JP2005189353A - Optical isolator element and its manufacture method - Google Patents

Optical isolator element and its manufacture method Download PDF

Info

Publication number
JP2005189353A
JP2005189353A JP2003428465A JP2003428465A JP2005189353A JP 2005189353 A JP2005189353 A JP 2005189353A JP 2003428465 A JP2003428465 A JP 2003428465A JP 2003428465 A JP2003428465 A JP 2003428465A JP 2005189353 A JP2005189353 A JP 2005189353A
Authority
JP
Japan
Prior art keywords
optical
optical isolator
adhesive
substrate
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003428465A
Other languages
Japanese (ja)
Other versions
JP4443212B2 (en
Inventor
Tetsuya Suga
哲也 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003428465A priority Critical patent/JP4443212B2/en
Publication of JP2005189353A publication Critical patent/JP2005189353A/en
Application granted granted Critical
Publication of JP4443212B2 publication Critical patent/JP4443212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an optical isolator element, which can be mounted without being adjusted, with good mass-productivity. <P>SOLUTION: The optical isolator manufacture method includes (1) a step for forming a laminated body by sticking a large-sized polarizer base plate whose plane is quadrangular on both surfaces of a large-sized Faraday rotator base plate 2 whose plane is quadrangular through an adhesive for temporary fixing, (2) a step for obtaining the strip-like body of the laminated body cut in parallel with one side of the plane of the laminated body, (3) a step for obtaining the assembly of a plurality of strip-like bodies arrayed in a state where their optical surfaces abut on each other and their cut surfaces turn up and down and also masking the optical surfaces of at least both ends of the assembly, (4) a step for forming a metallic multilayer film only on the cut surface of the assembly after the stage (3), (5) a step for obtaining the block body of the strip-like body cut in parallel with the short side of the plane of the strip-like body after the stage (4), and (6) a step for washing the block body and removing the adhesive for temporary fixing. The optical isolator is manufactured by utilizing the method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光源から出射された光を各種光学素子や光ファイバに導入する際に生じる戻り光を除去するために用いられる光アイソレータおよびその製造方法に関する。   The present invention relates to an optical isolator used for removing return light generated when light emitted from a light source is introduced into various optical elements and optical fibers, and a manufacturing method thereof.

光通信用モジュール等において、レーザ光源等の光源から出射した光は、各種光学素子や光ファイバに入射されるが、入射光の一部は各種光学素子や光ファイバの端面や内部で反射されたり散乱されたりする。この反射や散乱した光の一部は、戻り光として光源に戻ろうとするが、この戻り光を防止するために光アイソレータが用いられる。   In an optical communication module or the like, light emitted from a light source such as a laser light source is incident on various optical elements or optical fibers, but a part of the incident light is reflected on the end surfaces or inside of the various optical elements or optical fibers. It is scattered. A part of the reflected or scattered light tries to return to the light source as return light, and an optical isolator is used to prevent the return light.

従来、この種の光アイソレータは、2枚の平板状の偏光子の間に平板状のファラデー回転子を配置し、これら3つの部品を筒状の磁石内に部品ホルダを介して収納する構成であった。通常、ファラデー回転子は飽和磁界内において所定の波長をもつ光の偏光面を45度回転する厚みに調整され、また2つの偏光子はそれぞれの透過偏光方向が45度回転方向に相対的にずれるように回転調整されている。   Conventionally, this type of optical isolator has a configuration in which a flat Faraday rotator is disposed between two flat polarizers, and these three components are housed in a cylindrical magnet via a component holder. there were. Normally, the Faraday rotator is adjusted to a thickness that rotates the polarization plane of light having a predetermined wavelength in the saturation magnetic field by 45 degrees, and the transmission polarization directions of the two polarizers are relatively shifted from each other by 45 degrees. The rotation is adjusted as follows.

このような構成の光アイソレータは、ファラデー回転子と2つの偏光子が別部品で素子ごとにホルダが必要であり、そのため部品点数が多くなり組立工数が多くなるばかりか各部品間の光学上の調整作業も煩雑で、コスト高を招くばかりか小型化も難しかった。また、光源モジュールに組み込む際に、飽和磁界を形成するための磁石の位置についての調整、すなわち、光アイソレータの偏波面の調整も必要となり実装工程が煩雑であった。   The optical isolator having such a configuration requires a Faraday rotator and two polarizers as separate parts and requires a holder for each element. Therefore, the number of parts is increased and the number of assembly steps is increased. Adjustment work is also complicated, which not only increases costs but also makes it difficult to reduce the size. Further, when incorporating the light source module into the light source module, it is necessary to adjust the position of the magnet for forming the saturation magnetic field, that is, to adjust the polarization plane of the optical isolator, and the mounting process is complicated.

このため、ファラデー回転子と偏光子の各光学素子と、直方体の磁石を、平板状の整列基板に設置した光アイソレータが各種提案されている。   For this reason, various optical isolators have been proposed in which optical elements of a Faraday rotator and a polarizer and a cuboid magnet are installed on a flat plate-like alignment substrate.

例えば、特許文献1には、図5に示すように従来の光アイソレータ18が示されており、光アイソレータ18はファラデー回転子12、偏光子13、検光子14の各光学素子と直方体の磁石17が、一枚の平板状の整列基板16上に配置され接合材15で固定されている。ここで偏光子13、検光子14は、透過する光の一方向の偏波成分を吸収し、その偏波成分に直交する偏波成分を透過する機能を有し、また、ファラデー回転子12は飽和磁界強度において所定波長の光の偏波面を約45度回転する機能を有する。また偏光子13、検光子14は、整列基板16に接するそれぞれの面を基準面とし、この基準面に対し透過偏波方向がそれぞれ0度および45度となるように切り出されている。   For example, Patent Document 1 shows a conventional optical isolator 18 as shown in FIG. 5. The optical isolator 18 includes optical elements of a Faraday rotator 12, a polarizer 13, and an analyzer 14, and a rectangular magnet 17. Are arranged on a flat plate-like alignment substrate 16 and fixed with a bonding material 15. Here, the polarizer 13 and the analyzer 14 have a function of absorbing a polarization component in one direction of transmitted light and transmitting a polarization component orthogonal to the polarization component, and the Faraday rotator 12 is It has a function of rotating the polarization plane of light of a predetermined wavelength by about 45 degrees at the saturation magnetic field strength. Further, the polarizer 13 and the analyzer 14 are cut out so that their respective surfaces in contact with the alignment substrate 16 serve as reference surfaces, and the transmitted polarization directions are 0 degrees and 45 degrees, respectively, with respect to the reference surfaces.

特許文献1では段落0020に記載があるように、従来は、大型の偏光子基板やファラデー回転子基板(不図示)から偏光子13、検光子14やファラデー回転子12がそれぞれ別工程で縦横に切断された後、段落0013に記載があるように切り出された四角形のそれぞれの偏光子12、検光子14、ファラデー回転子12の底面に整列基板16との接合のために各々メタライズ等の処理を行うものであった。なお、検光子という呼称は、出射側に配置された偏光子を示すものである。   As described in paragraph 0020 in Patent Document 1, conventionally, a polarizer 13, an analyzer 14, and a Faraday rotator 12 are vertically and horizontally separated from each other by a large polarizer substrate or a Faraday rotator substrate (not shown). After being cut, each of the rectangular polarizers 12, analyzers 14, and Faraday rotators 12 cut out as described in paragraph 0013 is subjected to metallization processing for bonding to the alignment substrate 16. It was something to do. Note that the term analyzer refers to a polarizer disposed on the exit side.

また、特許文献2には、図4に示すように従来の光アイソレータ素子の製造工程が示されている。この光アイソレータ用素子を作製する手順は、図4(a)に示すように大型の偏光子基板1、3と大型のファラデー回転子基板2を、仮固定用の接着剤7を用いて交互に張り合わせて図4(b)に示すように接着剤7を硬化させることにより積層体10を形成する。その後、図4(c)に示すように、積層体10の平面の一辺に平行にカットした短冊体6とする。次に接着剤7を図4(f)のように洗浄除去してバラバラにしてから、再度、基板上に整列・固定し直し一括でブロック状にカットするものである。具体的には、平坦面上に短冊体のカット面を当接させることにより仮固定時の相対的位置関係が再現され、一対の偏光子間の角度配置が正確に行われるものである。   Further, Patent Document 2 shows a manufacturing process of a conventional optical isolator element as shown in FIG. As shown in FIG. 4A, the procedure for manufacturing the optical isolator element is performed by alternately attaching the large polarizer substrates 1 and 3 and the large Faraday rotator substrate 2 using the adhesive 7 for temporary fixing. The laminated body 10 is formed by curing and bonding the adhesive 7 as shown in FIG. Then, as shown in FIG.4 (c), it is set as the strip 6 cut in parallel with one side of the plane of the laminated body 10. FIG. Next, the adhesive 7 is washed and removed as shown in FIG. 4 (f), and then aligned and fixed again on the substrate and collectively cut into blocks. Specifically, the relative positional relationship at the time of temporary fixing is reproduced by bringing the cut surface of the strip into contact with the flat surface, and the angular arrangement between the pair of polarizers is accurately performed.

ここで使用する接着剤7としては仮固定機能を有する必要から有機系の接着剤が使用されている。しかし、最終的にファラデー回転子や偏光子に接合される接着剤としては無機接着剤が用いられている。この理由は、光アイソレータに通過するレーザとしては、GaAs等からなる半導体レーザーチップが用いられるが、その半導体レーザーチップは、わずかな残留酸素によってその表面に酸化膜が形成され、発振効率の低下が見られる。そこで、半導体レーザーチップを設置するパッケージは、窒素ガス等の不活性ガスで気密封止され、当然、封止パッケージ内にはアウトガスの発生する部品の設置は不可能である。従って、アウトガスは主に有機系の接着剤より発生するため、パッケージに内蔵する光アイソレータでも有機系の樹脂接着剤は使用できず、低融点ガラスや金属ロウ材などの無機系接合剤を用いることになる。従って、図4(f)の工程で仮固定の接着剤7を完全に洗浄してしまう必要がある。
特開2001−91899号公報 特開平11−101953号公報
As the adhesive 7 used here, an organic adhesive is used because it needs to have a temporary fixing function. However, an inorganic adhesive is used as an adhesive finally bonded to the Faraday rotator or the polarizer. The reason for this is that a semiconductor laser chip made of GaAs or the like is used as the laser that passes through the optical isolator. However, an oxide film is formed on the surface of the semiconductor laser chip by a slight residual oxygen, and the oscillation efficiency is reduced. It can be seen. Therefore, the package in which the semiconductor laser chip is installed is hermetically sealed with an inert gas such as nitrogen gas. Naturally, it is impossible to install a component that generates outgas in the sealed package. Therefore, outgas is mainly generated from organic adhesives, so organic resin adhesives cannot be used even in optical isolators built in packages, and inorganic adhesives such as low melting glass and metal brazing materials should be used. become. Therefore, it is necessary to completely clean the temporarily fixed adhesive 7 in the step of FIG.
JP 2001-91899 A Japanese Patent Laid-Open No. 11-101953

しかしながら、特許文献1では上述のように大型の偏光子基板やファラデー回転子基板を別個に縦横に切断して四角形の板状形状に加工し、その切断加工の後に、整列基板16との接合面となる偏光子13、14やファラデー回転子12の底面にメタライズ等の処理を施すものであり、工程が煩雑であるだけでなく、別個に切り出した光アイソレータ素子11は底面の加工形状にばらつきを有し、単に光アイソレータ素子11を整列基板16に載置しただけでは光アイソレータ18の光学性能にもばらつきが発生しやすかった。   However, in Patent Document 1, as described above, a large polarizer substrate and a Faraday rotator substrate are separately cut vertically and horizontally and processed into a rectangular plate shape, and after the cutting processing, the bonding surface with the alignment substrate 16 is obtained. The bottom surfaces of the polarizers 13 and 14 and the Faraday rotator 12 to be processed are subjected to metallization and the like. Not only the process is complicated, but the optical isolator element 11 cut out separately varies in the processing shape of the bottom surface. However, simply placing the optical isolator element 11 on the alignment substrate 16 easily causes variations in the optical performance of the optical isolator 18.

また、別個に偏光子やファラデー回転子にメタライズを施すと、1個1個の光学素子の光学面へ正確にメタルマスクをセットする必要があり、作業が繁雑なだけでなく四方のカット面をマスクすることは困難であることから、カット面から光学面にかけての0.05mmよりも超えた幅で金属多層膜がはみ出して形成されやすく、整列基板16に半田等で接合する場合、光学面に形成した金属多層膜を伝って這い上がり、使用する光学面の開口径内に入り込み、有効開口径が減少するという問題もあった。これにより、光アイソレータ素子11の中央部における応力がかかり、ファラデー回転子12においてはファラデー回転角が低下するという問題点も有していた。   In addition, if metallization is separately applied to the polarizer and Faraday rotator, it is necessary to set a metal mask accurately on the optical surface of each optical element, which is not only complicated, but also requires four cut surfaces. Since it is difficult to mask, it is easy to form a metal multilayer film with a width exceeding 0.05 mm from the cut surface to the optical surface, and when joining the alignment substrate 16 with solder or the like, There was also a problem that the effective aperture diameter was reduced by climbing up the formed metal multilayer film and entering the aperture diameter of the optical surface to be used. As a result, stress is applied to the central portion of the optical isolator element 11, and the Faraday rotator 12 has a problem that the Faraday rotation angle decreases.

また、特許文献2に記載の光アイソレータ素子11の製造方法には、その各光学素子にメタライズ処理をする工程が記載されておらず、仮に、光アイソレータ素子11の接着剤7で仮固定を維持した状態のままでメタライズ処理をした場合、一般に150℃を超える高温の成膜工程へ光アイソレータ素子11を投入すると、接着剤の基材や粘着材が熱破壊を受けるために不可能であり、仮固定用の接着剤7を除去すると、ばらついた状態でメタライズする必要が生じ、上述のような同様の問題点を有していた。   Moreover, the manufacturing method of the optical isolator element 11 described in Patent Document 2 does not describe a process of metallizing each optical element, and temporarily maintains the temporary fixing with the adhesive 7 of the optical isolator element 11. In the case where the metallization process is performed in the state where it is left, it is impossible to introduce the optical isolator element 11 into a high-temperature film forming process generally exceeding 150 ° C. because the adhesive base material and the adhesive material are subject to thermal destruction, When the adhesive 7 for temporary fixing is removed, it is necessary to metallize in a dispersed state, and the same problem as described above is caused.

このように仮固定に用いた有機系の接着剤7を組立完成後に残さず、高温高湿条件下での信頼性に優れ、高出力、長時間のレーザ光中での使用においても特性の劣化がない光アイソレータの量産性優れる生産方法が望まれていた。   In this way, the organic adhesive 7 used for temporary fixing is not left after assembly completion, it is highly reliable under high-temperature and high-humidity conditions, and the characteristics deteriorate even when used in high-power, long-time laser light. There has been a demand for a production method that is excellent in mass productivity of optical isolators that do not have any optical isolator.

本発明はこれらの課題に鑑みて案出されたものであり、本発明の光アイソレータは、整列基板上に、平板状のファラデー回転子と偏光子の光学面同士を対面させて接合してなる光アイソレータ素子と、該光アイソレータ素子のファラデー回転子に磁界を与える磁石とが接合材を介して固定してなる光アイソレータにおいて、前記光アイソレータ素子の接合面にのみ金属多層膜が成膜されていることを特徴とする
また、少なくとも以下の(1)乃至(6)の工程を含むことを特徴とする光アイソレータの製造方法を提供するものである。
The present invention has been devised in view of these problems, and the optical isolator according to the present invention is formed by joining the optical surfaces of a flat-plate Faraday rotator and a polarizer facing each other on an alignment substrate. In an optical isolator in which an optical isolator element and a magnet that applies a magnetic field to a Faraday rotator of the optical isolator element are fixed via a bonding material, a metal multilayer film is formed only on the bonding surface of the optical isolator element. In addition, the present invention provides a method for manufacturing an optical isolator characterized by including at least the following steps (1) to (6).

(1)平面が四角形状の大型のファラデー回転子基板の両面に平面が四角形状の大型の偏光子基板を仮固定用の接着剤を介して積層体を形成する工程
(2)前記積層体の平面の一辺に平行にカットした短冊体とする工程
(3)前記複数の短冊体の光学面同士を当接し、カット面を上下にして整列した集合体とするとともに、該集合体の少なくとも両端の光学面をマスキングする工程
(4)(3)の工程後に前記集合体のカット面にのみ金属多層膜を成膜する工程
(5)(4)の工程後の短冊体の平面の短辺と平行にカットしたブロック体とする工程
(6)前記ブロック体を洗浄し、仮接着用接着剤を排除する工程
さらに、金属多層膜を成膜する工程温度が前記仮接着用接着剤のガラス転移点以下であることを特徴とするものである。
(1) Step of forming a laminated body on both surfaces of a large-sized Faraday rotator substrate having a quadrangular plane using a temporary fixing adhesive on both sides of the large-sized polarizer substrate having a quadrangular plane. Step (3) to make strips cut parallel to one side of the plane Abutting the optical surfaces of the plurality of strips to make an assembly aligned with the cut surfaces up and down, and at least at both ends of the assembly Parallel to the short side of the plane of the strip after the steps (5) and (4) of forming the metal multilayer film only on the cut surface of the aggregate after the steps (4) and (3) of masking the optical surface (6) The step of cleaning the block body and removing the temporary bonding adhesive The process temperature of forming the metal multilayer film is equal to or lower than the glass transition point of the temporary bonding adhesive. It is characterized by being.

以上説明したように、本発明にかかる光アイソレータおよびその製造方法によれば、以下のような効果を有する。  As described above, according to the optical isolator and the manufacturing method thereof according to the present invention, the following effects are obtained.

(1)光アイソレータ用素子の製造方法においては、多数個の光アイソレータ用素子の光学調整を一度に行うことができ、組立工数の削減が可能となる。  (1) In the method for manufacturing an optical isolator element, optical adjustment of a large number of optical isolator elements can be performed at a time, and the number of assembling steps can be reduced.

(2)ファラデー回転子と偏光子とからなる光アイソレータ素子に一括で金属多層膜を成膜できるため、多数個の光アイソレータ素子を生産性よく製造可能である。   (2) Since a metal multilayer film can be formed in a lump on an optical isolator element composed of a Faraday rotator and a polarizer, a large number of optical isolator elements can be manufactured with high productivity.

(3)仮固定で用いた有機系接着剤は最終的に除去され、光学素子同士は光線透過面外で、無機材料を用いて一体化されているため、高温高湿条件下での信頼性に優れる。  (3) The organic adhesive used for temporary fixing is finally removed, and the optical elements are integrated with each other outside the light-transmitting surface and using an inorganic material. Excellent.

(4)仮固定で用いた有機系接着剤は最終的に除去され、光アイソレータ用素子を構成する全部材が無機材料から構成されており有機系のアウトガスが発生しない。そのため、半導体レーザーパッケージ内に光アイソレータ用素子を設置することができ、装置の小型化および、特性の安定化が実現する。  (4) The organic adhesive used for temporary fixing is finally removed, and all members constituting the optical isolator element are made of an inorganic material, so that organic outgas is not generated. Therefore, an optical isolator element can be installed in the semiconductor laser package, and the device can be downsized and the characteristics can be stabilized.

(5)光アイソレータ素子の一面にのみ金属多層膜を成膜し、光学面にはほとんどはみ出ることがないので、光アイソレータ素子の中央部における応力を抑えることができる。   (5) Since a metal multilayer film is formed only on one surface of the optical isolator element and hardly protrudes from the optical surface, stress at the center of the optical isolator element can be suppressed.

(6)光アイソレータ素子の一面にのみ金属多層膜を成膜するため、光学面へ金属多層膜がはみ出すことによる有効開口径の減少を抑えることができる。   (6) Since the metal multilayer film is formed only on one surface of the optical isolator element, it is possible to suppress a decrease in effective aperture diameter due to the metal multilayer film protruding to the optical surface.

(7)仮接着用接着剤のガラス転移温度を超えない温度域でメタライズ処理を行うので、仮接着したままでの一括成膜が可能になる。   (7) Since the metallization process is performed in a temperature range that does not exceed the glass transition temperature of the temporary bonding adhesive, batch film formation can be performed while temporarily bonded.

以下、図面を用いて本発明の実施例を説明する。図1(a)〜(f)は本発明の光アイソレータの製造工程を説明する図であり、図2は本発明の製造工程中で、短冊体からブロック体に切断するのを説明する図である。なお、従来技術と同様の符号については同じ符号を用いる。   Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1A to 1F are diagrams for explaining the manufacturing process of the optical isolator of the present invention, and FIG. 2 is a diagram for explaining the cutting from a strip into a block body during the manufacturing process of the present invention. is there. In addition, the same code | symbol is used about the code | symbol similar to a prior art.

図1に示すように、光アイソレータ素子は、まず、1段型と呼ばれる光アイソレータの場合、周知の如く、光の出射方向に向かって大型の平板状の偏光子基板1、ファラデー回転子基板2、偏光子基板3の順序で配列されている。これらは仮固定用接着剤7で積層して貼り合わせられた積層体10を形成してなる。   As shown in FIG. 1, in the case of an optical isolator called a one-stage type, an optical isolator element is, as is well known, a large flat plate-like polarizer substrate 1 and a Faraday rotator substrate 2 in the direction of light emission. The polarizer substrates 3 are arranged in this order. These form the laminated body 10 laminated | stacked with the adhesive 7 for temporary fixing, and bonded together.

偏光子基板1の透過偏波方向は、図2に示す成膜面4と平行な1辺(これを基準辺と呼ぶ)に対し平行な方向に設定されており、他方の偏光子基板3の透過偏波方向は、その基準辺に対して45度の方向に設定されている。ここで、偏光子基板1と偏光子基板3の基準辺を略一致させ固定することにより、偏光子基板1と偏光子基板3の透過偏波方向は回転調整することなく互いに45度ずれた状態となり、ファラデー回転子基板2のファラデー回転角が略45度の場合、最良の挿入損失特性とアイソレーション特性を得ることができる。   The transmission polarization direction of the polarizer substrate 1 is set in a direction parallel to one side (referred to as a reference side) parallel to the film formation surface 4 shown in FIG. The transmission polarization direction is set to a direction of 45 degrees with respect to the reference side. Here, by fixing the reference sides of the polarizer substrate 1 and the polarizer substrate 3 so as to substantially coincide with each other, the transmission polarization directions of the polarizer substrate 1 and the polarizer substrate 3 are shifted from each other by 45 degrees without adjusting the rotation. Thus, when the Faraday rotation angle of the Faraday rotator substrate 2 is approximately 45 degrees, the best insertion loss characteristic and isolation characteristic can be obtained.

偏光子基板1、3は、入射する光の1方向の偏光成分を吸収する機能を有する吸収型偏光子、あるいは入射する光の1方向の偏光成分を分離または合成する複屈折性偏光子で構成される。吸収型偏光子は例えば楕円体形の金属粒子がガラス内に分散された構造の偏光ガラスからなる。この偏光ガラスは長く延伸された金属粒子をガラス自身の中に一方向に配列させることにより偏光特性を持たせたガラスであり、金属粒子の延伸方向に垂直な偏波面を持つ光が透過し、平行な偏波面を持つ光は吸収される。例えば、楕円体形の金属粒子がガラス内に分散された構造の偏光ガラスからなる。この偏光ガラスは長く延伸された金属粒子をガラス自身の中に一方向に配列させることにより偏光特性を持たせたガラスであり、金属粒子の延伸方向に垂直な偏波面を持つ光が透過し、平行な偏波面を持つ光は吸収される。   The polarizer substrates 1 and 3 are composed of an absorption polarizer having a function of absorbing a unidirectional polarization component of incident light, or a birefringent polarizer that separates or synthesizes a unidirectional polarization component of incident light. Is done. The absorptive polarizer is made of, for example, polarizing glass having a structure in which ellipsoidal metal particles are dispersed in glass. This polarizing glass is a glass having polarization characteristics by arranging long stretched metal particles in one direction in the glass itself, light having a polarization plane perpendicular to the stretch direction of the metal particles is transmitted, Light with a parallel polarization plane is absorbed. For example, it is made of polarizing glass having a structure in which ellipsoidal metal particles are dispersed in glass. This polarizing glass is a glass having polarization characteristics by arranging long stretched metal particles in one direction in the glass itself, light having a polarization plane perpendicular to the stretch direction of the metal particles is transmitted, Light with a parallel polarization plane is absorbed.

ファラデー回転子基板2は常温において入射した光の偏波方向が45度回転する厚みに調整されている。また、アイソレーションが要求される場合は、ファラデー回転子基板2の偏波回転角度45+α度に対し、偏光子基板1と偏光子基板3の回転ズレを45−α度に精密に調整する必要があり、光を逆方向から(偏光子基板3側から)入射し、透過してくる光が最も小さくなるように偏光子1を回転調整する方法がある。そこであらかじめ偏光子1と偏光子基板3の透過偏波方向を45−α度ずらして切り出し、例えば偏光子基板3の透過偏波方向を基準辺に対して45−α度とすることも可能である。また、ファラデー回転子の偏波回転角の精度±αは光アイソレータの特性上、1度程度とすることが望ましい。   The Faraday rotator substrate 2 is adjusted to a thickness at which the polarization direction of light incident at room temperature rotates 45 degrees. When isolation is required, it is necessary to precisely adjust the rotational deviation of the polarizer substrate 1 and the polarizer substrate 3 to 45-α degrees with respect to the polarization rotation angle 45 + α degrees of the Faraday rotator substrate 2. There is a method in which light is incident from the opposite direction (from the side of the polarizer substrate 3), and the polarizer 1 is rotationally adjusted so that the transmitted light is minimized. Therefore, the transmission polarization direction of the polarizer 1 and the polarizer substrate 3 is cut out by shifting by 45-α degrees in advance, and for example, the transmission polarization direction of the polarizer substrate 3 can be set to 45-α degrees with respect to the reference side. is there. In addition, the accuracy ± α of the polarization rotation angle of the Faraday rotator is desirably about 1 degree due to the characteristics of the optical isolator.

ファラデー回転子基板2は、例えば、ビスマス置換ガーネット結晶等で、その厚みは所定の波長をもつ入射光線の偏光面が45度回転する様に設定する。一般に、偏波面を回転させるためには、入射光線の光軸方向に十分な磁界を印可することが必要である。   The Faraday rotator substrate 2 is, for example, a bismuth-substituted garnet crystal, and the thickness thereof is set so that the polarization plane of incident light having a predetermined wavelength rotates 45 degrees. In general, in order to rotate the plane of polarization, it is necessary to apply a sufficient magnetic field in the direction of the optical axis of incident light.

ここでファラデー回転子基板2、偏光子1および偏光子基板3の両面は、屈折率n=1に対する反射防止膜が両面に施されており、偏光子1および偏光子基板3とファラデー回転子基板2が密着している場合は、偏光子が空気と接する入出射面には屈折率n=1に対する反射防止膜を施し、ファラデー回転子の両面には対偏光子の反射防止膜を施してある。   Here, both surfaces of the Faraday rotator substrate 2, the polarizer 1 and the polarizer substrate 3 are provided with antireflection films for the refractive index n = 1, and the polarizer 1, the polarizer substrate 3 and the Faraday rotator substrate are provided. When the two are in close contact, the entrance / exit surface where the polarizer is in contact with air is provided with an antireflection film for the refractive index n = 1, and the antireflection film for the counter-polarizer is provided on both sides of the Faraday rotator. .

次に本発明の光アイソレータの製造方法について説明する。   Next, the manufacturing method of the optical isolator of this invention is demonstrated.

まず、図1(a)で示すように、1枚の平板上ファラデー回転子基板2と2枚の偏光子基板1、3を用意し各光学素子を仮固定用接着剤7を介して積層する。2枚の偏光子基板1、3に関しては、重ね合わせた状態でそれぞれの透過偏光方向(図示せず)が45゜ずれた状態になることが望ましい。したがって図1(b)で示す様に、使用する波長のレーザ光を光軸L方向に通過させ、透過するレーザ光の強度、偏光面等確認しながら偏光子基板1、3の透過偏光方向が光軸Lに対して45゜相互に回転した位置となるよう調整する。   First, as shown in FIG. 1 (a), one flat-plate Faraday rotator substrate 2 and two polarizer substrates 1 and 3 are prepared, and the optical elements are laminated via an adhesive 7 for temporary fixing. . Regarding the two polarizer substrates 1 and 3, it is desirable that their transmitted polarization directions (not shown) are shifted by 45 ° in a superposed state. Accordingly, as shown in FIG. 1B, the transmitted polarization direction of the polarizer substrates 1 and 3 is confirmed while allowing the laser light of the wavelength to be used to pass in the direction of the optical axis L and confirming the intensity and polarization plane of the transmitted laser light. The position is adjusted so as to be rotated by 45 ° relative to the optical axis L.

その後、仮固定用接着剤7を硬化させ、積層体10を得る。但し、光アイソレータに要求される光学特性が低い場合にはレーザ光を用いた光学調整を行わず、外観上から各光学素子の配置を合わせ、仮固定用接着剤7を硬化させても良い。この仮固定用接着剤は図1(g)の工程まで除去をしない。   Thereafter, the temporary fixing adhesive 7 is cured to obtain the laminate 10. However, when the optical characteristics required for the optical isolator are low, the optical adjustment using the laser beam may not be performed, and the arrangement of the optical elements may be matched from the appearance and the temporary fixing adhesive 7 may be cured. This temporary fixing adhesive is not removed until the step shown in FIG.

続いて図1(c)で示す様に積層体10の平面の一辺に平行にカットし、短冊体6を得る。次に図1(d)では短冊体6を複数個並べ、そのカット面を上下面にして互いの光学面同士に当接させるとともに、上下面が略平面となるように整列して集合体を構成する。そして、治具8によって、ばらばらに成らないように押さえつけ、さらに集合体60の両端部の光学面をマスキングする。   Subsequently, as shown in FIG. 1C, the strip 10 is cut in parallel to one side of the plane of the laminate 10. Next, in FIG. 1D, a plurality of strips 6 are arranged, their cut surfaces are set as upper and lower surfaces and brought into contact with each other's optical surfaces, and aligned so that the upper and lower surfaces are substantially flat. Constitute. Then, the jig 8 is pressed so as not to be separated, and the optical surfaces at both ends of the assembly 60 are masked.

図1(e)では複数個の短冊体6の成膜面4に対して一括で金属多層膜の成膜を行う。このとき仮固定用の接着剤7の粘着性およびマスキング材8の性能が高温で劣化しないため、成膜方法は処理温度が仮接着用の接着剤7のガラス転移点を超えない低温スパッタリング法もしくは湿式メッキが望ましい。高分子材料は、分子の集まり方が密な結晶部分と疎な非結晶部分とで構成されており、非結晶部分の熱運動性が低い状態をガラス状態と呼び、それがゴム状になる温度をガラス転移点Tといい、さらに高温域で結晶部分が壊れて流動性を示す温度を融点Tという。本発明に用いる仮固定用の接着剤7は有機系樹脂接着剤であり、上述のガラス転移点を超える温度ではマスキング性能が低下し始め、さらに高温域の融点に達すると基材や粘着性が熱破壊で機能を果たさなくなる。したがってガラス転移点を超えない温度域で成膜処理をすれば有機系の仮固定用の接着剤7を用いてもマスキング性能や粘着性を保ったまま、金属多層膜40の密着強度を向上することができる。 In FIG. 1E, a metal multilayer film is formed on the film formation surfaces 4 of a plurality of strips 6 at once. At this time, since the tackiness of the temporarily fixing adhesive 7 and the performance of the masking material 8 do not deteriorate at high temperatures, the film forming method is a low temperature sputtering method in which the processing temperature does not exceed the glass transition point of the temporarily bonding adhesive 7 or Wet plating is desirable. Polymer materials are composed of dense crystalline parts and sparse amorphous parts where molecules gather, and the low thermal mobility of the amorphous parts is called the glass state, and the temperature at which it becomes rubbery. the called glass transition point T g, and the temperature at which the fluidity is damaged more crystalline portion in a high temperature range of the melting point T m. The temporary fixing adhesive 7 used in the present invention is an organic resin adhesive, and the masking performance starts to deteriorate at a temperature exceeding the glass transition point described above. It fails to function due to thermal destruction. Therefore, if the film forming process is performed in a temperature range not exceeding the glass transition point, the adhesion strength of the metal multilayer film 40 can be improved while maintaining the masking performance and tackiness even when the organic temporary fixing adhesive 7 is used. be able to.

次に、図1(f)では切断線5に示すように一体化された短冊体6の平面の短辺と平行にカットしてブロック体9を複数個切り出す。最後に図1(g)では仮固定用の接着剤7を完全に洗浄・除去してファラデー回転子2、偏光子1、3に分離する。   Next, in FIG. 1 (f), a plurality of block bodies 9 are cut out by cutting in parallel with the short side of the flat surface of the integrated strip 6 as indicated by the cutting line 5. Finally, in FIG. 1G, the temporarily fixing adhesive 7 is completely washed and removed and separated into the Faraday rotator 2 and the polarizers 1 and 3.

本発明の光アイソレータ用素子においては、前述のように大型の基板で光学調整行い、その後多数個を切り出す工程のため、均一で、優れた特性の光アイソレータ用素子が、容易に多数個作製することができ、組立工数の削減が可能で、量産性に優れる。   In the optical isolator element of the present invention, as described above, optical adjustment is performed on a large substrate, and then a large number of optical isolator elements with uniform and excellent characteristics are easily produced because of the process of cutting out a large number of them. It is possible to reduce assembly man-hours and excel in mass productivity.

本実施例では偏光子が2枚、ファラデー回転子が1枚である光アイソレータ用素子の構成を用いたが、本発明はこれに限ることなく、さらに多数の偏光子、ファラデー回転子を用いた光アイソレータ用素子であっても上記実施例と全く同様の効果を得ることができる。   In this embodiment, the configuration of an optical isolator element having two polarizers and one Faraday rotator is used. However, the present invention is not limited to this, and more polarizers and Faraday rotators are used. Even in the case of an optical isolator element, it is possible to obtain the same effect as in the above embodiment.

図2は本発明の製造工程中で、短冊体6からブロック体に切断するのを説明する図である。   FIG. 2 is a diagram for explaining the cutting from the strip 6 to the block during the manufacturing process of the present invention.

図1、図2に示すようにファラデー回転子121、偏光子131、141は接着剤7により相互に接着される。短冊体6の成膜面4(接合面)に対しては一括で金属多層膜40が成膜されるので、個々の光学素子に対して別々にマスキングを施す必要はない。図2中の5で示した切断線により、短冊体6は複数個のブロック体9に切り分けられる。   As shown in FIGS. 1 and 2, the Faraday rotator 121 and the polarizers 131 and 141 are bonded to each other by the adhesive 7. Since the metal multilayer film 40 is formed on the film formation surface 4 (joint surface) of the strip 6 at a time, it is not necessary to mask each optical element separately. The strip 6 is cut into a plurality of block bodies 9 by a cutting line indicated by 5 in FIG.

図3は金属多層膜のはみ出し幅を示す図である。本発明では、上述のように成膜面4(接合面)のみに形成されているが、完全に成膜面4に金属多層膜40を形成するものではなく、多少の誤差は金属多層膜40を成膜面4(接合面)のみに形成することに含まれるものとする。例えば、偏光子13ではカット面の1面に金属多層膜40があるが光学面へのはみ出し量も幅Wで存在する。このはみ出し量を0.05mm以下に抑えれば、1つの光学素子のサイズを小さくして大型基板からのカット取り数を増やしても、有効開口径Dは確保できる。   FIG. 3 is a diagram showing the protrusion width of the metal multilayer film. In the present invention, as described above, the film is formed only on the film formation surface 4 (joint surface). However, the metal multilayer film 40 is not completely formed on the film formation surface 4, and some errors may occur. Is formed only on the film formation surface 4 (joint surface). For example, in the polarizer 13, the metal multilayer film 40 is provided on one surface of the cut surface, but the amount of protrusion to the optical surface also exists with a width W. If this protrusion amount is suppressed to 0.05 mm or less, the effective aperture diameter D can be secured even if the size of one optical element is reduced and the number of cuts from a large substrate is increased.

すなわち、半導体レーザーパッケージに内蔵する表面実装型光アイソレータにおいては有効開口径Dとして0.8〜0.9mmを確保する必要があり、使用する光学素子のサイズをできるだけ小さくして大型基板からのカット取り数を増やした上で、前述の有効開口径Dが得られることがコスト面で望ましい。切り出し寸法の公差が±0.02mmであることと半田のはい上がりが0.03mm程度になることを考慮すると、金属多層膜のはみ出し幅を0.05mm以下にすれば1mm角の光学素子サイズで上記の有効開口径を達成できる。   That is, in the surface mount optical isolator built in the semiconductor laser package, it is necessary to secure an effective aperture diameter D of 0.8 to 0.9 mm, and the size of the optical element to be used is made as small as possible to cut from a large substrate. It is desirable in terms of cost that the above-mentioned effective opening diameter D can be obtained after increasing the number of removals. Considering that the tolerance of the cut-out dimension is ± 0.02 mm and that the solder bulge is about 0.03 mm, if the protrusion width of the metal multilayer film is 0.05 mm or less, the optical element size is 1 mm square. The above effective opening diameter can be achieved.

短冊体6の外形寸法は±0.02mmの公差になっており、短冊体6を複数個並べ、そのカット面を上下面にして互いの光学面同士を当接させるとともに、上下面が略平面となるように整列して集合体を構成する。そして、治具8によって、ばらばらに成らないように押圧を加え、さらに集合体60の両端部の光学面をマスキングするが、両端部の光学面に傷をつけないようガラス部材等を挟んでから治具8で固定してもよい。このように仮固定用接着剤のマスキング効果と、短冊体6の光学面同士を押し合わせることで、金属多層膜のはみ出し量を0.05mm以下に抑えることが可能になる。   The outer dimensions of the strips 6 have a tolerance of ± 0.02 mm, a plurality of strips 6 are arranged, the cut surfaces are the top and bottom surfaces, and the optical surfaces are in contact with each other, and the top and bottom surfaces are substantially flat. An assembly is formed by arranging so that Then, the jig 8 is pressed so as not to be separated, and further masks the optical surfaces at both ends of the assembly 60, but sandwiches a glass member or the like so as not to damage the optical surfaces at both ends. You may fix with the jig | tool 8. FIG. In this way, by pressing the masking effect of the temporary fixing adhesive and the optical surfaces of the strips 6 together, the protruding amount of the metal multilayer film can be suppressed to 0.05 mm or less.

本発明の実施例として図1に示した光アイソレータを試作し、特性の評価および信頼性試験を行った。各部品と構成について以下に説明する。   As an example of the present invention, the optical isolator shown in FIG. 1 was prototyped and subjected to characteristic evaluation and reliability test. Each component and configuration will be described below.

偏光子基板にはコーニング社製のポーラコア(製品名)を用い、サイズは10mm角で厚み0.2mmのものを使用した。またファラデー回転子基板はビスマス置換ガーネットで、サイズは10mm角で厚み0.4mmのものを使用した。この場合の飽和磁界強度中における偏波回転角は45度であった。いずれも波長1.55μmの光に対して動作する素子であり、偏光子、ファラデー回転子の両面には対空気(n=1)の反射防止膜を施してある。   A polar core (product name) manufactured by Corning was used for the polarizer substrate, and the size was 10 mm square and the thickness was 0.2 mm. Further, the Faraday rotator substrate was a bismuth-substituted garnet and had a size of 10 mm square and a thickness of 0.4 mm. In this case, the polarization rotation angle in the saturation magnetic field strength was 45 degrees. Both are elements that operate with respect to light having a wavelength of 1.55 μm, and antireflection films for air (n = 1) are applied to both surfaces of the polarizer and the Faraday rotator.

まず2枚の偏光子基板の間にファラデー回転子基板を挟み、光学調整の後に仮固定用の接着剤で光学面同士を全面で接着した。仮固定用の接着剤にはアーデル社のKMシリーズを用いた。   First, a Faraday rotator substrate was sandwiched between two polarizer substrates, and after optical adjustment, the optical surfaces were bonded to each other with an adhesive for temporary fixing. Adel KM series was used as a temporary fixing adhesive.

この積層された積層体を短冊状にカットして、短冊体となったカット面を上下面とし、を揃えて整列し両端から治具で押さえつけて固定とマスキングを行った後、そのカット面へ一括でTi−Pt−Auの連続メタライズ処理を行った。このとき、スパッタ温度は仮固定用の接着剤のガラス転移点よりも低い120℃以下であり、成膜後にはみ出し幅Wを計測したところ金属多層膜の光学面へのはみ出し幅Wは最大でも0.38μmであった。   Cut this layered laminate into strips, align the cut surfaces into strips, align them, press them with jigs from both ends, and fix and mask them. A continuous metallization process of Ti—Pt—Au was performed at once. At this time, the sputtering temperature is 120 ° C. or lower, which is lower than the glass transition point of the temporarily fixing adhesive, and when the protrusion width W is measured after the film formation, the protrusion width W to the optical surface of the metal multilayer film is 0 at the maximum. .38 μm.

次に短冊状の光学素子を整列した状態のままブロック状の個片にカットした。ブロック状になった光学素子は、水とアルコールの1対1水溶液に40℃1時で間浸けておくことで各素子に分離した。   Next, the strip-shaped optical elements were cut into block-shaped pieces while being aligned. The block-shaped optical element was separated into each element by being immersed in a one-to-one aqueous solution of water and alcohol at 40 ° C. for 1 hour.

整列基板の材料にはジルコニアセラミックスを用い、その表面にもあらかじめTi−Pt−Auの多層金属膜を成膜してある。ジルコニアの熱膨張係数は10.5×10−6/℃で、ファラデー回転子の熱膨張係数とほぼ同じであり、ファラデー回転子に基板からの応力の影響を受けない構成としてある。 Zirconia ceramics is used as the material for the alignment substrate, and a Ti—Pt—Au multilayer metal film is formed on the surface thereof in advance. The thermal expansion coefficient of zirconia is 10.5 × 10 −6 / ° C., which is almost the same as the thermal expansion coefficient of the Faraday rotator, and the Faraday rotator is not affected by the stress from the substrate.

整列基板のサイズは幅W=3mm、長さD=1.5mm、厚みt=0.25mmとした。基板上のほぼ中央部に幅W=1.0mm、長さD=2.5mmのAu/20Sn箔ロウ材を置いた。磁石は幅W=0.8mm、長さD=1.4mm、厚みt=1.4mmの略直方体の磁石を2個用いた。   The size of the alignment substrate was a width W = 3 mm, a length D = 1.5 mm, and a thickness t = 0.25 mm. An Au / 20Sn foil brazing material having a width W = 1.0 mm and a length D = 2.5 mm was placed almost at the center of the substrate. Two magnets having a substantially rectangular parallelepiped shape having a width W = 0.8 mm, a length D = 1.4 mm, and a thickness t = 1.4 mm were used.

次に、図5に示すように基板上に光アイソレータ素子を配置するとともに、磁石を基板に載置し、窒素雰囲気300℃で加熱溶融して光学素子と磁石を基板に固定した。この段階では仮固定用の接着剤はすでに除去されており、300℃を超える温度域で融解するAu/20SnやAu/12Geを用いることができる。   Next, as shown in FIG. 5, the optical isolator element was disposed on the substrate, and the magnet was placed on the substrate, and the optical element and the magnet were fixed to the substrate by heating and melting at 300 ° C. in a nitrogen atmosphere. At this stage, the adhesive for temporary fixing has already been removed, and Au / 20Sn or Au / 12Ge that melts in a temperature range exceeding 300 ° C. can be used.

このようにして50個の光アイソレータを作製し、特性を測定した。その結果、すべての光アイソレータは、挿入損失が0.3dB以下、アイソレーションが35dB以上の、良好で均一な特性を有することを確認した。従来の構成で試作した場合にアイソレーション特性の平均値が31dBと非常に低いのに対し、本発明による構成では平均値が42dBと高く良好な結果が得られた。   In this manner, 50 optical isolators were manufactured and the characteristics were measured. As a result, it was confirmed that all the optical isolators had good and uniform characteristics with an insertion loss of 0.3 dB or less and an isolation of 35 dB or more. While the average value of the isolation characteristic was as low as 31 dB when the prototype was manufactured with the conventional configuration, the average value was as high as 42 dB with the configuration according to the present invention, and good results were obtained.

次に作製した光アイソレータの信頼性評価を行った。   Next, the reliability of the produced optical isolator was evaluated.

試験は、Telcordia1221に示される振動試験、衝撃試験、温度サイクル試験、高温保持試験、低温保持試験、高温高湿試験を実施し、すべての試験において、挿入損失の変化量が±0.2dB以下、アイソレーションの変化量が±3dB以下と良好な結果を得ることができた。   The tests were conducted vibration test, impact test, temperature cycle test, high temperature holding test, low temperature holding test, high temperature high humidity test shown in Telcordia 1221. In all tests, the amount of change in insertion loss is ± 0.2 dB or less, A good result was obtained in which the amount of change in isolation was ± 3 dB or less.

以上の試作により、組み立て時ごとの光学調整が不要で、光学特性が安定し、かつ、組み立てが容易で工数が少なく、光学素子の脱落、クラック、特性劣化がない信頼性に優れた金属接合の光アイソレータを提供することができる。   The above trial manufacture eliminates the need for optical adjustment at each assembly, stabilizes optical characteristics, facilitates assembly, reduces man-hours, and eliminates optical element dropout, cracks, and deterioration of characteristics. An optical isolator can be provided.

(a)〜(f)は本発明の光アイソレータの製造工程を説明する図である。(A)-(f) is a figure explaining the manufacturing process of the optical isolator of this invention. 本発明の製造工程中で、短冊体からブロック体に切断するのを説明する図である。It is a figure explaining cut | disconnecting from a strip to a block body in the manufacturing process of this invention. 金属多層膜のはみ出し幅を示す図である。It is a figure which shows the protrusion width | variety of a metal multilayer film. 従来の光アイソレータ素子の製造手順を示す図である。It is a figure which shows the manufacturing procedure of the conventional optical isolator element. 従来の光アイソレータを示す図である。It is a figure which shows the conventional optical isolator.

符号の説明Explanation of symbols

1、3 偏光子基板
2 ファラデー回転子基板
4 成膜面
40 金属多層膜
5 切断線
6 短冊体
60 集合体
11 光アイソレータ素子
7 接着剤
8 治具
9 ブロック体
10 積層体
DESCRIPTION OF SYMBOLS 1, 3 Polarizer board | substrate 2 Faraday rotator board | substrate 4 Film-forming surface 40 Metal multilayer film 5 Cutting line 6 Strip body 60 Aggregate 11 Optical isolator element 7 Adhesive 8 Jig 9 Block body 10 Laminate body

Claims (3)

整列基板上に、平板状のファラデー回転子と偏光子の光学面同士を対面させて接合してなる光アイソレータ素子と、該光アイソレータ素子のファラデー回転子に磁界を与える磁石とが接合材を介して固定してなる光アイソレータにおいて、前記光アイソレータ素子の接合面にのみ金属多層膜が成膜されていることを特徴とする光アイソレータ。 An optical isolator element formed by bonding the optical surfaces of a flat-plate Faraday rotator and a polarizer to face each other on an alignment substrate, and a magnet for applying a magnetic field to the Faraday rotator of the optical isolator element via a bonding material. In the optical isolator formed by fixing, a metal multilayer film is formed only on the joint surface of the optical isolator element. 少なくとも以下の(1)乃至(6)の工程を含むことを特徴とする光アイソレータの製造方法。
(1)平面が四角形状の大型のファラデー回転子基板の両面に平面が四角形状の大型の偏光子基板を仮固定用の接着剤を介して積層体を形成する工程
(2)前記積層体の平面の一辺に平行にカットした短冊体とする工程
(3)前記複数の短冊体の光学面同士を当接し、カット面を上下にして整列した集合体とするとともに、該集合体の少なくとも両端の光学面をマスキングする工程
(4)(3)の工程後に前記集合体のカット面にのみ金属多層膜を成膜する工程
(5)(4)の工程後の短冊体の平面の短辺と平行にカットしたブロック体とする工程
(6)前記ブロック体を洗浄し、仮接着用接着剤を排除する工程
An optical isolator manufacturing method comprising at least the following steps (1) to (6):
(1) Step of forming a laminated body on both surfaces of a large-sized Faraday rotator substrate having a quadrangular plane using a temporary fixing adhesive on both sides of the large-sized polarizer substrate having a quadrangular plane. Step (3) to make strips cut parallel to one side of the plane Abutting the optical surfaces of the plurality of strips to make an assembly aligned with the cut surfaces up and down, and at least at both ends of the assembly Parallel to the short side of the plane of the strip after the steps (5) and (4) of forming the metal multilayer film only on the cut surface of the aggregate after the steps (4) and (3) of masking the optical surface (6) The step of cleaning the block body and removing the adhesive for temporary bonding
金属多層膜を成膜する工程温度が前記仮接着用接着剤のガラス転移点以下であることを特徴とする請求項2記載の光アイソレータ素子の製造方法。 3. The method of manufacturing an optical isolator element according to claim 2, wherein a process temperature for forming the metal multilayer film is not higher than a glass transition point of the temporary bonding adhesive.
JP2003428465A 2003-12-24 2003-12-24 Method for manufacturing optical isolator element Expired - Fee Related JP4443212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428465A JP4443212B2 (en) 2003-12-24 2003-12-24 Method for manufacturing optical isolator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428465A JP4443212B2 (en) 2003-12-24 2003-12-24 Method for manufacturing optical isolator element

Publications (2)

Publication Number Publication Date
JP2005189353A true JP2005189353A (en) 2005-07-14
JP4443212B2 JP4443212B2 (en) 2010-03-31

Family

ID=34787413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428465A Expired - Fee Related JP4443212B2 (en) 2003-12-24 2003-12-24 Method for manufacturing optical isolator element

Country Status (1)

Country Link
JP (1) JP4443212B2 (en)

Also Published As

Publication number Publication date
JP4443212B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4443212B2 (en) Method for manufacturing optical isolator element
JP2003255269A (en) Optical isolator
JP3570869B2 (en) Optical isolator element and method of manufacturing the same
JPH08146351A (en) Element for optical isolator and its production
JP3688865B2 (en) Method for manufacturing device for optical isolator
JP2004354646A (en) Optical isolator and its assembly method
JP3645700B2 (en) Optical isolator element and manufacturing method thereof
JP3739686B2 (en) Embedded optical isolator
JP4351339B2 (en) Manufacturing method of optical components
JPH10142558A (en) Optical isolator and its production
JP2004138944A (en) Optical isolator element and its manufacture method
JP2006098493A (en) Compound optical component and optical isolator element
JP4340102B2 (en) Optical isolator
JP4395365B2 (en) Optical isolator
JP2001091899A (en) Surface mounting type isolator
JP2000105354A (en) Element for optical isolator
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JPH10333095A (en) Element for optical isolator and its production
JP4666931B2 (en) Optical isolator
JPH03171029A (en) Production of optical isolator
JP4683852B2 (en) Optical isolator
JP2005283996A (en) Optical isolator
JP2001249304A (en) Optical isolator
JP2005049405A (en) Optical isolator
JP2005283799A (en) Optical isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees