電出力と改質器1の上記測定温度とに基づいて上記原燃料の流量を制御する原燃料制御手段とを備えている。このため、上記原燃料の組成変化または改質反応の変化が生じた場合であっても、改質器1の温度を設定温度に維持することができるという効果があった。   The above-described conventional fuel cell control apparatus heats and reforms the inflowing raw fuel to obtain hydrogen fuel gas (offgas) used in the fuel cell or the like, and also converts offgas by the inflowing combustion air. In a control device having a reformer 1 that burns and heats the raw fuel, in order to heat the raw fuel while maintaining the measured temperature of the reformer 1 at a set temperature, the power generation output and reforming of the fuel cell Combustion air flow rate control means for controlling the combustion air flow rate based on the measured temperature of the reactor 1, and the flow rate of the raw fuel based on the power generation output of the fuel cell and the measured temperature of the reformer 1 And raw fuel control means. Therefore, there is an effect that the temperature of the reformer 1 can be maintained at the set temperature even when the composition change of the raw fuel or the change of the reforming reaction occurs.

特開平8−45521JP-A-8-45521

上述のように、従来の燃料電池の制御装置では改質器1の測定温度等に基づいて原燃料の流量を制御することにより、改質器1の温度を設定温度に維持していた。しかし、原燃料の流量は原燃料流量計6の指示値から得ていたため、この原燃料流量計6の指示値と原燃料の流量の真の値との間に差異が生じた場合、改質器1の温度を設定温度に維持することが困難であるという問題があった。特に、原燃料流量計6の計測上限値の30%以下または計測下限値以下では、原燃料流量調節弁5の開度が前閉方向または見方により前回方向の状態であるため、原燃料の流速等との関係上、原燃料流量調節弁5を適切に制御することが困難であるという問題があった。   As described above, in the conventional fuel cell control apparatus, the temperature of the reformer 1 is maintained at the set temperature by controlling the flow rate of the raw fuel based on the measured temperature of the reformer 1 and the like. However, since the flow rate of the raw fuel is obtained from the indicated value of the raw fuel flow meter 6, if there is a difference between the indicated value of the raw fuel flow meter 6 and the true value of the flow rate of the raw fuel, the reforming is performed. There was a problem that it was difficult to maintain the temperature of the vessel 1 at the set temperature. In particular, when the raw fuel flow meter 6 is 30% or less of the measurement upper limit value or less than the measurement lower limit value, the opening degree of the raw fuel flow rate control valve 5 is in the forward closing direction or in the previous direction depending on the viewpoint, so Therefore, there is a problem that it is difficult to appropriately control the raw fuel flow rate control valve 5.

例えば、原燃料流量計6の指示値が原燃料の流量の真の値より少なかった場合、原燃料流量調節弁5は開度を増加させる方向へ動作するため、必要以上の原燃料が導入されることになる。一方、改質器1の温度制御においては原燃料流量を減らすことにより温度を下げようとするが、原燃料流量計6の指示値が原燃料の流量の真の値より少ない、言い換えれば原燃料の流量の真の値は原燃料流量計6の指示値と比較して多いため、結果的に改質器1の温度は上昇してしまうことになる。本来、設定された原燃料流量において熱のバランスは一定に保たれる、すなわち設定温度に維持されるはずである。しかし上述のように、設定または計画された原燃料流量に対して実際に流れている原燃料の流量が多いため、燃料電池の制御装置の運転を安定して行なうことができないという問題があった。   For example, when the indicated value of the raw fuel flow meter 6 is smaller than the true value of the raw fuel flow rate, the raw fuel flow rate control valve 5 operates in the direction of increasing the opening, so that more raw fuel than necessary is introduced. Will be. On the other hand, in the temperature control of the reformer 1, an attempt is made to lower the temperature by reducing the raw fuel flow rate, but the indicated value of the raw fuel flow meter 6 is smaller than the true value of the raw fuel flow rate, in other words, the raw fuel. Since the true value of the flow rate is larger than the indicated value of the raw fuel flow meter 6, as a result, the temperature of the reformer 1 rises. Originally, the heat balance should be kept constant at the set raw fuel flow rate, that is, maintained at the set temperature. However, as described above, since the flow rate of the raw fuel actually flowing is larger than the set or planned raw fuel flow rate, there has been a problem that the operation of the fuel cell control device cannot be stably performed. .

上述とは反対に、原燃料流量計6の指示値が原燃料の流量の真の値より多かった場合、原燃料流量調節弁5は開度を減少させる方向へ動作するため、本来必要な原燃料が不足することになる。一方、改質器1の温度制御においては原燃料流量を増やすことにより温度を上げようとするが、原燃料流量計6の指示値が原燃料の流量の真の値より多い、言い換えれば原燃料の流量の真の値は原燃料流量計6の指示値と比較して少ないため、結果的にバーナ2への改質ガスの供給量が減少して改質器1の温度は下降してしまう現象が発生していた。本来、設定された原燃料流量において熱のバランスは一定に保たれる、すなわち設定温度に維持されるはずである。しかし上述のように、設定または計画された原燃料流量に対して実際に流れている原燃料の流量が少ないため、燃料電池の制御装置の運転を安定して行なうことができないという問題があった。   Contrary to the above, when the indicated value of the raw fuel flow meter 6 is larger than the true value of the raw fuel flow rate, the raw fuel flow rate control valve 5 operates in the direction of decreasing the opening degree. You will run out of fuel. On the other hand, the temperature control of the reformer 1 tries to increase the temperature by increasing the raw fuel flow rate, but the indicated value of the raw fuel flow meter 6 is larger than the true value of the raw fuel flow rate, in other words, the raw fuel. As a result, the amount of reformed gas supplied to the burner 2 decreases and the temperature of the reformer 1 falls. The phenomenon occurred. Originally, the heat balance should be kept constant at the set raw fuel flow rate, that is, maintained at the set temperature. However, as described above, since the flow rate of the raw fuel actually flowing is smaller than the set or planned raw fuel flow rate, there is a problem that the operation of the fuel cell control device cannot be stably performed. .

さらに、改質器1から水素燃料ガスが出る下流側の圧力が制御圧力より低い場合、オフガス流量が増加することにより改質器1の温度が上昇し、一方、上記下流側の圧力が制御圧力より高い場合、オフガス流量が減少することにより改質器1の温度が下降するという現象が発生するという問題があった。   Further, when the downstream pressure from which the hydrogen fuel gas exits the reformer 1 is lower than the control pressure, the temperature of the reformer 1 rises due to the increase in the off-gas flow rate, while the downstream pressure is controlled by the control pressure. If it is higher, there is a problem that the temperature of the reformer 1 decreases due to a decrease in the off-gas flow rate.

そこで、本発明の目的は、上記問題を解決するためになされたものであり、原燃料流量計の計測上限値の30%以下または計測下限値以下であっても原燃料流量調節弁を適切に制御することができ、原燃料流量計の計測において比較的不安定な領域であっても改質器の運転を適切に継続することができる改質器の原燃料制御装置等を提供することにある。   Accordingly, an object of the present invention has been made to solve the above-mentioned problem, and even if the raw fuel flow rate control valve is appropriately set even if it is 30% or less of the measurement upper limit value of the raw fuel flow meter or less than the measurement lower limit value. To provide a raw fuel control device for a reformer that can be controlled and can continue operation of the reformer appropriately even in a relatively unstable region in raw fuel flow meter measurement is there.

本発明の他の目的は、改質器から水素燃料ガスが出る下流側の圧力が制御圧力と異なる場合であっても、改質器の温度を一定に維持することができる改質器の原燃料制御装置等を提供することにある。   Another object of the present invention is to provide a reformer that can maintain the temperature of the reformer constant even when the downstream pressure at which the hydrogen fuel gas exits the reformer is different from the control pressure. To provide a fuel control device and the like.

本発明の原燃料制御装置は、原燃料を水素リッチなガスへ改質する改質器へ供給される原燃料の制御を行なう原燃料制御装置であって、該改質器へ原燃料を供給するラインには供給される原燃料の流量を計測する原燃料流量計と供給される原燃料の流量を調節する原燃料流量調節弁とが設けられ、該改質器には該改質器の温度を計測する温度計が設けられており、前記原燃料流量計を計測下限値の所定の近傍領域で使用する場合、前記原燃料流量計の計測値及び原燃料流量の所定の設定値と、前記温度計の計測値及び前記改質器の温度の所定の設定値とに基づき、前記温度計の計測値に応じ、前記原燃料流量計の指示値に優先させて前記原燃料流量調節弁の開度を増加減させる制御を行なうことを特徴とする。   A raw fuel control apparatus according to the present invention is a raw fuel control apparatus that controls raw fuel supplied to a reformer that reforms raw fuel into a hydrogen-rich gas, and supplies the raw fuel to the reformer. And a raw fuel flow meter for measuring the flow rate of the supplied raw fuel and a raw fuel flow rate adjusting valve for adjusting the flow rate of the supplied raw fuel. When a thermometer for measuring temperature is provided and the raw fuel flow meter is used in a predetermined vicinity region of a measurement lower limit value, a measured value of the raw fuel flow meter and a predetermined set value of the raw fuel flow rate, Based on the measured value of the thermometer and the predetermined set value of the temperature of the reformer, the measured value of the raw fuel flow meter is prioritized over the indicated value of the raw fuel flow meter according to the measured value of the thermometer. Control is performed to increase or decrease the opening.

ここで、本発明の原燃料制御装置において、前記改質器の下流側に出口圧力を計測する圧力計をさらに備え、該圧力計により計測された指示値も含めて原燃料流量調節弁の開度を増加減させる制御を行なうことができる。   Here, in the raw fuel control apparatus of the present invention, a pressure gauge for measuring the outlet pressure is further provided on the downstream side of the reformer, and the raw fuel flow rate control valve including the indicated value measured by the pressure gauge is opened. Control can be performed to increase or decrease the degree.

ここで、本発明の原燃料制御装置において、前記計測下限値の所定の近傍領域は前記原燃料流量計の計測上限値の30%以下または計測下限値以下であるものとすることができる。   Here, in the raw fuel control apparatus of the present invention, the predetermined vicinity region of the measurement lower limit value may be 30% or less of the measurement upper limit value of the raw fuel flow meter or less than the measurement lower limit value.

本発明の原燃料制御方法は、原燃料を水素リッチなガスへ改質する改質器へ供給される原燃料の制御を行なう原燃料制御方法であって、該改質器へ原燃料を供給するラインには供給される原燃料の流量を計測する原燃料流量計と供給される原燃料の流量を調節する原燃料流量調節弁とが設けられ、該改質器には該改質器の温度を計測する温度計が設けられており、前記原燃料流量計を計測下限値の所定の近傍領域で使用する場合、前記原燃料流量計の計測値及び原燃料流量の所定の設定値と、前記温度計の計測値及び前記改質器の温度の所定の設定値とに基づき、前記温度計の計測値に応じ、前記原燃料流量計の指示値に優先させて前記原燃料流量調節弁の開度を増加減させる制御を行なうことを特徴とする。   The raw fuel control method of the present invention is a raw fuel control method for controlling raw fuel supplied to a reformer that reforms raw fuel into a hydrogen-rich gas, and supplies the raw fuel to the reformer. And a raw fuel flow meter for measuring the flow rate of the supplied raw fuel and a raw fuel flow rate adjusting valve for adjusting the flow rate of the supplied raw fuel. When a thermometer for measuring temperature is provided and the raw fuel flow meter is used in a predetermined vicinity region of a measurement lower limit value, a measured value of the raw fuel flow meter and a predetermined set value of the raw fuel flow rate, Based on the measured value of the thermometer and the predetermined set value of the temperature of the reformer, the measured value of the raw fuel flow meter is prioritized over the indicated value of the raw fuel flow meter according to the measured value of the thermometer. Control is performed to increase or decrease the opening.

ここで、本発明の原燃料制御方法において、前記改質器の下流側に出口圧力を計測する圧力計をさらに備え、該圧力計により計測された指示値も含めて原燃料流量調節弁の開度を増加減させる制御を行なうことができる。   Here, in the raw fuel control method of the present invention, a pressure gauge for measuring the outlet pressure is further provided on the downstream side of the reformer, and the raw fuel flow rate control valve including the indicated value measured by the pressure gauge is opened. Control can be performed to increase or decrease the degree.

ここで、本発明の原燃料制御方法において、前記計測下限値の所定の近傍領域は前記原燃料流量計の計測上限値の30%以下または計測下限値以下であるものとすることができる。   Here, in the raw fuel control method of the present invention, the predetermined vicinity region of the measurement lower limit value may be 30% or less of the measurement upper limit value of the raw fuel flow meter or less than the measurement lower limit value.

原燃料流量計6により計測された原燃料流量計測値(PV1)および原燃料流量設定値(SV1)と、改質器1に備えられた温度計9により計測された改質器温度計測値(PV2)および改質器温度設定値(SV2)とに基づき、改質器1の温度に応じて、原燃料流量計6の指示値に優先させて原燃料流量調節弁5の開度を増加減させる制御を行なうことができる。このため、原燃料流量計6の計測上限値の30%以下または計測下限値以下であっても原燃料流量調節弁5を適切に制御することができ、原燃料流量計6の計測において比較的不安定な領域であっても改質器1の運転を適切に継続することができる改質器の原燃料制御装置40を提供することができるという効果がある。   The raw fuel flow rate measurement value (PV1) and raw fuel flow rate setting value (SV1) measured by the raw fuel flow meter 6 and the reformer temperature measurement value (measured by the thermometer 9 provided in the reformer 1) PV2) and the reformer temperature set value (SV2), the opening degree of the raw fuel flow rate control valve 5 is increased or decreased according to the temperature of the reformer 1 in preference to the indicated value of the raw fuel flow meter 6. Can be controlled. For this reason, even if it is 30% or less of the measurement upper limit value or less than the measurement lower limit value of the raw fuel flow meter 6, the raw fuel flow rate control valve 5 can be appropriately controlled. There is an effect that it is possible to provide the reformer raw fuel control device 40 capable of appropriately continuing the operation of the reformer 1 even in an unstable region.

以下、各実施例について図面を参照して詳細に説明する。   Hereinafter, each embodiment will be described in detail with reference to the drawings.

図1は、本発明の実施例1における改質器1(水素発生装置)の原燃料制御装置40を示す。図1で図5に示された従来の燃料電池の制御装置と同じ符号を付した箇所は同じ要素を示すため説明は省略する。図1において、符号40は原燃料流量計6の指示値と改質器1の温度計9により計測された温度とから原燃料流量調節弁5の制御を行なう原燃料制御装置、20は燃焼用空気50をバーナ2へ送るための空気ブロワ、52は天然ガス、LNG(Liquefied Natural Gas : 液化天然ガス)、LPG(Liquefied Petroleum Gas : 液化石油ガス)またはメタノール等の炭化水素を主成分とする原燃料である。改質器1に備えられたバーナ2では、空気ブロワ20により送られた燃焼用空気50を用いて燃料電池(不図示)で発電に使われなかったオフガス51が燃焼され触媒層の温度を上げることにより、改質器1の外側から吸熱反応のための熱を加えられる。改質器1では、原燃料供給ライン55から供給された原燃料52と水蒸気供給ライン(不図示)から供給された水蒸気とが水蒸気改質反応により水素リッチな改質ガス(水素53)として発生され、燃焼排ガス54が排出される。   FIG. 1 shows a raw fuel control device 40 of a reformer 1 (hydrogen generator) in Embodiment 1 of the present invention. In FIG. 1, the same reference numerals as those in the conventional fuel cell control device shown in FIG. In FIG. 1, reference numeral 40 denotes a raw fuel control device that controls the raw fuel flow rate control valve 5 from the indicated value of the raw fuel flow meter 6 and the temperature measured by the thermometer 9 of the reformer 1, and 20 denotes a combustion-use device. An air blower for sending air 50 to the burner 2, 52 is a raw material mainly composed of hydrocarbons such as natural gas, LNG (Liquefied Natural Gas), LPG (Liquefied Petroleum Gas) or methanol. It is fuel. In the burner 2 provided in the reformer 1, the combustion gas 50 sent by the air blower 20 is used to burn off gas 51 that has not been used for power generation in a fuel cell (not shown) to raise the temperature of the catalyst layer. Thus, heat for the endothermic reaction can be applied from the outside of the reformer 1. In the reformer 1, the raw fuel 52 supplied from the raw fuel supply line 55 and the steam supplied from the steam supply line (not shown) are generated as hydrogen-rich reformed gas (hydrogen 53) by the steam reforming reaction. The combustion exhaust gas 54 is discharged.

次に、原燃料制御装置40の機能について説明する。原燃料制御装置40は、原燃料流量計6を計測値上限値の30%以下または計測下限値以下で使用する際に、温度計9により計測された改質器1の温度に応じ原燃料流量計6の指示値に優先させて、原燃料流量調節弁5の開度を増加減させる制御を行なうものである。図2は、本発明の実施例1における原燃料制御装置40の制御ブロック図を示す。図2で図1と同じ符号を付した箇所は同じ要素を示すため説明は省略する。図2において、符号21は、温度計9により計測された改質器温度計測値PV2と改質器1の触媒温度を一定に保つための改質器温度設定値SV2との偏差△tを求める減算器、22は減算器21の出力に基づいて原燃料流量補正値SV3を求める関数演算器、25は改質器1の運転に際して設定された原燃料流量設定値SV1に原燃料流量補正値SV3を加算する加算器、26は原燃料流量計6により計測された原燃料流量計測値PV1と加算器25により得られたSV4との偏差△Fを求める減算器、27は減算器26により得られた偏差△Fを零にするような操作値MV1を求める演算器(PID制御器等)、24は原燃料計測値PV1が原燃料流量計6の計測値上限値の30%以下または計測下限値以下の領域に入ったことを判定する判定器、23は減算器21で得られた偏差△tに基づいて流量計補正値MV2を求める関数演算器である。判定器24で原燃料計測値PV1が原燃料流量計6の計測値上限値の30%以下または計測下限値以下の領域に入ったと判定された場合、補正開始指令29により、関数演算器23で得られた流量計補正値MV2は演算器27により得られた操作値MV1と加算器28で加算され、原燃料流量調節弁5への開度指令を出力することができる。   Next, the function of the raw fuel control device 40 will be described. The raw fuel control device 40 uses the raw fuel flow meter 6 according to the temperature of the reformer 1 measured by the thermometer 9 when using the raw fuel flow meter 6 at 30% or less of the measured value upper limit value or below the measured lower limit value. The control is performed to increase or decrease the opening degree of the raw fuel flow rate control valve 5 in preference to the total indicated value of 6. FIG. 2 shows a control block diagram of the raw fuel control device 40 according to the first embodiment of the present invention. In FIG. 2, the same reference numerals as those in FIG. In FIG. 2, reference numeral 21 denotes a deviation Δt between the reformer temperature measurement value PV2 measured by the thermometer 9 and the reformer temperature set value SV2 for keeping the catalyst temperature of the reformer 1 constant. A subtractor, 22 is a function calculator for obtaining the raw fuel flow rate correction value SV3 based on the output of the subtractor 21, and 25 is a raw fuel flow rate correction value SV3 to the raw fuel flow rate set value SV1 set when the reformer 1 is operated. 26 is a subtractor for obtaining a deviation ΔF between the raw fuel flow rate measurement value PV1 measured by the raw fuel flow meter 6 and the SV4 obtained by the adder 25, and 27 is obtained by the subtractor 26. An arithmetic unit (PID controller or the like) for obtaining an operation value MV1 that makes the deviation ΔF zero, 24 is a raw fuel measurement value PV1 of 30% or less of the upper limit value of the raw fuel flow meter 6 or a measurement lower limit value Determine that you are in the following area Determinator, 23 is a function calculator for obtaining the flow meter correction value MV2 based on the obtained difference △ t at the subtractor 21. When the determination unit 24 determines that the raw fuel measurement value PV1 has entered an area that is 30% or less of the upper limit value of the raw fuel flow meter 6 or less than the measurement lower limit value, the function calculator 23 uses the correction start command 29 to The obtained flow meter correction value MV2 is added by the adder 28 with the operation value MV1 obtained by the calculator 27, and an opening degree command to the raw fuel flow rate control valve 5 can be output.

以上より、本発明の実施例1によれば、原燃料流量計6により計測された原燃料流量計測値PV1および原燃料流量設定値SV1と、改質器1に備えられた温度計9により計測された改質器温度計測値PV2および改質器温度設定値SV2とに基づき、改質器1の温度に応じて、原燃料流量計6の指示値に優先させて原燃料流量調節弁5の開度を増加減させる制御を行なうことができる。このため、原燃料流量計6の計測上限値の30%以下または計測下限値以下であっても原燃料流量調節弁5を適切に制御することができ、原燃料流量計6の計測において比較的不安定な領域であっても改質器1の運転を適切に継続することができる改質器の原燃料制御装置40および原燃料制御方法を提供することができる。   As described above, according to the first embodiment of the present invention, the raw fuel flow rate measurement value PV1 and the raw fuel flow rate setting value SV1 measured by the raw fuel flow meter 6 and the thermometer 9 provided in the reformer 1 are measured. Based on the reformer temperature measurement value PV2 and the reformer temperature setting value SV2, the priority value of the raw fuel flow meter 6 is given priority over the indicated value of the raw fuel flow meter 6 according to the temperature of the reformer 1. Control to increase or decrease the opening can be performed. For this reason, even if it is 30% or less of the measurement upper limit value or less than the measurement lower limit value of the raw fuel flow meter 6, the raw fuel flow rate control valve 5 can be appropriately controlled. It is possible to provide a raw fuel control device 40 and a raw fuel control method for a reformer that can appropriately continue operation of the reformer 1 even in an unstable region.

図3は、本発明の実施例2における改質器1(水素発生装置)の原燃料制御装置41を示す。図3で図1に示された改質器1の原燃料制御装置40と同じ符号を付した箇所は同じ要素を示すため説明は省略する。実施例2の原燃料制御装置41が実施例1の原燃料制御装置40と異なる点は、原燃料制御装置40の機能に、改質器1の下流側に設置された圧力計42の指示値に応じて原燃料流量調節弁5の開度を増加減させる制御を行なう機能を加えた点にある。   FIG. 3 shows the raw fuel control device 41 of the reformer 1 (hydrogen generator) in Embodiment 2 of the present invention. In FIG. 3, the same reference numerals as those of the raw fuel control device 40 of the reformer 1 shown in FIG. The raw fuel control device 41 of the second embodiment is different from the raw fuel control device 40 of the first embodiment in that the function value of the raw fuel control device 40 is the indicated value of the pressure gauge 42 installed on the downstream side of the reformer 1. Accordingly, a function of performing control to increase or decrease the opening degree of the raw fuel flow rate control valve 5 is added.

次に、原燃料制御装置41の機能について説明する。原燃料制御装置41は、原燃料流量計6を計測値上限値の30%以下または計測下限値以下で使用する際に、温度計9により計測された改質器1の温度と圧力計42により計測された改質器1の下流側の圧力とに応じ、原燃料流量計6の指示値に優先させて、原燃料流量調節弁5の開度を増加減させる制御を行なうものである。図4は、本発明の実施例2における原燃料制御装置41の制御ブロック図を示す。図4で図2および図3と同じ符号を付した箇所は同じ機能を有するため説明は省略する。図4において、符号43は圧力計42で計測された改質器出口圧力計測値PV5と改質器出口圧力基準値SV5との偏差△tを求める減算器、44は減算器43により得られた偏差△tに基づいて原燃料流量調節弁5の開度を増加減させる関数a1を求める関数演算器、45は関数演算器23で求められた流量計補正値MV2に関数演算器24で求められた関数a1を乗算して圧力流量補正値MV4を求めるための乗算器である。判定器24で原燃料計測値PV1が原燃料流量計6の計測値上限値の30%以下または計測下限値以下の領域に入ったと判定された場合、補正開始指令46により、乗算器45で得られた圧力流量補正値MV4は演算器27により得られた操作値MV1と加算器28で加算され、原燃料流量調節弁5への開度指令を出力することができる。   Next, functions of the raw fuel control device 41 will be described. The raw fuel control device 41 uses the temperature of the reformer 1 measured by the thermometer 9 and the pressure gauge 42 when the raw fuel flow meter 6 is used at 30% or less of the measured value upper limit value or less than the measured lower limit value. In accordance with the measured pressure on the downstream side of the reformer 1, control is performed to increase or decrease the opening of the raw fuel flow rate control valve 5 in preference to the indicated value of the raw fuel flow meter 6. FIG. 4 shows a control block diagram of the raw fuel control device 41 in Embodiment 2 of the present invention. In FIG. 4, the portions denoted by the same reference numerals as those in FIGS. In FIG. 4, reference numeral 43 denotes a subtractor for obtaining a deviation Δt between the reformer outlet pressure measured value PV5 measured by the pressure gauge 42 and the reformer outlet pressure reference value SV5, and 44 is obtained by the subtractor 43. A function calculator 45 for obtaining a function a1 for increasing or decreasing the opening degree of the raw fuel flow rate control valve 5 based on the deviation Δt, 45 is obtained by the function calculator 24 to the flow meter correction value MV2 obtained by the function calculator 23. It is a multiplier for multiplying the function a1 to obtain the pressure flow rate correction value MV4. When the determination unit 24 determines that the raw fuel measurement value PV1 is in an area that is 30% or less of the upper limit value of the raw fuel flow meter 6 or less than the lower limit measurement value, the multiplier 45 receives the correction start command 46. The obtained pressure flow rate correction value MV4 is added by the adder 28 with the operation value MV1 obtained by the calculator 27, and an opening degree command to the raw fuel flow rate control valve 5 can be output.

以上より、本発明の実施例2によれば、実施例1の原燃料制御装置40の機能に、改質器1の下流側に設置された圧力計42の指示値に応じて原燃料流量調節弁5の開度を増加減させる制御を行なう機能を加えることができる。このため、原燃料制御装置41は、原燃料流量計6を計測値上限値の30%以下または計測下限値以下で使用する際に、温度計9により計測された改質器1の温度と圧力計42により計測された改質器1の下流側の圧力とに応じ、原燃料流量計6の指示値に優先させて、原燃料流量調節弁5の開度を増加減させる制御を行なうことができる。この結果、改質器1から水素燃料ガスが出る下流側の圧力が制御圧力と異なる場合であっても、改質器1の温度を一定に維持することができる改質器1の原燃料制御装置41および原燃料制御方法を提供することができる。   As described above, according to the second embodiment of the present invention, the raw fuel flow rate is adjusted according to the indicated value of the pressure gauge 42 installed on the downstream side of the reformer 1 in the function of the raw fuel control device 40 of the first embodiment. A function of performing control to increase or decrease the opening degree of the valve 5 can be added. Therefore, the raw fuel control device 41 uses the temperature and pressure of the reformer 1 measured by the thermometer 9 when the raw fuel flow meter 6 is used at 30% or less of the measured value upper limit value or less than the measured lower limit value. In accordance with the pressure on the downstream side of the reformer 1 measured by the meter 42, the opening degree of the raw fuel flow rate control valve 5 is controlled to increase and decrease in preference to the indicated value of the raw fuel flow meter 6. it can. As a result, even if the downstream pressure at which the hydrogen fuel gas exits from the reformer 1 is different from the control pressure, the raw fuel control of the reformer 1 that can maintain the temperature of the reformer 1 constant. The apparatus 41 and the raw fuel control method can be provided.

本発明の活用例として、天然ガス、LNG、LPGまたはメタノール等の炭化水素を主成分とする原燃料と水蒸気とから水素を製造する改質器への適用が挙げられる。   As an application example of the present invention, there is an application to a reformer that produces hydrogen from raw gas mainly composed of hydrocarbons such as natural gas, LNG, LPG, or methanol and steam.

本発明の実施例1における改質器1(水素発生装置)の原燃料制御装置40を示す図である。It is a figure which shows the raw fuel control apparatus 40 of the reformer 1 (hydrogen generator) in Example 1 of this invention. 本発明の実施例1における原燃料制御装置40の制御ブロック図である。It is a control block diagram of the raw fuel control apparatus 40 in Example 1 of this invention. 本発明の実施例2における改質器1(水素発生装置)の原燃料制御装置41を示す図である。It is a figure which shows the raw fuel control apparatus 41 of the reformer 1 (hydrogen generator) in Example 2 of this invention. 本発明の実施例2における原燃料制御装置41の制御ブロック図である。It is a control block diagram of the raw fuel control apparatus 41 in Example 2 of this invention. 特許文献1に記載された燃料電池の制御装置を示す図である。2 is a diagram illustrating a fuel cell control device described in Patent Literature 1. FIG. 図5中の補正空気流量演算装置10Aおよび空気調節弁駆動装置11Aのブロック図である。FIG. 6 is a block diagram of a corrected air flow rate calculation device 10A and an air control valve drive device 11A in FIG.

符号の説明Explanation of symbols

1 改質器、 1a 改質器反応管、 1b 炉体、 2 バーナ、 3 燃焼用空気流量調節弁、 4 燃焼用空気流量計、 5 原燃料流量調節弁、 6 原燃料流量計、 7 バルブ、 8A 原料スチームの調節弁、 8B 原料スチームの流量計、 9 温度計、 12A,15A 関数器(FX)、 13A,18A,21,26,43 減算器、 14A 補正量演算器、 16A基準流量演算器、 17A,25,28 加算器、 19A 駆動信号演算器、 20 空気ブロワ、 22,23,44 関数演算器、 24 判定器、 27 演算器、 30 補正原燃料流量演算装置、 31 原燃料流量調節弁駆動装置、 40,41 原燃料制御装置、 42 圧力計、 45 乗算器、 29,46 補正開始指令、 50 燃焼用空気、 51 オフガス、 52 原燃料、 53 水素、 54 燃焼排ガス。
1 reformer, 1a reformer reaction tube, 1b furnace body, 2 burner, 3 combustion air flow control valve, 4 combustion air flow meter, 5 raw fuel flow control valve, 6 raw fuel flow meter, 7 valve, 8A Raw material steam control valve, 8B Raw material steam flow meter, 9 Thermometer, 12A, 15A Function unit (FX), 13A, 18A, 21, 26, 43 Subtractor, 14A Correction amount calculator, 16A reference flow rate calculator , 17A, 25, 28 Adder, 19A Drive signal calculator, 20 Air blower, 22, 23, 44 Function calculator, 24 Determinator, 27 Calculator, 30 Corrected raw fuel flow rate calculation device, 31 Raw fuel flow rate control valve Drive device, 40, 41 Raw fuel control device, 42 Pressure gauge, 45 Multiplier, 29, 46 Correction start command, 50 Combustion air, 51 Off gas, 52 Raw fuel, 53 Hydrogen, 54 Combustion exhaust gas Su.

Claims (6)

原燃料を水素リッチなガスへ改質する改質器へ供給される原燃料の制御を行なう原燃料制御装置であって、該改質器へ原燃料を供給するラインには供給される原燃料の流量を計測する原燃料流量計と供給される原燃料の流量を調節する原燃料流量調節弁とが設けられ、該改質器には該改質器の温度を計測する温度計が設けられており、
前記原燃料流量計を計測下限値の所定の近傍領域で使用する場合、前記原燃料流量計の計測値及び原燃料流量の所定の設定値と、前記温度計の計測値及び前記改質器の温度の所定の設定値とに基づき、前記温度計の計測値に応じ、前記原燃料流量計の指示値に優先させて前記原燃料流量調節弁の開度を増加減させる制御を行なうことを特徴とする原燃料制御装置。
A raw fuel control device that controls raw fuel supplied to a reformer that reforms raw fuel into a hydrogen-rich gas, the raw fuel supplied to a line that supplies the raw fuel to the reformer A raw fuel flow meter for measuring the flow rate of the raw fuel and a raw fuel flow rate control valve for adjusting the flow rate of the supplied raw fuel are provided, and the reformer is provided with a thermometer for measuring the temperature of the reformer. And
When the raw fuel flow meter is used in a predetermined vicinity region of the measurement lower limit value, the measured value of the raw fuel flow meter and the predetermined set value of the raw fuel flow rate, the measured value of the thermometer, and the reformer Based on a predetermined set value of temperature, control is performed to increase or decrease the opening of the raw fuel flow rate control valve in preference to the indicated value of the raw fuel flow meter according to the measured value of the thermometer. The raw fuel control device.
請求項1記載の原燃料制御装置において、前記改質器の下流側に出口圧力を計測する圧力計をさらに備え、該圧力計により計測された指示値も含めて原燃料流量調節弁の開度を増加減させる制御を行なうことを特徴とする原燃料制御装置。   2. The raw fuel control apparatus according to claim 1, further comprising a pressure gauge for measuring an outlet pressure downstream of the reformer, and an opening degree of the raw fuel flow control valve including an indication value measured by the pressure gauge. A raw fuel control apparatus characterized by performing control to increase or decrease the fuel consumption. 請求項1または2記載の原燃料制御装置において、前記計測下限値の所定の近傍領域は前記原燃料流量計の計測上限値の30%以下または計測下限値以下であることを特徴とする原燃料制御装置。   3. The raw fuel control apparatus according to claim 1, wherein the predetermined vicinity region of the measurement lower limit value is 30% or less of the measurement upper limit value of the raw fuel flow meter or less than the measurement lower limit value. Control device. 原燃料を水素リッチなガスへ改質する改質器へ供給される原燃料の制御を行なう原燃料制御方法であって、該改質器へ原燃料を供給するラインには供給される原燃料の流量を計測する原燃料流量計と供給される原燃料の流量を調節する原燃料流量調節弁とが設けられ、該改質器には該改質器の温度を計測する温度計が設けられており、
前記原燃料流量計を計測下限値の所定の近傍領域で使用する場合、前記原燃料流量計の計測値及び原燃料流量の所定の設定値と、前記温度計の計測値及び前記改質器の温度の所定の設定値とに基づき、前記温度計の計測値に応じ、前記原燃料流量計の指示値に優先させて前記原燃料流量調節弁の開度を増加減させる制御を行なうことを特徴とする原燃料制御方法。
A raw fuel control method for controlling a raw fuel supplied to a reformer that reforms the raw fuel into a hydrogen-rich gas, the raw fuel supplied to a line for supplying the raw fuel to the reformer A raw fuel flow meter for measuring the flow rate of the raw fuel and a raw fuel flow rate control valve for adjusting the flow rate of the supplied raw fuel are provided, and the reformer is provided with a thermometer for measuring the temperature of the reformer. And
When the raw fuel flow meter is used in a predetermined vicinity region of the measurement lower limit value, the measured value of the raw fuel flow meter and the predetermined set value of the raw fuel flow rate, the measured value of the thermometer, and the reformer Based on a predetermined set value of temperature, control is performed to increase or decrease the opening of the raw fuel flow rate control valve in preference to the indicated value of the raw fuel flow meter according to the measured value of the thermometer. A raw fuel control method.
請求項4記載の原燃料制御方法において、前記改質器の下流側に出口圧力を計測する圧力計をさらに備え、該圧力計により計測された指示値も含めて原燃料流量調節弁の開度を増加減させる制御を行なうことを特徴とする原燃料制御方法。   5. The raw fuel control method according to claim 4, further comprising a pressure gauge for measuring an outlet pressure downstream of the reformer, and including an indication value measured by the pressure gauge. A raw fuel control method characterized by performing control to increase or decrease the amount of fuel. 請求項4または5記載の原燃料制御方法において、前記計測下限値の所定の近傍領域は前記原燃料流量計の計測上限値の30%以下または計測下限値以下であることを特徴とする原燃料制御方法。
6. The raw fuel control method according to claim 4, wherein the predetermined vicinity region of the measurement lower limit value is 30% or less of the measurement upper limit value of the raw fuel flow meter or less than the measurement lower limit value. Control method.
JP2003433322A 2003-12-26 2003-12-26 Raw fuel control device and raw fuel control method Expired - Lifetime JP4337546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433322A JP4337546B2 (en) 2003-12-26 2003-12-26 Raw fuel control device and raw fuel control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433322A JP4337546B2 (en) 2003-12-26 2003-12-26 Raw fuel control device and raw fuel control method

Publications (2)

Publication Number Publication Date
JP2005190917A true JP2005190917A (en) 2005-07-14
JP4337546B2 JP4337546B2 (en) 2009-09-30

Family

ID=34790743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433322A Expired - Lifetime JP4337546B2 (en) 2003-12-26 2003-12-26 Raw fuel control device and raw fuel control method

Country Status (1)

Country Link
JP (1) JP4337546B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210047A (en) * 2005-01-26 2006-08-10 Toshiba Fuel Cell Power Systems Corp Fuel cell system
KR100717783B1 (en) 2005-09-27 2007-05-11 삼성에스디아이 주식회사 Fuel cell system and driving method thereof
JP2007265854A (en) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd Fuel cell system and its control method
JP2010267450A (en) * 2009-05-13 2010-11-25 Aisin Seiki Co Ltd Fuel cell system
WO2011118775A1 (en) * 2010-03-26 2011-09-29 Jx日鉱日石エネルギー株式会社 Fuel cell system, reformer system, and method for driving fuel cell system
JP2012119201A (en) * 2010-12-02 2012-06-21 Toshiba Fuel Cell Power Systems Corp Fuel cell power generating system, and leakage detecting method of the same
JP2013030356A (en) * 2011-07-28 2013-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and fuel cell power generation system control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210047A (en) * 2005-01-26 2006-08-10 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP4634163B2 (en) * 2005-01-26 2011-02-16 東芝燃料電池システム株式会社 Fuel cell system
KR100717783B1 (en) 2005-09-27 2007-05-11 삼성에스디아이 주식회사 Fuel cell system and driving method thereof
JP2007265854A (en) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd Fuel cell system and its control method
JP2010267450A (en) * 2009-05-13 2010-11-25 Aisin Seiki Co Ltd Fuel cell system
WO2011118775A1 (en) * 2010-03-26 2011-09-29 Jx日鉱日石エネルギー株式会社 Fuel cell system, reformer system, and method for driving fuel cell system
JP2012119201A (en) * 2010-12-02 2012-06-21 Toshiba Fuel Cell Power Systems Corp Fuel cell power generating system, and leakage detecting method of the same
JP2013030356A (en) * 2011-07-28 2013-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and fuel cell power generation system control method

Also Published As

Publication number Publication date
JP4337546B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4105758B2 (en) Fuel cell system
JP3674441B2 (en) Reformer control device
JP4337546B2 (en) Raw fuel control device and raw fuel control method
JP4325270B2 (en) Operation control method of fuel cell power generator
JPS62186472A (en) Fuel system controller for fuel cell power generation plant
JP2008010369A (en) Starting method of fuel cell system and fuel cell system
JP6535885B2 (en) HYDROGEN GENERATION DEVICE, ITS OPERATION METHOD, AND FUEL CELL SYSTEM
JP2004039420A (en) Fuel cell power generation system
JP2006027965A (en) Hydrogen generator and fuel cell power generation system
JP4450563B2 (en) Fuel cell reformer
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell
JP4402867B2 (en) Reformer
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JP2004146089A (en) Fuel cell type power generation system and its starting method
JP4847053B2 (en) Load control method for reforming system
JPS6329460A (en) Reformer temperature control device for fuel cell power generation system
JPH06176787A (en) Fuel cell generator
JP5520013B2 (en) Fuel cell system
JP2005093126A (en) Fuel cell power generator and its operation method
JP5363717B2 (en) Hydrogen production system
JP2005093346A (en) Fuel cell system
JP3729053B2 (en) Fuel reformer
KR100987175B1 (en) Fuel Cell System and Fuel Supply Method Thereof
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP3733850B2 (en) Fuel reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4337546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term