JP2005187312A - Removal method of silicon tetrafluoride - Google Patents

Removal method of silicon tetrafluoride Download PDF

Info

Publication number
JP2005187312A
JP2005187312A JP2004069394A JP2004069394A JP2005187312A JP 2005187312 A JP2005187312 A JP 2005187312A JP 2004069394 A JP2004069394 A JP 2004069394A JP 2004069394 A JP2004069394 A JP 2004069394A JP 2005187312 A JP2005187312 A JP 2005187312A
Authority
JP
Japan
Prior art keywords
silicon tetrafluoride
mol
carbonyl difluoride
ppm
metal fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004069394A
Other languages
Japanese (ja)
Inventor
Akinori Yamamoto
明典 山本
Takuji Kume
拓司 久米
Seiji Takubo
征司 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004069394A priority Critical patent/JP2005187312A/en
Publication of JP2005187312A publication Critical patent/JP2005187312A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reducing silicon tetrafluoride contained in carbonyl difluoride to a quantity as low as it will not affect in judging the end point of cleaning. <P>SOLUTION: In this refining method of carbony difluoride, silicon tetrafluoride is removed by contacting a gas mixture containing the silicon tetrafluoride and the carbony difluoride with a metal fluoride in a gaseous state or a supercritical state at 60-250°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、四フッ化珪素の含有量が低減された二フッ化カルボニル、特にクリーニングガスとしての使用に好適な二フッ化カルボニルに関する。   The present invention relates to carbonyl difluoride having a reduced content of silicon tetrafluoride, particularly carbonyl difluoride suitable for use as a cleaning gas.

また、本発明は、二フッ化カルボニル中の四フッ化珪素を除去し、二フッ化カルボニルを精製する方法に関する。詳しくは、本発明は半導体製造用途、特にクリーニングガスとして用いられる二フッ化カルボニルの精製方法に関する。   The present invention also relates to a method for removing carbonyl difluoride from carbonyl difluoride and purifying carbonyl difluoride. More specifically, the present invention relates to a method for purifying carbonyl difluoride used as a cleaning gas, particularly for semiconductor manufacturing.

二フッ化カルボニルは半導体製造時のクリーニングガスとして有用である。また、四フッ化珪素は二フッ化カルボニル等でCVDチャンバーのクリーニングを行った際に生成物として未反応のクリーニングガスと共に排気される。一般的にクリーニングの終点は、排出される四フッ化珪素の量から判断される。しかし、クリーニングガス中に四フッ化珪素が予め含まれていると、この終点の判断が困難になる。   Carbonyl difluoride is useful as a cleaning gas during semiconductor production. Silicon tetrafluoride is exhausted as a product together with unreacted cleaning gas when the CVD chamber is cleaned with carbonyl difluoride or the like. In general, the end point of cleaning is determined from the amount of silicon tetrafluoride discharged. However, if silicon tetrafluoride is included in the cleaning gas in advance, it is difficult to determine the end point.

例えば、CVDチャンバーのクリーニングには、COF2以外にO2も同時に流すことが通常行われ、更に、チャンバーからの排ガスは、一般的には、ドライポンプ(ダイアフラムポンプ)を用いて排気され、この時、排ガスは大量のN2で希釈される。その後、FTIRなどによりSiF4の濃度を分析するが、希釈後の排ガス中に原料由来のSiF4量が例えば100ppm或いはそれ以上あると、クリーニングの終点の確認が困難となり、クリーニングを完了させるために必要以上に長時間クリーニング処理を行うことになる。 For example, to clean the CVD chamber, O 2 in addition to COF 2 is also performed normally be flowed simultaneously, further, the exhaust gas from the chamber, in general, be evacuated with a dry pump (diaphragm pump), this Sometimes the exhaust gas is diluted with a large amount of N 2 . Thereafter, the concentration of SiF 4 is analyzed by FTIR or the like. If the amount of SiF 4 derived from the raw material is, for example, 100 ppm or more in the exhaust gas after dilution, it becomes difficult to confirm the end point of cleaning, and the cleaning is completed. The cleaning process is performed for a longer time than necessary.

従ってクリーニングガス中の四フッ化珪素は、この判断に影響しない程度の量である事が望まれる。そこで、二フッ化カルボニル中の四フッ化珪素の除去が必要となる。   Therefore, it is desirable that the amount of silicon tetrafluoride in the cleaning gas is such that it does not affect this determination. Therefore, it is necessary to remove silicon tetrafluoride from carbonyl difluoride.

従来、二フッ化カルボニルは、ヘキサフルオロプロピレンなどの末端に二重結合を有するパーフルオロオレフィンを酸素で酸化してヘキサフルオロプロピレンオキシドなどのエポキシ化合物に変換する際の副生成物として得られており、該エポキシ化合物の分解/転位を抑制するために配合されるSiO2などの珪素化合物、或いはガラス等の容器に由来してSiF4が二フッ化カルボニルと共に含まれていた(特許文献1,2)。SiF4は副生成物として生成する二フッ化カルボニルとともに生成しており、SiF4の含有量は相当多く、少なくとも0.1mol%以上は含まれていた。 Conventionally, carbonyl difluoride has been obtained as a by-product when a perfluoroolefin having a double bond at its terminal, such as hexafluoropropylene, is oxidized with oxygen and converted to an epoxy compound such as hexafluoropropylene oxide. In addition, SiF 4 is contained together with carbonyl difluoride derived from a silicon compound such as SiO 2 or glass or the like compounded to suppress decomposition / dislocation of the epoxy compound (Patent Documents 1 and 2). ). SiF 4 was produced together with carbonyl difluoride produced as a by-product, and the content of SiF 4 was considerably large, and at least 0.1 mol% or more was contained.

さらに、特許文献3にはCOF2とNaFを接触させる事によりHCl、HFを除去する方法が開示されているが、四フッ化珪素を除去することは示されていない。更に実施例にはNaFと接触させた後でもSiF4が1mol%含有されているものもあり当該文献からNaFによりSiF4が除去できることを予測する事は不可能である。 Further, Patent Document 3 discloses a method of removing HCl and HF by bringing COF 2 and NaF into contact with each other, but does not show that silicon tetrafluoride is removed. Further, some examples contain 1 mol% of SiF 4 even after contact with NaF, and it is impossible to predict that SiF 4 can be removed by NaF from the literature.

非特許文献1は四フッ化珪素の化学的特性の項において、四フッ化珪素とNaFとが反応し珪フッ酸ナトリウム(Na2SiF6)が生成する事が記載されているが、詳細な条件や二フッ化カルボニル中の四フッ化珪素の除去には言及されていない。
特開平6−247950号公報 US3639429 US2836622 GAS DATA BOOK Sixth Edition Matheson、636-639頁
Non-Patent Document 1 describes that, in the section of chemical characteristics of silicon tetrafluoride, silicon tetrafluoride and NaF react with each other to produce sodium silicate hydrofluoride (Na 2 SiF 6 ). No mention is made of conditions or removal of silicon tetrafluoride in carbonyl difluoride.
JP-A-6-247950 US3639429 US2836622 GAS DATA BOOK Sixth Edition Matheson, 636-639

本発明は、四フッ化珪素と二フッ化カルボニルを含む混合ガスを処理して四フッ化珪素の量をクリーニングの終点の判断に影響しない程度の量まで低減することを目的とする。   An object of the present invention is to treat a mixed gas containing silicon tetrafluoride and carbonyl difluoride to reduce the amount of silicon tetrafluoride to an amount that does not affect the determination of the end point of cleaning.

本発明者は上記課題に鑑み検討を重ねた結果、特定の温度範囲において四フッ化珪素と二フッ化カルボニルを含む混合ガスをアルカリ金属フッ化物又はアルカリ土類金属フッ化物と反応させることにより四フッ化珪素を除去し、高純度の二フッ化カルボニルが得られることを見出した。   As a result of repeated studies in view of the above problems, the present inventor made a reaction by reacting a mixed gas containing silicon tetrafluoride and carbonyl difluoride with an alkali metal fluoride or an alkaline earth metal fluoride in a specific temperature range. It was found that silicon fluoride was removed and high-purity carbonyl difluoride was obtained.

本発明は、以下の二フッ化カルボニル及びその精製方法を提供するものである。
1. 二フッ化カルボニル中の四フッ化珪素の含有量が0.05mol%(500ppm)以下である二フッ化カルボニル。
2. 四フッ化珪素の含有量が0.01mol%(100ppm)以下である項1に記載の二フッ化カルボニル。
3. 四フッ化珪素の含有量が0.005mol%(50ppm)以下である項1または2に記載の二フッ化カルボニル。
4. 半導体製造装置のチャンバクリーニングガスとして用いられる項1〜3のいずれかに記載の二フッ化カルボニル。
5. 四フッ化珪素と二フッ化カルボニルを含む混合ガスをガス状態または超臨界状態において60℃〜250℃で金属フッ化物と接触させることにより四フッ化珪素を除去することを特徴とする二フッ化カルボニルの精製方法。
6. 精製前の二フッ化カルボニル中の四フッ化珪素の含有量が0.1mol%(1000ppm)以上であり、精製後の二フッ化カルボニル中の四フッ化珪素の含有量が0.05mol%(500ppm)以下である項5に記載の方法。
7. 精製後の二フッ化カルボニル中の四フッ化珪素の含有量が0.01mol%(100ppm)以下である項6に記載の方法。
8. 精製後の二フッ化カルボニル中の四フッ化珪素の含有量が0.005mol%(50ppm)以下である項7に記載の方法。
9. 金属フッ化物が、アルカリ金属フッ化物およびアルカリ土類金属フッ化物からなる群から選ばれる少なくとも1種である項5〜8のいずれかに記載の方法。
10. 四フッ化珪素と二フッ化カルボニルを含む混合ガスを金属フッ化物と接触させる際、ガスおよび/または金属フッ化物を加熱して四フッ化珪素を除去することを特徴とする項5〜9のいずれかに記載の方法。
11. 四フッ化珪素と二フッ化カルボニルを含む混合ガスを金属フッ化物と接触させる温度が80℃〜250℃である項5〜10のいずれかに記載の方法。
12. 金属フッ化物がアルカリ金属フッ化物である項5〜11のいずれかに記載の方法。
13. 金属フッ化物の入った容器に四フッ化珪素と二フッ化カルボニルを含む混合ガスを流通させることにより該混合ガスと金属フッ化物を接触させることを特徴とする項5〜12のいずれかに記載の方法。

以下、本発明をより詳細に説明する。
The present invention provides the following carbonyl difluoride and a purification method thereof.
1. Carbonyl difluoride, wherein the content of silicon tetrafluoride in the carbonyl difluoride is 0.05 mol% (500 ppm) or less.
2. Item 2. The carbonyl difluoride according to Item 1, wherein the content of silicon tetrafluoride is 0.01 mol% (100 ppm) or less.
3. Item 3. The carbonyl difluoride according to Item 1 or 2, wherein the content of silicon tetrafluoride is 0.005 mol% (50 ppm) or less.
4). Item 4. The carbonyl difluoride according to any one of Items 1 to 3, which is used as a chamber cleaning gas for a semiconductor manufacturing apparatus.
5). Silicon tetrafluoride is removed by bringing a mixed gas containing silicon tetrafluoride and carbonyl difluoride into contact with a metal fluoride at 60 ° C. to 250 ° C. in a gas state or a supercritical state. Method for purifying carbonyl.
6). The content of silicon tetrafluoride in carbonyl difluoride before purification is 0.1 mol% (1000 ppm) or more, and the content of silicon tetrafluoride in carbonyl difluoride after purification is 0.05 mol% ( Item 6. The method according to Item 5, which is 500 ppm or less.
7). Item 7. The method according to Item 6, wherein the content of silicon tetrafluoride in the carbonyl difluoride after purification is 0.01 mol% (100 ppm) or less.
8). Item 8. The method according to Item 7, wherein the content of silicon tetrafluoride in the carbonyl difluoride after purification is 0.005 mol% (50 ppm) or less.
9. Item 9. The method according to any one of Items 5 to 8, wherein the metal fluoride is at least one selected from the group consisting of alkali metal fluorides and alkaline earth metal fluorides.
10. Item 5-9, wherein when the mixed gas containing silicon tetrafluoride and carbonyl difluoride is brought into contact with the metal fluoride, the gas and / or metal fluoride is heated to remove silicon tetrafluoride. The method according to any one.
11. Item 11. The method according to any one of Items 5 to 10, wherein the temperature at which the mixed gas containing silicon tetrafluoride and carbonyl difluoride is brought into contact with the metal fluoride is 80 ° C to 250 ° C.
12 Item 12. The method according to any one of Items 5 to 11, wherein the metal fluoride is an alkali metal fluoride.
13. Item 13. The metal gas fluoride is brought into contact with the metal fluoride by causing a gas mixture containing silicon tetrafluoride and carbonyl difluoride to flow through the container containing the metal fluoride. the method of.

Hereinafter, the present invention will be described in more detail.

四フッ化珪素と二フッ化カルボニルを含む混合ガスは、例えば特許文献1〜3に記載の方法に従い目的物或いは副生成物として得ることができる。   The mixed gas containing silicon tetrafluoride and carbonyl difluoride can be obtained as an object or a by-product according to the methods described in Patent Documents 1 to 3, for example.

本発明の方法が適用される、精製前の四フッ化珪素と二フッ化カルボニルを含む混合ガスの比率は、COF2:SiF4=99.9〜90mol%:0.1〜10mol%である。混合ガス中のSiF4が多すぎると、半導体製造時のクリーニングガスに使用可能な高純度のCOF2ガスの分離が困難であり、SiF4が少なすぎると、分離精製する必要性が少なくなるからである。 The ratio of the mixed gas containing silicon tetrafluoride and carbonyl difluoride before purification to which the method of the present invention is applied is COF 2 : SiF 4 = 99.9 to 90 mol%: 0.1 to 10 mol%. . If there is too much SiF 4 in the mixed gas, it will be difficult to separate high-purity COF 2 gas that can be used as a cleaning gas during semiconductor manufacturing. If there is too little SiF 4 , the need for separation and purification will be reduced. It is.

二フッ化カルボニルとSiF4の混合ガスは、CHF3などのHFC、CF4、C26などのPFC、HFなどの酸性ガス、CO2、N2、O2などを10mol%程度まで含有していてもよい。 The mixed gas of carbonyl difluoride and SiF 4 contains HFC such as CHF 3 , PFC such as CF 4 and C 2 F 6 , acidic gas such as HF, CO 2 , N 2 , O 2 and the like up to about 10 mol%. You may do it.

本発明で得られる精製二フッ化カルボニル中のSiF4の割合は、通常0.05mol%(500ppm)以下、好ましくは0.01mol%(100ppm)以下、より好ましくは0.005mol%(50ppm)以下である。SiF4の割合が0.05mol%(500ppm)を超えると、クリーニングの終点の判別が困難になる。これは以下のような理由による。 The ratio of SiF 4 in the purified carbonyl difluoride obtained in the present invention is usually 0.05 mol% (500 ppm) or less, preferably 0.01 mol% (100 ppm) or less, more preferably 0.005 mol% (50 ppm) or less. It is. If the ratio of SiF 4 exceeds 0.05 mol% (500 ppm), it becomes difficult to determine the end point of cleaning. This is due to the following reasons.

即ち、CVDチャンバーのクリーニングには、COF2以外にO2も同時に流し、更に、チャンバーからの排ガスは、一般的には、ドライポンプ(ダイアフラムポンプ)を用いて排気されこの時、排ガスは大量のN2で希釈される。その後、FTIRによりSiF4の濃度を分析する場合、この時の代表的な流量の比率は、COF2:O2:N2は、約1:0.5:10〜20となり、COF2は約10〜20倍に希釈される。従って、当初COF2中に含まれていたSiF4も10倍から20倍に希釈される。 That is, for cleaning the CVD chamber, in addition to COF 2 , O 2 is allowed to flow at the same time, and exhaust gas from the chamber is generally exhausted using a dry pump (diaphragm pump). It is diluted with N 2. Thereafter, when the concentration of SiF 4 is analyzed by FTIR, the typical flow rate ratio at this time is about 1: 0.5: 10 to 20 for COF 2 : O 2 : N 2 , and about COF 2 is about Dilute 10-20 times. Therefore, SiF 4 originally contained in COF 2 is also diluted 10 to 20 times.

終点の判断に利用されるSiF4濃度はケース毎に異なるが、多くとも0.04mol%(400ppm)程度以下、通常0.01mol%(100ppm)程度以下である。仮にクリーニングガスに使用されるCOF2中のSiF4初期濃度が0.1mol%(1000ppm)の場合、排ガス中にはSiF4が0.005〜0.01mol%(50〜100ppm)含まれることになり、この時の終点の判断がSiF4濃度0.01mol%(100ppm)であった場合、終点の判断は困難になる。 The SiF 4 concentration used for determining the end point varies from case to case, but is at most about 0.04 mol% (400 ppm) or less, usually about 0.01 mol% (100 ppm) or less. If the initial concentration of SiF 4 in COF 2 used for the cleaning gas is 0.1 mol% (1000 ppm), the exhaust gas contains 0.005 to 0.01 mol% (50 to 100 ppm) of SiF 4. Thus, when the determination of the end point is SiF 4 concentration 0.01 mol% (100 ppm), it is difficult to determine the end point.

次に、クリーニングガスに使用されるCOF2中のSiF4初期濃度が0.05mol%(500ppm)の場合、排ガス中のSiF4濃度は0.0025mol〜0.005mol%(25〜50ppm)となり、終点の判断は粗くは可能である。クリーニングガスに使用されるCOF2中のSiF4初期濃度が0.01mol%(100ppm)の場合、排ガス中のSiF4濃度は0.0005〜0.001mol%(5〜10ppm)となり、ほぼ問題なく判断できる。クリーニングガスに使用されるCOF2中のSiF4初期濃度が0.005mol%(50ppm)の場合、排ガス中のSiF4濃度は0.00025〜0.0005mol%(2.5〜5ppm)となり、問題ないレベルとなる。 Next, when the SiF 4 initial concentration in the COF 2 used for the cleaning gas is 0.05 mol% (500 ppm), the SiF 4 concentration in the exhaust gas becomes 0.0025 mol to 0.005 mol% (25 to 50 ppm), The end point can be roughly determined. When the initial concentration of SiF 4 in COF 2 used for the cleaning gas is 0.01 mol% (100 ppm), the concentration of SiF 4 in the exhaust gas is 0.0005 to 0.001 mol% (5 to 10 ppm), and there is almost no problem. I can judge. When the initial concentration of SiF 4 in COF 2 used for the cleaning gas is 0.005 mol% (50 ppm), the concentration of SiF 4 in the exhaust gas is 0.00025 to 0.0005 mol% (2.5 to 5 ppm), which is a problem. There will be no level.

四フッ化珪素を除去するために用いられる金属フッ化物としては、アルカリ金属フッ化物、アルカリ土類金属フッ化物が好ましく例示される。アルカリ金属フッ化物としてはLiF、NaF、KF、CsFが例示され、アルカリ土類金属フッ化物としては、CaF2、MgF2、BaF2、SrF2が例示される。アルカリ金属フッ化物として、特にアルカリ金属フッ化物であるLiF、NaF、KF、CsFが好ましい。更に入手の容易さから考えるとNaFが最も好ましい。これらの金属フッ化物は、ペレット状、粒状、粉末状のものが好ましく選択される。ペレットは大き過ぎると四フッ化珪素の除去の効率が悪くなり、粉末は小さ過ぎると粉末の除去が困難になるため、ペレットは直径10mm高さ10mm程度のサイズより小さいものが好ましく、粉末は粒径が100μm程度より大きいものが選択される。金属フッ化物は、SiF4を除去した直後や、SiF4を除去したCOF2を貯槽に移送したりボンベに充填する際などにフィルターなどで除去する事が出来る。 Preferred examples of the metal fluoride used for removing silicon tetrafluoride include alkali metal fluorides and alkaline earth metal fluorides. Examples of the alkali metal fluoride include LiF, NaF, KF, and CsF, and examples of the alkaline earth metal fluoride include CaF 2 , MgF 2 , BaF 2 , and SrF 2 . As the alkali metal fluoride, LiF, NaF, KF, and CsF which are alkali metal fluorides are particularly preferable. Further, NaF is most preferable from the viewpoint of availability. These metal fluorides are preferably selected from pellets, granules and powders. If the pellet is too large, the removal efficiency of silicon tetrafluoride is deteriorated. If the powder is too small, it is difficult to remove the powder. Therefore, the pellet is preferably smaller than 10 mm in diameter and about 10 mm in height. A diameter larger than about 100 μm is selected. Metal fluoride, and immediately after the removal of the SiF4, it can be removed by such as a filter, etc. when filling in a bomb or to transfer the COF 2 removal of the SiF 4 to the storage tank.

金属フッ化物は、使用される前に、窒素気流下又は減圧下或いはその両方で100℃〜300℃程度の適当な温度で加熱することにより、吸着或いは吸収した水分を除去することができる。水分は、二フッ化カルボニルの加水分解で消費され、炭酸ガスとフッ化水素が生成する原因となる。炭酸ガスは二フッ化カルボニルと共に次工程に移るが、フッ化水素の大半はフッ化金属により除去できるため、少量の水分は許容される。   Before being used, the metal fluoride can remove adsorbed or absorbed moisture by heating at an appropriate temperature of about 100 ° C. to 300 ° C. under a nitrogen stream or reduced pressure or both. Water is consumed by the hydrolysis of carbonyl difluoride and causes carbon dioxide and hydrogen fluoride to be generated. Carbon dioxide gas moves to the next step together with carbonyl difluoride, but a small amount of moisture is allowed because most of the hydrogen fluoride can be removed by the metal fluoride.

実施形態としては、金属フッ化物の入った貯槽に四フッ化珪素を含む二フッ化カルボニルを入れ、ある温度である時間放置若しくはスクリューなどの攪拌装置で撹拌しその後、気相より二フッ化カルボニルを抜出す方法であるバッチ式除去法や金属フッ化物の入った容器を加熱しある流量で四フッ化珪素を含む二フッ化カルボニルガスを流通させる方法である連続式除去方法が可能である。得られた二フッ化カルボニルの精製ガスの純度が不十分である場合には、再度金属フッ化物の入った容器を通して四フッ化珪素含量をさらに低下させてもよい。バッチ式除去法と連続式除去法の両方ともに効率を上げるため、処理するガスの圧力を上げ密度を上げる事により、短時間で多量のガスを処理する事が出来る。この時の圧力としては特に制限はないが、機器の耐圧などを考慮すると10MPaG(Gはゲージ圧を示す)程度までが適当と考えられる。好ましい圧力は0〜10MPaG、より好ましくは0.1〜8MPaG、特に好ましくは1〜4MPaGである。   As an embodiment, carbonyl difluoride containing silicon tetrafluoride is put in a storage tank containing a metal fluoride, and is left for a certain period of time or stirred with a stirring device such as a screw, and then carbonyl difluoride from the gas phase. A batch-type removal method, which is a method for extracting the carbon fluoride, and a continuous removal method, which is a method for circulating a carbonyl difluoride gas containing silicon tetrafluoride at a certain flow rate by heating a container containing a metal fluoride, are possible. When the purity of the resulting purified carbonyl difluoride gas is insufficient, the silicon tetrafluoride content may be further reduced through a container containing metal fluoride again. In order to increase the efficiency of both the batch removal method and the continuous removal method, a large amount of gas can be processed in a short time by increasing the pressure of the gas to be processed and increasing the density. Although there is no restriction | limiting in particular as a pressure at this time, Considering the pressure | voltage resistance of an apparatus, etc., it is thought that it is suitable to about 10 MPaG (G shows a gauge pressure). A preferable pressure is 0 to 10 MPaG, more preferably 0.1 to 8 MPaG, and particularly preferably 1 to 4 MPaG.

本発明の方法は、固体である金属フッ化物にガス状態(高密度ガスを含む)或いは超臨界状態の二フッ化カルボニルと四フッ化珪素の混合物を接触させて四フッ化珪素を除去し、二フッ化カルボニルを精製することを特徴とする。バッチ式で攪拌しながら精製を行う場合、金属フッ化物の固体をスクリューなどの攪拌装置で撹拌しながら行うのが好ましい。   The method of the present invention removes silicon tetrafluoride by contacting a solid metal fluoride with a mixture of carbonyl difluoride and silicon tetrafluoride in a gas state (including high density gas) or supercritical state, It is characterized by purifying carbonyl difluoride. In the case of performing purification with stirring in a batch system, it is preferable to perform the stirring with stirring of a metal fluoride solid with a stirring device such as a screw.

バッチ式および連続式での除去温度は、60℃〜250℃、好ましくは80℃〜250℃、より好ましくは100℃〜200℃が選択される。温度は低過ぎると四フッ化珪素の除去効率が悪くなり処理に要する時間が長くなり不経済である。また、温度が高い方が除去効率は良くなるが、高過ぎると必要以上に加熱する事になるのでやはり不経済であり、また、機器の劣化の原因ともなりうる。処理時間としては、1分〜480分、好ましくは2分〜300分、更に好ましくは3分〜200分が選択される。処理する二フッ化カルボニルと金属フッ化物との比率は、二フッ化カルボニル中の四フッ化珪素の含有量により異なってくるが、目安として四フッ化珪素が1mol%以下であれば、二フッ化カルボニル1molに対して0.01mol〜20mol、好ましくは0.02mol〜10mol、更に好ましくは0.5mol〜5molが選択される。四フッ化珪素が1mol%を越える様であれば、含有される四フッ化珪素1molに対して、1mol〜2000mol、好ましくは2mol〜1000mol、更に好ましくは5mol〜500molが選択される。   The removal temperature in the batch type and the continuous type is selected from 60 ° C to 250 ° C, preferably 80 ° C to 250 ° C, more preferably 100 ° C to 200 ° C. If the temperature is too low, the removal efficiency of silicon tetrafluoride is deteriorated and the time required for the treatment becomes long, which is uneconomical. Moreover, the higher the temperature, the better the removal efficiency. However, if the temperature is too high, it will heat more than necessary, which is also uneconomical and may also cause deterioration of the equipment. The treatment time is selected from 1 minute to 480 minutes, preferably 2 minutes to 300 minutes, more preferably 3 minutes to 200 minutes. The ratio of the carbonyl difluoride to be treated and the metal fluoride varies depending on the content of silicon tetrafluoride in the carbonyl difluoride. 0.01 mol to 20 mol, preferably 0.02 mol to 10 mol, and more preferably 0.5 mol to 5 mol are selected with respect to 1 mol of carbonyl chloride. If silicon tetrafluoride exceeds 1 mol%, 1 mol to 2000 mol, preferably 2 mol to 1000 mol, and more preferably 5 mol to 500 mol are selected with respect to 1 mol of silicon tetrafluoride contained.

半導体製造時のクリーニングの終点の判断に影響しない程度の四フッ化珪素の量としては、好ましくは0.05mol%(500ppm)以下、より好ましくは0.01mol%(100ppm)以下、さらに好ましくは0.005mol%(50ppm)以下である。四フッ化珪素が0.05mol%(500ppm)以下、特に0.01mol%(100ppm)以下であれば、クリーニングの終点の判断に影響しない。   The amount of silicon tetrafluoride that does not affect the determination of the end point of cleaning during semiconductor production is preferably 0.05 mol% (500 ppm) or less, more preferably 0.01 mol% (100 ppm) or less, and even more preferably 0. 0.005 mol% (50 ppm) or less. If silicon tetrafluoride is 0.05 mol% (500 ppm) or less, particularly 0.01 mol% (100 ppm) or less, the determination of the end point of cleaning is not affected.

本発明によれば、二フッ化カルボニル中に含まれる四フッ化珪素を、クリーニングの終点の判断に影響しない程度の量まで容易に低減することができる。   According to the present invention, silicon tetrafluoride contained in carbonyl difluoride can be easily reduced to an amount that does not affect the determination of the end point of cleaning.

以下、本発明を実施例に基づきより詳細に説明する
(四フッ化珪素の分析方法)
窓材がCaF2でセル長が10cmのガスセルをゲージ圧で−0.1MPaGまで真空引きした後、−0.06MPaGになるまでガスを導入し、FT−IR(PERKIN ELMER社製)により定量した。定量は二フッ化カルボニルの約2200cm-1の吸収を基準に四フッ化珪素の約1030cm-1の吸光度の初期値からの変化より算出した。
実施例1
実施例1〜4、比較例1
容量約20mlのステンレス製の容器に、金属フッ化物0.1gを入れ、約100℃に加熱しながら真空引きした後、ドライアイスで冷却し、四フッ化珪素を0.4mol%含む二フッ化カルボニルを0.24g仕込んだ。これを80℃で3時間放置した後、FTIRにて四フッ化珪素の濃度を測定した。結果を表1に示した。
Hereinafter, the present invention will be described in more detail based on examples (method for analyzing silicon tetrafluoride).
A gas cell with a window material of CaF 2 and a cell length of 10 cm was evacuated to −0.1 MPaG with a gauge pressure, and then gas was introduced until it became −0.06 MPaG, followed by quantitative determination by FT-IR (manufactured by PERKIN ELMER). . Quantitation was calculated from the change from the initial value of the absorbance of approximately 1030 cm -1 in the silicon tetrafluoride based on the absorption of approximately 2200 cm -1 of carbonyl difluoride.
Example 1
Examples 1-4, Comparative Example 1
In a stainless steel container with a capacity of about 20 ml, 0.1 g of metal fluoride is put in, vacuumed while being heated to about 100 ° C., cooled with dry ice, and difluoride containing 0.4 mol% of silicon tetrafluoride. 0.24 g of carbonyl was charged. This was allowed to stand at 80 ° C. for 3 hours, and then the concentration of silicon tetrafluoride was measured by FTIR. The results are shown in Table 1.

Figure 2005187312
Figure 2005187312

実施例5〜11、比較例2,3
外径3/4インチのステンレス製の反応管にNaFペレット(3mmφ×3mm)97gを仕込んだ。ヒーターにより反応管を所定温度に加熱しながら、質量流量計で調節しながら二フッ化カルボニルを所定流量流通させた。流通後のガスをサンプリングし、FTIRにて四フッ化珪素の濃度を測定した。結果を表2に示した。表2の結果は、数回サンプリングし四フッ化珪素の濃度が安定した時の値である。
Examples 5 to 11, Comparative Examples 2 and 3
97 g of NaF pellets (3 mmφ × 3 mm) were charged into a stainless steel reaction tube having an outer diameter of 3/4 inch. While heating the reaction tube to a predetermined temperature with a heater, a predetermined flow rate of carbonyl difluoride was passed while adjusting with a mass flow meter. The gas after distribution was sampled, and the concentration of silicon tetrafluoride was measured by FTIR. The results are shown in Table 2. The results in Table 2 are values when the concentration of silicon tetrafluoride is stabilized after sampling several times.

Figure 2005187312
Figure 2005187312

Claims (13)

二フッ化カルボニル中の四フッ化珪素の含有量が0.05mol%(500ppm)以下である二フッ化カルボニル。 Carbonyl difluoride, wherein the content of silicon tetrafluoride in the carbonyl difluoride is 0.05 mol% (500 ppm) or less. 四フッ化珪素の含有量が0.01mol%(100ppm) 以下である請求項1に記載の二フッ化カルボニル。 The carbonyl difluoride according to claim 1, wherein the content of silicon tetrafluoride is 0.01 mol% (100 ppm) or less. 四フッ化珪素の含有量が0.005mol%(50ppm) 以下である請求項1または2に記載の二フッ化カルボニル。 The carbonyl difluoride according to claim 1 or 2, wherein the content of silicon tetrafluoride is 0.005 mol% (50 ppm) or less. 半導体製造装置のチャンバクリーニングガスとして用いられる請求項1〜3のいずれかに記載の二フッ化カルボニル。 The carbonyl difluoride according to any one of claims 1 to 3, which is used as a chamber cleaning gas for a semiconductor manufacturing apparatus. 四フッ化珪素と二フッ化カルボニルを含む混合ガスをガス状態または超臨界状態において60℃〜250℃で金属フッ化物と接触させることにより四フッ化珪素を除去することを特徴とする二フッ化カルボニルの精製方法。 Silicon tetrafluoride is removed by bringing a mixed gas containing silicon tetrafluoride and carbonyl difluoride into contact with a metal fluoride at 60 ° C. to 250 ° C. in a gas state or a supercritical state. Method for purifying carbonyl. 精製前の二フッ化カルボニル中の四フッ化珪素の含有量が0.1mol%(1000ppm)以上であり、精製後の二フッ化カルボニル中の四フッ化珪素の含有量が0.05mol%(500ppm)以下である請求項5に記載の方法。 The content of silicon tetrafluoride in carbonyl difluoride before purification is 0.1 mol% (1000 ppm) or more, and the content of silicon tetrafluoride in carbonyl difluoride after purification is 0.05 mol% ( The method according to claim 5, which is 500 ppm or less. 精製後の二フッ化カルボニル中の四フッ化珪素の含有量が0.01mol%(100ppm)以下である請求項6に記載の方法。 The method according to claim 6, wherein the content of silicon tetrafluoride in the carbonyl difluoride after purification is 0.01 mol% (100 ppm) or less. 精製後の二フッ化カルボニル中の四フッ化珪素の含有量が0.005mol%(50ppm)以下である請求項7に記載の方法。 The method according to claim 7, wherein the content of silicon tetrafluoride in the carbonyl difluoride after purification is 0.005 mol% (50 ppm) or less. 金属フッ化物が、アルカリ金属フッ化物およびアルカリ土類金属フッ化物からなる群から選ばれる少なくとも1種である請求項5〜8のいずれかに記載の方法。 The method according to claim 5, wherein the metal fluoride is at least one selected from the group consisting of alkali metal fluorides and alkaline earth metal fluorides. 四フッ化珪素と二フッ化カルボニルを含む混合ガスを金属フッ化物と接触させる際、ガスおよび/または金属フッ化物を加熱して四フッ化珪素を除去することを特徴とする請求項5〜9のいずれかに記載の方法。 10. The silicon tetrafluoride is removed by heating the gas and / or metal fluoride when the mixed gas containing silicon tetrafluoride and carbonyl difluoride is brought into contact with the metal fluoride. The method in any one of. 四フッ化珪素と二フッ化カルボニルを含む混合ガスを金属フッ化物と接触させる温度が80℃〜250℃である請求項5〜10のいずれかに記載の方法。 The method according to any one of claims 5 to 10, wherein the temperature at which the mixed gas containing silicon tetrafluoride and carbonyl difluoride is brought into contact with the metal fluoride is from 80C to 250C. 金属フッ化物がアルカリ金属フッ化物である請求項5〜11のいずれかに記載の方法。 The method according to claim 5, wherein the metal fluoride is an alkali metal fluoride. 金属フッ化物の入った容器に四フッ化珪素と二フッ化カルボニルを含む混合ガスを流通させることにより該混合ガスと金属フッ化物を接触させることを特徴とする請求項5〜12のいずれかに記載の方法。

The mixed gas and the metal fluoride are brought into contact with each other by flowing a mixed gas containing silicon tetrafluoride and carbonyl difluoride through a container containing the metal fluoride. The method described.

JP2004069394A 2003-12-01 2004-03-11 Removal method of silicon tetrafluoride Pending JP2005187312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069394A JP2005187312A (en) 2003-12-01 2004-03-11 Removal method of silicon tetrafluoride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003402146 2003-12-01
JP2004069394A JP2005187312A (en) 2003-12-01 2004-03-11 Removal method of silicon tetrafluoride

Publications (1)

Publication Number Publication Date
JP2005187312A true JP2005187312A (en) 2005-07-14

Family

ID=34797475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069394A Pending JP2005187312A (en) 2003-12-01 2004-03-11 Removal method of silicon tetrafluoride

Country Status (1)

Country Link
JP (1) JP2005187312A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016686A (en) * 2009-07-09 2011-01-27 Showa Denko Kk Method for refining carbonyl difluoride
WO2011052559A1 (en) * 2009-10-27 2011-05-05 昭和電工株式会社 Method for purification of fluorine-containing compound
FR2955786A1 (en) * 2010-01-29 2011-08-05 Air Liquide Process of selective trapping of silicon tetrafluoride comprises introducing gas stream comprising nitrogen, hydrogen, silane and silicon tetrafluoride in trapping reactor containing metal fluoride which is solid adsorbent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016686A (en) * 2009-07-09 2011-01-27 Showa Denko Kk Method for refining carbonyl difluoride
WO2011052559A1 (en) * 2009-10-27 2011-05-05 昭和電工株式会社 Method for purification of fluorine-containing compound
US8692038B2 (en) 2009-10-27 2014-04-08 Showa Denko K.K. Fluorine-containing compound purification method
FR2955786A1 (en) * 2010-01-29 2011-08-05 Air Liquide Process of selective trapping of silicon tetrafluoride comprises introducing gas stream comprising nitrogen, hydrogen, silane and silicon tetrafluoride in trapping reactor containing metal fluoride which is solid adsorbent

Similar Documents

Publication Publication Date Title
EP1732669B1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
EP2998270A1 (en) Method for purifying hydrogen chloride
EP0344612B1 (en) Process for purifying nitrogen trifluoride gas
CN1672776A (en) Process for the purification of NF3
CN110606490B (en) Synthesis and purification method of high-purity silicon tetrafluoride
KR20180114106A (en) Method for purifying fluorine compound gas
JP2005187312A (en) Removal method of silicon tetrafluoride
JP5653928B2 (en) Method for purifying fluorine-containing compounds
WO2002098792A1 (en) Method of separating acid
JP5423594B2 (en) Method for removing fluorine-containing compound gas
JP2008214187A (en) Carbonyl fluoride having reduced content of hydrogen fluoride and method for producing the same
JP5471313B2 (en) Methods for removing chlorine trifluoride
WO2017094417A1 (en) Method for treating exhaust gas containing elemental fluorine
US7468466B2 (en) Process for producing hexafluoroethane and use thereof
JP5034322B2 (en) Synthesis method of nitrogen halides
JP4859384B2 (en) Metal fluoride deoxidizer and method for producing the same
JP5399051B2 (en) Selective immobilization of chlorine and fluorine in flon destruction gas or dry etching exhaust gas and recycling of recovered materials
JP2005281048A (en) Method and apparatus for refining hydrofluoric acid
CN101460396A (en) Method of recovering hydrofluoric acid
JP2008086913A (en) Method for removing fluorine in fluorine-containing gas
JP2002284512A (en) Method for manufacturing high-purity nitrogen trifluoride
JP2010264427A (en) Halogen gas removal agent
JP3730767B2 (en) Purification method of fluorinated silane
JP4952430B2 (en) Removal method of ClO3F
JP2019518700A (en) Purification method and production method of carbonyl fluoride