JP2005187557A - Polyester and manufacturing method of polyester - Google Patents
Polyester and manufacturing method of polyester Download PDFInfo
- Publication number
- JP2005187557A JP2005187557A JP2003428730A JP2003428730A JP2005187557A JP 2005187557 A JP2005187557 A JP 2005187557A JP 2003428730 A JP2003428730 A JP 2003428730A JP 2003428730 A JP2003428730 A JP 2003428730A JP 2005187557 A JP2005187557 A JP 2005187557A
- Authority
- JP
- Japan
- Prior art keywords
- polyester
- acid
- aluminum
- compound
- polycondensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 C*(c(cc1*)cc(*)c1O)P([O-])(O*)=O Chemical compound C*(c(cc1*)cc(*)c1O)P([O-])(O*)=O 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N CC(C)(C)c1cc(C)cc(C(C)(C)C)c1O Chemical compound CC(C)(C)c1cc(C)cc(C(C)(C)C)c1O NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Polyesters Or Polycarbonates (AREA)
- Artificial Filaments (AREA)
Abstract
Description
本発明はゲルマニウム、アンチモン化合物を触媒主成分として用いない新規のポリエステル重縮合触媒を用いたポリエステルの製造方法に関するものであり、さらに詳しくは重縮合触媒起因の異物含有量の少ないポリエステル、ポリエステル製品およびポリエステル製造方法に関するものである。 The present invention relates to a method for producing a polyester using a novel polyester polycondensation catalyst that does not use germanium or an antimony compound as a catalyst main component. More specifically, the present invention relates to a polyester, polyester product, The present invention relates to a method for producing polyester.
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等に代表されるポリエステルは、機械的特性、及び化学的特性に優れており、それぞれのポリエステルの特性に応じて、例えば衣料用や産業資材用の繊維、包装用、磁気テープ用、光学用などのフィルムやシート、中空成形品であるボトル、電気・電子部品のケーシング、その他エンジニアリングプラスチック成形品等の広範な分野において使用されている。特に、PETなどの飽和ポリエステルからなるボトルは、機械的強度、耐熱性、透明性およびガスバリヤー性に優れるため、ジュース、炭酸飲料、清涼飲料などの飲料充填用容器および目薬、化粧品などの容器として広く使用されている。 Polyesters typified by polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), etc. are excellent in mechanical properties and chemical properties. Depending on the properties of each polyester, for example, Used in a wide range of fields such as textiles for clothing and industrial materials, films and sheets for packaging, magnetic tape, optics, bottles that are hollow molded products, casings for electrical and electronic components, and other engineering plastic molded products Has been. In particular, bottles made of saturated polyesters such as PET are excellent in mechanical strength, heat resistance, transparency and gas barrier properties, so that they are used as containers for filling beverages such as juices, carbonated drinks and soft drinks, and containers for eye drops and cosmetics. Widely used.
代表的なポリエステルである芳香族ジカルボン酸とアルキレングリコールを主構成成分とするポリエステルは、例えばPETの場合には、テレフタル酸もしくはテレフタル酸ジメチルとエチレングリコールとのエステル化反応もしくはエステル交換反応によってビス(2−ヒドロキシエチル)テレフタレートなどのオリゴマー混合物を製造し、これを高温、真空下で触媒を用いて液相重縮合させ製造されている。 For example, in the case of PET, a polyester having aromatic dicarboxylic acid and alkylene glycol as main components as a typical polyester is bis ((ester) by esterification reaction or transesterification reaction between terephthalic acid or dimethyl terephthalate and ethylene glycol. An oligomer mixture such as 2-hydroxyethyl) terephthalate is produced, and this is produced by liquid phase polycondensation using a catalyst at high temperature under vacuum.
従来から、このようなポリエステルの重縮合時に用いられるポリエステル重縮合触媒としては、アンチモンあるいはゲルマニウム化合物が広く用いられている。三酸化アンチモンは、安価で、かつ優れた触媒活性をもつ触媒であるが、これを主成分、即ち、実用的な重縮合速度が発揮される程度の添加量にて使用すると、重縮合時に金属アンチモンが析出するため、ポリエステルに黒ずみや異物が発生し、フィルムの表面欠点の原因にもなる。また、中空の成形品等の原料とした場合には、透明性の優れた中空成形品を得ることが困難である。このような経緯で、アンチモンを全く含まないか或いはアンチモンを触媒主成分として含まないポリエステルが望まれている。 Conventionally, antimony or germanium compounds have been widely used as the polyester polycondensation catalyst used in such polycondensation of polyester. Antimony trioxide is an inexpensive catalyst with excellent catalytic activity. However, if it is used in an amount of such a main component, that is, a practical polycondensation rate, a metal is used during polycondensation. Since antimony is precipitated, darkening and foreign matter are generated in the polyester, which causes surface defects of the film. Further, when a raw material such as a hollow molded product is used, it is difficult to obtain a hollow molded product having excellent transparency. Under such circumstances, a polyester that does not contain antimony at all or does not contain antimony as a main catalyst component is desired.
アンチモン化合物以外で優れた触媒活性を有し、かつ上記の問題を有しないポリエステルを与える触媒としては、ゲルマニウム化合物がすでに実用化されているが、この触媒は非常に高価であるという問題点や、重縮合中に反応系から系外へ留出しやすいため反応系の触媒濃度が変化し重縮合の制御が困難になるという課題を有しており、触媒主成分として使用することには問題がある。 Germanium compounds have already been put to practical use as catalysts that give polyesters that have excellent catalytic activity other than antimony compounds and do not have the above problems, but the problem that this catalyst is very expensive, It is difficult to control the polycondensation because the concentration of the catalyst in the reaction system changes due to easy distilling from the reaction system to the outside during the polycondensation, and there is a problem in using it as the main component of the catalyst. .
アンチモン系あるいはゲルマニウム系触媒に代わる重縮合触媒の検討も行われており、テトラアルコキシチタネートに代表されるチタン化合物がすでに提案されているが、これらを用いて製造されたポリエステルは溶融成形時に熱劣化を受けやすく、またポリエステルが著しく着色するという問題点を有する。 Polycondensation catalysts to replace antimony or germanium catalysts have been studied, and titanium compounds typified by tetraalkoxy titanates have already been proposed. Polyesters produced using these compounds are subject to thermal degradation during melt molding. There is a problem that the polyester is easily colored and the polyester is remarkably colored.
以上のような経緯で、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とする重縮合触媒であり、触媒活性に優れ、色調や熱安定性に優れかつ成形品の透明性に優れたポリエステルを与える重縮合触媒が望まれている。 With the above circumstances, it is a polycondensation catalyst that uses metal components other than antimony, germanium, and titanium as the main metal components of the catalyst, and has excellent catalytic activity, excellent color and thermal stability, and transparency of molded products. There is a need for polycondensation catalysts that provide excellent polyesters.
上記の要求に答える新規の重縮合触媒として、アルミニウム化合物とリン化合物とからなる触媒系が開示されており注目されている(例えば、特許文献1〜4参照)。
また、上記重縮合触媒系によるポリエステルの製造方法に関して、水および/または有機溶媒に、カルボン酸アルミニウム塩からなる群よりえらばれた少なくとも1種を溶解した溶液からなるポリエステル重縮合触媒および該重縮合触媒を用いたポリエステルの製造方法が開示されている(特許文献5参照)。
上記重縮合触媒系で得られたポリエステルは、色調、透明性や熱安定性が良好であり、前記要求に答えるものである。しかし該方法で得られたポリエステルはポリエステルに不溶性の異物含有量が常に低いレベルで安定して得ることが出来ないという課題を有しており、超微細繊維、光学用の高透明なフイルムあるいは超高透明な成型体等において十分に満足するレベルに到達しておらずその改善が強く嘱望されていた。 The polyester obtained by the polycondensation catalyst system has good color tone, transparency and thermal stability, and meets the above requirements. However, the polyester obtained by this method has a problem that the content of foreign matters insoluble in the polyester cannot always be stably obtained at a low level. Ultrafine fibers, highly transparent films for optical use, The highly transparent molded body and the like did not reach a sufficiently satisfactory level, and the improvement was strongly envyed.
本発明は従来技術の課題を背景になされたもので、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とする重縮合触媒で色調、透明性や熱安定性を維持し、かつ重縮合速度が速く、さらに重縮合触媒起因の異物生成が少なく、品質と経済性を両立させたポリエステル、ポリエステル製品およびポリエステルの製造方法を提供するものである。 The present invention has been made against the background of the problems of the prior art, and maintains color tone, transparency and thermal stability with a polycondensation catalyst having a metal component other than antimony, germanium and titanium as the main metal component, and The present invention provides a polyester, a polyester product, and a method for producing a polyester that have a high polycondensation rate, and that are less likely to produce foreign substances due to a polycondensation catalyst, and that are compatible with quality and economy.
本発明は上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに到った。即ち本発明は、アルミニウム化合物からなる群より選ばれる少なくとも1種と、リン化合物から選ばれる少なくとも1種からなるポリエステル重縮合触媒の存在下にポリエステルを製造する方法において、アルミニウム化合物として後述する方法で測定されるアルミニウム化合物の水溶液の吸光度が0.0132以下であるアルミニウム化合物を用いることを特徴とするポリエステルの製造方法である。また、本発明は該方法で製造されたポリエステルおよびその成型体である。 In order to solve the above-mentioned problems, the present invention has finally been completed as a result of intensive studies. That is, the present invention relates to a method for producing a polyester in the presence of a polyester polycondensation catalyst comprising at least one selected from the group consisting of aluminum compounds and at least one selected from phosphorus compounds. A polyester production method using an aluminum compound having an absorbance of an aqueous solution of an aluminum compound to be measured of 0.0132 or less. Moreover, this invention is the polyester manufactured by this method, and its molding.
本発明によるポリエステルの製造方法は、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とした重縮合触媒で色調、透明性および熱安定性等を維持し、かつ重縮合速度が速く、さらに重縮合触媒起因の異物生成が少なく、品質と経済性を両立させることの出来るという利点がある。従って、本発明の製造方法で得られたポリエステルは、例えば衣料用や産業資材用の繊維、包装用、磁気テープ用および光学用などのフィルムやシート、中空成形品であるボトル、電気・電子部品のケーシング、その他エンジニアリングプラスチック成形品等の広範な分野において好適に使用することができる。特に、本発明のポリエステルは重縮合触媒起因の異物生成が少ないという特徴を有しているので超微細繊維、光学用の高透明なフイルムあるいは超高透明な成型体等の分野においてその特徴を発揮することができる。 The polyester production method according to the present invention is a polycondensation catalyst in which metal components other than antimony, germanium and titanium are used as the main metal components of the catalyst, maintaining color tone, transparency, thermal stability, etc., and having a high polycondensation rate. Furthermore, there is an advantage that the production of foreign matter due to the polycondensation catalyst is small and both quality and economy can be achieved. Accordingly, the polyester obtained by the production method of the present invention includes, for example, fibers for clothing and industrial materials, films and sheets for packaging, magnetic tape and optics, bottles that are hollow molded articles, electrical / electronic components, etc. Can be suitably used in a wide range of fields such as casings and other engineering plastic molded articles. In particular, the polyester of the present invention has the feature that there is little generation of foreign matter due to the polycondensation catalyst, so it exhibits the feature in the fields of ultrafine fibers, optically transparent films or ultra-highly transparent molded products. can do.
以下、本発明を詳細に説明する。
本発明に言うポリエステルとは、ジカルボン酸および/またはそのエステル形成性誘導体とジオールおよび/またはそのエステル形成性誘導体とから成るものをいう。
Hereinafter, the present invention will be described in detail.
The polyester referred to in the present invention refers to a polyester comprising a dicarboxylic acid and / or an ester-forming derivative thereof and a diol and / or an ester-forming derivative thereof.
ジカルボン酸としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、 テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3−シクロブタンジカルボン酸、1,3−シクロペンタンジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、2,5−ノルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、5−(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−フタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、4、4’−ビフェニルジカルボン酸、4、4’−ビフェニルスルホンジカルボン酸、4、
4’−ビフェニルエーテルジカルボン酸、1,2−ビス(フェノキシ)エタン−p,p’
−ジカルボン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸またはこれらのエステル形成性誘導体が挙げられる。
Dicarboxylic acids include succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 1,3 -For cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc. Saturated aliphatic dicarboxylic acids exemplified, or ester-forming derivatives thereof, unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid, etc., or ester-forming derivatives thereof, orthophthalic acid, isophthalic acid, terephthalic acid Acid, 5 -(Alkali metal) sulfoisophthalic acid, diphenic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-phthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalene Dicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-biphenylsulfonedicarboxylic acid, 4,
4'-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p '
-Aromatic dicarboxylic acids exemplified by dicarboxylic acid, pamoic acid, anthracene dicarboxylic acid and the like, and ester-forming derivatives thereof.
これらのジカルボン酸のうちテレフタル酸およびナフタレンジカルボン酸とくに2,6−ナフタレンジカルボン酸が、得られるポリエステルの物性等の点で好ましく、必要に応じて他のジカルボン酸を構成成分とする。 Of these dicarboxylic acids, terephthalic acid and naphthalenedicarboxylic acid, particularly 2,6-naphthalenedicarboxylic acid, are preferable from the viewpoint of the physical properties of the resulting polyester, and other dicarboxylic acids are used as constituents as necessary.
これらジカルボン酸以外にも少量であれば多価カルボン酸を併用しても良い。該多価カルボン酸としては、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3、4、3’、4’−ビフェ
ニルテトラカルボン酸、およびこれらのエステル形成性誘導体などが挙げられる。
In addition to these dicarboxylic acids, a polyvalent carboxylic acid may be used in combination if the amount is small. Examples of the polyvalent carboxylic acid include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3, 4, 3 ′, 4′-biphenyltetracarboxylic acid, and these Examples thereof include ester-forming derivatives.
グリコールとしてはエチレングリコール、1、2−プロピレングリコール、1、3−プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1、2−ブチレングリコール、1、3−ブチレングリコール、2、3−ブチレングリコール、1,4−ブチレングリコール、1、5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,4−シクロヘキサンジエタノール、1,10−デカメチレングリコール、1、12−ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール、ヒドロキノン、4,4’−ジヒドロキシビスフェノール
、1,4−ビス(βーヒドロキシエトキシ)ベンゼン、1,4−ビス(β−ヒドロキシエトキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)エーテル、ビス(p−ヒドロキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)メタン、1、2−ビス(p−ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5−ナフタレンジオール、これらのグリコールにエチレンオキシドが付加したグリコール、などに例示される芳香族グリコールが挙げられる。
As glycol, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polytrimethyl Aliphatic glycols exemplified by tylene glycol and polytetramethylene glycol, hydroquinone, 4,4′-dihydroxybisphenol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-bis (β-hydroxyethoxyphenyl) ) Sulfone, bis (p-hydroxyphenyl) ether, bis (p-hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, bisphenol C, 2 , 5-naphthalenediol, aromatic glycols exemplified by ethylene glycol added to these glycols, and the like.
これらのグリコールのうちエチレングリコール、1,3−プロピレングリコール、1,4−ブチレングリコール、1,4−シクロヘキサンジメタノールが好ましい。 Of these glycols, ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol are preferred.
これらグリコール以外に少量であれば多価アルコールを併用しても良い。該多価アルコールとしては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどが挙げられる。 In addition to these glycols, polyhydric alcohols may be used in combination in small amounts. Examples of the polyhydric alcohol include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol, and the like.
また、ヒドロキシカルボン酸を併用しても良い。該ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3ーヒドロキシ酪酸、p−ヒドロキシ安息香酸、p−(2−ヒドロキシエトキシ)安息香酸、4−ヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体などが挙げられる。 Moreover, you may use together hydroxycarboxylic acid. Examples of the hydroxycarboxylic acid include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these And ester-forming derivatives thereof.
また、環状エステルの併用も許容される。該環状エステルとしては、ε−カプロラクトン、β−プロピオラクトン、β−メチル−β−プロピオラクトン、δ−バレロラクトン、グリコリド、ラクチドなどが挙げられる。 Moreover, combined use of cyclic ester is also permitted. Examples of the cyclic ester include ε-caprolactone, β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, glycolide, and lactide.
多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体としては、これらの化合物のアルキルエステルやヒドロキシルアルキルエステル等が挙げられる。 Examples of ester-forming derivatives of polyvalent carboxylic acids or hydroxycarboxylic acids include alkyl esters and hydroxylalkyl esters of these compounds.
ジオールのエステル形成性誘導体としては、ジオールの酢酸等の低級脂肪族カルボン酸とのエステルが挙げられる。 Examples of ester-forming derivatives of diols include esters of diols with lower aliphatic carboxylic acids such as acetic acid.
本発明のポリエステルとしてはPET、PBT、ポリプロピレンテレフタレート、ポリ(1,4−シクロヘキサンジメチレンテレフタレート)、PEN、ポリブチレンナフタレート、ポリプロピレンナフタレートおよびこれらの共重縮合体が好ましく、これらのうちポリエチレンテレフタレートおよびこの共重縮合体が特に好ましい。共重縮合体としてはエチレンテレフタレート単位を50モル%以上よりなるものが好ましく、70モル%以上がより好ましい。 As the polyester of the present invention, PET, PBT, polypropylene terephthalate, poly (1,4-cyclohexanedimethylene terephthalate), PEN, polybutylene naphthalate, polypropylene naphthalate and copolycondensates thereof are preferable, and among these, polyethylene terephthalate And this copolycondensate is particularly preferred. The copolycondensate is preferably composed of 50 mol% or more of ethylene terephthalate units, more preferably 70 mol% or more.
本発明におけるアルミニウム化合物としては、水および/または有機溶媒に溶解できるものであれば限定されない。具体的には、ギ酸アルミニウム、酢酸アルミニウム、プロピオン酸アルミニウム、シュウ酸アルミニウム、アクリル酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロロ酢酸アルミニウム、乳酸アルミニウム、クエン酸アルミニウム、酒石酸アルミニウム、サリチル酸アルミニウムなどのカルボン酸塩、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、炭酸アルミニウム、リン酸アルミニウム、ホスホン酸アルミニウムなどの無機酸塩、アルミニウムメトキサイド、アルミニウムエトキサイド、アルミニウムn−プロポキサイド、アルミニウムiso−プロポキサイド、アルミニウムn−ブトキサイド、アルミニウムt−ブトキサイドなどアルミニウムアルコキサイド、アルミニウムアセチルアセトネート、アルミニウムアセチルアセテート、アルミニウムエチルアセトアセテート、アルミニウムエチルアセトアセテートジiso−プロポキサイドなどのアルミニウムキレート化合物、トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物及びこれらの部分加水分解物、アルミニウムのアルコキサイドやアルミニウムキレート化合物とヒドロキシカルボン酸からなる反応生成物等が挙げられる。これらのうちカルボン酸塩が特に好ましい。 The aluminum compound in the present invention is not limited as long as it can be dissolved in water and / or an organic solvent. Specifically, aluminum formate, aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, aluminum citrate, aluminum tartrate, salicylic acid Carboxylates such as aluminum, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum phosphonate, and other inorganic acid salts, aluminum methoxide, aluminum ethoxide, aluminum n-propoxide, aluminum iso-propoxide, aluminum n-butoxide, aluminum t-but Aluminum alkoxides such as side, aluminum acetylacetonate, aluminum acetylacetate, aluminum ethyl acetoacetate, aluminum ethyl acetoacetate diiso-propoxide, etc., aluminum chelate compounds, trimethylaluminum, organic aluminum compounds such as triethylaluminum and their partial hydrolysis Examples include decomposition products, reaction products composed of alkoxides of aluminum and aluminum chelate compounds and hydroxycarboxylic acids. Of these, carboxylates are particularly preferred.
これらのアルミニウム化合物の中でも、カルボン酸アルミニウム化合物が溶解性や装置を腐食しない観点から特に好ましい。 Among these aluminum compounds, an aluminum carboxylate compound is particularly preferable from the viewpoint of solubility and corrosion of the apparatus.
本発明に用いられるカルボン酸アルミニウム塩としては、具体的には、ギ酸アルミニウム、酢酸アルミニウム、塩基性酢酸アルミニウム、プロピオン酸アルミニウム、シュウ酸アルミニウム、アクリル酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロロ酢酸アルミニウム、乳酸アルミニウム、クエン酸アルミニウム、酒石酸アルミニウム、サリチル酸アルミニウムなどが挙げられるが、これらのうち酢酸アルミニウム、塩基性酢酸アルミニウム等の酢酸のアルミニウム塩の構造を有するものや乳酸アルミニウムが系への溶解性や触媒活性の観点から好ましい。 Specific examples of the carboxylic acid aluminum salt used in the present invention include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, and benzoic acid. Examples include aluminum, aluminum trichloroacetate, aluminum lactate, aluminum citrate, aluminum tartrate, and aluminum salicylate. Of these, aluminum acetate and basic aluminum acetate and other aluminum acetate structures and aluminum lactate are used. From the viewpoint of solubility in water and catalytic activity.
カルボン酸のアルミニウム塩をポリエステル重縮合触媒として用いた例としては、酢酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウム、安息香酸アルミニウムなどがこれまでに例示されているが、これらはいずれもポリエステルに対する溶解性が低いため、触媒活性に劣るとともに、得られるポリエステルに不溶性の異物が生成するといった問題を有しており、これらの化合物をそのまま触媒として使用するには問題があった。該課題を解決する方法として、本発明者等はこれらを水および/または有機溶媒に予め溶解したものを触媒として用いることで十分な触媒活性を持たせることができるが特許文献5において開示している。本発明は、該特許文献5に開示されている技術に立脚している。すなわち、該技術で得られたポリエステルは、色調、透明性や熱安定性が良好であり、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とする重縮合触媒として実用性の高いものである。しかし該方法で得られたポリエステルはポリエステルに不溶性の異物含有量が常に低いレベルで安定して得ることが出来ないという課題を有しており、超微細繊維、光学用の高透明なフイルムあるいは超高透明な成型体等において十分に満足するレベルに到達しておらずその改善が強く嘱望されていた。本発明はこのポリエステルに不溶性の微細な異物含有量の変動を抑える技術の確立に関し鋭意検討し到達したものであり、該要求を満たすものである。 Examples of using an aluminum salt of a carboxylic acid as a polyester polycondensation catalyst include aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum benzoate and the like, and these are all soluble in polyester. Therefore, the catalyst activity is inferior, and insoluble foreign matter is generated in the resulting polyester, and there is a problem in using these compounds as a catalyst as they are. As a method for solving this problem, the present inventors can give sufficient catalytic activity by using those previously dissolved in water and / or an organic solvent as a catalyst. Yes. The present invention is based on the technique disclosed in Patent Document 5. That is, the polyester obtained by this technique has good color tone, transparency and thermal stability, and is highly practical as a polycondensation catalyst having a metal component other than antimony, germanium and titanium as the main metal component of the catalyst. Is. However, the polyester obtained by this method has a problem that the content of foreign matters insoluble in the polyester cannot always be stably obtained at a low level. Ultrafine fibers, highly transparent films for optical use, The highly transparent molded body and the like did not reach a sufficiently satisfactory level, and the improvement was strongly envyed. The present invention has been accomplished through earnest studies on the establishment of a technique for suppressing the fluctuation of the content of fine foreign matter insoluble in polyester, and satisfies the demand.
すなわち、本発明はアルミニウム化合物として以下の方法で測定されるアルミニウム化合物の水溶液の吸光度が0.0132以下であるアルミニウム化合物を用いることを大きな特徴としている。なお、本発明におけるアルミニウム化合物の水溶液の吸光度の測定方法は以下の方法である。
[アルミニウム化合物水溶液の吸光度測定法]
アルミニウム化合物をアルミニウム元素量で2.7g/lの濃度で純水に溶解して680nmの波長で吸光度を測定する。溶解は室温で6時間攪拌後、内温を95℃に上げて、さらに3時間攪拌をすることにより行う。吸光度の測定はセル長1cmの石英セルを用い、純水を対照液として行う。
That is, the present invention is greatly characterized in that an aluminum compound having an absorbance of 0.0132 or less of an aqueous solution of an aluminum compound measured by the following method is used as the aluminum compound. In addition, the measuring method of the light absorbency of the aqueous solution of the aluminum compound in this invention is the following method.
[Absorbance measurement method of aluminum compound aqueous solution]
The aluminum compound is dissolved in pure water at a concentration of 2.7 g / l in terms of the amount of aluminum element, and the absorbance is measured at a wavelength of 680 nm. The dissolution is performed by stirring at room temperature for 6 hours, raising the internal temperature to 95 ° C., and stirring for another 3 hours. The absorbance is measured using a quartz cell having a cell length of 1 cm and pure water as a control solution.
吸光度が0.0088以下が好ましく、0.0044以下がより好ましく、0.022以下がさらに好ましい。吸光度0が最も好ましい。吸光度が0.0132を超えた場合は、ポリエステルに不溶性の異物含有量が多くなり、例えばフィルムやボトル等の成型体として成型した場合に、該成型体のヘーズが悪化するので好ましくない。また、重縮合工程や成型工程でのポリエステルの濾過時のフィルター詰まりが多くなるという課題にも繋がる。 The absorbance is preferably 0.0088 or less, more preferably 0.0044 or less, and further preferably 0.022 or less. An absorbance of 0 is most preferred. When the absorbance exceeds 0.0132, the content of foreign matters insoluble in polyester increases, and for example, when molded as a molded body such as a film or a bottle, the haze of the molded body deteriorates. Moreover, it leads to the subject that the filter clogging at the time of filtration of polyester in a polycondensation process or a molding process increases.
上記のアルミニウム化合物水溶液の吸光度は、アルミニウム化合物中に含まれる極微量の水への不溶性成分量を評価する尺度である。該吸光度を本発明の範囲にすることでポリエステルに不溶性の異物含有量の生成が抑制されるのは、アルミニウム化合物中に含まれる極微量の水への不溶性成分である微粒子状の不溶解分自体あるいは該不溶解分が核となりポリエステルの重縮合工程でポリエステルに対して不溶性の異物に変質あるいは凝集すること等によるポリエステルに不溶性の異物生成が抑制されるために引起されるものと推察している。 The absorbance of the aluminum compound aqueous solution is a measure for evaluating the amount of insoluble components in a very small amount of water contained in the aluminum compound. By setting the absorbance within the range of the present invention, the generation of the insoluble foreign matter content in the polyester is suppressed because the insoluble matter in the form of fine particles, which is an insoluble component in a very small amount of water, contained in the aluminum compound itself. Alternatively, it is presumed that the insoluble matter becomes the nucleus and is caused by the generation of insoluble foreign matter in the polyester due to transformation or aggregation into a foreign matter insoluble in the polyester in the polyester polycondensation step. .
本発明において、上記のアルミニウム化合物水溶液の吸光度を0.0132以下にする方法は限定されないが、高純度の水に可溶性のカルボン酸アルミニウム塩化合物を選択することが好ましい。また、高純度品が得にくい場合は、アルミニウム化合物を水溶液として濾過や遠心あるいは超遠心分離法で水に不溶性の成分を除去して用いても構わない。 In the present invention, the method for adjusting the absorbance of the aqueous aluminum compound solution to 0.0132 or less is not limited, but it is preferable to select a carboxylic acid aluminum salt compound that is soluble in high-purity water. In addition, when it is difficult to obtain a high-purity product, an aluminum compound may be used as an aqueous solution after removing components insoluble in water by filtration, centrifugation, or ultracentrifugation.
本発明のアルミニウム化合物は、ポリエステルの重縮合系に添加する前に、予め水および/または有機溶媒に溶解した状態にして、重縮合系に添加するのが好ましい。有機溶媒としては、グリコール類の使用が好ましく、PETを製造する場合は、エチレングリコールを用いることが好ましい。 The aluminum compound of the present invention is preferably added to the polycondensation system in a state of being previously dissolved in water and / or an organic solvent before being added to the polyester polycondensation system. As the organic solvent, it is preferable to use glycols, and when manufacturing PET, it is preferable to use ethylene glycol.
本発明のアルミニウム化合物を水および/または有機溶媒に溶解した溶液を製造するために、アルミニウム化合物を予め水に溶解した溶液を用いることが好ましい。該水溶液に必要に応じてジオール類等の有機溶剤を加えることが好ましい。該水溶液をそのまま重縮合系に添加してもよいが、添加時のヒートショックをやわらげる為に、該水溶液をエチレングリコール等のジオール類で希釈したものを重縮合系に添加するか、あるいは、ジオール類で希釈した溶液を液―液置換することで水を留去したものを重縮合系に添加することが好ましい。 In order to produce a solution in which the aluminum compound of the present invention is dissolved in water and / or an organic solvent, it is preferable to use a solution in which the aluminum compound is previously dissolved in water. It is preferable to add an organic solvent such as diols to the aqueous solution as necessary. The aqueous solution may be added as it is to the polycondensation system, but in order to reduce heat shock during the addition, a solution obtained by diluting the aqueous solution with a diol such as ethylene glycol is added to the polycondensation system, or a diol It is preferable to add to a polycondensation system a solution obtained by distilling water by liquid-liquid replacement of a solution diluted with a liquid.
アルミニウム化合物水溶液をエチレングリコール等のジオール類で希釈する場合、水に対して容量比で0.5〜50倍量のジオール類で希釈することが好ましい。また、重縮合系に添加するアルミニウム化合物の溶液の濃度としては、アルミニウム元素換算で0.01〜1モル/リットルとすると、得られるポリエステル中に不溶性の異物の生成がとくに抑制されるため好ましい。 When the aluminum compound aqueous solution is diluted with a diol such as ethylene glycol, it is preferable to dilute the diol with a volume ratio of 0.5 to 50 times that of water. In addition, the concentration of the aluminum compound solution added to the polycondensation system is preferably 0.01 to 1 mol / liter in terms of aluminum element, since formation of insoluble foreign matter in the obtained polyester is particularly suppressed.
アルミニウム化合物を水および/または有機溶剤に溶解する際、あるいは溶解した溶液に、ホウ酸等の安定剤やくえん酸、乳酸、蓚酸等の酸を添加することで溶解性や溶液の安定性が高まるため、該化合物を併用することは好ましい実施態様である。 When an aluminum compound is dissolved in water and / or an organic solvent, or by adding a stabilizer such as boric acid or an acid such as citric acid, lactic acid, or succinic acid to the dissolved solution, the solubility and the stability of the solution are increased. Therefore, it is a preferred embodiment to use the compound in combination.
以下に、本発明で用いられるアルミニウム化合物溶液の調製方法として、塩基性酢酸アルミニウムを用いたケースで例示する。塩基性酢酸アルミニウムに水を加え室温で数時間以上攪拌する。攪拌時間は、12時間以上であることが好ましい。その後、60℃以上で数時間以上攪拌を行う。この場合の温度は、60〜80℃の範囲であることが好ましい。攪拌時間は、3時間以上であることが好ましい。水溶液の濃度は、5g/l〜100g/lが好ましく、とくに10g/l〜30g/lが好ましい。該方法において、予め前記のアルミニウム化合物水溶液の吸光度測定法に従って、本発明範囲の吸光度を満足する塩基性酢酸アルミニウムであることを評価したものを用いて行うのが好ましい実施態様である。一方、該方法で溶解した水溶液を濾過あるいは超遠心分離法等で水に不溶性の成分を除去することにより精製し、その精製溶液の一部をサンプリングし、フリーズドライ法で乾燥することにより得た固形分を純水に再溶解をして吸光度を測定し吸光度が本発明の範囲には入っていることを確認して用いても良い。 Below, the preparation method of the aluminum compound solution used by this invention is illustrated in the case where basic aluminum acetate is used. Add water to basic aluminum acetate and stir at room temperature for several hours. The stirring time is preferably 12 hours or longer. Thereafter, stirring is performed at 60 ° C. or more for several hours or more. The temperature in this case is preferably in the range of 60 to 80 ° C. The stirring time is preferably 3 hours or more. The concentration of the aqueous solution is preferably 5 g / l to 100 g / l, particularly preferably 10 g / l to 30 g / l. In this method, it is preferable to carry out using a method in which the basic aluminum acetate satisfying the absorbance within the range of the present invention is evaluated in advance according to the absorbance measurement method of the aqueous aluminum compound solution. On the other hand, the aqueous solution dissolved by this method was purified by removing components insoluble in water by filtration or ultracentrifugation, etc., and a part of the purified solution was sampled and obtained by drying by freeze drying method The solid content may be redissolved in pure water and the absorbance may be measured to confirm that the absorbance is within the scope of the present invention.
上述の水溶液に対してエチレングリコールを加える。エチレングリコールの添加量は水溶液に対して容量比で1〜5倍量が好ましい。より好ましくは2〜3倍量である。該溶液を数時間常温で攪拌することで均一な水/エチレングリコール混合溶液を得る。その後、該溶液を加熱し、水を留去することでエチレングリコール溶液を得ることができる。温度は80℃以上が好ましく、120℃以下が好ましい。より好ましくは90〜110℃で数時間攪拌して水を留去することが好ましい。 Add ethylene glycol to the above aqueous solution. The amount of ethylene glycol added is preferably 1 to 5 times the volume ratio of the aqueous solution. More preferably, the amount is 2-3 times. The solution is stirred at room temperature for several hours to obtain a uniform water / ethylene glycol mixed solution. Thereafter, the solution is heated and water is distilled off to obtain an ethylene glycol solution. The temperature is preferably 80 ° C. or higher, and preferably 120 ° C. or lower. More preferably, the water is distilled off by stirring at 90 to 110 ° C. for several hours.
以下に、乳酸アルミニウムのエチレングリコール溶液の調製方法の具体例を示す。乳酸アルミニウムの水溶液を調製する。調製は室温下でも加熱下でもよいが室温下が好ましい。水溶液の濃度は20g/l〜100g/lが好ましく、50〜80g/lがとくに好ましい。該水溶液にエチレングリコールを加える。エチレングリコールの添加量は水溶液に対して容量比で1〜5倍量が好ましい。より好ましくは2〜3倍量である。該溶液を常温で攪拌し均一な水/エチレングリコール混合溶液を得た後、該溶液を加熱し、水を留去することでエチレングリコール溶液を得ることができる。温度は80℃以上が好ましく、120℃以下が好ましい。より好ましくは90〜110℃で数時間攪拌して水を留去することが好ましい。吸光度の評価は上記の塩基性酢酸アルミニウム溶液の調製法に準ずる。 Below, the specific example of the preparation method of the ethylene glycol solution of aluminum lactate is shown. An aqueous solution of aluminum lactate is prepared. The preparation may be performed at room temperature or under heating, but is preferably performed at room temperature. The concentration of the aqueous solution is preferably 20 g / l to 100 g / l, particularly preferably 50 to 80 g / l. Ethylene glycol is added to the aqueous solution. The amount of ethylene glycol added is preferably 1 to 5 times the volume ratio of the aqueous solution. More preferably, the amount is 2-3 times. After stirring the solution at room temperature to obtain a uniform water / ethylene glycol mixed solution, the solution is heated and water is distilled off to obtain an ethylene glycol solution. The temperature is preferably 80 ° C. or higher, and preferably 120 ° C. or lower. More preferably, the water is distilled off by stirring at 90 to 110 ° C. for several hours. Absorbance is evaluated in accordance with the above-described method for preparing a basic aluminum acetate solution.
本発明の方法に従ってポリエステルを製造する際の、アルミニウム化合物の使用量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対してアルミニウム原子として0.001〜0.05モル%が好ましく、更に好ましくは0.005〜0.02モル%である。使用量が0.001モル%未満であると触媒活性が十分に発揮されない場合があり、使用量が0.05モル%より多いと、熱安定性や熱酸化安定性の低下、アルミニウムに起因する異物の発生や着色の増加が問題になる場合が発生する。この様にアルミニウム成分の添加量が少なくても本発明の重縮合触媒は十分な触媒活性を示す点に大きな特徴を有する。その結果熱安定性や熱酸化安定性が優れ、アルミニウムに起因する異物や着色が低減される。 The amount of the aluminum compound used in the production of the polyester according to the method of the present invention is 0 as an aluminum atom with respect to the number of moles of all constituent units of the carboxylic acid component such as dicarboxylic acid or polyvalent carboxylic acid of the obtained polyester. 0.001 to 0.05 mol% is preferable, and 0.005 to 0.02 mol% is more preferable. If the amount used is less than 0.001 mol%, the catalytic activity may not be sufficiently exerted. If the amount used is more than 0.05 mol%, the thermal stability or thermal oxidation stability is lowered, resulting from aluminum. Occurrence of foreign matters or increased coloring may be a problem. Thus, even if the addition amount of the aluminum component is small, the polycondensation catalyst of the present invention has a great feature in that it exhibits sufficient catalytic activity. As a result, the thermal stability and thermal oxidation stability are excellent, and foreign matters and coloring caused by aluminum are reduced.
本発明の重縮合触媒を構成するリン化合物としては、特に限定はされないが、リン酸ならびにトリメチルリン酸、トリエチルリン酸、フェニルリン酸、トリフェニルリン酸等のリン酸エステル、亜リン酸ならびにトリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)4,4’−ビフェニレンジ
ホスファイト等の亜リン酸エステルなどが挙げられる。
The phosphorus compound constituting the polycondensation catalyst of the present invention is not particularly limited, but phosphoric acid and phosphoric acid esters such as trimethyl phosphoric acid, triethyl phosphoric acid, phenyl phosphoric acid and triphenyl phosphoric acid, phosphorous acid and trimethyl. Phosphite, triethyl phosphite, triphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) 4,4′-biphenylene diphosphite And the like.
本発明のより好ましいリン化合物は、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる少なくとも一種のリン化合物である。これらのリン化合物を用いることで触媒活性の向上効果が見られるとともに、ポリエステルの熱安定性等の物性が改善する効果が見られる。これらの中でも、ホスホン酸系化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。 More preferable phosphorus compound of the present invention is at least one phosphorus compound selected from the group consisting of phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, and phosphine compounds. It is. By using these phosphorus compounds, an effect of improving the catalytic activity is seen, and an effect of improving physical properties such as thermal stability of the polyester is seen. Among these, use of a phosphonic acid compound is preferable because of its great effect of improving physical properties and improving catalytic activity. Among the above-described phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the physical property improving effect and the catalytic activity improving effect are great.
本発明で言うホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物とは、それぞれ下記式(化1)〜(化6)で表される構造を有する化合物のことを言う。 The phosphonic acid-based compound, phosphinic acid-based compound, phosphine oxide-based compound, phosphonous acid-based compound, phosphinic acid-based compound, and phosphine-based compound referred to in the present invention are represented by the following formulas (Formula 1) to (Formula 6), respectively. It refers to a compound having the structure represented.
本発明のホスホン酸系化合物としては、例えば、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジフェニル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸ジエチルなどが挙げられる。本発明のホスフィン酸系化合物としては、例えば、ジフェニルホスフィン酸、ジフェニルホスフィン酸メチル、ジフェニルホスフィン酸フェニル、フェニルホスフィン酸、フェニルホスフィン酸メチル、フェニルホスフィン酸フェニルなどが挙げられる。本発明のホスフィンオキサイド系化合物としては、例えば、ジフェニルホスフィンオキサイド、メチルジフェニルホスフィンオキサイド、トリフェニルホスフィンオキサイドなどが挙げられる。 Examples of the phosphonic acid compound of the present invention include dimethyl methylphosphonate, diphenyl methylphosphonate, dimethyl phenylphosphonate, diethyl phenylphosphonate, diphenyl phenylphosphonate, dimethyl benzylphosphonate, diethyl benzylphosphonate and the like. Examples of the phosphinic acid compound of the present invention include diphenylphosphinic acid, methyl diphenylphosphinate, phenyl diphenylphosphinate, phenylphosphinic acid, methyl phenylphosphinate, phenylphenylphosphinate and the like. Examples of the phosphine oxide compound of the present invention include diphenylphosphine oxide, methyldiphenylphosphine oxide, and triphenylphosphine oxide.
ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物の中では、本発明のリン化合物としては、下記式(化7)〜(化12)で表される化合物が好ましい。 Among the phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, and phosphine compounds, the phosphorus compounds of the present invention are represented by the following formulas (Chemical Formula 7) to (Chemical Formula 12). Are preferred.
上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。 Among the above-described phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the physical property improving effect and the catalytic activity improving effect are great.
また、本発明のリン化合物としては、下記一般式(化13)〜(化15)で表される化合物を用いると物性改善効果や触媒活性の向上効果が特に大きく好ましい。 In addition, when the compounds represented by the following general formulas (Chemical Formula 13) to (Chemical Formula 15) are used as the phosphorus compound of the present invention, the physical property improving effect and the catalytic activity improving effect are particularly large and preferable.
(式(化13)〜(化15)中、R1、R4、R5、R6はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2、R3はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。ただし、炭化水素基はシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。) Wherein R 1 , R 4 , R 5 and R 6 are each independently hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group or an amino group. Represents a hydrocarbon group having 1 to 50 carbon atoms including R 2 and R 3 each independently represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group. However, the hydrocarbon group may contain an alicyclic structure such as cyclohexyl or an aromatic ring structure such as phenyl or naphthyl.)
本発明のリン化合物としては、上記式(化13)〜(化15)中、R1、R4、R5、R6が芳香環構造を有する基である化合物がとくに好ましい。 The phosphorus compound of the present invention is particularly preferably a compound in which R 1 , R 4 , R 5 , and R 6 are groups having an aromatic ring structure in the above formulas (Chemical Formula 13) to (Chemical Formula 15).
本発明のリン化合物としては、例えば、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジフェニル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸ジエチル、ジフェニルホスフィン酸、ジフェニルホスフィン酸メチル、ジフェニルホスフィン酸フェニル、フェニルホスフィン酸、フェニルホスフィン酸メチル、フェニルホスフィン酸フェニル、ジフェニルホスフィンオキサイド、メチルジフェニルホスフィンオキサイド、トリフェニルホスフィンオキサイドなどが挙げられる。これらのうちで、フェニルホスホン酸ジメチル、ベンジルホスホン酸ジエチルがとくに好ましい。 Examples of the phosphorus compound of the present invention include dimethyl methylphosphonate, diphenyl methylphosphonate, dimethyl phenylphosphonate, diethyl phenylphosphonate, diphenyl phenylphosphonate, dimethyl benzylphosphonate, diethyl benzylphosphonate, diphenylphosphinic acid, diphenylphosphinic acid. Examples include methyl, phenyl diphenylphosphinate, phenylphosphinic acid, methyl phenylphosphinate, phenyl phenylphosphinate, diphenylphosphine oxide, methyldiphenylphosphine oxide, and triphenylphosphine oxide. Of these, dimethyl phenylphosphonate and diethyl benzylphosphonate are particularly preferred.
上記したリン化合物の中でも、本発明では、リン化合物としてリンの金属塩化合物がとくに好ましい。リンの金属塩化合物とは、リン化合物の金属塩であれば特に限定はされないが、ホスホン酸系化合物の金属塩を用いると本発明の課題であるポリエステルの物性改善効果や触媒活性の向上効果が大きく好ましい。リン化合物の金属塩としては、モノ金属塩、ジ金属塩、トリ金属塩などが含まれる。 Among the phosphorus compounds described above, a phosphorus metal salt compound is particularly preferable as the phosphorus compound in the present invention. The phosphorus metal salt compound is not particularly limited as long as it is a metal salt of a phosphorus compound. However, when a metal salt of a phosphonic acid compound is used, the physical properties improving effect and catalytic activity improving effect of the polyester, which are the problems of the present invention, are improved. Largely preferred. Examples of the metal salt of the phosphorus compound include a monometal salt, a dimetal salt, and a trimetal salt.
また、上記したリン化合物の中でも、金属塩の金属部分が、Li、Na、K、Be、Mg、Sr、Ba、Mn、Ni、Cu、Znから選択されたものを用いると触媒活性の向上効果が大きく好ましい。これらのうち、Li、Na、Mgがとくに好ましい。 Further, among the above-described phosphorus compounds, when the metal portion of the metal salt is selected from Li, Na, K, Be, Mg, Sr, Ba, Mn, Ni, Cu, and Zn, the catalytic activity is improved. Is preferable. Of these, Li, Na, and Mg are particularly preferable.
本発明のリンの金属塩化合物としては、下記一般式(化16)で表される化合物から選択される少なくとも一種を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。 As the phosphorus metal salt compound of the present invention, it is preferable to use at least one selected from the compounds represented by the following general formula (Chemical Formula 16) because the effect of improving the physical properties and the effect of improving the catalytic activity are large.
(式(化16)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、l+mは4以下である。Mは(l+m)価の金属カチオンを表す。nは1以上の整数を表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。) (In the formula (Formula 16), R 1 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group, and a hydrocarbon group having 1 to 50 carbon atoms. R 2 represents , Hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group, and a hydrocarbon group having 1 to 50 carbon atoms, R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group. A hydrocarbon group having 1 to 50 carbon atoms including a group or carbonyl, l is an integer of 1 or more, m is 0 or an integer of 1 or more, l + m is 4 or less, M is a (l + m) -valent metal Represents a cation, n represents an integer of 1 or more, and the hydrocarbon group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl or naphthyl.)
上記のR1としては、例えば、フェニル、1―ナフチル、2―ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。上記のR2としては例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。R3O-としては例えば、水酸化物イオン、アルコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。 Examples of R 1 include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl, 2-biphenyl, and the like. Examples of R 2 include hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, long-chain aliphatic group, phenyl group, naphthyl group, Examples thereof include a substituted phenyl group, a naphthyl group, and a group represented by —CH 2 CH 2 OH. Examples of R 3 O − include hydroxide ions, alcoholate ions, acetate ions, and acetylacetone ions.
上記一般式(化16)で表される化合物の中でも、下記一般式(化17)で表される化合物から選択される少なくとも一種を用いることが好ましい。 Among the compounds represented by the general formula (Chemical Formula 16), it is preferable to use at least one selected from the compounds represented by the following General Formula (Chemical Formula 17).
(式(化17)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、l+mは4以下である。Mは(l+m)価の金属カチオンを表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。) (In the formula (Chemical Formula 17), R 1 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group, and a hydrocarbon group having 1 to 50 carbon atoms. R 3 represents , Hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group, or a hydrocarbon group having 1 to 50 carbon atoms including carbonyl, l is an integer of 1 or more, and m is 0 or an integer of 1 or more. , L + m is 4 or less, M represents a (l + m) -valent metal cation, and the hydrocarbon group may contain an alicyclic structure such as cyclohexyl or a branched structure, or an aromatic ring structure such as phenyl or naphthyl.
上記のR1としては、例えば、フェニル、1―ナフチル、2―ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。R3O-としては例えば、水酸化物イオン、アルコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。 Examples of R 1 include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl, 2-biphenyl, and the like. Examples of R 3 O − include hydroxide ions, alcoholate ions, acetate ions, and acetylacetone ions.
上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。 Among the above-described phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the physical property improving effect and the catalytic activity improving effect are great.
上記式(化17)の中でも、Mが、Li,Na、K、Be、Mg、Sr、Ba、Mn、Ni、Cu、Znから選択されたものを用いると触媒活性の向上効果が大きく好ましい。これらのうち、Li、Na、Mgがとくに好ましい。 Among the above formulas (Chemical Formula 17), when M is selected from Li, Na, K, Be, Mg, Sr, Ba, Mn, Ni, Cu, and Zn, the effect of improving the catalytic activity is large and preferable. Of these, Li, Na, and Mg are particularly preferable.
本発明のリンの金属塩化合物としては、リチウム[(1−ナフチル)メチルホスホン酸エチル]、ナトリウム[(1−ナフチル)メチルホスホン酸エチル]、マグネシウムビス[(1−ナフチル)メチルホスホン酸エチル]、カリウム[(2−ナフチル)メチルホスホン酸エチル]、マグネシウムビス[(2−ナフチル)メチルホスホン酸エチル]、リチウム[ベンジルホスホン酸エチル]、ナトリウム[ベンジルホスホン酸エチル]、マグネシウムビス[ベンジルホスホン酸エチル]、ベリリウムビス[ベンジルホスホン酸エチル]、ストロンチウムビス[ベンジルホスホン酸エチル]、マンガンビス[ベンジルホスホン酸エチル]、ベンジルホスホン酸ナトリウム、マグネシウムビス[ベンジルホスホン酸]、ナトリウム[(9−アンスリル)メチルホスホン酸エチル]、マグネシウムビス[(9−アンスリル)メチルホスホン酸エチル]、ナトリウム[4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[4−クロロベンジルホスホン酸フェニル]、マグネシウムビス[4−クロロベンジルホスホン酸エチル]、ナトリウム[4−アミノベンジルホスホン酸メチル]、マグネシウムビス[4−アミノベンジルホスホン酸メチル]、フェニルホスホン酸ナトリウム、マグネシウムビス[フェニルホスホン酸エチル]、亜鉛ビス[フェニルホスホン酸エチル]などが挙げられる。これらの中で、リチウム[(1−ナフチル)メチルホスホン酸エチル]、ナトリウム[(1−ナフチル)メチルホスホン酸エチル]、マグネシウムビス[(1−ナフチル)メチルホスホン酸エチル]、リチウム[ベンジルホスホン酸エチル]、ナトリウム[ベンジルホスホン酸エチル]、マグネシウムビス[ベンジルホスホン酸エチル]、ベンジルホスホン酸ナトリウム、マグネシウムビス[ベンジルホスホン酸]がとくに好ましい。 Examples of the metal salt compound of phosphorus according to the present invention include lithium [ethyl (1-naphthyl) methylphosphonate], sodium [ethyl (1-naphthyl) methylphosphonate], magnesium bis [ethyl (1-naphthyl) methylphosphonate], potassium [ (2-naphthyl) methylphosphonate ethyl], magnesium bis [(2-naphthyl) methylphosphonate ethyl], lithium [benzylphosphonate ethyl], sodium [benzylphosphonate ethyl], magnesium bis [benzylphosphonate ethyl], beryllium bis [Ethyl benzylphosphonate], strontium bis [ethyl benzylphosphonate], manganese bis [ethyl benzylphosphonate], sodium benzylphosphonate, magnesium bis [benzylphosphonic acid], sodium [(9-anths L) ethyl methylphosphonate], magnesium bis [(9-anthryl) methylphosphonate ethyl], sodium [ethyl 4-hydroxybenzylphosphonate], magnesium bis [4-hydroxybenzylphosphonate ethyl], sodium [4-chlorobenzylphosphone] Acid phenyl], magnesium bis [4-chlorobenzylphosphonate ethyl], sodium [methyl 4-aminobenzylphosphonate], magnesium bis [4-aminobenzylphosphonate methyl], sodium phenylphosphonate, magnesium bis [phenylphosphonic acid] Ethyl], zinc bis [ethyl phenylphosphonate] and the like. Among these, lithium [ethyl (1-naphthyl) methylphosphonate], sodium [ethyl (1-naphthyl) methylphosphonate], magnesium bis [ethyl (1-naphthyl) methylphosphonate], lithium [ethyl benzylphosphonate], Sodium [ethyl benzylphosphonate], magnesium bis [ethyl benzylphosphonate], sodium benzylphosphonate and magnesium bis [benzylphosphonic acid] are particularly preferred.
上記したリン化合物の中でも、本発明では、リン化合物としてP−OH結合を少なくとも一つ有するリン化合物がとくに好ましい。これらのリン化合物を含有することでポリエステルの物性改善効果がとくに高まることに加えて、ポリエステルの重縮合時に、これらのリン化合物を本発明のアルミニウム化合物と共存して用いることで触媒活性の向上効果が大きく見られる。
P−OH結合を少なくとも一つ有するリン化合物とは、分子内にP−OHを少なくとも一つ有するリン化合物であれば特に限定はされない。これらのリン化合物の中でも、P−OH結合を少なくとも一つ有するホスホン酸系化合物を用いるとポリエステルの物性改善効果や触媒活性の向上効果が大きく好ましい。
Among the phosphorus compounds described above, in the present invention, a phosphorus compound having at least one P—OH bond is particularly preferable as the phosphorus compound. In addition to particularly improving the physical properties improving effect of the polyester by containing these phosphorus compounds, the catalytic activity is improved by using these phosphorus compounds in combination with the aluminum compound of the present invention during the polycondensation of the polyester. Is seen greatly.
The phosphorus compound having at least one P—OH bond is not particularly limited as long as it is a phosphorus compound having at least one P—OH in the molecule. Among these phosphorus compounds, the use of a phosphonic acid compound having at least one P—OH bond is preferred because of its great effect of improving the physical properties and improving the catalytic activity of the polyester.
上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。 Among the above-described phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the physical property improving effect and the catalytic activity improving effect are great.
本発明のP−OH結合を少なくとも一つ有するリン化合物としては、下記一般式(化18)で表される化合物から選択される少なくとも一種を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。 As the phosphorus compound having at least one P—OH bond of the present invention, it is preferable to use at least one selected from the compounds represented by the following general formula (Chemical Formula 18) because the physical property improving effect and the catalytic activity improving effect are large. .
(式(化18)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。nは1以上の整数を表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。) (In the formula (Chemical Formula 18), R 1 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group, and a hydrocarbon group having 1 to 50 carbon atoms. R 2 represents , Hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group, n represents an integer of 1 or more, and the hydrocarbon group is an alicyclic structure such as cyclohexyl. And may contain an aromatic ring structure such as a branched structure or phenyl or naphthyl.)
上記のR1としては、例えば、フェニル、1―ナフチル、2―ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。上記のR2としては例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。 Examples of R 1 include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl, 2-biphenyl, and the like. Examples of R 2 include hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, long-chain aliphatic group, phenyl group, naphthyl group, Examples thereof include a substituted phenyl group, a naphthyl group, and a group represented by —CH 2 CH 2 OH.
上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。 Among the above-described phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the physical property improving effect and the catalytic activity improving effect are great.
本発明のP−OH結合を少なくとも一つ有するリン化合物としては、(1−ナフチル)メチルホスホン酸エチル、(1−ナフチル)メチルホスホン酸、(2−ナフチル)メチルホスホン酸エチル、ベンジルホスホン酸エチル、ベンジルホスホン酸、(9−アンスリル)メチルホスホン酸エチル、4−ヒドロキシベンジルホスホン酸エチル、2−メチルベンジルホスホン酸エチル、4−クロロベンジルホスホン酸フェニル、4−アミノベンジルホスホン酸メチル、4−メトキシベンジルホスホン酸エチルなどが挙げられる。これらの中で、(1−ナフチル)メチルホスホン酸エチル、ベンジルホスホン酸エチルがとくに好ましい。 Examples of the phosphorus compound having at least one P—OH bond of the present invention include (1-naphthyl) methylphosphonic acid ethyl, (1-naphthyl) methylphosphonic acid, (2-naphthyl) methylphosphonic acid ethyl, benzylphosphonic acid ethyl, benzylphosphonic acid. Acid, ethyl (9-anthryl) methylphosphonate, ethyl 4-hydroxybenzylphosphonate, ethyl 2-methylbenzylphosphonate, phenyl 4-chlorobenzylphosphonate, methyl 4-aminobenzylphosphonate, ethyl 4-methoxybenzylphosphonate Etc. Of these, ethyl (1-naphthyl) methylphosphonate and ethyl benzylphosphonate are particularly preferred.
本発明の好ましいリン化合物としては、化学式(化19)であらわされるリン化合物が挙げられる。 A preferable phosphorus compound of the present invention is a phosphorus compound represented by the chemical formula (Formula 19).
(式(化19)中、R1は炭素数1〜49の炭化水素基、または水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜49の炭化水素基を表し、R2,R3はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。炭化水素基は脂環構造や分岐構造や芳香環構造を含んでいてもよい。) (In the formula (Chemical Formula 19), R 1 represents a hydrocarbon group having 1 to 49 carbon atoms, or a hydrocarbon group having 1 to 49 carbon atoms including a hydroxyl group, a halogen group, an alkoxyl group, or an amino group, and R 2 , R 3 each independently represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group, which has an alicyclic structure, a branched structure or an aromatic ring structure. May be included.)
また、更に好ましくは、化学式(化19)中のR1,R2,R3の少なくとも一つが芳香環構造を含む化合物である。 More preferably, at least one of R 1 , R 2 and R 3 in the chemical formula (Chemical Formula 19) is a compound containing an aromatic ring structure.
これらのリン化合物の具体例を以下に示す。 Specific examples of these phosphorus compounds are shown below.
また、本発明のリン化合物は、分子量が大きいものの方が重縮合時に留去されにくいため効果が大きく好ましい。 Moreover, since the phosphorus compound of this invention has a large molecular weight, since it is hard to be distilled off at the time of polycondensation, an effect is large and preferable.
本発明のリン化合物は、フェノール部を同一分子内に有するリン化合物であることが好ましい。フェノール部を同一分子内に有するリン化合物を含有することでポリエステルの物性改善効果が高まることに加えて、ポリエステルの重縮合時にフェノール部を同一分子内に有するリン化合物を用いることで触媒活性を高める効果がより大きく、従ってポリエステルの生産性に優れる。 The phosphorus compound of the present invention is preferably a phosphorus compound having a phenol moiety in the same molecule. In addition to enhancing the physical properties of the polyester by containing a phosphorus compound having a phenol moiety in the same molecule, the catalytic activity is enhanced by using a phosphorus compound having a phenol moiety in the same molecule during polycondensation of the polyester. Greater effect and therefore better polyester productivity.
フェノール部を同一分子内に有するリン化合物としては、フェノール構造を有するリン化合物であれば特に限定はされないが、フェノール部を同一分子内に有する、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる一種または二種以上の化合物を用いるとポリエステルの物性改善効果や触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上のフェノール部を同一分子内に有するホスホン酸系化合物を用いるとポリエステルの物性改善効果や触媒活性の向上効果がとくに大きく好ましい。 The phosphorus compound having a phenol moiety in the same molecule is not particularly limited as long as it is a phosphorus compound having a phenol structure, but a phosphonic acid compound, a phosphinic acid compound, a phosphine oxide compound having a phenol moiety in the same molecule. When one or more compounds selected from the group consisting of a compound, a phosphonous acid compound, a phosphinic acid compound, and a phosphine compound are used, the effect of improving the physical properties of the polyester and the effect of improving the catalytic activity are greatly preferred. Among these, when a phosphonic acid compound having one or two or more phenol moieties in the same molecule is used, the effect of improving the physical properties of the polyester and the effect of improving the catalytic activity are particularly large and preferable.
本発明のフェノール部を同一分子内に有するリン化合物としては、下記一般式(化26)〜(化28)で表される化合物が好ましい。 As a phosphorus compound which has the phenol part of this invention in the same molecule | numerator, the compound represented by the following general formula (Formula 26)-(Formula 28) is preferable.
(式(化26)〜(化28)中、R1はフェノール部を含む炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール部を含む炭素数1〜50の炭化水素基を表す。R4,R5,R6はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1〜50の炭化水素基を表す。R2,R3はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1〜50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。R2とR4の末端どうしは結合していてもよい。) (In the formulas (Chemical Formula 26) to (Chemical Formula 28), R 1 is a carbon having 1 to 50 carbon atoms including a phenol part, a substituent such as a hydroxyl group, a halogen group, an alkoxyl group, or an amino group, and a phenol part. Represents a hydrocarbon group having a number of 1 to 50. R 4 , R 5 and R 6 each independently represents a substituent such as hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group or an amino group. Represents a hydrocarbon group having 1 to 50 carbon atoms, and R 2 and R 3 are each independently hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, or an alkoxyl group. Represents a hydrocarbon group, provided that the hydrocarbon group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl, and the ends of R 2 and R 4 are bonded to each other. Moyo Yes.)
本発明のフェノール部を同一分子内に有するリン化合物としては、例えば、p−ヒドロキシフェニルホスホン酸、p−ヒドロキシフェニルホスホン酸ジメチル、p−ヒドロキシフェニルホスホン酸ジエチル、p−ヒドロキシフェニルホスホン酸ジフェニル、ビス(p−ヒドロキシフェニル)ホスフィン酸、ビス(p−ヒドロキシフェニル)ホスフィン酸メチル、ビス(p−ヒドロキシフェニル)ホスフィン酸フェニル、p−ヒドロキシフェニルフェニルホスフィン酸、p−ヒドロキシフェニルフェニルホスフィン酸メチル、p−ヒドロキシフェニルフェニルホスフィン酸フェニル、p−ヒドロキシフェニルホスフィン酸、p−ヒドロキシフェニルホスフィン酸メチル、p−ヒドロキシフェニルホスフィン酸フェニル、ビス(p−ヒドロキシフェニル)ホスフィンオキサイド、トリス(p−ヒドロキシフェニル)ホスフィンオキサイド、ビス(p−ヒドロキシフェニル)メチルホスフィンオキサイド、および下記式(化29)〜(化32)で表される化合物などが挙げられる。これらのうちで、下記式(化31)で表される化合物およびp−ヒドロキシフェニルホスホン酸ジメチルがとくに好ましい。 Examples of the phosphorus compound having the phenol moiety of the present invention in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis (P-hydroxyphenyl) phosphinic acid, methyl bis (p-hydroxyphenyl) phosphinate, phenyl bis (p-hydroxyphenyl) phosphinate, p-hydroxyphenylphenylphosphinic acid, methyl p-hydroxyphenylphenylphosphinate, p- Phenyl hydroxyphenylphenylphosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, phenyl p-hydroxyphenylphosphinate, bis (p-hydroxyphenyl Yl) phosphine oxide, tris (p- hydroxyphenyl) phosphine oxide, bis (p- hydroxyphenyl) methyl phosphine oxide, and the following formula (Formula 29), and the like compounds represented by to (Formula 32). Among these, a compound represented by the following formula (Chemical Formula 31) and dimethyl p-hydroxyphenylphosphonate are particularly preferable.
上記の式(化31)にて示される化合物としては、SANKO−220(三光株式会社
製)があり、使用可能である。
As a compound represented by the above formula (Chemical Formula 31), SANKO-220 (manufactured by Sanko Co., Ltd.) can be used.
本発明のフェノール部を同一分子内に有するリン化合物の中でも、下記一般式(化33)で表される特定のリンの金属塩化合物から選択される少なくとも一種がとくに好ましい。 Among the phosphorus compounds having the phenol moiety of the present invention in the same molecule, at least one selected from a metal salt compound of a specific phosphorus represented by the following general formula (Formula 33) is particularly preferable.
((式(化33)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。R4は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。R4O-としては例えば、水酸化物イオン、アルコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。 lは1以上の整数、mは0または1以上の整数を表し、l+mは4以下である。Mは(l+m)価の金属カチオンを表す。nは1以上の整数を表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。) (In Formula (Chemical Formula 33), R 1 and R 2 each independently represent hydrogen and a hydrocarbon group having 1 to 30 carbon atoms. R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or R 4 represents a hydrocarbon group having 1 to 50 carbon atoms including an alkoxyl group, R 4 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, an alkoxyl group, or a carbonyl group including carbonyl. Examples of R 4 O − include hydroxide ion, alcoholate ion, acetate ion, acetylacetone ion, etc. l is an integer of 1 or more, m is 0 or an integer of 1 or more, and l + m is 4 or less. M represents a (l + m) -valent metal cation, n represents an integer of 1 or more, and the hydrocarbon group includes an alicyclic structure such as cyclohexyl, a branched structure, and an aromatic ring structure such as phenyl or naphthyl. Moyo .)
これらの中でも、下記一般式(化34)で表される化合物から選択される少なくとも一種が好ましい。 Among these, at least one selected from compounds represented by the following general formula (Formula 34) is preferable.
(式(化34)中、Mn+はn価の金属カチオンを表す。nは1,2,3または4を表す。) (In the formula (Chemical Formula 34), M n + represents an n-valent metal cation. N represents 1, 2, 3 or 4.)
上記式(化33)または(化34)の中でも、Mが、Li,Na、K、Be、Mg、Sr、Ba、Mn、Ni、Cu、Znから選択されたものを用いると触媒活性の向上効果が大きく好ましい。これらのうち、Li、Na、Mgがとくに好ましい。 Among the above formulas (Chemical Formula 33) or (Chemical Formula 34), when M is selected from Li, Na, K, Be, Mg, Sr, Ba, Mn, Ni, Cu, Zn, the catalytic activity is improved. The effect is large and preferable. Of these, Li, Na, and Mg are particularly preferable.
本発明の特定のリンの金属塩化合物としては、リチウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸]、カリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸]、ベリリウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチル]、ストロンチウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、バリウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸フェニル]、マンガンビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ニッケルビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、銅ビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、亜鉛ビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]などが挙げられる。これらの中で、リチウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]がとくに好ましい。 Specific phosphorus metal salt compounds of the present invention include lithium [3,5-di-tert-butyl-4-hydroxybenzylphosphonate], sodium [3,5-di-tert-butyl-4-hydroxybenzyl] Ethyl phosphonate], sodium [3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid], potassium [ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate], magnesium bis [3 , 5-di-tert-butyl-4-hydroxybenzylphosphonic acid ethyl], magnesium bis [3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid], beryllium bis [3,5-di-tert- Methyl butyl-4-hydroxybenzylphosphonate], strontium bis [3,5-di-te t-butyl-4-hydroxybenzylphosphonate ethyl], barium bis [3,5-di-tert-butyl-4-hydroxybenzylphosphonate phenyl], manganese bis [3,5-di-tert-butyl-4- Ethyl hydroxybenzylphosphonate], nickel bis [3,5-di-tert-butyl-4-hydroxybenzylphosphonate], copper bis [3,5-di-tert-butyl-4-hydroxybenzylphosphonate] Zinc bis [3,5-di-tert-butyl-4-hydroxybenzylphosphonate] and the like. Among these, lithium [ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate], sodium [ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate], magnesium bis [ Ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate] is particularly preferred.
本発明のフェノール部を同一分子内に有するリン化合物の中でも、下記一般式(化35)で表されるP−OH結合を少なくとも一つ有する特定のリン化合物から選択される少なくとも一種がとくに好ましい。 Among the phosphorus compounds having the phenol moiety of the present invention in the same molecule, at least one selected from specific phosphorus compounds having at least one P—OH bond represented by the following general formula (Formula 35) is particularly preferable.
((式(化35)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。nは1以上の整数を表す。
炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
(In formula (Chemical Formula 35), R 1 and R 2 each independently represent hydrogen and a hydrocarbon group having 1 to 30 carbon atoms. R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or A hydrocarbon group having 1 to 50 carbon atoms including an alkoxyl group is represented, and n represents an integer of 1 or more.
The hydrocarbon group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl or naphthyl. )
これらの中でも、下記一般式(化36)で表される化合物から選択される少なくとも一種が好ましい。 Among these, at least one selected from compounds represented by the following general formula (Formula 36) is preferable.
(式(化36)中、R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。炭化水素基はシキロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。) (In formula (Chemical Formula 36), R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group. The hydrocarbon group is a fatty acid such as cyclohexyl. (It may contain a ring structure, a branched structure, or an aromatic ring structure such as phenyl or naphthyl.)
上記のR3としては例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。 Examples of R 3 include hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, long-chain aliphatic group, phenyl group, naphthyl group, Examples thereof include a substituted phenyl group, a naphthyl group, and a group represented by —CH 2 CH 2 OH.
本発明のP−OH結合を少なくとも一つ有する特定のリン化合物としては、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸イソプロピル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸フェニル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸オクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸などが挙げられる。これらの中で、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチルがとくに好ましい。 Specific phosphorus compounds having at least one P-OH bond of the present invention include ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, 3,5-di-tert-butyl-4-hydroxy Methyl benzylphosphonate, isopropyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, phenyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, 3,5-di-tert-butyl Examples include octadecyl-4-hydroxybenzylphosphonate, 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid, and the like. Of these, ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and methyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate are particularly preferred.
本発明のフェノール部を同一分子内に有するリン化合物の中でも、下記一般式(化37)で表される特定のリン化合物から選ばれる少なくとも一種のリン化合物が好ましい。 Among the phosphorus compounds having the phenol moiety of the present invention in the same molecule, at least one phosphorus compound selected from specific phosphorus compounds represented by the following general formula (Formula 37) is preferable.
(上記式(化37)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3、R4はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。nは1以上の整数を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。) (In the above formula (Chemical Formula 37), R 1 and R 2 each independently represent hydrogen and a hydrocarbon group having 1 to 30 carbon atoms. R 3 and R 4 are each independently hydrogen and carbon atoms having 1 to 50 carbon atoms. Represents a hydrocarbon group having 1 to 50 carbon atoms including a hydrogen group, a hydroxyl group or an alkoxyl group, n represents an integer of 1 or more, and the hydrocarbon group is an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic such as phenyl or naphthyl. It may contain a ring structure.)
上記一般式(化37)の中でも、下記一般式(化38)で表される化合物から選択される少なくとも一種を用いるとポリエステルの物性改善効果や触媒活性の向上効果が高く好ましい。 Among the above general formulas (Chemical Formula 37), it is preferable to use at least one compound selected from the compounds represented by the following General Formula (Chemical Formula 38) because the effect of improving the physical properties and improving the catalytic activity of the polyester are high.
(上記式(化38)中、R3、R4はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。) (In the above formula (Chemical Formula 38), R 3 and R 4 each independently represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group. The group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl or naphthyl.)
上記のR3、R4としては例えば、水素、メチル基、ブチル基等の短鎖の脂肪族基、オクタデシル等の長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基等の芳香族基、−CH2CH2OHで表される基などが挙げられる。 Examples of R 3 and R 4 include short chain aliphatic groups such as hydrogen, methyl and butyl groups, long chain aliphatic groups such as octadecyl, phenyl groups, naphthyl groups, substituted phenyl groups and naphthyl groups. An aromatic group such as a group, a group represented by —CH 2 CH 2 OH, and the like.
本発明の特定のリン化合物としては、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジイソプロピル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジ−n−ブチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジオクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジフェニルなどが挙げられる。これらの中で、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジオクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジフェニルがとくに好ましい。 Specific phosphorus compounds of the present invention include diisopropyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, di-n-butyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, Examples include dioctadecyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and diphenyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate. Of these, dioctadecyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and diphenyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate are particularly preferred.
本発明のフェノール部を同一分子内に有するリン化合物の中でも、本発明でとくに望ましい化合物は、化学式(化39)、(化40)で表される化合物から選ばれる少なくとも一種のリン化合物である。 Among the phosphorus compounds having the phenol moiety of the present invention in the same molecule, a particularly desirable compound in the present invention is at least one phosphorus compound selected from compounds represented by chemical formulas (Chemical Formula 39) and (Chemical Formula 40).
上記の化学式(化39)にて示される化合物としては、Irganox1222(チバ・スペシャルティーケミカルズ社製)が市販されており、また化学式(化40)にて示される化合物としてはIrganox1425(チバ・スペシャルティーケミカルズ社製)が市販されており、使用可能である。 As the compound represented by the above chemical formula (Chemical Formula 39), Irganox 1222 (manufactured by Ciba Specialty Chemicals) is commercially available, and as the compound represented by the chemical formula (Chemical Formula 40), Irganox 1425 (Ciba Specialty Chemical) is available. Chemicals) is commercially available and can be used.
本発明においては、請求項2に記載のごとく、上記リン化合物が、予め水およびアルキレングリコールからなる群から選ばれた少なくとも1種の溶媒中で加熱処理されたものを用いることが好ましい実施態様である。該処理により前記のアルミニウムやアルミニウム化合物に上記のリン化合物を併用することによる重縮合触媒活性が向上すると共に、該重縮合触媒起因の異物形成性が低下する。 In the present invention, as described in claim 2, it is preferable that the phosphorus compound is preheated in at least one solvent selected from the group consisting of water and alkylene glycol. is there. The treatment improves the polycondensation catalyst activity by using the above-mentioned phosphorus compound in combination with the above-mentioned aluminum or aluminum compound, and decreases the foreign matter forming property due to the polycondensation catalyst.
リン化合物を予め加熱処理する時に使用する溶媒としては、水およびアルキレングリコールからなる群から選ばれる少なくとも1種であれば限定されず任意であるが、リン化合物を溶解する溶媒を用いることが好ましい。アルキレングリコールとしては、エチレングリコール等の目的とするポリエステルの構成成分であるグリコールを用いることが好ましい。溶媒中での加熱処理は、リン化合物を溶解してから行うのが好ましいが、完全に溶解していなくてもよい。また、加熱処理の後に、化合物がもとの構造を保持している必要はなく、加熱処理による変性で溶媒に対する溶解性が向上するものであっても構わない。 The solvent used when heat-treating the phosphorus compound in advance is not limited as long as it is at least one selected from the group consisting of water and alkylene glycol, but it is preferable to use a solvent that dissolves the phosphorus compound. As the alkylene glycol, it is preferable to use glycol which is a constituent component of the target polyester such as ethylene glycol. The heat treatment in the solvent is preferably performed after dissolving the phosphorus compound, but may not be completely dissolved. Further, it is not necessary that the compound retains the original structure after the heat treatment, and the solubility in the solvent may be improved by the modification by the heat treatment.
加熱処理の温度は特に限定はされないが、20〜250℃の範囲であることが好ましい。より好ましくは、100〜200℃の範囲である。温度の上限は、用いる溶媒の沸点付近とすることが好ましい。加熱時間は、温度等の条件によっても異なるが、溶媒の沸点付近の温度だと1分〜50時間の範囲であることが好ましく、より好ましくは30分〜10時間、さらに好ましくは1〜5時間の範囲である。加熱処理の系の圧力は常圧、もしくはそれ以上あるいは以下であってもよく特に限定されない。溶液の濃度は、リン化合物として1〜500g/lであることが好ましく、より好ましくは5〜300g/l、さらに好ましくは10〜100g/lである。加熱処理は窒素等の不活性気体の雰囲気下で行うことが好ましい。加熱後の溶液もしくはスラリーの保管温度は特に限定はされないが、0℃〜100℃の範囲であることが好ましく、20℃〜60℃の範囲であることがより好ましい。溶液の保管は窒素等の不活性気体の雰囲気下で行うことが好ましい。 Although the temperature of heat processing is not specifically limited, It is preferable that it is the range of 20-250 degreeC. More preferably, it is the range of 100-200 degreeC. The upper limit of the temperature is preferably around the boiling point of the solvent used. Although the heating time varies depending on conditions such as temperature, the heating temperature is preferably in the range of 1 minute to 50 hours, more preferably 30 minutes to 10 hours, and even more preferably 1 to 5 hours. Range. The pressure of the heat treatment system may be normal pressure, higher or lower, and is not particularly limited. The concentration of the solution is preferably 1 to 500 g / l as a phosphorus compound, more preferably 5 to 300 g / l, and still more preferably 10 to 100 g / l. The heat treatment is preferably performed in an atmosphere of an inert gas such as nitrogen. The storage temperature of the solution or slurry after heating is not particularly limited, but is preferably in the range of 0 ° C to 100 ° C, and more preferably in the range of 20 ° C to 60 ° C. It is preferable to store the solution in an atmosphere of an inert gas such as nitrogen.
リン化合物を予め溶媒中で加熱処理する際に、本発明のアルミニウムまたはその化合物を共存してもよい。また、リン化合物を予め溶媒中で加熱処理したものに、本発明のアルミニウムまたはその化合物を粉状、溶液状、あるいはスラリー状として添加してもよい。さらに、添加後の溶液またはスラリーを加熱処理してもよい。これらの操作で得られた溶液もしくはスラリーを本発明の重縮合触媒として用いることが可能である。 When heat-treating a phosphorus compound in a solvent in advance, the aluminum of the present invention or a compound thereof may coexist. Alternatively, the aluminum of the present invention or a compound thereof may be added in a powder form, a solution form, or a slurry form to a phosphorus compound that has been previously heat-treated in a solvent. Furthermore, you may heat-process the solution or slurry after addition. The solution or slurry obtained by these operations can be used as the polycondensation catalyst of the present invention.
本発明におけるリン化合物の使用量としては、得られるポリエステルのカルボン酸成分の全構成ユニットのモル数に対して0.0001〜0.1モル%が好ましく、0.005〜0.05モル%であることがさらに好ましい。 As the usage-amount of the phosphorus compound in this invention, 0.0001-0.1 mol% is preferable with respect to the number-of-moles of all the structural units of the carboxylic acid component of the polyester obtained, 0.005-0.05 mol% More preferably it is.
本発明においては、上記のアルミニウムもしくその化合物とリン化合物を併用すれば実用性の高い重縮合触媒活性を発現することができるが、さらに少量のアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なくとも1種を第2金属含有成分として共存させることが好ましい態様である。かかる第2金属含有成分を触媒系に共存させることは、ジエチレングリコールの生成を抑制する効果に加えて触媒活性を高め、従って反応速度をより高めた触媒成分が得られ、生産性向上に有効である。 In the present invention, a polycondensation catalytic activity having high practicality can be expressed by using the above-mentioned aluminum or its compound in combination with a phosphorus compound, but it can be selected from a smaller amount of alkali metal, alkaline earth metal and compound thereof. It is a preferred embodiment that at least one of these is allowed to coexist as the second metal-containing component. The coexistence of such a second metal-containing component in the catalyst system is effective in improving productivity by obtaining a catalyst component having an increased reaction rate in addition to an effect of suppressing the formation of diethylene glycol, and thus a higher reaction rate. .
アルミニウム化合物にアルカリ金属化合物又はアルカリ土類金属化合物を添加して十分な触媒活性を有する触媒とする技術は公知である。かかる公知の触媒を使用すると熱安定性に優れたポリエステルが得られるが、アルカリ金属化合物又はアルカリ土類金属化合物を併用した公知の触媒は、実用的な触媒活性を得ようとするとそれらの添加量が多く必要であり、アルカリ金属化合物を使用したときは得られるポリエステルの耐加水分解性が低下すると共にアルカリ金属化合物に起因する異物量が多くなり、繊維に使用したときには製糸性や糸物性が、またフィルムに使用したときはフィルム物性などが悪化する。またアルカリ土類金属化合物を併用した場合には、実用的な活性を得ようとすると得られたポリエステルの熱安定性が低下し、加熱による着色が大きく、異物の発生量も多くなり、耐加水分解性も低下する。 A technique of adding an alkali metal compound or an alkaline earth metal compound to an aluminum compound to obtain a catalyst having sufficient catalytic activity is known. When such a known catalyst is used, a polyester having excellent thermal stability can be obtained. However, a known catalyst used in combination with an alkali metal compound or an alkaline earth metal compound is added in an amount to obtain practical catalytic activity. However, when an alkali metal compound is used, the hydrolysis resistance of the resulting polyester is reduced and the amount of foreign matter resulting from the alkali metal compound is increased. Moreover, when used for a film, the film properties and the like deteriorate. In addition, when an alkaline earth metal compound is used in combination, the thermal stability of the obtained polyester is lowered when it is attempted to obtain practical activity, coloring due to heating is large, the amount of foreign matter generated is increased, and water resistance is increased. Degradability also decreases.
アルカリ金属、アルカリ土類金属並びにその化合物を添加する場合、その使用量M(モル%)は、ポリエステルを構成する全ポリカルボン酸ユニットのモル数に対して、1×10−6以上0.1モル%未満であることが好ましく、より好ましくは5×10-6〜0.05モル%であり、さらに好ましくは1×10-5〜0.03モル%であり、特に好ましくは、1×10-5〜0.01モル%である。アルカリ金属、アルカリ土類金属の添加量が少量であるため、熱安定性低下、異物の発生、着色、耐加水分解性の低下等の問題を発生させることなく、反応速度を高めることが可能である。アルカリ金属、アルカリ土類金属並びにその化合物の使用量Mが0.1モル%以上になると熱安定性の低下、異物発生や着色の増加、並びに耐加水分解性の低下が製品加工上問題となる場合が発生する。Mが1×10-6
未満では、添加してもその効果が明確ではない。
When adding an alkali metal, an alkaline earth metal and a compound thereof, the amount M (mol%) used is 1 × 10 −6 or more and 0.1 or more relative to the number of moles of all the polycarboxylic acid units constituting the polyester. It is preferably less than mol%, more preferably 5 × 10 −6 to 0.05 mol%, still more preferably 1 × 10 −5 to 0.03 mol%, and particularly preferably 1 × 10 10. -5 to 0.01 mol%. Since the addition amount of alkali metal and alkaline earth metal is small, it is possible to increase the reaction rate without causing problems such as deterioration of thermal stability, generation of foreign substances, coloring, deterioration of hydrolysis resistance, etc. is there. When the amount M of the alkali metal, alkaline earth metal, or compound thereof is 0.1 mol% or more, the thermal stability decreases, the generation of foreign matter and coloring, and the hydrolysis resistance become problems in product processing. A case occurs. M is 1 × 10 -6
If it is less than 1, the effect is not clear even if it is added.
本発明においてアルミニウムもしくはその化合物に加えて使用することが好ましい第2金属含有成分を構成するアルカリ金属、アルカリ土類金属としては、Li,Na,K,Rb,Cs,Be,Mg,Ca,Sr,Baから選択される少なくとも1種であることが好ましく、このうちLi,Na,Mgないしその化合物から選択される少なくとも1種の使用がより好ましい。アルカリ金属やアルカリ土類金属の化合物としては、例えば、これら金属のギ酸、酢酸、プロピオン酸、酪酸、蓚酸などの飽和脂肪族カルボン酸塩、アクリル酸、メタクリル酸などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸、クエン酸、サリチル酸などのヒドロキシカルボン酸塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水素、硫化水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機酸塩、1−プロパンスルホン酸、1−ペンタンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、メトキシ、エトキシ、n−プロポキシ、iso−プロポキシ、n−ブトキシ、tert−ブトキシなどのアルコキサイド、アセチルアセトネートなどとのキレート化合物、水素化物、酸化物、水酸化物などが挙げられる。 In the present invention, the alkali metal or alkaline earth metal constituting the second metal-containing component preferably used in addition to aluminum or a compound thereof includes Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr. , Ba is preferable, and among these, at least one selected from Li, Na, Mg or a compound thereof is more preferable. Examples of the alkali metal and alkaline earth metal compounds include saturated aliphatic carboxylates such as formic acid, acetic acid, propionic acid, butyric acid, and succinic acid, and unsaturated aliphatic carboxylates such as acrylic acid and methacrylic acid. , Aromatic carboxylates such as benzoic acid, halogen-containing carboxylates such as trichloroacetic acid, hydroxycarboxylates such as lactic acid, citric acid and salicylic acid, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen carbonate, phosphorus Inorganic acid salts such as acid hydrogen, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid and bromic acid, and organic sulfonates such as 1-propanesulfonic acid, 1-pentanesulfonic acid and naphthalenesulfonic acid , Organic sulfates such as lauryl sulfate, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butyl Alkoxides such as alkoxy, chelate compounds and the like acetylacetonate, hydrides, oxides, and hydroxides and the like.
これらのアルカリ金属、アルカリ土類金属またはそれらの化合物のうち、水酸化物等のアルカリ性の強いものを用いる場合、これらはエチレングリコール等のジオールもしくはアルコール等の有機溶媒に溶解しにくい傾向があるため、水溶液で重縮合系に添加しなければならず重縮合工程上問題となる場合が有る。さらに、水酸化物等のアルカリ性の強いものを用いた場合、重縮合時にポリエステルが加水分解等の副反応を受け易くなるとともに、重縮合したポリエステルは着色し易くなる傾向があり、耐加水分解性も低下する傾向がある。従って、本発明のアルカリ金属またはそれらの化合物あるいはアルカリ土類金属またはそれらの化合物として好適なものは、アルカリ金属あるいはアルカリ土類金属の飽和脂肪族カルボン酸塩、不飽和脂肪族カルボン酸塩、芳香族カルボン塩、ハロゲン含有カルボン酸塩、ヒドロキシカルボン酸塩、硫酸、硝酸、リン酸、ホスホン酸、リン酸水素、硫化水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸から選ばれる無機酸塩、有機スルホン酸塩、有機硫酸塩、キレート化合物、及び酸化物である。これらの中でもさらに、取り扱い易さや入手のし易さ等の観点から、アルカリ金属あるいはアルカリ土類金属の飽和脂肪族カルボン酸塩、特に酢酸塩の使用が好ましい。 Among these alkali metals, alkaline earth metals or their compounds, when using strongly alkaline ones such as hydroxides, these tend to be difficult to dissolve in diols such as ethylene glycol or organic solvents such as alcohols. The solution must be added to the polycondensation system in an aqueous solution, which may cause a problem in the polycondensation process. Furthermore, when a strongly alkaline material such as hydroxide is used, the polyester tends to undergo side reactions such as hydrolysis during polycondensation, and the polycondensed polyester tends to be easily colored, and is resistant to hydrolysis. There is also a tendency to decrease. Accordingly, the alkali metal or their compounds or alkaline earth metals or their compounds suitable for the present invention are preferably saturated aliphatic carboxylates, unsaturated aliphatic carboxylates, aromatics of alkali metals or alkaline earth metals. Aromatic carboxylates, halogen-containing carboxylates, hydroxycarboxylates, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen phosphate, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid, bromic acid Selected inorganic acid salts, organic sulfonates, organic sulfates, chelate compounds, and oxides. Among these, from the viewpoint of ease of handling, availability, and the like, it is preferable to use an alkali metal or alkaline earth metal saturated aliphatic carboxylate, particularly acetate.
本発明の重縮合触媒は、アンチモン化合物、ゲルマニウム化合物、チタン化合物などの他の重縮合触媒を、これらの成分の添加が前記のようなポリエステルの特性、加工性、色調等製品に問題を生じない添加量の範囲内において共存させて用いることは、重縮合時間の短縮による生産性を向上させる際に有効であり、好ましい。 The polycondensation catalyst of the present invention is a polycondensation catalyst such as an antimony compound, a germanium compound, or a titanium compound, and the addition of these components does not cause problems in the product such as the characteristics, processability, and color tone of the polyester. Coexistence within the range of the addition amount is effective in improving productivity by shortening the polycondensation time, and is preferable.
アンチモン化合物は、重縮合して得られるポリエステルに対してアンチモン原子として50ppm以下の量で添加することが好ましい。より好ましい添加量は、30ppm以下である。アンチモンの添加量を50ppm以上にすると、金属アンチモンの析出が起こり、ポリエステルに黒ずみや異物が発生するため好ましくない。 The antimony compound is preferably added in an amount of 50 ppm or less as antimony atoms to the polyester obtained by polycondensation. A more preferable addition amount is 30 ppm or less. When the amount of antimony added is 50 ppm or more, metal antimony is precipitated, and darkening and foreign matter are generated in the polyester.
ゲルマニウム化合物は、重縮合して得られるポリエステルに対してゲルマニウム原子として20ppm以下の量で添加することが好ましい。より好ましい添加量は10ppm以下である。ゲルマニウムの添加量を20ppm以上にすると、コスト的に不利になるため好ましくない。 The germanium compound is preferably added in an amount of 20 ppm or less as germanium atoms to the polyester obtained by polycondensation. A more preferable addition amount is 10 ppm or less. If the amount of germanium added is 20 ppm or more, it is not preferable because it is disadvantageous in terms of cost.
チタン化合物は、重縮合して得られるポリエステルに対してチタン原子として5ppm以下の量で添加することが好ましい。より好ましい添加量は3ppm以下であり、さらに好ましくは1ppm以下である。チタンの添加量を5ppm以上にすると、得られるポリエステルの着色が顕著になり、さらに熱安定性が顕著に低下するため好ましくない。 The titanium compound is preferably added in an amount of 5 ppm or less as a titanium atom with respect to the polyester obtained by polycondensation. A more preferable addition amount is 3 ppm or less, and further preferably 1 ppm or less. If the amount of titanium added is 5 ppm or more, the resulting polyester is markedly colored, and the thermal stability is significantly reduced, which is not preferable.
本発明において使用可能なアンチモン化合物としては、特に限定はされないが、好適な化合物として三酸化アンチモン、五酸化アンチモン、酢酸アンチモン、アンチモングリコキサイドなどが挙げられ、特に三酸化アンチモンの使用が好ましい。また、ゲルマニウム化合物としては、特に限定はされないが、二酸化ゲルマニウム、四塩化ゲルマニウムなどが挙げられ、特に二酸化ゲルマニウムが好ましい。二酸化ゲルマニウムとしては結晶性のものと非晶性のものの両方が使用できる。 Although it does not specifically limit as an antimony compound which can be used in this invention, An antimony trioxide, an antimony pentoxide, an antimony acetate, an antimony glycoxide etc. are mentioned as a suitable compound, Especially use of antimony trioxide is preferable. Further, the germanium compound is not particularly limited, and examples thereof include germanium dioxide and germanium tetrachloride. Germanium dioxide is particularly preferable. As germanium dioxide, both crystalline and amorphous materials can be used.
本発明において使用可能なチタン化合物としては特に限定はされないが、テトラ−n−プロピルチタネート、テトライソプロピルチタネート、テトラ−n−ブチルチタネート、テトライソブチルチタネート、テトラ−tert−ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネート、蓚酸チタン酸リチウム、蓚酸チタン酸カリウム、蓚酸チタン酸アンモニウム、酸化チタン、チタンとケイ素やジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸化物、チタンのオルトエステルまたは縮合オルトエステル、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルと少なくとも2個のヒドロキシル基を有する多価アルコール、2−ヒドロキシカルボン酸および塩基からなる反応生成物などが挙げられ、このうちチタンとケイ素の複合酸化物、チタンとマグネシウムの複合酸化物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物が好ましい。 The titanium compound that can be used in the present invention is not particularly limited, but tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, tetracyclohexyl titanate, tetra Phenyl titanate, tetrabenzyl titanate, lithium oxalate titanate, potassium oxalate titanate, ammonium oxalate titanate, titanium oxide, composite oxide of titanium and silicon, zirconium, alkali metal, alkaline earth metal, etc., titanium orthoester or Condensed ortho ester, titanium ortho ester or reaction product of condensed ortho ester and hydroxycarboxylic acid, titanium ortho ester or condensed ortho ester and hydroxy carbonate A reaction product composed of an acid and a phosphorus compound, a titanium ortho ester or a condensed ortho ester and a polyhydric alcohol having at least two hydroxyl groups, a reaction product composed of a 2-hydroxycarboxylic acid and a base, etc. Of these, a composite oxide of titanium and silicon, a composite oxide of titanium and magnesium, a reaction product composed of titanium orthoester or condensed orthoester, hydroxycarboxylic acid and phosphorus compound is preferable.
またスズ化合物としては、ジブチルスズオキサイド、メチルフェニルスズオキサイド、テトラエチルスズ、ヘキサエチルジスズオキサイド、トリエチルスズハイドロオキサイド、モノブチルヒドロキシスズオキサイド、トリイソブチルスズアセテート、ジフェニルスズジラウレート、モノブチルスズトリクロライド、ジブチルスズサルファイド、ジブチルヒドロキシスズオキサイド、メチルスタンノン酸、エチルスタンノン酸などが挙げられ、特にモノブチルヒドロキシスズオキサイドの使用が好ましい。 In addition, as tin compounds, dibutyltin oxide, methylphenyltin oxide, tetraethyltin, hexaethylditin oxide, triethyltin hydroxide, monobutylhydroxytin oxide, triisobutyltin acetate, diphenyltin dilaurate, monobutyltin trichloride, dibutyltin sulfide, Examples thereof include dibutylhydroxytin oxide, methylstannoic acid, and ethylstannic acid, and the use of monobutylhydroxytin oxide is particularly preferable.
本発明のポリエステルには、色調改善等の目的でコバルト化合物をコバルト原子としてポリエステルに対して10ppm未満の量で添加することが好ましい態様である。より好ましくは5ppm以下であり、さらに好ましくは3ppm以下である。コバルト化合物としては特に限定はないが、具体的には例えば、酢酸コバルト、硝酸コバルト、塩化コバルト、コバルトアセチルアセトネート、ナフテン酸コバルトおよびそれらの水和物等が挙げられる。その中でも特に酢酸コバルト四水和物が好ましい。 In the polyester of the present invention, it is preferable to add a cobalt compound as a cobalt atom in an amount of less than 10 ppm with respect to the polyester for the purpose of improving the color tone. More preferably, it is 5 ppm or less, More preferably, it is 3 ppm or less. The cobalt compound is not particularly limited, and specific examples include cobalt acetate, cobalt nitrate, cobalt chloride, cobalt acetylacetonate, cobalt naphthenate, and hydrates thereof. Of these, cobalt acetate tetrahydrate is particularly preferred.
本発明のポリエステルの色調を改善するために、コバルト化合物以外の色調改善剤を用いることも好ましい態様である。色調改善剤とは添加することで色調を変化させる物質のことをいう。本発明の色調改善剤としては特に限定はされないが、無機および有機の顔料、染料、蛍光増白剤などが好ましい。 In order to improve the color tone of the polyester of the present invention, it is also a preferred embodiment to use a color tone improving agent other than the cobalt compound. The color tone improving agent refers to a substance that changes color tone when added. The color tone improving agent of the present invention is not particularly limited, but inorganic and organic pigments, dyes, fluorescent whitening agents and the like are preferable.
顔料または染料を使用する場合、使用量が増えると、結果重縮合体の明るさが低下するという問題が発生する。そのため多くの用途で許容できなくなるという問題が発生する。そのため顔料および染料の総使用量は得られるポリエステルに対して20ppm以下であることが好ましく、より好ましくは10ppm以下、さらに好ましくは5ppm以下である。かかる領域では重縮合体の明るさを低下させることなく着色を効果的に消去できる。 When a pigment or a dye is used, when the amount used is increased, there arises a problem that the brightness of the polycondensate decreases as a result. This causes the problem of being unacceptable for many applications. Therefore, the total amount of pigments and dyes used is preferably 20 ppm or less, more preferably 10 ppm or less, still more preferably 5 ppm or less, based on the polyester obtained. In such a region, the coloring can be effectively eliminated without reducing the brightness of the polycondensate.
さらに蛍光増白剤を単独もしくは他の色調改善剤と併用して用いると、色調が良好になり、例えば使用する顔料または染料の量が少なくてよいので好ましい。蛍光増白剤は一般に用いられている物を1種だけ使用してもよくもしくは2種以上を併用してもよい。添加量は得られるポリエステルに対して50ppm以下であることが好ましく、5〜25ppmであることがさらに好ましい。 Further, it is preferable to use a fluorescent brightening agent alone or in combination with another color tone improving agent because the color tone is improved and, for example, the amount of the pigment or dye used may be small. As the fluorescent brightening agent, one commonly used one may be used, or two or more kinds may be used in combination. The amount added is preferably 50 ppm or less, more preferably 5 to 25 ppm, based on the polyester obtained.
本発明の無機顔料としては、色調を変化できるものであれば特に規定はされないが、例えば二酸化チタン、カーボンブラック、鉄黒、ニッケルチタンイエロー、黄色酸化鉄、カドミウムイエロー、黄鉛、クロムチタンイエロー、亜鉛フェライト顔料、弁柄、カドミウムレッド、モリブデンレッド、酸化クロム、スピネルグリーン、クロムオレンジ、カドミウムオレンジ、群青、紺青、コバルトブルー、などが挙げられる。このうち酸化クロム、群青、紺青、コバルトブルーが好ましく、群青、コバルトブルーがさらに好ましい。またこれら無機顔料の一種もしくは二種以上を必要に応じて組み合わせて使用しても良い。 The inorganic pigment of the present invention is not particularly defined as long as it can change the color tone, for example, titanium dioxide, carbon black, iron black, nickel titanium yellow, yellow iron oxide, cadmium yellow, chrome lead, chrome titanium yellow, Examples include zinc ferrite pigments, dials, cadmium red, molybdenum red, chromium oxide, spinel green, chrome orange, cadmium orange, ultramarine blue, bitumen, and cobalt blue. Of these, chromium oxide, ultramarine blue, bitumen, and cobalt blue are preferable, and ultramarine blue and cobalt blue are more preferable. One or more of these inorganic pigments may be used in combination as necessary.
本発明の有機顔料および染料としては、色調を変化できるものであれば規定はされないが、例えばカラーインデックスで表示されているPigment Red 5, 22, 23, 31, 38, 48:1, 48:2, 48:3, 48:4, 52, 53:1, 57:1, 122, 123, 144, 146, 151, 166, 170, 177, 178, 179, 187, 202, 207, 209, 213, 214, 220, 221, 247, 254, 255, 263, 272、Pigment Orange 13, 16, 31, 36, 43, 61, 64, 71、Pigment Brown 23、Pigment Yellow 1, 3, 12, 13, 14, 17, 55, 73, 74, 81, 83,93, 94, 95, 97, 109, 110, 128, 130, 133, 136, 138, 147, 150, 151, 154,180, 181, 183, 190, 191, 191:1, 199、Pigment Green 7, 36、Pigment Blue15, 15:1, 15:2, 15:3, 15.4, 15:6, 29, 60, 64, 68、Pigment Violet 19, 23,37, 44、Solvent Red 52, 117, 135, 169, 176、Disperse Red 5、Solvent Orange 63, 67, 68, 72, 78、Solvent Yellow 98, 103, 105, 113, 116、DisperseYellow 54, 64, 160、Solvent Green 3, 20, 26、Solvent Blue 35, 45, 78, 90, 94, 95, 104, 122, 132、Solvent Violet 31、などが挙げられる。またその他のアンスラキノン系、フタロシアニン系、キナクリドン系、イソインドリノン系、ジオキサジン系、キノフタロン系、ペリレン系、ペリノン系、ベンズイミダゾロン系、ジアリライド系、バット系、インジゴ系、キノフタロン系、ジケトピロロピロール系、アントラピロリドン系の染料/顔料等を挙げることができる。 The organic pigments and dyes of the present invention are not specified as long as they can change the color tone, but, for example, Pigment Red 5, 22, 23, 31, 38, 48: 1, 48: 2 displayed by a color index. , 48: 3, 48: 4, 52, 53: 1, 57: 1, 122, 123, 144, 146, 151, 166, 170, 177, 178, 179, 187, 202, 207, 209, 213, 214 , 220, 221, 247, 254, 255, 263, 272, Pigment Orange 13, 16, 31, 36, 43, 61, 64, 71, Pigment Brown 23, Pigment Yellow 1, 3, 12, 13, 14, 17 , 55, 73 , 74, 81, 83, 93, 94, 95, 97, 109, 110, 128, 130, 133, 136, 138, 147, 150, 151, 154, 180, 181, 183, 190, 191, 191: 1 , 199, Pigment Green 7, 36, Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15.4, 15: 6, 29, 60, 64, 68, Pigment Violet 19, 23, 37, 44, Solvent Red 52, 117, 135, 169, 176, Disperse Red 5, Solvent Orange 63, 67, 68, 72, 78, Solvent Yellow 98, 103, 105, 113, 116, Di perseYellow 54, 64, 160, Solvent Green 3, 20, 26, Solvent Blue 35, 45, 78, 90, 94, 95, 104, 122, 132, Solvent Violet 31, and the like. Other anthraquinone, phthalocyanine, quinacridone, isoindolinone, dioxazine, quinophthalone, perylene, perinone, benzimidazolone, diarylide, bat, indigo, quinophthalone, diketopyrrolo Examples include pyrrole and anthrapyrrolidone dyes / pigments.
このうちPigment Red 187, 263、Pigment Blue 15:1, 15:3, 29,60、Pigment Violet 19、Solvent Red 135、Solvent Blue 45, 90,104, 122、およびアンスラキノン系とフタロシアニン系の染料/顔料が好ましい。さらにアンスラキノン系とフタロシアニン系の染料/顔料は特に好ましい。 Among these, Pigment Red 187, 263, Pigment Blue 15: 1, 15: 3, 29, 60, Pigment Violet 19, Solvent Red 135, Solvent Blue 45, 90, 104, 122, and anthraquinone and phthalocyanine dyes / Pigments are preferred. Furthermore, anthraquinone and phthalocyanine dyes / pigments are particularly preferred.
選択される顔料および/または染料は下記の条件を満たす物が好ましい。まず顔料および染料は最大限の安全性をもたらすために重縮合体から非抽出性であること。また日光に対しておよび広範囲の温度および湿度条件に対して安定であること。さらにポリエステルの製造の間に遭遇する極めて高い温度の結果として昇華や、色相の変化を生じないことである。更にこの顔料および染料はポリエステルポリマーの物理的性質に悪影響を及ぼさないものが好ましい。 The selected pigments and / or dyes preferably satisfy the following conditions. First, the pigments and dyes must be non-extractable from the polycondensate for maximum safety. It is stable to sunlight and a wide range of temperature and humidity conditions. Furthermore, it does not cause sublimation or hue changes as a result of the extremely high temperatures encountered during the production of polyester. Furthermore, it is preferable that these pigments and dyes do not adversely affect the physical properties of the polyester polymer.
これらの条件を満たす顔料および/または染料でポリエステルの色調を改善するものであれは特に限定されないが、例えば特表2000−511211ではある種の青色1,4−ビス(2,6−ジアルキルアニリノ)アントラキノンを主に用い赤色アンスラキノンおよびアントラピリドン(3H−ジベンゾ[fi,j]イソキノリン−2,7−ジオン)化合物を色相に応じて組み合わせた色調改善剤などが例示されており、これらを用いることができる。これらの染料は適当な色特性を有し、熱、光、湿度および種々の環境要因に対して安定であると共に重縮合の合間にポリエステルポリマー構造中に含ませることができ、公知の有機染料で遭遇する問題の多くを克服する。またUV光、高温、解糖および加水分解に対して安定である。更に青色成分および赤色成分の量は、着色度の異なったポリエステルに有効に働くように、必要に応じて変化させることができる。 A pigment and / or a dye satisfying these conditions is not particularly limited as long as it improves the color tone of the polyester. For example, in Japanese Translation of PCT International Publication No. 2000-511111, a certain blue 1,4-bis (2,6-dialkylanilino) is used. ) Color tone improvers that mainly use anthraquinone and combine red anthraquinone and anthrapyridone (3H-dibenzo [fi, j] isoquinoline-2,7-dione) compounds according to the hue are exemplified. be able to. These dyes have suitable color characteristics, are stable to heat, light, humidity and various environmental factors and can be included in the polyester polymer structure during polycondensation, and are known organic dyes. Overcome many of the problems you encounter. It is stable to UV light, high temperature, glycolysis and hydrolysis. Furthermore, the amount of the blue component and the red component can be changed as necessary so as to work effectively for polyesters having different degrees of coloring.
本発明の蛍光増白剤としては一般に用いられているものを単独もしくは組み合わせて使用しても良い。例えばベンズオキサゾリン系蛍光増白剤、好ましくはチバ・スペシャルティーケミカルズ社製のUVITEX OB、UVITEX OB−P、UVITEX OB−ONE、クラリアント社製のHOSTALUX KSや、特開平10−1563に記載のものなどが好ましく使用できる。 As the optical brightener of the present invention, those generally used may be used alone or in combination. For example, benzoxazoline-based fluorescent brighteners, preferably UVITEX OB, UVITEX OB-P, UVITEX OB-ONE, CHIARI Specialty Chemicals, Ltd., HOTALUX KS, manufactured by Clariant, and those described in JP-A-10-1563 Can be preferably used.
以上の色調改善剤は無彩色の色相を達成するため、その種類や添加比などを任意に組み合わせ使用することができる。また、色調改善剤の添加時期は重縮合のどの段階であってもよく、重縮合反応終了後であっても構わなく、重縮合反応終了後から成形時までのどの段階であってもかまわない。また添加方法は重縮合中であれば粉末や、ポリエステルのモノマーの1つに溶解させて添加することが好ましい。さらに重縮合反応終了後では粉末やマスターバッチとして添加することが好ましい。 Since the above-described color tone improving agent achieves an achromatic hue, it can be used in any combination of types and addition ratios. Further, the color tone improving agent may be added at any stage of the polycondensation, after the polycondensation reaction, or at any stage from the end of the polycondensation reaction to the time of molding. . Further, the addition method is preferably added after dissolving in powder or one of polyester monomers during polycondensation. Furthermore, after completion of the polycondensation reaction, it is preferably added as a powder or a master batch.
また顔料等の分散性に問題が生じる場合は、必要に応じて分散剤を使用すると好ましい場合がある。分散剤は顔料の分散を助けるものであれば特に規定はされないが、例えばN,N’−エチレンビスミリスチン酸アミド、N,N’−エチレンビスステアリン酸アミド
、N,N’−エチレンビスオレイン酸アミド、N,N’−メチレンビスミリスチン酸アミ
ド、N,N’−メチレンビスステアリン酸アミド、N,N’−メチレンビスオレイン酸ア
ミドなどのN,N’−アルキレンビス脂肪酸アミドなどがある。その中でもN,N’−メ
チレンビスステアリン酸アミドが好ましい。添加量に関しては性能にも左右されるが、顔料に対して10〜200質量%、好ましくは40〜150質量%添加するのが良い。
Moreover, when a problem arises in the dispersibility of pigments or the like, it may be preferable to use a dispersant as necessary. The dispersant is not particularly defined as long as it aids in dispersing the pigment. For example, N, N′-ethylenebismyristic acid amide, N, N′-ethylenebisstearic acid amide, N, N′-ethylenebisoleic acid N, N′-methylenebismyristic acid amide, N, N′-methylenebisstearic acid amide, N, N′-methylenebisoleic acid amide, and other N, N′-alkylenebisfatty acid amides. Among these, N, N′-methylenebisstearic acid amide is preferable. The amount added depends on the performance, but it is 10 to 200% by mass, preferably 40 to 150% by mass, based on the pigment.
本発明によるポリエステルの製造は、触媒として本発明のポリエステル重縮合触媒を用いる点以外は従来公知の工程を備えた方法で行うことができる。例えば、PETを製造する場合は、テレフタル酸とエチレングリコ−ル及び必要により他の共重縮合成分を直接反応させて水を留去しエステル化した後、減圧下に重縮合を行う直接エステル化法、または、テレフタル酸ジメチルとエチレングリコ−ル及び必要により他の共重縮合成分を反応させてメチルアルコ−ルを留去しエステル交換させた後、減圧下に重縮合を行うエステル交換法により製造される。さらに必要に応じて極限粘度を増大させる為に固相重縮合を行ってもよい。固相重縮合前の結晶化促進のため、溶融重縮合ポリエステルを吸湿させたあと加熱結晶化させたり、また水蒸気を直接ポリエステルチップに吹きつけて加熱結晶化させたりしてもよい。 The production of the polyester according to the present invention can be carried out by a method having a conventionally known process except that the polyester polycondensation catalyst of the present invention is used as a catalyst. For example, when manufacturing PET, direct esterification is performed by directly reacting terephthalic acid with ethylene glycol and if necessary other copolycondensation components to distill off water and esterify, then polycondensation under reduced pressure. Or by transesterification by reacting dimethyl terephthalate with ethylene glycol and other copolycondensation components as necessary to distill off methyl alcohol and transesterify, followed by polycondensation under reduced pressure. Manufactured. Further, solid phase polycondensation may be performed as necessary to increase the intrinsic viscosity. In order to promote crystallization before solid-phase polycondensation, the molten polycondensed polyester may be subjected to heat crystallization after moisture absorption, or water vapor may be directly sprayed onto the polyester chip for heat crystallization.
前記溶融重縮合反応は、回分式反応装置で行っても良いし、また連続式反応装置で行っても良い。これらいずれの方式においても、エステル化反応、あるいはエステル交換反応は1段階で行っても良いし、また多段階に分けて行っても良い。溶融重縮合反応も1段階で行っても良いし、また多段階に分けて行っても良い。固相重縮合反応は、溶融重縮合反応と同様、回分式装置や連続式装置で行うことが出来る。溶融重縮合と固相重縮合は連続で行っても良いし、分割して行ってもよい。 The melt polycondensation reaction may be performed in a batch reactor or may be performed in a continuous reactor. In any of these methods, the esterification reaction or the transesterification reaction may be performed in one stage, or may be performed in multiple stages. The melt polycondensation reaction may be performed in one stage or may be performed in multiple stages. The solid phase polycondensation reaction can be performed by a batch type apparatus or a continuous type apparatus as in the case of the melt polycondensation reaction. Melt polycondensation and solid phase polycondensation may be carried out continuously or separately.
本発明の触媒は、重縮合反応のみならずエステル化反応及びエステル交換反応にも触媒活性を有する。例えば、テレフタル酸ジメチルなどのジカルボン酸のアルキルエステルとエチレングリコールなどのグリコールとのエステル交換反応による重縮合は、通常チタン化合物や亜鉛化合物などのエステル交換触媒の存在下で行われるが、これらの触媒に代えて、もしくはこれらの触媒に共存させて本発明の触媒を用いることもできる。また、本発明の触媒は、溶融重縮合のみならず固相重縮合や溶液重縮合においても触媒活性を有しており、いずれの方法によってもポリエステルを製造することが可能である。 The catalyst of the present invention has catalytic activity not only for polycondensation but also for esterification and transesterification. For example, polycondensation by transesterification of an alkyl ester of a dicarboxylic acid such as dimethyl terephthalate with a glycol such as ethylene glycol is usually carried out in the presence of a transesterification catalyst such as a titanium compound or a zinc compound. The catalyst of the present invention can be used instead of or in the presence of these catalysts. The catalyst of the present invention has catalytic activity not only in melt polycondensation but also in solid phase polycondensation and solution polycondensation, and polyester can be produced by any method.
本発明の触媒は、重縮合反応の任意の段階、例えばエステル化反応もしくはエステル交換反応の開始前及び反応途中の任意の段階もしくは重縮合反応の開始直前あるいは反応途中に反応系へ添加することができるが、重縮合反応の開始直前に添加することが好ましい。 The catalyst of the present invention may be added to the reaction system at any stage of the polycondensation reaction, for example, before the start of the esterification reaction or transesterification reaction, at any stage during the reaction, or immediately before or during the start of the polycondensation reaction. However, it is preferably added immediately before the start of the polycondensation reaction.
本発明のアルミニウム化合物の触媒溶液とその他の化合物とを予め混合した混合物として添加してもよいし、これらを別々に添加してもよい。また本発明のアルミニウム化合物の触媒溶液とその他の化合物とを同じ添加時期に重縮合系に添加してもよく、それぞれの成分を別々の添加時期に添加してもよい。また、触媒の全量を一度に添加しても、複数回に分けて添加してもよい。 The catalyst solution of the aluminum compound of the present invention and other compounds may be added as a premixed mixture, or these may be added separately. Moreover, the catalyst solution of the aluminum compound of the present invention and other compounds may be added to the polycondensation system at the same addition time, and the respective components may be added at different addition times. Further, the entire amount of the catalyst may be added at once, or may be added in a plurality of times.
本発明方法により得られたポリエステルを前述のごとく固相状態で減圧下あるいは不活性ガス気流下でポリエステル樹脂を加熱し、さらに重縮合を進めたり、該ポリエステル樹脂中に含まれている環状3量体等のオリゴマーやアセトアルデヒド等の副生成物を除去する等の手段を取ることも何ら制約を受けない。また、例えば超臨界圧抽出法等の抽出法でポリエステル樹脂を精製し前記の副生成物等の不純物を除去する等の処理を行うことを取り入れても良い。 As described above, the polyester resin obtained by the method of the present invention is heated in a solid phase under reduced pressure or under an inert gas stream, and the polycondensation is further advanced, or the cyclic 3 amount contained in the polyester resin. There are no restrictions on taking measures such as removing oligomers such as body and by-products such as acetaldehyde. Further, for example, it is possible to incorporate a treatment such as purifying a polyester resin by an extraction method such as a supercritical pressure extraction method to remove impurities such as the by-products.
本発明のポリエステル中には、有機系、無機系、及び有機金属系のトナー、ならびに蛍光増白剤などを含むことができ、これらを一種もしくは二種以上含有することによって、ポリエステルの黄み等の着色をさらに優れたレベルにまで抑えることができる。また他の任意の重縮合体や制電剤、消泡剤、染色性改良剤、染料、顔料、艶消剤、蛍光増白剤、安定剤、酸化防止剤、その他の添加剤が含有されていてもよい。酸化防止剤としては、芳香族アミン系、フェノール系等の酸化防止剤が使用可能であり、安定剤としては、リン酸やリン酸エステル系等のリン系、硫黄系、アミン系等の安定剤が使用可能である。 The polyester of the present invention can contain organic, inorganic, and organometallic toners, and a fluorescent brightening agent. By containing one or more of these, the yellowness of the polyester, etc. Can be suppressed to an even better level. Also contains other optional polycondensates, antistatic agents, antifoaming agents, dyeability improvers, dyes, pigments, matting agents, fluorescent brighteners, stabilizers, antioxidants, and other additives. May be. As antioxidants, aromatic amine-based and phenol-based antioxidants can be used, and as stabilizers, phosphoric acid and phosphate ester-based phosphorus-based, sulfur-based, amine-based stabilizers, etc. Can be used.
これらの添加剤は、ポリエステルの重縮合時もしくは重縮合後、あるいはポリエステルの成形時の任意の段階で添加することが可能であり、どの段階が好適かは対象とするポリエステルの構造や得られるポリエステルの要求性能に応じてそれぞれ適宜選択すれば良い。 These additives can be added at any stage of polycondensation or after polycondensation of the polyester, or at the time of molding of the polyester. Which stage is suitable depends on the structure of the target polyester and the resulting polyester. Each may be selected as appropriate according to the required performance.
本発明の方法で得られたポリエステルは、重縮合触媒起因の異物含有量が少ないという特徴を有するが、該特徴は、例えば以下に示すポリエステルに不溶なアルミニウム系異物評価法で評価ができる。
[ポリエステルに不溶なアルミニウム系異物評価法]
溶融重縮合上がりのポリエステルペレット30gおよびパラクロロフェノール/テトラクロロエタン(3/1:重量比)混合溶液300mlを攪拌機付き丸底フラスコに投入し、該ペレットを混合溶液に100〜105℃、2時間で攪拌・溶解した。該溶液を室温になるまで放冷し、直径47mm/孔径1.0μmのポリテトラフルオロエチレン製のメンブレンフィルター(Advantec社製PTFEメンブレンフィルター、品名:T100A047A)を用い、全量を0.15MPaの加圧下で異物を濾別した。有効濾過直径は37.5mmとした。濾過終了後、引き続き300mlのクロロホルムを用い洗浄し、次いで、30℃で一昼夜減圧乾燥した。該メンブレンフィルターの濾過面を走査型蛍光X線分析装置(RIGAKU社製、ZSX100e、Rh管球4.0kW)でアルミニウム元素量を定量した。定量はメンブレンフィルター中心部の直径30mmの部分について行った。なお、該蛍光X線分析法の検量線はアルミニウム元素含有量が既知のポリエチレンテレフタレート樹脂を用いて求め、見掛けのアルミニウム元素量をppmで表示した。測定はX線出力50kV−70mAで分光結晶としてペンタエリスリトール、検出器としてPC(プロポーショナルカウンター)を用い、PHA(波高分析器)100−300の条件でAl−Kα線強度を測定することにより実施した。検量線用PET樹脂中のアルミニウム元素量は、高周波誘導結合プラズマ発光分析法で定量した。
The polyester obtained by the method of the present invention has a feature that the content of foreign matter due to the polycondensation catalyst is small. This feature can be evaluated by, for example, the following aluminum-based foreign matter evaluation method insoluble in polyester.
[Aluminum-based foreign substance evaluation method insoluble in polyester]
30 g of polyester pellets after melt polycondensation and 300 ml of parachlorophenol / tetrachloroethane (3/1: weight ratio) mixed solution are put into a round bottom flask with a stirrer, and the pellets are added to the mixed solution at 100 to 105 ° C. for 2 hours. Stir and dissolve. The solution was allowed to cool to room temperature, and a polytetrafluoroethylene membrane filter (Advantec PTFE membrane filter, product name: T100A047A) having a diameter of 47 mm / a pore size of 1.0 μm was used, and the total amount was under a pressure of 0.15 MPa. The foreign matter was filtered off with The effective filtration diameter was 37.5 mm. After completion of the filtration, the product was subsequently washed with 300 ml of chloroform, and then dried under reduced pressure at 30 ° C. overnight. The amount of aluminum element was quantified on the filtration surface of the membrane filter with a scanning fluorescent X-ray analyzer (manufactured by RIGAKU, ZSX100e, Rh tube 4.0 kW). Quantification was performed on a 30 mm diameter portion at the center of the membrane filter. The calibration curve of the X-ray fluorescence analysis was determined using a polyethylene terephthalate resin having a known aluminum element content, and the apparent aluminum element amount was expressed in ppm. The measurement was carried out by measuring the intensity of Al-Kα rays under the conditions of PHA (wave height analyzer) 100-300 using X-ray output 50 kV-70 mA and using pentaerythritol as a spectroscopic crystal and PC (proportional counter) as a detector. . The amount of aluminum element in the PET resin for the calibration curve was quantified by high frequency inductively coupled plasma emission spectrometry.
本発明においては、上記評価法で測定したポリエステルに不溶なアルミニウム系異物量は3500ppm以下が好ましい。2500ppm以下がより好ましく、1500ppm以下がさらに好ましい。ポリエステルに不溶なアルミニウム系異物量が3500ppmを超えた場合は、ポリエステルに不溶性の微細な異物含有量が多くなり、例えばフィルムやボトル等の成型体として成型した場合に、該成型体のヘーズが悪化するので好ましくない。また、重縮合工程や成型工程でのポリエステルの濾過時のフィルター詰まりが多くなるという課題にも繋がる。 In the present invention, the amount of aluminum foreign matter insoluble in polyester measured by the above evaluation method is preferably 3500 ppm or less. 2500 ppm or less is more preferable, and 1500 ppm or less is more preferable. When the amount of aluminum-based foreign matter insoluble in polyester exceeds 3500 ppm, the content of fine foreign matter insoluble in polyester increases. For example, when molded as a molded body such as a film or a bottle, the haze of the molded body deteriorates. This is not preferable. Moreover, it leads to the subject that the filter clogging at the time of filtration of polyester in a polycondensation process or a molding process increases.
本発明のポリエステル重縮合触媒を用いて重縮合したポリエステルは常法の溶融紡糸法により繊維を製造することが可能であり、紡糸・延伸を2ステップで行う方法及び1ステップで行う方法が採用できる。さらに、捲縮付与、熱セットやカット工程を備えたステープルの製造方法やモノフィラメントなど公知の繊維製造方法がすべて適用できるものである。 The polyester polycondensed using the polyester polycondensation catalyst of the present invention can be produced by a conventional melt spinning method, and a method of spinning and stretching in two steps and a method of performing in one step can be adopted. . Furthermore, all known fiber manufacturing methods such as staple manufacturing methods and monofilaments with crimping, heat setting and cutting steps can be applied.
また得られた繊維は異型断面糸、中空断面糸、複合繊維、原着糸等の種々繊維構造となすことができ、糸加工においても例えば混繊、混紡、等の公知の手段を採用することができる。 The obtained fibers can be made into various fiber structures such as atypical cross-section yarns, hollow cross-section yarns, composite fibers, original yarns, etc., and well-known means such as blending, blending, etc. can also be used in yarn processing. Can do.
更に上記ポリエステル繊維は織編物或いは不織布、等の繊維構造体となすことができる。 Furthermore, the polyester fiber can be made into a fiber structure such as a woven or knitted fabric or a non-woven fabric.
そして上記ポリエステル繊維は、衣料用繊維、カーテン、カーペット、ふとん綿、ファイバーフィル等に代表されるインテリア・寝装用繊維、タイヤコード、ロープ等の抗張力線、土木・建築資材、エアバッグ等の車輛用資材、等に代表される産業資材用繊維、各種織物、各種編物、ネット、短繊維不織布、長繊維不織布用、等の各種繊維用途に使用することができる。 The polyester fibers are used for interior and bedding fibers such as clothing fibers, curtains, carpets, futons, fiber fills, tire cords, tensile strength lines such as ropes, civil engineering and building materials, and vehicles such as airbags. It can be used for various fiber applications such as fibers for industrial materials represented by materials, various fabrics, various knitted fabrics, nets, short fiber nonwoven fabrics, and long fiber nonwoven fabrics.
本発明のポリエステルは、中空成形体として好適に用いられる。 The polyester of the present invention is suitably used as a hollow molded body.
中空成形体としては、ミネラルウオーター、ジュース、ワインやウイスキー等の飲料容器、ほ乳瓶、瓶詰め食品容器、整髪料や化粧品等の容器、住居および食器用洗剤容器等が挙げられる。 Examples of the hollow molded body include mineral water, juice, beverage containers such as wine and whiskey, milk bottles, bottled food containers, containers for hairdressing products and cosmetics, housing and dishwashing detergent containers, and the like.
これらの中でも、ポリエステルの持つ衛生性及び強度、耐溶剤性を活かした耐圧容器、耐熱耐圧容器、耐アルコール容器として各種飲料用に特に好適である。中空成形体の製造は、溶融重縮合や固相重縮合によって得られたポリエステルチップを真空乾燥法等によって乾燥後、押し出し成型機や射出成形機等の成形機によって成形する方法や、溶融重縮合後の溶融体を溶融状態のまま成形機に導入して成形する直接成形方法により、有底の予備成形体を得る。さらに、この予備成形体を延伸ブロー成形、ダイレクトブロー成形、押出ブロー成形などのブロー成型法により最終的な中空成形体が得られる。もちろん、上記の押し出し成型機や射出成形機等の成形機によって得られた成形体を最終的な中空容器とすることもできる。 Among these, polyester is particularly suitable for various beverages as a pressure-resistant container, a heat-resistant pressure-resistant container, and an alcohol-resistant container utilizing the hygiene and strength and solvent resistance of polyester. The hollow molded body can be manufactured by a method in which a polyester chip obtained by melt polycondensation or solid phase polycondensation is dried by a vacuum drying method or the like and then molded by a molding machine such as an extrusion molding machine or an injection molding machine. A bottomed preform is obtained by a direct molding method in which the subsequent melt is introduced into a molding machine in a molten state and molded. Further, a final hollow molded body can be obtained by blow molding such as stretch blow molding, direct blow molding, and extrusion blow molding. Of course, a molded product obtained by a molding machine such as the above-described extrusion molding machine or injection molding machine can be used as a final hollow container.
このような中空成形体の製造の際には、製造工程で発生した廃棄樹脂や市場から回収されたポリエステル樹脂を混合することもできる。このようなリサイクル樹脂であっても、本発明のポリエステル樹脂は劣化が少なく、高品質の中空成型品を得ることができる。 When manufacturing such a hollow molded body, waste resin generated in the manufacturing process or polyester resin recovered from the market can be mixed. Even with such a recycled resin, the polyester resin of the present invention is less deteriorated and a high-quality hollow molded product can be obtained.
さらには、このような容器は、中間層にポリビニルアルコールやポリメタキシリレンジアミンアジペートなどのガスバリア性樹脂層、遮光性樹脂層やリサイクルポリエステル層を設けた多層構造をとることも可能である。また、蒸着やCVD(ケミカルベーパーデポジット)等の方法を用いて、容器の内外をアルミニウムなどの金属やダイヤモンド状カーボンの層で被覆することも可能である。 Further, such a container can have a multilayer structure in which an intermediate layer is provided with a gas barrier resin layer such as polyvinyl alcohol or polymetaxylylenediamine adipate, a light shielding resin layer or a recycled polyester layer. It is also possible to coat the inside and outside of the container with a metal such as aluminum or a layer of diamond-like carbon using a method such as vapor deposition or CVD (chemical vapor deposit).
なお、中空成形体の口栓部等の結晶性を上げるため、ポリエチレンを初めとする他の樹脂やタルク等の無機核剤を添加することもできる。 In addition, in order to raise crystallinity, such as a plug part of a hollow molded object, inorganic nucleating agents, such as other resin including polyethylene and talc, can also be added.
また、本発明のポリエステルは押し出し機からシ−ト状物に押し出し、シートとすることもできる。このようなシートは、真空成形や圧空成形、型押し等により加工し、食品や雑貨用のトレイや容器、カップ、ブリスタ−パック、電子部品のキャリアテープ、電子部品配送用トレイとして用いる。また、シートは各種カードとして利用することもできる。 Further, the polyester of the present invention can be extruded into a sheet-like material from an extruder to form a sheet. Such sheets are processed by vacuum forming, pressure forming, stamping, etc., and used as trays and containers for food and sundries, cups, blister packs, carrier tapes for electronic components, and electronic component delivery trays. The sheet can also be used as various cards.
これら、シートの場合でも、上述のような中間層にガスバリア性樹脂層、遮光性樹脂層やリサイクルポリエステル層を設けた多層構造をとることも可能である。 Even in the case of these sheets, it is also possible to take a multilayer structure in which a gas barrier resin layer, a light shielding resin layer, and a recycled polyester layer are provided on the intermediate layer as described above.
また、同様にリサイクル樹脂を混合することもできる。さらには、結晶性の耐熱性容器とすることを目的に、ポリエチレンを初めとする他の樹脂やタルク等の無機核剤を添加し、結晶性を高めることできる。 Similarly, recycled resin can be mixed. Furthermore, for the purpose of forming a crystalline heat-resistant container, other resins such as polyethylene and inorganic nucleating agents such as talc can be added to enhance crystallinity.
本発明のポリエステル重縮合触媒を用いて重縮合したポリエステルは、フイルムに用いることができる。その方法は、ポリエステルを溶融押出しし、T−ダイスより冷却回転ロール上にシート状に成型し、未延伸シートを作成する。この際、例えば特公平6−39521号公報、特公平6−45175号公報に記載の技術を適用することにより、高速製膜性が可能となる。また、複数の押出し機を用い、コア層、スキン層に各種機能を分担させ、共押出し法により積層フイルムとしても良い。 The polyester polycondensed using the polyester polycondensation catalyst of the present invention can be used for a film. In this method, polyester is melt-extruded and formed into a sheet shape from a T-die on a cooling rotary roll to create an unstretched sheet. In this case, for example, by applying the technique described in Japanese Patent Publication No. 6-39521 and Japanese Patent Publication No. 6-45175, high-speed film formation is possible. Moreover, it is good also as a laminated | multilayer film by a coextrusion method by using a some extruder and sharing various functions in a core layer and a skin layer.
本発明のポリエステル重縮合触媒を用いて重縮合したポリエステルは、配向ポリエスTテルフィルムに用いることができる。配向ポリエステルフイルムは、公知の方法を用いて、ポリエステルのガラス転移温度以上結晶化温度未満で、少なくとも一軸方向に1.1〜6倍に延伸することにより得ることができる。 The polyester polycondensed using the polyester polycondensation catalyst of the present invention can be used for an oriented polyester film. The oriented polyester film can be obtained by stretching 1.1 to 6 times at least in the uniaxial direction at a temperature not less than the glass transition temperature of the polyester and less than the crystallization temperature using a known method.
例えば、二軸配向ポリエステルフイルムを製造する場合、縦方向または横方向に一軸延伸を行い、次いで直交方向に延伸する逐次二軸延伸方法、縦方向及び横方向に同時に延伸する同時二軸延伸する方法、さらに同時二軸延伸する際の駆動方法としてリニアモーターを用いる方法のほか、横・縦・縦延伸法、縦・横・縦延伸法、縦・縦・横延伸法な、同一方向に数回に分けて延伸する多段延伸方法を採用することができる。 For example, in the case of producing a biaxially oriented polyester film, a sequential biaxial stretching method in which uniaxial stretching is performed in the longitudinal direction or the transverse direction and then stretching in the orthogonal direction, and a simultaneous biaxial stretching method in which stretching is performed in the longitudinal direction and the transverse direction simultaneously. In addition to using a linear motor as the driving method for simultaneous biaxial stretching, several times in the same direction, such as horizontal / longitudinal / longitudinal stretching, longitudinal / horizontal / longitudinal stretching, and longitudinal / vertical / horizontal stretching It is possible to adopt a multistage stretching method in which the stretching is performed separately.
さらに、延伸終了後、フイルムの熱収縮率を低減させるために、(融点−50℃)〜融点未満の温度で30秒以内、好ましくは10秒以内で熱固定処理を行い、0.5〜10%の縦弛緩処理、横弛緩処理などを施すことが好ましい。 Furthermore, in order to reduce the thermal shrinkage rate of the film after stretching, a heat setting treatment is performed within 30 seconds, preferably within 10 seconds, at a temperature from (melting point−50 ° C.) to less than the melting point. % Longitudinal relaxation treatment, lateral relaxation treatment, etc. are preferably performed.
得られた配向ポリエステルフイルムは、厚みが1μm以上1000μm以下が好ましく、より好ましくは5μm以上500μm以下、より好ましくは10μm以上200μm以下である。1μm未満では腰が無く取り扱いが困難である。また1000μmを超えると硬すぎて取り扱いが困難である。 The obtained oriented polyester film has a thickness of preferably 1 μm or more and 1000 μm or less, more preferably 5 μm or more and 500 μm or less, and more preferably 10 μm or more and 200 μm or less. If it is less than 1 μm, it is difficult to handle because there is no waist. Moreover, when it exceeds 1000 micrometers, it is too hard and handling is difficult.
また、接着性、離型性、制電性、赤外線吸収性、抗菌性、耐擦り傷性、などの各種機能を付与するために、配向ポリエステルフイルム表面にコーティング法により高分子樹脂を被覆してもよい。また、被覆層にのみ無機及び/又は有機粒子を含有させて、易滑高透明ポリエステルフイルムとしてもよい。さらに、無機蒸着層を設け酸素、水、オリゴマーなどの各種バリア機能を付与したり、スパッタリング法などで導電層を設け導電性を付与することもできる。また、配向ポリエステルフイルムの滑り性、走行性、耐摩耗性、巻き取り性などのハンドリング特性を向上させるために、ポリエステルの重縮合工程で、無機及び有機塩粒子又は耐熱性高分子樹脂粒子を添加して、フイルム表面に凹凸を形成させてもよい。また、これらの粒子は無機・有機又は親水・疎水等の表面処理がされたもの、されていないもの、どちらを使っても良いが、例えば分散性を向上させる等の目的で、表面処理した粒子を用いる方が好ましいケースがある。 In addition, in order to provide various functions such as adhesion, releasability, antistatic properties, infrared absorption, antibacterial properties, scratch resistance, etc., the surface of the oriented polyester film may be coated with a polymer resin by a coating method. Good. Moreover, it is good also as a slippery highly transparent polyester film by making an inorganic and / or organic particle | grain contain only in a coating layer. Furthermore, an inorganic vapor deposition layer can be provided to provide various barrier functions such as oxygen, water, and oligomer, or a conductive layer can be provided by a sputtering method or the like to provide conductivity. In addition, inorganic and organic salt particles or heat-resistant polymer resin particles are added in the polycondensation process of polyester to improve the handling properties such as slipperiness, running property, wear resistance, and winding property of oriented polyester film. Then, irregularities may be formed on the film surface. These particles may be either inorganic / organic or hydrophilic / hydrophobic surface-treated or non-surface-treated particles. For example, particles that have been surface-treated for the purpose of improving dispersibility. There are cases where it is preferable to use.
無機粒子としては、炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、フッ化リチウム、ソジュウムカルシウムアルミシリケート等が挙げられる。 Inorganic particles include calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, lithium fluoride, Examples include sodium calcium aluminum silicate.
有機塩粒子としては、蓚酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩等が挙げられる。 Examples of the organic salt particles include terephthalate such as calcium oxalate, calcium, barium, zinc, manganese, and magnesium.
架橋高分子粒子としては、ジビニルベンゼン、スチレン、アクリル酸、メタクリル酸、アクリル酸またはメタクリル酸のビニル系モノマーの単独または共重縮合体が挙げられる。その他に、ポリテトラフルオロエチレン、ベンゾグアナミン樹脂、熱硬化エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性尿素樹脂、熱硬化性フェノール樹脂などの有機粒子を用いても良い。 Examples of the crosslinked polymer particles include divinylbenzene, styrene, acrylic acid, methacrylic acid, acrylic acid or methacrylic acid vinyl monomer alone or a copolycondensate. In addition, organic particles such as polytetrafluoroethylene, benzoguanamine resin, thermosetting epoxy resin, unsaturated polyester resin, thermosetting urea resin, and thermosetting phenol resin may be used.
上記不活性粒子を基材フイルムとなるポリエステル中に含有させる方法は、限定されないが、(a)ポリエステル構成成分であるジオール中で不活性粒子をスラリー状に分散処理し、該不活性粒子スラリーをポリエステルの重縮合反応系へ添加する方法、(b)ポリエステルフイルムの溶融押出し工程においてベント式二軸押出し機で、溶融ポリエステル樹脂に分散処理した不活性粒子の水スラリーを添加する方法、(c)ポリエステル樹脂と不活性粒子を溶融状態で混練する方法(d)ポリエステル樹脂と不活性粒子のマスターレジンを溶融状態で混練する方法などが例示される。 The method for incorporating the inert particles in the polyester that is the base film is not limited, but (a) the inert particles are dispersed in a slurry form in a diol that is a polyester component, A method of adding polyester to a polycondensation reaction system, (b) a method of adding a water slurry of inert particles dispersed in a molten polyester resin by a vented twin screw extruder in a melt extrusion step of a polyester film, (c) Examples include a method of kneading a polyester resin and inert particles in a molten state (d) a method of kneading a polyester resin and a master resin of inert particles in a molten state.
重縮合反応系に添加する方法の場合、不活性粒子のジオールスラリーを、エステル化反応またはエステル交換反応前から重縮合反応開始前の溶融粘度の低い反応系に添加することが好ましい。また、不活性粒子のジオールスラリーを調整する際には、高圧分散機、ビーズミル、超音波分散などの物理的な分散処理を行うとことが好ましい。さらに、分散処理したスラリーを安定化させるために、使用する粒子の種類に応じて適切な化学的な分散安定化処理を併用することが好ましい。 In the case of the method of adding to the polycondensation reaction system, it is preferable to add the diol slurry of inert particles to the reaction system having a low melt viscosity before the esterification reaction or transesterification reaction and before the start of the polycondensation reaction. In addition, when adjusting the diol slurry of inert particles, it is preferable to perform a physical dispersion treatment such as a high-pressure disperser, a bead mill, or ultrasonic dispersion. Furthermore, in order to stabilize the dispersion-treated slurry, it is preferable to use an appropriate chemical dispersion stabilization treatment according to the type of particles used.
分散安定化処理としては、例えば無機酸化物粒子や粒子表面にカルボキシル基を有する架橋高分子粒子などの場合には、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ化合物をスラリーに添加し、電気的な反発により粒子間の再凝集を抑制することができる。また、炭酸カルシウム粒子、ヒドロキシアパタイト粒子などの場合にはトリポリ燐酸ナトリウムやトリポリ燐酸カリウムをスラリー中に添加することが好ましい。 As the dispersion stabilization treatment, for example, in the case of inorganic oxide particles or crosslinked polymer particles having a carboxyl group on the particle surface, an alkali compound such as sodium hydroxide, potassium hydroxide or lithium hydroxide is added to the slurry. Further, reaggregation between particles can be suppressed by electrical repulsion. In the case of calcium carbonate particles, hydroxyapatite particles, etc., it is preferable to add sodium tripolyphosphate or potassium tripolyphosphate to the slurry.
また、不活性粒子のジオールスラリーをポリエステルの重縮合反応系へ添加する際、スラリーをジオールの沸点近くまで加熱処理することも、重縮合反応系へ添加した際のヒートショック(スラリーと重縮合反応系との温度差)を小さくすることができるため、粒子の分散性の点で好ましい。 In addition, when the diol slurry of inert particles is added to the polycondensation reaction system of the polyester, the slurry can be heat-treated to near the boiling point of the diol. (Temperature difference from the system) can be reduced, which is preferable in terms of dispersibility of the particles.
これらの添加剤は、ポリエステルの重縮合時もしくは重縮合後、あるいはポリエステルフイルムの製膜後の任意の段階で添加することが可能であり、どの段階が好適かは化合物の特性やポリエステルフイルムの要求性能に応じてそれぞれ異なる。 These additives can be added at any stage during or after polycondensation of the polyester or after film formation of the polyester film. Which stage is suitable depends on the characteristics of the compound and the requirements of the polyester film. Different depending on performance.
また、本発明のポリエステルは熱安定性に優れるため、例えば、本ポリエステルを用いてフイルムなどを作成する際、延伸工程で生ずるフイルムの耳の部分や規格外のフイルムを溶融して再利用するのに適している。 In addition, since the polyester of the present invention is excellent in thermal stability, for example, when a film or the like is produced using the polyester, the film ear part or nonstandard film generated in the stretching process is melted and reused. Suitable for
本発明の配向ポリエステルフイルムは、好ましくは帯電防止性フイルム、易接着性フイルム、カード用、ダミー缶用、農業用、建材用、化粧材用、壁紙用、OHPフイルム用、印刷用、インクジェット記録用、昇華転写記録用、レーザービームプリンタ記録用、電子写真記録用、熱転写記録用、感熱転写記録用、プリント基板配線用、メンブレンスイッチ用、プラズマディスプレイ用、タッチパネル用、マスキングフィルム用、写真製版用、レントゲンフィルム用、写真ネガフィルム用、位相差フイルム用、偏光フイルム用、偏光膜保護(TAC)用、プロテクトフィルム用、感光性樹脂フイルム用、視野拡大フイルム用、拡散シート用、反射フイルム用、反射防止フイルム用、導電性フイルム用、セパレータ用、紫外線防止用、バックグラインドテープ用などに用いられる。 The oriented polyester film of the present invention is preferably an antistatic film, an easily adhesive film, a card, a dummy can, an agricultural product, a building material, a cosmetic material, a wallpaper, an OHP film, a printing, and an inkjet recording. For sublimation transfer recording, laser beam printer recording, electrophotographic recording, thermal transfer recording, thermal transfer recording, printed circuit board wiring, membrane switch, plasma display, touch panel, masking film, photoengraving, For X-ray film, for photographic negative film, for retardation film, for polarizing film, for polarizing film protection (TAC), for protective film, for photosensitive resin film, for field-of-view film, for diffusion sheet, for reflective film, and for reflection For prevention film, conductive film, separator, UV protection, back glass It is used, for example, for Ndotepu.
帯電防止用フイルムとしては、例えば特許第2952677号公報、特開平6−184337号公報に記載の技術を用いることができる。易接着性フイルムとしては、例えば特公平07−108563、特開平10−235820、特開平11−323271号公報に、カード用としては例えば特開平10−171956、特開平11−010815号公報に記載の技術を本発明のフイルムに適用できる。ダミー缶用としては例えば特開平10−101103号公報に記載のシート状筒体の替わりに、本発明のフイルム上に意匠を印刷し筒状、半筒状にしたものを用いることができる。建材用、建材用化粧版、化粧材用としては、例えば特開平05−200927号公報に記載の基材シート、特開平07−314630号公報に記載の透明シートとして本発明のフイルムを用いることができる。OHP用(オーバーヘッドプロジェクタ用)としては特開平06−297831号公報に記載の透明樹脂シート、特開平08−305065号公報に記載の透明高分子合成樹脂フイルムとして本発明のフイルムを用いることができる。インクジェット記録用としては、例えば特開平05−032037号公報に記載の透明基材として本発明のフイルムを用いることができる。昇華転写記録用としては例えば特開2000−025349号公報に記載の透明なフイルムとして本発明のフイルムを用いることができる。レーザービームプリンタ用、電子写真記録用としては例えば特開平05−088400号公報に記載のプラスチックフイルムとして本発明のフイルムを用いることができる。熱転写記録用としては例えば特開平07−032754号公報に感熱記録用としては特開平11−034503号公報にそれぞれ記載の方法で本発明のフイルムを用いることができる。プリント基板用としては例えば特開平06−326453号公報に記載のポリエステルフイルムとして本発明のフイルムを用いることができる。メンブレンスイッチ用としては例えば特開平05−234459号公報に記載の方法で本発明のフイルムを用いることができる。光学フィルタ(熱線フィルタ、プラズマディスプレイ用)としては、例えば特開平11−231126号公報に記載の方法で本発明のフイルムを用いることができる。透明導電性フイルム、タッチパネル用としては例えば特開平11−224539号公報に記載の方法で本発明のフイルムを用いることができる。マスキングフィルム用としては、例えば特開平05−273737号公報に記載の方法で本発明のフイルムを用いることができる。写真製版用としては例えば特開平05−057844号公報に記載の方法で本発明のフイルムを用いることができる。写真用ネガフィルムとしては例えば特開平06−167768号公報の段落番号(0123)に記載のポリエチレンテレフタレートフィルムとして本発明のフイルムを用いることができる。位相差フイルム用としては例えば特開2000−162419号公報に記載のフイルムとして本発明のフイルムを用いることができる。セパレータ用としては、例えば特開平11−209711号公報の段落番号(0012)に記載のフイルムとして本発明のフイルムを用いることができる。紫外線防止用としては例えば特開平10−329291号公報に記載のポリエステルフイルムとして本発明のフイルムを用いることができる。農業用フイルムとしては、特開平10−166534号公報に記載のポリエチレンテレフタレートフィルムに本発明のフイルムを適用することにより得ることができる。粘着シートとしては例えば特開平06−122856号公報に記載のポリエチレンテレフタレートフィルムに本発明の配向ポリエステルフイルムを適用することにより得られる。 As the antistatic film, for example, the techniques described in Japanese Patent No. 2952677 and Japanese Patent Application Laid-Open No. 6-184337 can be used. Examples of easy-adhesive films are described in JP-B 07-108563, JP-A-10-235820, JP-A-11-323271, and those for cards are described in JP-A-10-171856 and JP-A-11-010815, for example. The technique can be applied to the film of the present invention. For the dummy can, for example, instead of the sheet-like cylinder described in Japanese Patent Application Laid-Open No. 10-101103, a design obtained by printing a design on the film of the present invention to form a cylinder or a half cylinder can be used. As a building material, a decorative plate for building material, and a decorative material, for example, the film of the present invention is used as a base sheet described in JP-A No. 05-200927 and a transparent sheet described in JP-A No. 07-314630. it can. As the OHP (for overhead projector), the film of the present invention can be used as the transparent resin sheet described in JP-A-06-297831 and the transparent polymer synthetic resin film described in JP-A-08-305065. For inkjet recording, for example, the film of the present invention can be used as a transparent substrate described in JP-A No. 05-032037. For sublimation transfer recording, for example, the film of the present invention can be used as a transparent film described in JP-A No. 2000-025349. For laser beam printers and electrophotographic recording, for example, the film of the present invention can be used as a plastic film described in JP-A-05-088400. For thermal transfer recording, the film of the present invention can be used by the methods described in JP-A-07-032754, for thermal recording, and JP-A-11-034503, respectively. For printed circuit boards, for example, the film of the present invention can be used as a polyester film described in JP-A No. 06-326453. For the membrane switch, the film of the present invention can be used, for example, by the method described in JP-A No. 05-234459. As the optical filter (for heat ray filter and plasma display), for example, the film of the present invention can be used by the method described in JP-A-11-231126. For a transparent conductive film and a touch panel, the film of the present invention can be used, for example, by the method described in JP-A-11-224539. For the masking film, the film of the present invention can be used, for example, by the method described in JP-A No. 05-273737. For photoengraving, for example, the film of the present invention can be used by the method described in JP-A No. 05-057844. As a photographic negative film, for example, the film of the present invention can be used as a polyethylene terephthalate film described in paragraph No. (0123) of JP-A No. 06-167768. For a phase difference film, for example, the film of the present invention can be used as a film described in JP-A No. 2000-162419. For the separator, for example, the film of the present invention can be used as the film described in paragraph No. (0012) of JP-A No. 11-209711. For preventing ultraviolet rays, for example, the film of the present invention can be used as a polyester film described in JP-A-10-329291. An agricultural film can be obtained by applying the film of the present invention to a polyethylene terephthalate film described in JP-A-10-166534. The pressure-sensitive adhesive sheet can be obtained, for example, by applying the oriented polyester film of the present invention to a polyethylene terephthalate film described in JP-A-06-122856.
以下、本発明を実施例により説明するが、本発明はこれらの実施例に制限されるものではない。なお、評価法は以下の方法で実施した。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to these Examples. In addition, the evaluation method was implemented with the following method.
1、アルミニウム化合物水溶液の吸光度測定法
カルボン酸アルミニウム塩をアルミニウム元素量で2.7g/lの濃度になるように純水に溶解して680nmの波長で吸光度を測定した。溶解は1.5Lフラスコを用いて室温で6時間攪拌後(200rpm)、30分を要して内温を95℃に昇温して、その後内温を95±1℃に調節しながら3時間攪拌することにより行った。吸光度の測定は、水溶液を室温まで放冷した後、セル長1cmの石英セルを用い、純水を対照液として行った。測定装置は、ダブルビーム分光光度計(島津製作所製;UV−210A)を用いた。
1. Method for Measuring Absorbance of Aluminum Compound Aqueous Solution Aluminum carboxylate was dissolved in pure water so as to have a concentration of 2.7 g / l of aluminum element, and the absorbance was measured at a wavelength of 680 nm. Dissolution is carried out at room temperature for 6 hours using a 1.5 L flask (200 rpm), takes 30 minutes, raises the internal temperature to 95 ° C., and then adjusts the internal temperature to 95 ± 1 ° C. for 3 hours. This was done by stirring. The absorbance was measured by allowing the aqueous solution to cool to room temperature, using a quartz cell with a cell length of 1 cm, and using pure water as a control solution. As a measuring device, a double beam spectrophotometer (manufactured by Shimadzu Corporation; UV-210A) was used.
2、固有粘度(IV)の測定
フェノール/テトラクロロエタン(60:40、重量比)混合溶媒を用いて、30℃で測定した。
2. Measurement of Intrinsic Viscosity (IV) Measurement was performed at 30 ° C. using a mixed solvent of phenol / tetrachloroethane (60:40, weight ratio).
3、色調
ポリエステル樹脂チップ(長さ約3mm、直径約2mm)を用い、色差計(東京電色社製:モデルND−1001DP)を使用してハンターのL値およびb値を測定した。
3. Color tone Using a polyester resin chip (length: about 3 mm, diameter: about 2 mm), a color difference meter (manufactured by Tokyo Denshoku Co., Ltd .: Model ND-1001DP) was used to measure the L value and b value of the hunter.
4、ポリエステルに不溶なアルミニウム系異物評価法
溶融重縮合上がりのポリエステルペレット30gおよびパラクロロフェノール/テトラクロロエタン(3/1:重量比)混合溶液300mlを攪拌機付き丸底フラスコに投入し、該ペレットを混合溶液に100〜105℃、2時間で攪拌・溶解した。該溶液を室温になるまで放冷し、直径47mm/孔径1.0μmのポリテトラフルオロエチレン製のメンブレンフィルター(Advantec社製PTFEメンブレンフィルター、品名:T100A047A)を用い、全量を0.15MPaの加圧下で異物を濾別した。有効濾過直径は37.5mmとした。濾過終了後、引き続き300mlのクロロホルムを用い洗浄し、次いで、30℃で一昼夜減圧乾燥した。該メンブレンフィルターの濾過面を走査型蛍光X線分析装置(RIGAKU社製、ZSX100e、Rh管球4.0kW)でアルミニウム元素量を定量した。定量はメンブレンフィルター中心部の直径30mmの部分について行った。なお、該蛍光X線分析法の検量線はアルミニウム元素含有量が既知のPET樹脂を用いて求め、見掛けのアルミニウム元素量をppmで表示した。測定はX線出力50kV−70mAで分光結晶としてペンタエリスリトール、検出器としてPC(プロポーショナルカウンター)を用い、PHA(波高分析器)100−300の条件でAl−Kα線強度を測定することにより実施した。検量線用ポリエチレンテレフタレート樹脂中のアルミニウム元素量は、高周波誘導結合プラズマ発光分析法で定量した。
5、一軸延伸フイルムのヘイズ値
ポリエステル樹脂を真空下、130℃で12時間乾燥し、ヒートプレス法で1000±
100μmのシートを作成。ヒートプレス温度、圧力および時間はそれぞれ320℃、100kg/cm2Gおよび3秒とした。プレス後シートは水中に投入し急冷却した。得られたシートをバッチ式延伸機(T.M.LONG CO.,INC製、FILM STRETCHER)で3.5倍に一軸延伸し300±20μmの一軸延伸フイルムを得た。延伸温度はブロー温度95℃/プレート温度100℃とした。また、延伸速度は1.5万%/分で行った。得られた一軸延伸フイルムのヘイズをJIS−K7136に準拠し、ヘイズメータ(日本電色工業株式会社製、300A)を用いて測定した。なお、測定は5回行い、その平均値を求めた。ヘイズ値はフイルム厚み300μmの換算値で表示した。
4. Evaluation method for aluminum-based foreign substances insoluble in polyester 30 g of polyester pellets after melt polycondensation and 300 ml of parachlorophenol / tetrachloroethane (3/1: weight ratio) mixed solution are put into a round bottom flask equipped with a stirrer, It stirred and melt | dissolved in the mixed solution at 100-105 degreeC for 2 hours. The solution was allowed to cool to room temperature, and a polytetrafluoroethylene membrane filter (Advantec PTFE membrane filter, product name: T100A047A) having a diameter of 47 mm / a pore size of 1.0 μm was used, and the total amount was under a pressure of 0.15 MPa. The foreign matter was filtered off with The effective filtration diameter was 37.5 mm. After completion of the filtration, the product was subsequently washed with 300 ml of chloroform, and then dried under reduced pressure at 30 ° C. overnight. The amount of aluminum element was quantified on the filtration surface of the membrane filter using a scanning X-ray fluorescence analyzer (manufactured by RIGAKU, ZSX100e, Rh tube 4.0 kW). Quantification was performed on a 30 mm diameter portion at the center of the membrane filter. The calibration curve of the X-ray fluorescence analysis was determined using a PET resin having a known aluminum element content, and the apparent aluminum element amount was expressed in ppm. The measurement was carried out by measuring the intensity of Al-Kα rays under the conditions of PHA (wave height analyzer) 100-300 using X-ray output 50 kV-70 mA and using pentaerythritol as a spectroscopic crystal and PC (proportional counter) as a detector. . The amount of aluminum element in the polyethylene terephthalate resin for the calibration curve was quantified by high frequency inductively coupled plasma emission spectrometry.
5. Haze value of uniaxially stretched film The polyester resin was dried at 130 ° C. for 12 hours under vacuum and 1000 ±±
Create a 100μm sheet. The heat press temperature, pressure and time were 320 ° C., 100 kg / cm 2 G and 3 seconds, respectively. After pressing, the sheet was put into water and rapidly cooled. The obtained sheet was uniaxially stretched 3.5 times by a batch type stretching machine (manufactured by TM LONG CO., INC, FILM STRETCHER) to obtain a uniaxially stretched film of 300 ± 20 μm. The stretching temperature was blow temperature 95 ° C./plate temperature 100 ° C. The stretching speed was 15,000% / min. The haze of the obtained uniaxially stretched film was measured according to JIS-K7136 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., 300A). In addition, the measurement was performed 5 times and the average value was calculated | required. The haze value was displayed as a converted value of a film thickness of 300 μm.
実施例1
(1)重縮合触媒溶液の調製
(リン化合物のエチレングリコール溶液の調製)
窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール2.0リットルを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物として(化39)で表されるIrganox1222(チバ・スペシャルティーケミカルズ社製)の200gを加えた。さらに2.0リットルのエチレングリコールを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却した。得られた溶液中のIrganox1222のモル分率は40%、Irganox1222から構造変化した化合物のモル分率は60%であった。
(アルミニウム化合物の水溶液の調製)
冷却管を備えたフラスコに、常温常圧下、純水5.0リットルを加えた後、200rpmで攪拌しながら、上記評価法で評価した吸光度が0.0047の塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)の200gを純水とのスラリーとして加えた。さらに全体として10.0リットルとなるよう純水を追加して常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷し水溶液を得た。
(アルミニウム化合物の水/エチレングリコール混合溶液の調製)
前記アルミニウム化合物の水溶液に対し、該水溶液/エチレングリコール=2/3(体積比)となるようにエチレングリコールを添加し十分に混合して、アルミニウム化合物の水/エチレングリコール混合溶液を得た。
Example 1
(1) Preparation of polycondensation catalyst solution (Preparation of ethylene glycol solution of phosphorus compound)
After adding 2.0 liters of ethylene glycol to a flask equipped with a nitrogen introduction tube and a cooling tube under normal temperature and normal pressure, the mixture was stirred at 200 rpm in a nitrogen atmosphere, and Irganox 1222 (Ciba -200 g of Specialty Chemicals) was added. Further, 2.0 liters of ethylene glycol was added, the jacket temperature was changed to 196 ° C., and the temperature was raised. Thereafter, the heating was stopped, the solution was immediately removed from the heat source, and the solution was cooled to 120 ° C. or less within 30 minutes while maintaining the nitrogen atmosphere. The mole fraction of Irganox 1222 in the obtained solution was 40%, and the mole fraction of the compound whose structure changed from Irganox 1222 was 60%.
(Preparation of aqueous solution of aluminum compound)
After adding 5.0 liters of pure water to a flask equipped with a condenser under normal temperature and normal pressure, the basic aluminum acetate (hydroxyaluminum diacetate) having an absorbance of 0.0047 evaluated by the above evaluation method while stirring at 200 rpm. ) Was added as a slurry with pure water. Further, pure water was added so as to be 10.0 liters as a whole, and the mixture was stirred at room temperature and normal pressure for 12 hours. Thereafter, the jacket temperature was changed to 100.5 ° C., the temperature was raised, and the mixture was stirred under reflux for 3 hours from the time when the internal temperature reached 95 ° C. or higher. Stirring was stopped and the mixture was allowed to cool to room temperature to obtain an aqueous solution.
(Preparation of water / ethylene glycol mixed solution of aluminum compound)
Ethylene glycol was added to the aqueous solution of the aluminum compound and sufficiently mixed so that the aqueous solution / ethylene glycol = 2/3 (volume ratio) to obtain a water / ethylene glycol mixed solution of the aluminum compound.
(ポリエステルの重縮合)
高純度テレフタル酸とその2倍モル量のエチレングリコールから常法に従って製造したビス(2−ヒドロキシエチル)テレフタレート及びオリゴマーの混合物に対し、重縮合触媒として上記方法で調製した塩基性酢酸アルミニウムの水/エチレングリコール混合溶液とリン化合物のエチレングリコール溶液をそれぞれ別個の供給口より、ポリエステル中の酸成分に対してアルミニウム原子として0.021mol%およびリン原子として0.028mol%になるように加えて、窒素雰囲気下、常圧にて245℃で15分間撹拌した。次いで55分間を要して275℃まで昇温しつつ反応系の圧力を徐々に下げて66.5Pa(0.5Torr)としてさらに275℃、66.5Paで130分間重縮合反応を行った。得られたPETの特性を表1に示す。
(Polycondensation of polyester)
For a mixture of bis (2-hydroxyethyl) terephthalate and oligomer produced from high-purity terephthalic acid and its 2-fold molar amount of ethylene glycol according to a conventional method, water / An ethylene glycol mixed solution and an ethylene glycol solution of a phosphorus compound are added from separate feed ports so that the acid component in the polyester is 0.021 mol% as aluminum atoms and 0.028 mol% as phosphorus atoms, and nitrogen is added. The mixture was stirred at 245 ° C. for 15 minutes under atmospheric pressure. Subsequently, the temperature of the reaction system was gradually lowered while raising the temperature to 275 ° C. over 55 minutes, and the polycondensation reaction was further performed at 275 ° C. and 66.5 Pa for 130 minutes at 66.5 Pa (0.5 Torr). The properties of the obtained PET are shown in Table 1.
比較例1
実施例1の方法において、塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)として上記評価法で評価した吸光度が0.0155のものに変更する以外は、実施例1と同様の方法で比較例1のPETを得た。得られたPETの特性を表1に示す。
Comparative Example 1
In the method of Example 1, the PET of Comparative Example 1 was prepared in the same manner as in Example 1 except that the absorbance evaluated by the above evaluation method was changed to 0.0155 as basic aluminum acetate (hydroxyaluminum diacetate). Got. The properties of the obtained PET are shown in Table 1.
実施例2
比較例1で調製したアルミニウム化合物の水溶液を50万xgで1.5時間超遠心分離し水不溶分を除去した精製塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)の水溶液を得た。該精製液の一部をサンプリングしてフリーズドライ法で乾燥し精製塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)を得た。得られた精製塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)の上記評価法で評価した吸光度は0.0022であった。アルミニウム化合物の水溶液として、上記の精製塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)水溶液を用いる以外は、実施例1と同様の方法で実施例2のPETを得た。得られたPETの特性を表1に示す。
Example 2
The aqueous solution of the aluminum compound prepared in Comparative Example 1 was subjected to ultracentrifugation at 500,000 × g for 1.5 hours to obtain an aqueous solution of purified basic aluminum acetate (hydroxyaluminum diacetate) from which water-insoluble components had been removed. A portion of the purified solution was sampled and dried by freeze drying to obtain purified basic aluminum acetate (hydroxyaluminum diacetate). The absorbance of the obtained purified basic aluminum acetate (hydroxyaluminum diacetate) evaluated by the above evaluation method was 0.0022. PET of Example 2 was obtained in the same manner as in Example 1 except that the above-described purified basic aluminum acetate (hydroxyaluminum diacetate) aqueous solution was used as the aqueous solution of the aluminum compound. The properties of the obtained PET are shown in Table 1.
実施例3
(乳酸アルミニウムのエチレングリコール溶液の調製)
乳酸アルミニウムの約67g/lの水溶液を常温で調製した。得られた乳酸アルミニウム水溶液を純水で希釈し上記評価法で評価した吸光度は0.0177であった。該水溶液を50万Xgで1.5時間超遠心分離し水不溶分を除去した精製乳酸アルミニウムの水溶液を得た。該精製液の一部をサンプリングしてフリーズドライ法で乾燥し精製乳酸アルミニウムを得た。得られた精製塩基性酢酸アルミニウムの上記評価法で評価した吸光度は0.0017であった。その後、該精製乳酸アルミニウムの水溶液にエチレングリコールを加え、約100℃で加熱することで水を留去し、約29g/lのエチレングリコール溶液を得た。
(ポリエステルの重縮合)
アルミニウム化合物として、上記の精製乳酸アルミニウムのエチレングリコール溶液を用いる以外は、実施例1と同様の方法で実施例3のPETを得た。得られたPETの特性を表2に示す。
Example 3
(Preparation of ethylene glycol solution of aluminum lactate)
An aqueous solution of about 67 g / l of aluminum lactate was prepared at room temperature. The obtained aluminum lactate aqueous solution was diluted with pure water, and the absorbance evaluated by the above evaluation method was 0.0177. The aqueous solution was ultracentrifugated at 500,000 Xg for 1.5 hours to obtain an aqueous solution of purified aluminum lactate from which water-insoluble components had been removed. A portion of the purified solution was sampled and dried by freeze drying to obtain purified aluminum lactate. The absorbance of the obtained purified basic aluminum acetate evaluated by the above evaluation method was 0.0017. Thereafter, ethylene glycol was added to the aqueous solution of the purified aluminum lactate, and the water was distilled off by heating at about 100 ° C. to obtain an ethylene glycol solution of about 29 g / l.
(Polycondensation of polyester)
PET of Example 3 was obtained in the same manner as in Example 1 except that the ethylene glycol solution of the purified aluminum lactate was used as the aluminum compound. The properties of the obtained PET are shown in Table 2.
比較例2
実施例3において、アルミニウム化合物として超遠心分離する前の未精製の乳酸アルミニウム水溶液を用いて実施例3と同様にして得た乳酸アルミニウムのエチレングリコール溶液を用いる以外は、実施例3と同様の方法で比較例2のPETを得た。得られたPETの特性を表2に示す。
Comparative Example 2
In Example 3, the same method as in Example 3 except that an aluminum glycol ethylene glycol solution obtained in the same manner as in Example 3 was used using an unpurified aqueous solution of aluminum lactate before ultracentrifugation as the aluminum compound. Thus, PET of Comparative Example 2 was obtained. The properties of the obtained PET are shown in Table 2.
実施例4〜6および比較例3、4
実施例1〜3および比較例1、2で得られたPETを上記評価法で記載した方法により一軸延伸フイルムを得た。得られた一軸延伸フイルムのヘイズ値を表1および2に示す。
Examples 4 to 6 and Comparative Examples 3 and 4
Uniaxially stretched films were obtained from the PET obtained in Examples 1 to 3 and Comparative Examples 1 and 2 by the method described in the above evaluation method. Tables 1 and 2 show the haze values of the obtained uniaxially stretched films.
実施例1〜3のPETの製造法は、重縮合触媒の活性が高く、かつ重縮合触媒起因の異物の生成が少なく、経済性と品質が両立している。比較例1および2のPETは重縮合触媒起因の異物が多く品質が劣っている。これらの実施例のポリエステルを用いて得た一軸延伸フイルムはヘイズが低く透明性の優れたものであった。一方、比較例1および2のPETを用いて得た一軸延伸フイルムはヘイズが高く透明性の劣ったものであった。従って、実施例1〜3で得られたPETは透明性の高い成型体が得られ成型体としても高品質であった。 In the PET production methods of Examples 1 to 3, the activity of the polycondensation catalyst is high, and the production of foreign matters due to the polycondensation catalyst is small, so that both economy and quality are compatible. The PETs of Comparative Examples 1 and 2 are inferior in quality due to many foreign matters resulting from the polycondensation catalyst. The uniaxially stretched films obtained using the polyesters of these examples had low haze and excellent transparency. On the other hand, the uniaxially stretched film obtained using the PET of Comparative Examples 1 and 2 had high haze and poor transparency. Therefore, the PET obtained in Examples 1 to 3 was a high-quality molded product with a high transparency.
本発明によるポリエステルの製造方法は、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を触媒の主たる金属成分とした重縮合触媒で色調、透明性および熱安定性等を維持し、かつ重縮合速度が速く、さらに重縮合触媒起因の異物生成が少なく、品質と経済性を両立させることの出来るという利点がある。従って、本発明の製造方法で得られたポリエステルは、例えば衣料用や産業資材用の繊維、包装用、磁気テープ用および光学用などのフィルムやシート、中空成形品であるボトル、電気・電子部品のケーシング、その他エンジニアリングプラスチック成形品等の広範な分野において好適に使用することができる。特に、本発明のポリエステルは重縮合触媒起因の異物生成が少ないという特徴を有しているので超微細繊維、光学用の高透明なフイルムあるいは超高透明な成型体等の分野においてその特徴を発揮することができ、産業界に寄与することが大である。 The polyester production method according to the present invention is a polycondensation catalyst in which metal components other than antimony, germanium and titanium are used as the main metal components of the catalyst, maintaining color tone, transparency, thermal stability, etc., and having a high polycondensation rate. Furthermore, there is an advantage that the production of foreign matter due to the polycondensation catalyst is small and both quality and economy can be achieved. Accordingly, the polyester obtained by the production method of the present invention includes, for example, fibers for clothing and industrial materials, films and sheets for packaging, magnetic tape and optics, bottles that are hollow molded articles, electrical / electronic components, etc. Can be suitably used in a wide range of fields such as casings and other engineering plastic molded articles. In particular, the polyester of the present invention has the feature that there is little generation of foreign matter due to the polycondensation catalyst, so it exhibits the feature in the fields of ultrafine fibers, optically transparent films or ultra-highly transparent molded products. It is important to contribute to the industry.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003428730A JP2005187557A (en) | 2003-12-25 | 2003-12-25 | Polyester and manufacturing method of polyester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003428730A JP2005187557A (en) | 2003-12-25 | 2003-12-25 | Polyester and manufacturing method of polyester |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005187557A true JP2005187557A (en) | 2005-07-14 |
Family
ID=34787600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003428730A Pending JP2005187557A (en) | 2003-12-25 | 2003-12-25 | Polyester and manufacturing method of polyester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005187557A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7655746B2 (en) | 2005-09-16 | 2010-02-02 | Eastman Chemical Company | Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers |
US7709595B2 (en) | 2006-07-28 | 2010-05-04 | Eastman Chemical Company | Non-precipitating alkali/alkaline earth metal and aluminum solutions made with polyhydroxyl ether solvents |
US7709593B2 (en) | 2006-07-28 | 2010-05-04 | Eastman Chemical Company | Multiple feeds of catalyst metals to a polyester production process |
US7745368B2 (en) | 2006-07-28 | 2010-06-29 | Eastman Chemical Company | Non-precipitating alkali/alkaline earth metal and aluminum compositions made with organic hydroxyacids |
US7838596B2 (en) | 2005-09-16 | 2010-11-23 | Eastman Chemical Company | Late addition to effect compositional modifications in condensation polymers |
US7932345B2 (en) | 2005-09-16 | 2011-04-26 | Grupo Petrotemex, S.A. De C.V. | Aluminum containing polyester polymers having low acetaldehyde generation rates |
US8431202B2 (en) | 2005-09-16 | 2013-04-30 | Grupo Petrotemex, S.A. De C.V. | Aluminum/alkaline or alkali/titanium containing polyesters having improved reheat, color and clarity |
US8557950B2 (en) | 2005-06-16 | 2013-10-15 | Grupo Petrotemex, S.A. De C.V. | High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates |
US8563677B2 (en) | 2006-12-08 | 2013-10-22 | Grupo Petrotemex, S.A. De C.V. | Non-precipitating alkali/alkaline earth metal and aluminum solutions made with diols having at least two primary hydroxyl groups |
US9267007B2 (en) | 2005-09-16 | 2016-02-23 | Grupo Petrotemex, S.A. De C.V. | Method for addition of additives into a polymer melt |
-
2003
- 2003-12-25 JP JP2003428730A patent/JP2005187557A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8987408B2 (en) | 2005-06-16 | 2015-03-24 | Grupo Petrotemex, S.A. De C.V. | High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates |
US8557950B2 (en) | 2005-06-16 | 2013-10-15 | Grupo Petrotemex, S.A. De C.V. | High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates |
US8791187B2 (en) | 2005-09-16 | 2014-07-29 | Grupo Petrotemex, S.A. De C.V. | Aluminum/alkyline or alkali/titanium containing polyesters having improved reheat, color and clarity |
US9267007B2 (en) | 2005-09-16 | 2016-02-23 | Grupo Petrotemex, S.A. De C.V. | Method for addition of additives into a polymer melt |
US7655746B2 (en) | 2005-09-16 | 2010-02-02 | Eastman Chemical Company | Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers |
US7799891B2 (en) | 2005-09-16 | 2010-09-21 | Eastman Chemical Company | Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers |
US7838596B2 (en) | 2005-09-16 | 2010-11-23 | Eastman Chemical Company | Late addition to effect compositional modifications in condensation polymers |
US7932345B2 (en) | 2005-09-16 | 2011-04-26 | Grupo Petrotemex, S.A. De C.V. | Aluminum containing polyester polymers having low acetaldehyde generation rates |
US8431202B2 (en) | 2005-09-16 | 2013-04-30 | Grupo Petrotemex, S.A. De C.V. | Aluminum/alkaline or alkali/titanium containing polyesters having improved reheat, color and clarity |
US7745368B2 (en) | 2006-07-28 | 2010-06-29 | Eastman Chemical Company | Non-precipitating alkali/alkaline earth metal and aluminum compositions made with organic hydroxyacids |
US7709593B2 (en) | 2006-07-28 | 2010-05-04 | Eastman Chemical Company | Multiple feeds of catalyst metals to a polyester production process |
US7709595B2 (en) | 2006-07-28 | 2010-05-04 | Eastman Chemical Company | Non-precipitating alkali/alkaline earth metal and aluminum solutions made with polyhydroxyl ether solvents |
US8563677B2 (en) | 2006-12-08 | 2013-10-22 | Grupo Petrotemex, S.A. De C.V. | Non-precipitating alkali/alkaline earth metal and aluminum solutions made with diols having at least two primary hydroxyl groups |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7868126B2 (en) | Process for producing polyester, polyester produced using said process, and polyester molded product | |
JPWO2007032325A1 (en) | POLYESTER, POLYESTER MANUFACTURING METHOD, AND POLYESTER MOLDED ARTICLE | |
JP2008266359A (en) | Polyester polymerization catalyst, polyester manufactured by using the same, and method for manufacturing polyester | |
JP2005187560A (en) | Polyester and manufacturing method of polyester | |
JP2005187561A (en) | Polyester and manufacturing method of polyester | |
JP2005187556A (en) | Polyester and manufacturing method of polyester | |
JP2005187557A (en) | Polyester and manufacturing method of polyester | |
JP2005187559A (en) | Polyester and manufacturing method of polyester | |
JP2005187558A (en) | Polyester and manufacturing method of polyester | |
JP2006282799A (en) | Polyester and polyester molded form | |
JP4670338B2 (en) | Polyester and method for producing polyester | |
JP5181409B2 (en) | Polyester polymerization catalyst, polyester produced using the same, and method for producing polyester | |
JP2003268095A (en) | Polyester polymerization catalyst, polyester produced by using the same, and method for producing polyester | |
JP2008266360A (en) | Polyester polymerization catalyst, polyester manufactured by using the same, and method for manufacturing polyester | |
JP4670337B2 (en) | Polyester and method for producing polyester | |
JP4552107B2 (en) | Polyester and method for producing polyester | |
JP4617802B2 (en) | Polyester polycondensation catalyst, polyester produced using the same, and production method thereof | |
JP4524572B2 (en) | Polyester and method for producing polyester | |
JP2006096789A (en) | Method for producing polyester | |
JP2003261666A (en) | Polyester polymerization catalyst, polyester produced using the same and polyester production method | |
JP2006096790A (en) | Method for producing polyester | |
JP2006290909A (en) | Polyester production method, polyester and polyester molding | |
JP2006089688A (en) | Polycondensation catalyst for producing polyester and polyester and molded article of polyester produced by using the same | |
JP2006290910A (en) | Polyester manufacturing method, polyester and polyester molded item | |
JP2006096791A (en) | Polyester and method for producing polyester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061211 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091126 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100218 |