JP2005187194A - Discrimination method for part attitude and part carrying device - Google Patents

Discrimination method for part attitude and part carrying device Download PDF

Info

Publication number
JP2005187194A
JP2005187194A JP2003433924A JP2003433924A JP2005187194A JP 2005187194 A JP2005187194 A JP 2005187194A JP 2003433924 A JP2003433924 A JP 2003433924A JP 2003433924 A JP2003433924 A JP 2003433924A JP 2005187194 A JP2005187194 A JP 2005187194A
Authority
JP
Japan
Prior art keywords
component
detection
light
port
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003433924A
Other languages
Japanese (ja)
Other versions
JP3996123B2 (en
Inventor
Muneyasu Hatagoshi
宗保 波多腰
Hideki Orihashi
英樹 折橋
Yoshiro Kaneko
芳郎 金子
Takeshi Yonekura
毅 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishin Inc
Original Assignee
Daishin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishin Inc filed Critical Daishin Inc
Priority to JP2003433924A priority Critical patent/JP3996123B2/en
Publication of JP2005187194A publication Critical patent/JP2005187194A/en
Application granted granted Critical
Publication of JP3996123B2 publication Critical patent/JP3996123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feeding Of Articles To Conveyors (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure a variation in detected light amount according to a part attitude to reduce erroneous detection by avoiding the detection of a light component which specifies light incidence range and light detection range for parts and obstructs the discrimination of the part attitude. <P>SOLUTION: In this method for discriminating the part attitude, illuminating light is radiated to the part through a radiating port 1c opening in a part passing area in carrying surfaces 1a and 1b, to which the part 10 is carried, formed by exposing a light transmitting material to a part of the outer surface thereof, the detection axis Dx of the detection light is set in a direction coming out of the radiating axis Cx of the illuminating light, the detection light outgoing along the detection axis is detected through a detection port 1d opening in a part passing area on the carrying surfaces, and the part attitude is discriminated by the light amount of the detected light. A radiating port and a detection port are disposed at positions facing the outer surface of a common part, and the interval between the radiating port and the detection port and the relative angle of the radiating axis to the detection axis are set so that direct reflected light of the illuminating light by the outer surface of the part does not become the detected light detected through the detection port. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は部品姿勢の判別方法及び部品搬送装置に係り、特に、部品を一定姿勢に揃えて供給する部品供給装置に適用する場合に好適な部品姿勢の判別方法に関する。   The present invention relates to a component orientation determination method and a component transport apparatus, and more particularly to a component orientation determination method suitable for application to a component supply device that supplies parts in a uniform orientation.

一般に、電子部品などを一定の姿勢に揃えて供給する部品供給装置には、電子部品の姿勢を揃えるための部品処理部が設けられ、この部品処理部によって電子部品が一定の姿勢に揃えられた上で部品実装装置などに供給される。部品処理部の構成としては、部品の形状に応じた搬送路の形状によって部品の姿勢を機械的に揃える方法と、光学センサなどによって搬送路上の部品の姿勢を検出し、検出された部品姿勢に応じて部品を排除したり、部品の姿勢を強制的に変更したりすることによって部品の姿勢を揃える方法とが知られている(例えば、以下の特許文献1参照)。   In general, a component supply device that supplies electronic components and the like in a fixed posture is provided with a component processing unit for aligning the posture of the electronic components, and the electronic components are aligned in a fixed posture by the component processing unit. It is supplied to a component mounting apparatus or the like. The component processing unit consists of a method of mechanically aligning the posture of the component according to the shape of the conveyance path according to the shape of the component, and detecting the posture of the component on the conveyance path using an optical sensor, etc. Accordingly, there is known a method of aligning the posture of a component by removing the component or forcibly changing the posture of the component (see, for example, Patent Document 1 below).

この場合に、従来の光学センサを用いた部品の検出方法は、部品による光の透過と遮断を利用する方法、或いは、光の透過と反射を利用する方法のいずれかであった。また、搬送面に設けられた開口により光検出を行い、部品姿勢を判別する方法も知られている。(例えば、以下の特許文献2,3参照)。
特開2003−246440号公報 実開平07−12328号公報 特開2001−348117号公報
In this case, a conventional method for detecting a component using an optical sensor is either a method using light transmission and blocking by the component, or a method using light transmission and reflection. Also known is a method of detecting the light by an opening provided on the transport surface and determining the component posture. (For example, see Patent Documents 2 and 3 below).
JP 2003-246440 A Japanese Utility Model Publication No. 07-12328 JP 2001-348117 A

ところで、搬送される部品には種々のものがあり、光透過性を有する素材を外面の一部に露出した状態で含む部品、例えば、図1に示すように、光を透過しない基板10Sと、光透過性のレンズ10Lと、基板10Sの端部に形成された金属などで構成される端子10Eを備えた部品(LED;発光ダイオード)10が知られている。このような部品10では、レンズ10Lが光透過性を有することから、例えば、基板10Sの厚さに相当する幅のスリットを設けた透過光型の光センサを用いて検出を行う場合には、基板10Sが薄い部品10ではスリットを通過した照射光が基板10Sの側方を通過しやすくなったり、部品10が跳ねるとスリットを通過した光が基板10Sによって遮られなくなったりすることから、姿勢の判別ができなくなるという問題点がある。   By the way, there are various parts to be conveyed, and a part including a light-transmitting material exposed in a part of the outer surface, for example, a substrate 10S that does not transmit light as shown in FIG. A component (LED: light emitting diode) 10 including a light transmissive lens 10L and a terminal 10E made of metal or the like formed at an end of a substrate 10S is known. In such a component 10, since the lens 10L has light transmittance, for example, when performing detection using a transmitted light type optical sensor provided with a slit having a width corresponding to the thickness of the substrate 10S, In the component 10 where the substrate 10S is thin, the irradiation light that has passed through the slit becomes easy to pass through the side of the substrate 10S, and when the component 10 jumps, the light that has passed through the slit is not blocked by the substrate 10S. There is a problem that it becomes impossible to distinguish.

また、部品10全体の厚さや基板10Sの厚さに応じて光を照射するためのスリットの位置、幅、長さを決定しなければならないので、部品10の形状寸法に合わせて検出構造を変える必要が生じて製造コストが増大するという問題点がある。また、部品10の形状寸法に検出構造を合わせても、レンズ10Lの光透過率が低く、基板10Sが薄い部品では、光透過量が少なくなることにより姿勢の判別ができなくなるという問題点もある。   Further, since the position, width, and length of the slit for irradiating light must be determined according to the thickness of the entire component 10 and the thickness of the substrate 10S, the detection structure is changed according to the shape and size of the component 10. There is a problem that the production cost increases due to the necessity. Further, even if the detection structure is matched with the shape and size of the component 10, there is a problem that the posture cannot be determined because the light transmittance of the lens 10L is low and the substrate 10S is thin because the light transmission amount is small. .

さらに、従来の特許文献に記載された部品姿勢の判別方法では、部品の外面で生ずる直接反射光をも検出されてしまうように構成されているので、この直接反射光により部品姿勢の相違による検出光の光量の変化量が充分に確保できず、部品姿勢の判別精度を高めることができないという問題点があった。特に、部品に光を透過させる部分がある場合には、部品が存在しない場合との区別をその透過率の差によって判別しなければならないので、部品姿勢の判別がさらに難しくなるという問題点がある。   Furthermore, in the method for determining the component posture described in the conventional patent document, it is configured so that the directly reflected light generated on the outer surface of the component is also detected. There is a problem that the amount of change in the amount of light cannot be sufficiently secured, and the accuracy of determining the component posture cannot be increased. In particular, when there is a part that transmits light in the part, it is necessary to determine the difference from the case where the part is not present based on the difference in the transmittance, so that there is a problem that the determination of the part posture becomes more difficult. .

そこで、本発明は上記問題点を解決するものであり、その課題は、部品に対する照明光の入射範囲及び部品を通して検出される検出光の検出範囲を規定するとともに、部品姿勢の判別に障害となる光の検出を回避することにより、部品姿勢に応じた検出光の光量変化を確保し、誤検出の少ない部品姿勢の判別方法を提供することにある。   Therefore, the present invention solves the above-described problems, and the problem is that it defines the incident range of illumination light on a component and the detection range of detection light detected through the component and hinders the determination of the component posture. An object of the present invention is to provide a method of discriminating a component posture with less false detection by avoiding the detection of light, ensuring a change in the amount of detection light according to the component posture.

本発明の部品姿勢の判別方法は、光透過性を有する素材が外面の一部に露出してなる部品の姿勢を検出する部品姿勢の判別方法であって、前記部品が搬送される搬送面の部品通過領域に開口する照射口を通して照明光を前記部品に照射するとともに、前記照明光の照射軸から外れた方向に検出光の検出軸を設定し、該検出軸に沿って入射する前記検出光を前記搬送面の部品通過領域に開口する検出口を通して検出し、前記検出光の光量によって部品姿勢を判別する方法であり、前記照射口と前記検出口が共通の前記部品の外面に対して共に臨む位置に配置されるとともに、前記照明光の前記部品の外表面による直接反射光が前記検出口を介して検出される前記検出光とならないように、前記照射口と前記検出口の間隔及び前記照射軸と前記検出軸の相対角度が設定されることを特徴とする。   The component posture determination method of the present invention is a component posture determination method for detecting the posture of a component formed by exposing a light-transmitting material to a part of an outer surface, the method including: The detection light that irradiates the component with illumination light through an irradiation port that opens in a component passage region, sets a detection axis of detection light in a direction deviating from the illumination axis of the illumination light, and enters along the detection axis Is detected through a detection opening that opens in the component passage area of the transport surface, and the posture of the component is determined based on the amount of the detection light, and the irradiation port and the detection port are both on the outer surface of the common component. And the distance between the irradiation port and the detection port so that the direct reflected light of the illumination light from the outer surface of the component does not become the detection light detected through the detection port. The irradiation axis and the inspection Wherein the relative angle of the axis is set.

この発明によれば、部品の外面に上記照射光が照射された場合に、その照射光が当該外面にて直接反射されたとしてもその直接反射光が検出口を通して検出されることはない。また、光透過性を有する素材が露出している外面に照射口を通して照射光が照射されると、照射光は光透過性を有する素材の内部に導入されて内部で散乱若しくは反射され、その内部散乱光や内部反射光が再び部品の外面から放出されるが、この内部散乱光や内部反射光が検出口を介して検出されるか否か、及び、その検出光の光量は、照射口と検出口の位置関係、照射範囲と検出範囲、部品の光透過部の位置や範囲などによって変化する。したがって、部品の外面による直接反射光に影響されることなく、部品の内部散乱光や内部反射光による検出光の光量変化を検出することができるので、部品姿勢の相違による検出光量の変化量を大きく確保することができ、部品姿勢を容易かつ確実に判別することができるようになる。   According to this invention, when the said irradiation light is irradiated to the outer surface of components, even if the irradiation light is directly reflected by the said outer surface, the direct reflected light is not detected through a detection port. In addition, when irradiated light is irradiated through the irradiation port to the outer surface where the light-transmitting material is exposed, the irradiated light is introduced into the light-transmitting material and scattered or reflected inside, and the inside Scattered light and internally reflected light are again emitted from the outer surface of the component. Whether or not this internally scattered light or internally reflected light is detected through the detection port, and the amount of the detected light is the same as that of the irradiation port. It varies depending on the positional relationship of the detection port, the irradiation range and the detection range, the position and range of the light transmission part of the component, and the like. Therefore, it is possible to detect the change in the amount of detected light due to the internal scattered light or internal reflected light of the component without being affected by the direct reflected light from the outer surface of the component. A large amount can be secured, and the component posture can be easily and reliably determined.

本発明において、前記照射口と前記検出口が共通の前記部品の外面に対して共に同一方向から臨む位置に配置されることが好ましい。これによれば、照射口と検出口が共に光透過性を有する素材に臨んだ場合において、光透過性を有する素材の厚さの相違や当該素材の背後に配置された光透過性を有しない素材或いは光透過性の低い素材の有無などに基づく検出光の光量変化が大きくなるため、部品姿勢の判別能力を高めることが可能になる。   In this invention, it is preferable that the said irradiation port and the said detection port are arrange | positioned in the position which faces both from the same direction with respect to the outer surface of the said common component. According to this, in the case where both the irradiation port and the detection port face the light-transmitting material, there is no difference in the thickness of the light-transmitting material and no light transmission disposed behind the material. Since the change in the amount of detection light based on the presence or absence of a material or a material with low light transmittance is increased, it is possible to improve the ability to determine the component posture.

本発明において、前記照射軸と前記検出軸が平行に構成されることが好ましい。このように照射軸と検出軸とを平行にすることにより、上述の検出光の光量変化をさらに大きくすることができるため、部品姿勢の判別能力をさらに高めることが可能になる。   In the present invention, it is preferable that the irradiation axis and the detection axis are configured in parallel. By making the irradiation axis and the detection axis parallel in this way, the change in the amount of the detection light described above can be further increased, so that the ability to discriminate the component posture can be further enhanced.

本発明において、前記部品に共に対向し相互に交差する2つの前記搬送面を備え、一方の前記搬送面に前記照射口が形成され、他方の前記搬送面に前記検出口が形成されることが好ましい。このように相互に交差する2つの搬送面のそれぞれに照射口と検出口を設けることにより、照射軸と検出軸の相対角度は大きくなるものの、部品が小さくても照射口と検出口の間隔を確保することが容易になるので、本発明の構成要件を満たすように、照射口と検出口の間隔及び照射軸と検出軸の相対角度を設定することが容易になる。   In the present invention, two transport surfaces that face each other and intersect each other are provided, the irradiation port is formed on one of the transport surfaces, and the detection port is formed on the other transport surface. preferable. By providing an irradiation port and a detection port on each of the two transport surfaces that intersect with each other in this way, the relative angle between the irradiation axis and the detection shaft increases, but the distance between the irradiation port and the detection port can be reduced even if the parts are small. Since it becomes easy to ensure, it becomes easy to set the space | interval of an irradiation port and a detection port, and the relative angle of an irradiation axis | shaft and a detection axis so that the structural requirements of this invention may be satisfy | filled.

本発明において、前記照射口若しくは前記検出口は、前記部品の排除若しくは姿勢変更のための気流を吹き付ける気流吹付孔と兼用されることが好ましい。これによれば、同一部位において部品姿勢の検出と部品の排除若しくは姿勢変更を行うことができるため、部品の選別や整列を行うための部品処理部をコンパクトに構成できる。   In the present invention, it is preferable that the irradiation port or the detection port is also used as an air flow spray hole for blowing an air flow for removing the component or changing the posture. According to this, since the component posture can be detected and the component can be removed or the posture can be changed at the same site, the component processing unit for selecting and aligning the components can be configured compactly.

この場合に、前記部品姿勢の判別結果に応じて前記照射口若しくは前記検出口を通した気流の吹き付けの有無を制御することが望ましい。これによれば、検出位置と気流吹き付け位置とが近接するので、気流の吹き付け対象部品を誤って処理してしまうことを防止できる。   In this case, it is desirable to control the presence / absence of airflow blowing through the irradiation port or the detection port according to the determination result of the component posture. According to this, since the detection position and the airflow blowing position are close to each other, it is possible to prevent the airflow blowing target part from being erroneously processed.

本発明の部品搬送装置は、上記のいずれかに記載の部品姿勢の判別方法を用いた部品処理部を有することを特徴とする。部品搬送装置としては、搬送路を振動させることによって部品を搬送面上において移動させていく振動式搬送装置であることが好ましい。   A component conveying apparatus according to the present invention includes a component processing unit using any one of the above-described component attitude determination methods. The component conveying device is preferably a vibration type conveying device that moves the component on the conveying surface by vibrating the conveying path.

次に、添付図面を参照して本発明の実施形態について説明する。最初に、以下に説明する実施形態において姿勢判定の対象物となる部品10の構造について説明する。ただし、本発明は以下に説明する部品10を対象とするものに限定されるものではなく、少なくとも光透過性を有する素材が外面の一部に露出してなる部品を広く包含するものである。   Next, embodiments of the present invention will be described with reference to the accompanying drawings. First, the structure of the component 10 that is an object of posture determination in the embodiment described below will be described. However, the present invention is not limited to the component 10 described below, and widely includes components in which at least a light-transmitting material is exposed on a part of the outer surface.

図1は、搬送路1上に配置された一つの姿勢にある部品10の概略斜視図(a)、他の姿勢にある部品10を示す概略斜視図(b)−(d)、並びに、部品10の平面図(e)及び側面図(f)である。全体として略6面体(直方体)形状を有し、光透過性を有するレンズ10Lと、光透過性を有しないか、或いは、光透過率がレンズ部10Lよりも小さい基板10Sと、金属などで構成され基板10Sの両端に設けられた一対の端子10Eとを備えている。端子10Eは、基板10Sの端面上から表裏両面に張り出すように断面コ字状に構成されている。この部品10は例えばLED(発光ダイオード)である。   FIG. 1 is a schematic perspective view (a) of a component 10 in one posture arranged on the conveyance path 1, schematic perspective views (b)-(d) showing a component 10 in another posture, and a component. 10 is a plan view (e) and a side view (f). The lens 10L has a substantially hexahedron (cuboid) shape as a whole, and has a light transmission property, a substrate 10S that does not have a light transmission property, or has a light transmission rate smaller than that of the lens portion 10L, and a metal. And a pair of terminals 10E provided at both ends of the substrate 10S. The terminal 10E has a U-shaped cross section so as to protrude from the end surface of the substrate 10S to both the front and back surfaces. This component 10 is, for example, an LED (light emitting diode).

なお、本発明に適用可能な他の部品としては、全体として6面体(直方体)形状を有し、光透過性を有するセラミック基板の両端部上に一対の端子が被覆するように構成され、また、端子が被覆した両端面を除く4面のうちの1面に抵抗層が形成され、残りの3面においてセラミック基板が露出しているセラミック抵抗が挙げられる。また、これと類似の部品としては、セラミックコンデンサ、セラミックインダクタ、水晶振動子、半導体チップなどが挙げられる。これらの各部品としては、例えば、一辺が0.1〜5.0mm程度の寸法を有する、きわめて微細なものが近年増加している。   In addition, as another component applicable to this invention, it has a hexahedron (cuboid) shape as a whole, and it is comprised so that a pair of terminal may coat | cover on the both ends of the ceramic substrate which has a light transmittance, A ceramic resistor in which a resistance layer is formed on one of the four surfaces excluding both end surfaces covered by the terminal and the ceramic substrate is exposed on the remaining three surfaces can be mentioned. In addition, examples of similar parts include ceramic capacitors, ceramic inductors, crystal resonators, and semiconductor chips. As these components, for example, extremely fine ones having a dimension of about 0.1 to 5.0 mm on a side are increasing in recent years.

[第1実施形態]
最初に、図2乃至図4及び図9を参照して、本発明に係る第1実施形態について説明する。本実施形態において、搬送路1には、その延長方向に沿ってそれぞれ伸びるとともに、相互に直交する搬送面1a及び1bが設けられ、これらの搬送面1a及び1bに2つの面を接触させた状態で部品10が搬送路の延長方向に搬送されていくように構成されている。搬送路1は好ましくは振動体によって振動し、この振動によって部品10が上記延長方向に移動するように構成されている。このとき、部品10は一対の端子部10Eを搬送方向前後に配した姿勢で搬送されていく。
[First Embodiment]
First, a first embodiment according to the present invention will be described with reference to FIGS. 2 to 4 and 9. In the present embodiment, the transport path 1 is provided with transport surfaces 1a and 1b extending in the extending direction thereof and orthogonal to each other, and two surfaces are in contact with the transport surfaces 1a and 1b. Thus, the component 10 is configured to be conveyed in the extending direction of the conveyance path. The conveyance path 1 is preferably vibrated by a vibrating body, and the component 10 is configured to move in the extending direction by the vibration. At this time, the component 10 is conveyed in a posture in which the pair of terminal portions 10E are arranged in the front and rear directions in the conveyance direction.

図9は、上記搬送路1を構成する部品搬送装置を示す概略斜視図である。この部品搬送装置100は、図示しない加振機により振動される振動体110を備え、この振動体110には、その振動方向に沿った搬送路1が構成されている。搬送路1上に配置される部品(図示せず)は振動により図示矢印方向に移動し、移動しながら搬送路1の形状に応じて所定の姿勢に整列されていく。ここで、加振機は、公知のように電磁駆動体(ソレノイド)や圧電体などの駆動手段と、ばねなどの弾性部材とによって構成できる。振動体110は、より具体的には、直線状の搬送路1が構成されてなるリニア型振動式フィーダであるが、螺旋状の搬送路を有するボウル型の振動式フィーダであっても構わない。   FIG. 9 is a schematic perspective view showing a component conveying apparatus that constitutes the conveying path 1. The component conveying apparatus 100 includes a vibrating body 110 that is vibrated by a vibrator (not shown), and the vibrating body 110 includes a conveying path 1 along the vibration direction. Parts (not shown) arranged on the conveyance path 1 move in the direction of the arrow shown in the figure by vibration, and are aligned in a predetermined posture according to the shape of the conveyance path 1 while moving. Here, the vibration exciter can be configured by a driving means such as an electromagnetic driving body (solenoid) or a piezoelectric body and an elastic member such as a spring, as is well known. More specifically, the vibrating body 110 is a linear vibratory feeder in which the linear transport path 1 is configured, but may be a bowl-type vibratory feeder having a spiral transport path. .

振動体110には、部品処理部120が取り付けられている。部品処理部120は、上述の部品10の姿勢を判定し、その判定結果に応じて部品10を(例えば90度や180度)回動させることにより姿勢を変更したり、或いは、その判定結果に応じて部品10を搬送路1上から排除したりするものである。これによって、搬送されてくる部品10の多くをそのまま同一姿勢にして搬送していくことが可能になる。ここで、部品処理部120を部品姿勢の変更処理をするように構成した場合には、この部品処理部を部品の採り得る姿勢の数Nに応じてN−1個直列に設けることによって、部品を排除することなく、全ての部品を同一姿勢に揃えることができる。   A component processing unit 120 is attached to the vibrating body 110. The component processing unit 120 determines the posture of the component 10 described above, and changes the posture by rotating the component 10 (for example, 90 degrees or 180 degrees) according to the determination result. Accordingly, the component 10 is excluded from the conveyance path 1. As a result, it is possible to carry most of the parts 10 being conveyed in the same posture as they are. Here, when the component processing unit 120 is configured to perform the component orientation changing process, by providing N-1 serially according to the number N of orientations that the component can take, the component processing unit 120 It is possible to align all the parts in the same posture without eliminating.

図2に示すように、部品処理部120には、部品姿勢を検出するための照明光を部品10に照射するとともに部品10から帰ってきた検出光を検出する光学検出装置121が設けられている。この光学検出装置121は、図示しない発光素子(例えばLED;発光ダイオード)と受光素子(例えばフォトダイオード)とを含む別の主検出装置(図示せず)と光ファイバ122,123で接続され、これらの光ファイバの先端面は放光部122a及び受光部123aとなっている。そして、これらの放光部122a及び受光部123a(先端面)は搬送面1aに開口した照射口1c及び検出口1dにそれぞれ臨むように配置されている。   As shown in FIG. 2, the component processing unit 120 is provided with an optical detection device 121 that irradiates the component 10 with illumination light for detecting the component posture and detects detection light returned from the component 10. . The optical detection device 121 is connected to another main detection device (not shown) including a light emitting element (for example, LED; light emitting diode) and a light receiving element (for example, photodiode) (not shown) through optical fibers 122 and 123. The front end face of the optical fiber is a light emitting part 122a and a light receiving part 123a. And these light emission part 122a and light-receiving part 123a (front-end | tip surface) are arrange | positioned so that the irradiation port 1c opened to the conveyance surface 1a and the detection port 1d may each be faced.

また、部品処理部120には、図示しない圧縮空気源から供給される圧縮空気などの気体を図示矢印で示す部分から導入することにより、搬送面1bに開口する気流吹付口1eから気流を噴出させ、部品10に吹き付けることができるように構成されている。この気流により、部品10を搬送路1上から排除することができる。なお、図2には、気流吹付口1eから噴出する気流により部品10を排除するように構成された例を示すが、搬送路1の断面形状を変える(例えば断面V字状又はW字状にする)ことにより、気流によって部品10の姿勢を変えることも可能である。   In addition, by introducing a gas such as compressed air supplied from a compressed air source (not shown) from a portion indicated by an arrow in the component processing unit 120, an air flow is ejected from an air flow blowing port 1 e opened on the conveying surface 1 b. The component 10 can be sprayed. The component 10 can be removed from the conveying path 1 by this air flow. Note that FIG. 2 shows an example in which the component 10 is removed by the air flow ejected from the air flow blowing port 1e, but the cross-sectional shape of the transport path 1 is changed (for example, to a V-shaped or W-shaped cross section). It is possible to change the posture of the component 10 by the airflow.

図3及び図4に示すように、搬送面1a上に形成された照射口1c及び検出口1dは、搬送路1上に配置された部品10に対して同じ側(図示下側)から部品10の外面に臨むように構成されている。より具体的には、照射口1c及び検出口1dは共に搬送面1a上に開口している。図示例では、照射口1c及び検出口1dは部品10の搬送方向(図示矢印)に沿って配列されている。そして、光学検出装置121の放光部122aは搬送路1の反対側から上記照射口1cに臨み、この照射口1cを通して搬送面1a上に光を照射できるように構成されている。また、光学検出装置121の受光部123aは搬送路1の反対側から上記検出口1dに臨み、搬送面1a上からこの検出口1dを通して帰還する光を検出できるように構成されている。   As shown in FIGS. 3 and 4, the irradiation port 1 c and the detection port 1 d formed on the transport surface 1 a are part 10 from the same side (lower side in the drawing) with respect to the part 10 arranged on the transport path 1. It is configured to face the outer surface of the. More specifically, both the irradiation port 1c and the detection port 1d are opened on the transport surface 1a. In the illustrated example, the irradiation port 1c and the detection port 1d are arranged along the conveying direction of the component 10 (shown by an arrow). And the light emission part 122a of the optical detection apparatus 121 faces the said irradiation port 1c from the other side of the conveyance path 1, and it is comprised so that light can be irradiated on the conveyance surface 1a through this irradiation port 1c. Further, the light receiving portion 123a of the optical detection device 121 is configured to be able to detect light returning from the conveyance surface 1a through the detection port 1d from the opposite side of the conveyance path 1 to the detection port 1d.

本実施形態では、照射口1cの軸線である照射軸Cxと、検出口1dの軸線である検出軸Dxとは平行(すなわち相対角度が0度)に設定されている。また、照射口1c及び検出口1dは、共通の部品10の外面に対して共に臨むようにその間隔が設定されている。より具体的には、照射軸Cxと検出軸Dxは搬送路1上を移動してくる部品10に関して考えられるいずれの部品姿勢に対しても共に部品10(の搬送面1a側の外面)を通過するように、その間隔が設定されている。   In the present embodiment, the irradiation axis Cx that is the axis of the irradiation port 1c and the detection axis Dx that is the axis of the detection port 1d are set to be parallel (that is, the relative angle is 0 degree). Moreover, the space | interval is set so that the irradiation port 1c and the detection port 1d may face both with respect to the outer surface of the common component 10. FIG. More specifically, the irradiation axis Cx and the detection axis Dx pass through the component 10 (the outer surface on the conveyance surface 1a side) together with any component posture that can be considered for the component 10 moving on the conveyance path 1. The interval is set so that it does.

また、本実施形態では、照射口1cから放出された照明光が基板10Sの外面に当たって生ずる直接反射光が検出口1dを通して検出されないように、照射口1cと検出口1dの間隔がある程度大きくなるように設定されている。これは、図示の部品10では、端子10Eがある程度の厚さを有することにより、図3に示す姿勢で部品10が搬送されてきたとき、基板10Sの外面と搬送面1aとの間に間隙が生ずるため、照射口1cと検出口1dの間隔が小さいと、照明光が基板10Sの外面に当たって生じた直接反射光が検出口1dに入射し、検出されてしまうからである。したがって、部品10の外面がいずれの姿勢でも搬送面1aにほぼ密着する状況にあるならば、上記間隔はさらに小さくてもよい。   In the present embodiment, the distance between the irradiation port 1c and the detection port 1d is increased to some extent so that the directly reflected light generated when the illumination light emitted from the irradiation port 1c hits the outer surface of the substrate 10S is not detected through the detection port 1d. Is set to In the illustrated component 10, since the terminal 10E has a certain thickness, when the component 10 is transported in the posture shown in FIG. 3, there is a gap between the outer surface of the substrate 10S and the transport surface 1a. For this reason, if the distance between the irradiation port 1c and the detection port 1d is small, the directly reflected light generated when the illumination light hits the outer surface of the substrate 10S enters the detection port 1d and is detected. Accordingly, if the outer surface of the component 10 is in close contact with the transport surface 1a in any posture, the interval may be further reduced.

以上のように、本実施形態では、照射口1cと検出口1dの間隔は、共通の部品10に対して共に臨むことができる最大間隔以下で、かつ、部品10の外面にて生ずる直接反射光が検出されない最小間隔以上となるように設定されている。上記間隔(照射軸Cxと検出軸Dxの間隔)は、例えば、部品10の長手方向(図3に示す部品姿勢において左右方向)の基板10Sの長さが1.6mm、レンズ10Lの長さが1.0mmのとき、0.5〜1.0mmの範囲内であることが好ましく、特に0.8mm程度であることが望ましい。また、このときの照射口1c及び検出口1dの直径は0.3〜0.8mmの範囲内であることが好ましく、特に0.5mm程度であることが望ましい。   As described above, in the present embodiment, the distance between the irradiation port 1 c and the detection port 1 d is equal to or less than the maximum interval that can face the common component 10, and the directly reflected light generated on the outer surface of the component 10. Is set to be equal to or greater than the minimum interval at which no detection is made. The distance (the distance between the irradiation axis Cx and the detection axis Dx) is, for example, that the length of the substrate 10S in the longitudinal direction of the component 10 (the horizontal direction in the component orientation shown in FIG. 3) is 1.6 mm and the length of the lens 10L. When it is 1.0 mm, it is preferably within the range of 0.5 to 1.0 mm, and particularly preferably about 0.8 mm. In addition, the diameter of the irradiation port 1c and the detection port 1d at this time is preferably in the range of 0.3 to 0.8 mm, and particularly preferably about 0.5 mm.

さらに、本実施形態では、放光部122aの発光面積(端面の面積)よりも照射口1cの開口面が小さく構成されている。さらに、受光部123aの受光面積(端面の面積)よりも検出口1dの開口面が小さく構成されている。これにより、部品10の形状寸法に合わせて照射口1cや検出口1dの間隔を或る程度変更しても、共通の光学検出装置121を用いることができるという利点がもたらされる。   Furthermore, in the present embodiment, the opening surface of the irradiation port 1c is configured to be smaller than the light emission area (end surface area) of the light emitting portion 122a. Furthermore, the opening surface of the detection port 1d is configured to be smaller than the light receiving area (the end surface area) of the light receiving unit 123a. Thereby, even if the space | interval of the irradiation port 1c and the detection port 1d is changed to some extent according to the shape dimension of the components 10, the advantage that the common optical detection apparatus 121 can be used is brought about.

本実施形態では、部品10が図3に示す姿勢で搬送されてきた場合、上記構成によって検出光の光量はほとんど0である。これに対して、図4に示す上下逆様の姿勢で部品10が搬送されてくる場合には、照射口1cを通して照射される照射光は光透過性を有するレンズ10L内に入射し、この内部で散乱されてなる内部散乱光や基板10Sの内面にて反射されてなる内部反射光が検出口1dを通して検出される。また、図4の後続の部品10のように横倒姿勢の場合には、内部散乱光が検出されるが、内部反射光はほとんど検出されないので、検出光の光量は逆様姿勢の場合よりも低レベルとなる。   In the present embodiment, when the component 10 has been transported in the posture shown in FIG. 3, the amount of detection light is almost zero due to the above configuration. On the other hand, when the component 10 is conveyed in the upside down posture shown in FIG. 4, the irradiation light irradiated through the irradiation port 1c enters the lens 10L having optical transparency, and this inside The internally scattered light scattered by the light and the internally reflected light reflected by the inner surface of the substrate 10S are detected through the detection port 1d. Further, in the case of the sideways posture as in the subsequent component 10 in FIG. 4, although the internal scattered light is detected, the internal reflected light is hardly detected, so the amount of the detected light is larger than that in the reverse posture. Low level.

したがって、検出光の光量レベルによって、図1(a)に示す部品姿勢(例えば良品姿勢)と、図1(b)に示す部品姿勢(例えば不良姿勢1)、図1(c)に示す部品姿勢(例えば不良姿勢2)、或いは、図1(d)に示す部品姿勢(例えば不良姿勢3)とを判別することができる。また、不良姿勢1と、不良姿勢2又は3とを判別することも可能である。さらに、照射口1c及び検出口1dの図3及び図4の紙面と直交する方向の位置を適宜に調整することによって不良姿勢2と3を判別することも可能になる。   Therefore, depending on the light intensity level of the detection light, the component posture shown in FIG. 1A (for example, non-defective posture), the component posture shown in FIG. 1B (for example, defective posture 1), and the component posture shown in FIG. (For example, the defective posture 2) or the component posture (for example, the defective posture 3) shown in FIG. It is also possible to discriminate between the defective posture 1 and the defective posture 2 or 3. Further, the defective postures 2 and 3 can be determined by appropriately adjusting the positions of the irradiation port 1c and the detection port 1d in the direction orthogonal to the paper surface of FIGS.

本実施形態では、部品10の外面で生ずる直接反射光を検出しないように構成するとともに、光透過性を有する部分による内部散乱光や内部反射光を利用することにより、外面の一部に光透過性の素材が露出してなる部品の姿勢を容易かつ正確に判別することができるようになった。特に、上述の部品10のように、一部に光を透過貫通させる部分(レンズ10L)が存在する場合には、光透過型のセンサを用いると、当該部分を透過して検出される光レベルと、部品が存在しない場合の光レベルとの判別をもしなければならないため、上記部分の光透過率が高い場合には部品そのものの検出が困難になるが、本実施形態では、照射軸Cxと検出軸Dxとが一致していないので、このような問題も生じない。   In the present embodiment, direct reflection light generated on the outer surface of the component 10 is not detected, and light is transmitted through a part of the outer surface by using internally scattered light and internally reflected light by the light transmitting portion. It is now possible to easily and accurately determine the posture of a part formed by exposing a sex material. In particular, in the case where a part (lens 10L) that allows light to pass through partially exists as in the above-described component 10, when a light transmission type sensor is used, the light level that is detected through the part is detected. Therefore, it is difficult to detect the component itself when the light transmittance of the portion is high. However, in the present embodiment, the irradiation axis Cx is determined as the light level when the component is not present. Such a problem does not occur because the detection axis Dx does not coincide.

なお、本実施形態では、照射口1c及び検出口1dと、気流吹付口1eとが別個に設けられているが、照射口1c若しくは検出口1dの少なくとも一方を気流吹付口と兼用することも可能である。この場合には、部品処理部120をよりコンパクトに構成することができるとともに、部品姿勢の検出位置と、部品の処理される位置とが相互に近接するため、部品を高速に搬送した場合でも、検出した部品と異なる部品を処理してしまうなどの処理の誤りを防止することができる。   In this embodiment, the irradiation port 1c, the detection port 1d, and the airflow blowing port 1e are provided separately, but at least one of the irradiation port 1c or the detection port 1d can also be used as the airflow blowing port. It is. In this case, the component processing unit 120 can be configured more compactly, and the detection position of the component posture and the processing position of the component are close to each other, so even when the component is conveyed at high speed, Processing errors such as processing a part different from the detected part can be prevented.

また、上記実施形態では照射軸Cxと検出軸Dxとが平行に設定されているが、必ずしも平行でなくても、照射口1cと検出口1dの間隔との関係で、共通の部品10に共に臨み、かつ、部品10の外面による直接反射光が検出されない範囲で相対角度が設定されていればよい。   In the above-described embodiment, the irradiation axis Cx and the detection axis Dx are set in parallel. However, even if they are not necessarily parallel, both the common component 10 and the common component 10 have a relationship between the irradiation port 1c and the detection port 1d. It is only necessary that the relative angle is set within a range where the light reflected directly from the outer surface of the component 10 is not detected.

また、上記実施形態では、搬送路1の下流側に照射口1cが形成され、その上流側に検出口1dが形成されているが、これとは逆に、搬送路1の上流側に照射口1cが形成され、その下流側に検出口1dが形成されていてもよい。さらに、上記実施形態とは異なり、照射口1cと検出口1dは搬送路1の搬送方向とは直交する方向に配列されていてもよく、また、搬送方向に対して斜めに配列されていても構わない。   Moreover, in the said embodiment, although the irradiation port 1c is formed in the downstream of the conveyance path 1, and the detection port 1d is formed in the upstream, on the contrary, the irradiation port in the upstream of the conveyance path 1 is formed. 1c may be formed, and the detection port 1d may be formed on the downstream side thereof. Further, unlike the above embodiment, the irradiation port 1c and the detection port 1d may be arranged in a direction orthogonal to the conveyance direction of the conveyance path 1 or may be arranged obliquely with respect to the conveyance direction. I do not care.

[第2実施形態]
次に、図5乃至図8及び図10を参照して、本発明に係る第2実施形態について説明する。図10は本実施形態の部品搬送装置200を示す概略斜視図である。この部品搬送装置200は、上記部品搬送装置100と同様に、図示しない加振機によって振動する振動体210と、この振動体210に取り付けられた部品処理部220とを有する。振動体210には上記と同様の搬送路2が形成されている。搬送路2には、上記と同様の搬送面2a及び2bが設けられている。
[Second Embodiment]
Next, a second embodiment according to the present invention will be described with reference to FIGS. 5 to 8 and FIG. FIG. 10 is a schematic perspective view showing the component conveying apparatus 200 of the present embodiment. Similar to the component conveying apparatus 100, the component conveying apparatus 200 includes a vibrating body 210 that vibrates by a vibrator (not shown), and a component processing unit 220 attached to the vibrating body 210. The vibrating body 210 is formed with the same conveyance path 2 as described above. The transport path 2 is provided with transport surfaces 2a and 2b similar to the above.

図5に示すように、部品処理部220には照明装置221が設けられ、照明装置221の内部には図示しない発光素子が収容されている。また、この発光素子に接続された放光部(光ファイバ)222は搬送面2aに形成された照射口2cに搬送路2の反対側から臨むように構成されている。配線224は照明装置221へ電力を供給するためのものである。一方、搬送面2aと交差するもう一つの搬送面2bには検出口2dが設けられ、この検出口2dには、光検出装置223の受光素子に接続された受光面が搬送路2の反対側から臨むように構成されている。配線225は光検出装置223に電力を供給するものである。なお、照明装置221及び光検出装置223を第1実施形態の光学検出装置のように外部から光を導くように構成し、外部で光を検出するように構成してもよい。   As shown in FIG. 5, the component processing unit 220 is provided with an illumination device 221, and a light emitting element (not shown) is accommodated in the illumination device 221. Moreover, the light emission part (optical fiber) 222 connected to this light emitting element is configured to face the irradiation port 2c formed on the transport surface 2a from the opposite side of the transport path 2. The wiring 224 is for supplying power to the lighting device 221. On the other hand, another detection surface 2b intersecting with the conveyance surface 2a is provided with a detection port 2d. The light detection surface connected to the light receiving element of the light detection device 223 is opposite to the conveyance path 2 in this detection port 2d. It is configured to face from. The wiring 225 supplies power to the light detection device 223. The illumination device 221 and the light detection device 223 may be configured to guide light from outside like the optical detection device of the first embodiment, and may be configured to detect light outside.

図6に示すように、照射口2cによって構成される照射軸Cxと、検出口2dによって構成される検出軸Dxとは、本実施形態の場合、ほぼ直交するように(すなわち相対角度が90度となるように)設定されている。ただし、照射軸Cxと検出軸Dxの相対角度は、部品10の外面による直接反射光が検出されないように構成されていて、しかも共通の部品10の外面に対して共に臨む範囲であれば90度でなくても構わない。また、照射口2cと検出口2dの間隔についても、部品10の外面による直接反射光が検出されないように構成されていて、しかも共通の部品10の外面に対して共に臨む範囲となるように設定される。特に、部品10の姿勢の相違により検出光の光量差がなるべく大きくなるように設定されることが望ましい。   As shown in FIG. 6, in this embodiment, the irradiation axis Cx constituted by the irradiation port 2c and the detection axis Dx constituted by the detection port 2d are substantially orthogonal (that is, the relative angle is 90 degrees). Is set). However, the relative angle between the irradiation axis Cx and the detection axis Dx is configured so that direct reflected light from the outer surface of the component 10 is not detected, and is 90 degrees as long as it faces the outer surface of the common component 10 together. It doesn't have to be. Further, the interval between the irradiation port 2c and the detection port 2d is also set so that the light directly reflected by the outer surface of the component 10 is not detected, and is in a range that faces the outer surface of the common component 10 together. Is done. In particular, it is desirable that the difference in the amount of detection light is set as large as possible due to the difference in the posture of the component 10.

本実施形態では、検出口2dは、図示しない圧縮空気などの気体を供給する装置に接続された気体供給路にも連通し、気流吹付口を兼用している。これによって、部品処理部220をコンパクトに構成することができる。また、部品10の姿勢の検出位置と、気流吹きつけによる部品10の排除位置(或いは部品姿勢の変更位置)とを近接させることができるので、検出した部品姿勢に対応する部品10を誤り無く処理することができる。   In the present embodiment, the detection port 2d communicates with a gas supply path connected to a device for supplying a gas such as compressed air (not shown), and also serves as an airflow spray port. Thus, the component processing unit 220 can be configured in a compact manner. In addition, since the detection position of the posture of the component 10 and the removal position of the component 10 (or the change position of the component posture) by blowing airflow can be brought close to each other, the component 10 corresponding to the detected component posture is processed without error. can do.

図6は、基板10Sが搬送面2aに対向している部品10の姿勢を示すもので、この場合、照射口2cから照射される照明光は基板10Sに遮られるため、検出光はほとんど検出されない。図7は、基板10Sが搬送面2aとは反対側に配置される部品10の姿勢を示すもので、この場合、照射口2cから照射される照明光はレンズ10L内に入射し、内部で散乱されてなる内部散乱光と、内部で反射されてなる内部反射光が検出光として検出される。図8(a)は、基板10Sが搬送面2bの反対側に配置される部品10の姿勢を示すもので、この場合、照射口1cから照射される照明光が基板10Sに全て遮られれば検出光は検出されず、照明光の少なくとも一部がレンズ10Lに入射すれば、その内部散乱光や内部反射光がわずかではあるが検出光として検出される。図8(b)は、基板10Sが搬送面2bに対向する部品10の姿勢を示すもので、この場合、照明光がレンズ10L内に入射しても、検出口2dが基板10Sによって閉鎖されているために検出光は検出されない。   FIG. 6 shows the posture of the component 10 in which the substrate 10S faces the transport surface 2a. In this case, the illumination light emitted from the irradiation port 2c is blocked by the substrate 10S, so that almost no detection light is detected. . FIG. 7 shows the posture of the component 10 in which the substrate 10S is arranged on the side opposite to the transport surface 2a. In this case, the illumination light irradiated from the irradiation port 2c enters the lens 10L and is scattered inside. The internally scattered light thus formed and the internally reflected light reflected internally are detected as detection light. FIG. 8A shows the posture of the component 10 in which the substrate 10S is disposed on the opposite side of the transport surface 2b. In this case, the detection is performed when all of the illumination light irradiated from the irradiation port 1c is blocked by the substrate 10S. If at least a part of the illumination light is incident on the lens 10L without detecting the light, the internal scattered light and the internal reflected light are detected as detection light although they are slight. FIG. 8B shows the posture of the component 10 with the substrate 10S facing the transport surface 2b. In this case, even if illumination light enters the lens 10L, the detection port 2d is closed by the substrate 10S. Therefore, no detection light is detected.

本実施形態では、図6に示す部品姿勢と、図8(b)に示す部品姿勢とを相互に判別することはできないが、搬送路2を90度ねじるようにして部品姿勢を反転させた上で、再度同じ方法で部品姿勢を判別することによって両姿勢を判別することが可能になる。また、上記とは異なる部品姿勢検出部を別途設けてもよい。   In the present embodiment, the component posture shown in FIG. 6 and the component posture shown in FIG. 8B cannot be distinguished from each other, but the component posture is reversed by twisting the conveyance path 2 by 90 degrees. Thus, both postures can be discriminated by discriminating the component postures again by the same method. Moreover, you may provide the component attitude | position detection part different from the above separately.

また、図7に示す部品姿勢と、図8(a)に示す部品姿勢とを明確に判別するためには、図7に示す部品姿勢において検出口2dが基板10Sにより閉鎖される面積と、図8(a)に示す部品姿勢において照射口2cが基板10Sにより閉鎖される面積との差を大きくすることが好ましい。この場合、いずれか一方の部品姿勢において検出口2d若しくは照射口2cが基板10Sにより全く閉鎖されないようにしてもよい。   Further, in order to clearly discriminate between the component posture shown in FIG. 7 and the component posture shown in FIG. 8A, an area in which the detection port 2d is closed by the substrate 10S in the component posture shown in FIG. In the component posture shown in FIG. 8A, it is preferable to increase the difference from the area where the irradiation port 2c is closed by the substrate 10S. In this case, the detection port 2d or the irradiation port 2c may not be completely closed by the substrate 10S in any one of the component postures.

本実施形態では、部品10の下側にある搬送面2aに照射口2cを開口させ、部品10の側方にある搬送面2bに検出口2dを開口させてあるが、これとは逆に、部品10の側方にある搬送面2bに照射口2cを開口させ、部品10の下側にある搬送面2aに検出口2dを開口させてもよい。   In the present embodiment, the irradiation port 2c is opened on the conveyance surface 2a on the lower side of the component 10, and the detection port 2d is opened on the conveyance surface 2b on the side of the component 10, but conversely, The irradiation port 2c may be opened on the conveyance surface 2b on the side of the component 10, and the detection port 2d may be opened on the conveyance surface 2a on the lower side of the component 10.

尚、本発明の部品姿勢の判別方法及び部品搬送装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では、部品10として電子部品を搬送(供給)する場合について説明したが、本発明はこのようなチ電子部品に限らず、電子部品以外の各種の部品についても同様に適用できる。また、各実施形態は本発明の実施態様を例示するものに過ぎず、例えば、発光素子や受光素子の構造や、光学検出装置、照明装置或いは光検出装置の構造や、搬送路の構造や、部品形状や寸法などに関して、何等限定するものではない。   It should be noted that the component orientation determination method and the component transport apparatus according to the present invention are not limited to the above-described illustrated examples, and various changes can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the case where an electronic component is transported (supplied) as the component 10 has been described. However, the present invention is not limited to such an electronic component, and can be similarly applied to various components other than the electronic component. . In addition, each embodiment is merely an example of the embodiment of the present invention, for example, a structure of a light emitting element or a light receiving element, a structure of an optical detection device, an illumination device or a light detection device, a structure of a conveyance path, There is no limitation on the part shape and dimensions.

部品姿勢の判別方法の判別対象となる部品の一例を示す概略斜視図(a)〜(d)並びに部品の平面図(e)及び側面図(f)。The schematic perspective view (a)-(d) which shows an example of the components used as the discrimination | determination object of the discrimination | determination method of a component attitude | position, the top view (e), and side view (f) of components. 第1実施形態の部品処理部の構造を示す概略断面図。The schematic sectional drawing which shows the structure of the components process part of 1st Embodiment. 第1実施形態の部品処理部の拡大断面図。The expanded sectional view of the parts processing part of a 1st embodiment. 異なる部品姿勢にある部品とともに示す第1実施形態の部品処理部の拡大断面図。The expanded sectional view of the component process part of 1st Embodiment shown with the components in a different component attitude | position. 第2実施形態の部品処理部の構造を示す概略断面図。The schematic sectional drawing which shows the structure of the components process part of 2nd Embodiment. 第2実施形態の部品処理部の拡大断面図。The expanded sectional view of the parts processing part of a 2nd embodiment. 異なる部品姿勢にある部品とともに示す第2実施形態の部品処理部の拡大断面図。The expanded sectional view of the component process part of 2nd Embodiment shown with the components in a different component attitude | position. さらに異なる部品姿勢にある部品とともに示す第2実施形態の部品処理部の拡大断面図(a)及び(b)。Furthermore, the expanded sectional view (a) and (b) of the component process part of 2nd Embodiment shown with the components in a different component attitude | position. 第1実施形態の部品搬送装置の振動体の概略斜視図。The schematic perspective view of the vibrating body of the components conveying apparatus of 1st Embodiment. 第2実施形態の部品搬送装置の振動体の概略斜視図。The schematic perspective view of the vibrating body of the components conveying apparatus of 2nd Embodiment.

符号の説明Explanation of symbols

1,2…搬送路、1a,1b,2a,2b…搬送面、1c,2c…照射口、1d,2d…検出口、10…部品、10E…端子部、10S…基板、10L…レンズ、100…部品搬送装置、110…振動体、120…部品処理部、Cx…照射軸、Dx…検出軸 DESCRIPTION OF SYMBOLS 1, 2 ... Conveyance path, 1a, 1b, 2a, 2b ... Conveyance surface, 1c, 2c ... Irradiation port, 1d, 2d ... Detection port, 10 ... Parts, 10E ... Terminal part, 10S ... Substrate, 10L ... Lens, 100 ... Parts conveying device, 110 ... vibrating body, 120 ... part processing unit, Cx ... irradiation axis, Dx ... detection axis

Claims (7)

光透過性を有する素材が外面の一部に露出してなる部品の姿勢を検出する部品姿勢の判別方法であって、
前記部品が搬送される搬送面の部品通過領域に開口する照射口を通して照明光を前記部品に照射するとともに、前記照明光の照射軸から外れた方向に検出光の検出軸を設定し、該検出軸に沿って入射する前記検出光を前記搬送面の部品通過領域に開口する検出口を通して検出し、前記検出光の光量によって部品姿勢を判別する方法であり、
前記照射口と前記検出口が共通の前記部品の外面に対して共に臨む位置に配置されるとともに、前記照明光の前記部品の外表面による直接反射光が前記検出口を介して検出される前記検出光とならないように、前記照射口と前記検出口の間隔及び前記照射軸と前記検出軸の相対角度が設定されることを特徴とする部品姿勢の判別方法。
A component posture determination method for detecting the posture of a component formed by exposing a material having optical transparency to a part of an outer surface,
The component is irradiated with illumination light through an irradiation port that opens in a component passage area on a conveyance surface on which the component is conveyed, and a detection axis of detection light is set in a direction away from the illumination axis of the illumination light, and the detection is performed. The detection light incident along the axis is detected through a detection opening that opens in a component passage area of the transport surface, and the component posture is determined based on the amount of the detection light.
The irradiation port and the detection port are arranged at positions facing both of the common outer surfaces of the components, and the direct reflected light of the illumination light by the outer surfaces of the components is detected through the detection ports. A method of determining a component posture, wherein an interval between the irradiation port and the detection port and a relative angle between the irradiation axis and the detection axis are set so as not to become detection light.
前記照射口と前記検出口が共通の前記部品の外面に対して共に同一方向から臨む位置に配置されることを特徴とする請求項1に記載の部品姿勢の判別方法。   2. The component posture determination method according to claim 1, wherein the irradiation port and the detection port are arranged at positions facing both of the common outer surfaces of the component from the same direction. 前記照射軸と前記検出軸が平行に構成されることを特徴とする請求項2に記載の部品姿勢の判別方法。   The method of determining a component posture according to claim 2, wherein the irradiation axis and the detection axis are configured in parallel. 前記部品に共に対向し相互に交差する2つの前記搬送面を備え、一方の前記搬送面に前記照射口が形成され、他方の前記搬送面に前記検出口が形成されることを特徴とする請求項1に記載の部品姿勢の判別方法。   The two transport surfaces facing each other and intersecting each other are provided, the irradiation port is formed on one of the transport surfaces, and the detection port is formed on the other transport surface. Item 2. A method of determining a component posture according to Item 1. 前記照射口若しくは前記検出口は、前記部品の排除若しくは姿勢変更のための気流を吹き付ける気流吹付孔と兼用されることを特徴とする請求項1乃至4のいずれか一項に記載の部品姿勢の判別方法。   5. The component posture according to claim 1, wherein the irradiation port or the detection port is also used as an airflow blowing hole for blowing an airflow for removing the component or changing the posture. How to determine. 前記部品姿勢の判別結果に応じて前記照射口若しくは前記検出口を通した気流の吹き付けの有無を制御することを特徴とする請求項5に記載の部品姿勢の判別方法。   6. The method of determining a component posture according to claim 5, wherein the presence / absence of airflow through the irradiation port or the detection port is controlled according to the determination result of the component posture. 請求項1乃至6のいずれか一項に記載の部品姿勢の判別方法を用いた部品処理部を有することを特徴とする部品搬送装置。
A component conveying apparatus comprising: a component processing unit using the component attitude determination method according to claim 1.
JP2003433924A 2003-12-26 2003-12-26 Part orientation determination method and part processing method Expired - Fee Related JP3996123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433924A JP3996123B2 (en) 2003-12-26 2003-12-26 Part orientation determination method and part processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433924A JP3996123B2 (en) 2003-12-26 2003-12-26 Part orientation determination method and part processing method

Publications (2)

Publication Number Publication Date
JP2005187194A true JP2005187194A (en) 2005-07-14
JP3996123B2 JP3996123B2 (en) 2007-10-24

Family

ID=34791157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433924A Expired - Fee Related JP3996123B2 (en) 2003-12-26 2003-12-26 Part orientation determination method and part processing method

Country Status (1)

Country Link
JP (1) JP3996123B2 (en)

Also Published As

Publication number Publication date
JP3996123B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
KR101100584B1 (en) An optical system, an analysis system and a modular unit for an electronic pen
US6633372B2 (en) Method for inspection of an analyzed surface and surface scanning analyzer
TWI479177B (en) Reflection optoelectronic sensor
KR101640989B1 (en) Limited area reflective optical sensor and electronic device
JP2013191835A5 (en)
JPH11326040A (en) Sensor having wide divergence optical system and detector
KR20030069781A (en) Device For Inspecting Appearance of Parts
JP2004037377A (en) Reflection type sensor, filter for reflection type sensor used therefor, and detection object detection method using filter
JP3996123B2 (en) Part orientation determination method and part processing method
US7368704B2 (en) Self-contained fork sensor having a wide effective beam
JPH102868A (en) Method and apparatus for optical inspection of defect in translucent sheet-like material
JP2006234497A (en) Optical characteristic measuring instrument
JP3943550B2 (en) Method for discriminating component posture and component conveying device
JPH0989538A (en) Optical sensor device
KR101871698B1 (en) Transporting device
JP3943528B2 (en) Component posture discrimination device
JP4193274B2 (en) Micropart supply device
JP2003182840A (en) Component attitude determining device for vibration alignment feeder
JP6414351B2 (en) Limited-area reflective optical sensor and electronic device
JP2006142197A (en) Direction sorting device and method
JPH0972727A (en) Optical sensor
JP2006064673A (en) Optical sensor device
JP2006292548A (en) Optical detecting device
JPH08160152A (en) Method and device for detecting medium
TWM330974U (en) Component posture determination device for vibration feeding machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees