JP2005185941A - Natural zeolite-titanium dioxide composite particle - Google Patents
Natural zeolite-titanium dioxide composite particle Download PDFInfo
- Publication number
- JP2005185941A JP2005185941A JP2003429929A JP2003429929A JP2005185941A JP 2005185941 A JP2005185941 A JP 2005185941A JP 2003429929 A JP2003429929 A JP 2003429929A JP 2003429929 A JP2003429929 A JP 2003429929A JP 2005185941 A JP2005185941 A JP 2005185941A
- Authority
- JP
- Japan
- Prior art keywords
- titanium dioxide
- natural zeolite
- composite particle
- composite particles
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 89
- 239000011246 composite particle Substances 0.000 title claims abstract description 70
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 42
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 59
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000010457 zeolite Substances 0.000 claims abstract description 59
- 238000001179 sorption measurement Methods 0.000 claims abstract description 37
- 239000000843 powder Substances 0.000 claims abstract description 27
- 239000011230 binding agent Substances 0.000 claims abstract description 15
- 239000011941 photocatalyst Substances 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims abstract description 10
- 239000002002 slurry Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 10
- 238000001694 spray drying Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- 239000010419 fine particle Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 abstract description 5
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract description 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 2
- 150000002894 organic compounds Chemical class 0.000 abstract description 2
- 239000004615 ingredient Substances 0.000 abstract 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 22
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 21
- 239000011148 porous material Substances 0.000 description 18
- 239000007864 aqueous solution Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 230000001699 photocatalysis Effects 0.000 description 6
- 235000019353 potassium silicate Nutrition 0.000 description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000011361 granulated particle Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229910001579 aluminosilicate mineral Inorganic materials 0.000 description 1
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910001603 clinoptilolite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Glanulating (AREA)
- Catalysts (AREA)
Abstract
Description
この発明はバインダーの付着結合効果と共に天然ゼオライト粉砕物と二酸化チタン粉末から形成される複合粒子に関する。この発明はまた、該複合粒子からなる吸着能を有する光触媒に関する。 The present invention relates to composite particles formed from natural zeolite pulverized material and titanium dioxide powder together with the adhesive bonding effect of the binder. The present invention also relates to a photocatalyst having an adsorption ability comprising the composite particles.
天然ゼオライトはアルミノ珪酸塩系の鉱物であり、イオン交換能、吸着能、分子節能、触媒能など各種の優れた機能を持つ物質である。これは天然鉱物であるがゆえに、不純物の除去による純度の向上、他の材料との複合化などによる高付加価値化が望まれている。しかし、従来、天然ゼオライトを、これと他の材料との複合化およびその光触媒機能化を目指してバインダー含有天然ゼオライトスラリーの噴霧乾燥によって造粒した例は、報告されていない。 Natural zeolite is an aluminosilicate mineral and is a substance having various excellent functions such as ion exchange capacity, adsorption capacity, molecular capacity and catalytic capacity. Since this is a natural mineral, it is desired to increase the added value by improving the purity by removing impurities and combining it with other materials. However, there has been no report on an example of granulating natural zeolite by spray drying of a natural zeolite slurry containing a binder with the aim of combining this with other materials and functionalizing the photocatalyst.
なお、この発明に関連した従来技術として、合成ゼオライトによるn−パラフィンの液相吸着が非特許文献1に、スラリーを噴霧乾燥して造粒する方法が非特許文献2にそれぞれ記載されている。
この発明は、天然ゼオライトの持つ吸着特性と、半導体光触媒である酸化チタンの持つ光学特性に着目し、これらの特性を併せ持つ天然ゼオライト粉砕物と二酸化チタン粉末との複合粒子を提供することを課題とする。 This invention pays attention to the adsorption characteristic which natural zeolite has, and the optical characteristic which the titanium oxide which is a semiconductor photocatalyst has, and it aims at providing the composite particle of the natural zeolite ground material and titanium dioxide powder which have these characteristics together To do.
この発明は、バインダー含有液中に天然ゼオライト粉砕物と二酸化チタン粉末を加えて得られたスラリーを噴霧乾燥により造粒してなる、異成分からなる複合粒子である。 This invention is a composite particle composed of different components obtained by granulating a slurry obtained by adding a pulverized natural zeolite and titanium dioxide powder into a binder-containing liquid by spray drying.
二酸化チタンの含有割合は、天然ゼオライト粉砕物と二酸化チタン粉末の混合物に対して好ましくは10〜70重量%である。 The content of titanium dioxide is preferably 10 to 70% by weight based on the mixture of the natural zeolite pulverized product and titanium dioxide powder.
バインダーの含有割合は、天然ゼオライト粉砕物と二酸化チタン粉末の混合物に対して好ましくは1〜40重量%である。 The content of the binder is preferably 1 to 40% by weight based on the mixture of the natural zeolite pulverized product and the titanium dioxide powder.
好ましい複合粒子は、天然ゼオライト粒子群の表面に二酸化チタン微粒子を固着した組織から構成されてなる凝集構造の形態をなすものである。 A preferable composite particle is in the form of an aggregate structure composed of a structure in which titanium dioxide fine particles are fixed to the surface of a natural zeolite particle group.
天然ゼオライト粉砕物の粒子直径は好ましくは20μm以下である。 The particle diameter of the natural zeolite pulverized product is preferably 20 μm or less.
この発明は、天然ゼオライト粉砕物と二酸化チタン粉末の複合粒子からなる吸着能を有する光触媒を提供する。この光触媒複合粒子は、紫外線の照射により励起されることによって吸着物の有機化合物に対して分解反応を触媒する。 The present invention provides a photocatalyst having an adsorptive capacity composed of composite particles of pulverized natural zeolite and titanium dioxide powder. The photocatalyst composite particles catalyze a decomposition reaction on the organic compound of the adsorbate by being excited by irradiation with ultraviolet rays.
ゼオライトのような多孔性物質はいろいろ存在するが、本発明によれば、ゼオライトは活性炭と比較して極性ガスを吸着しやすいという特徴、さらに天然ゼオライトのもつブロードな細孔分布に由来する吸着速度の速さと吸着物質の選択幅が広いという吸着特性と、半導体光触媒である二酸化チタンの光学特性とを合わせもち、尚且つ、噴霧乾燥造粒による複合粒子のハンドリング特性の改善、吸着と光分解性に優れた天然ゼオライト粉砕物と二酸化チタン粉末による緻密構造の複合粒子を提供することができ、様々な用途への展開が期待される。 Various porous materials such as zeolite exist, but according to the present invention, zeolite is more easily adsorbed with polar gas than activated carbon, and further, the adsorption rate derived from the broad pore distribution of natural zeolite. The combination of the adsorption characteristics of the speed of adsorption and the wide selection of adsorbents and the optical characteristics of titanium dioxide, a semiconductor photocatalyst, improves the handling characteristics of composite particles by spray drying granulation, adsorption and photodegradability It is possible to provide composite particles having a dense structure of natural zeolite pulverized product and titanium dioxide powder, which are expected to be used in various applications.
この発明で用いる天然ゼオライトとしては北海道余市町産に代表されるクリノブチロライトのものが好ましい。これは表1で示すような基礎的な特性を有する。
図1(a)及び図1(b)は、それぞれ合成ゼオライト及び天然ゼオライト(クリノブチロライト)の細孔分布をFISONS INSTRUMENTS社製ガス吸着式細孔分布測定装置「SORPTMATIC 1990」で測定した結果を示す。ここで示す合成ゼオライトの細孔分布は10〜50nm(1Å=0.1nm)の細孔半径に鋭く集中したミクロ型であり、ほぼ市販品の合成ゼオライトの性状に近い。また天然ゼオライト(余市産)の細孔分布はミクロ型からマクロ型にわたって広い分布を有する細孔半径(10〜600nm)から成り立っている。 Fig. 1 (a) and Fig. 1 (b) show the results of measuring the pore distribution of synthetic zeolite and natural zeolite (clinobyrolite) with a gas adsorption type pore distribution measuring device "SORPTMATIC 1990" manufactured by FISONS INSTRUMENTS, respectively. Indicates. The pore distribution of the synthetic zeolite shown here is a micro type that is sharply concentrated on the pore radius of 10 to 50 nm (1Å = 0.1 nm), and is almost similar to the properties of commercially available synthetic zeolite. Moreover, the pore distribution of natural zeolite (produced by Yoichi) is composed of pore radii (10 to 600 nm) having a wide distribution from the micro type to the macro type.
この発明においては、二酸化チタン粉末は、アナターゼ型、ルチル型、ブルッカイト型、または二酸化チタンへドーピング、色素増感などを行うことにより可視光域の光で励起される可視光応答型光触媒のいずれでもよいが、通常はアナターゼ型が多く用いられる。バインダー含有液は非水溶性の微粒子で、水によく分散するもの(ベントナイト、セメント、消石灰等)、水溶性のもの(デキストリン、アルギン酸塩、水ガラス等)、または反応により第三物質をつくるもの(水ガラスと炭酸、消石灰と糖蜜等)等を含む液、例えば水溶液であってよい。 In the present invention, the titanium dioxide powder is an anatase type, rutile type, brookite type, or any visible light responsive photocatalyst that is excited by light in the visible light region by doping titanium dioxide, dye sensitization, or the like. Usually, anatase type is often used. Binder-containing liquid is water-insoluble fine particles that disperse well in water (bentonite, cement, slaked lime, etc.), water-soluble (dextrin, alginate, water glass, etc.), or those that produce a third substance by reaction It may be a liquid containing water glass and carbonic acid, slaked lime and molasses, etc., for example, an aqueous solution.
バインダーの含有量は、大きくなるに従ってバインダーとしての効果が大きく現れ、かつ複合粒子の強度も増加するが、その一方バインダーが二酸化チタン微粒子を被覆してしまい、光触媒効果を低下させてしまうこととなる。また、バインダー含有液に天然ゼオライト粉砕物と二酸化チタン粉末を加えて得られたスラリーの噴霧乾燥による複合粒子の大きさは、噴霧乾燥の特徴から百数十μm以下であるが、大きい粒子径側に生成された複合粒子ほど、光がその内部中心まで到達しにくくなる。このことから生成複合粒子は、小さい粒子径側に制御し、かつ仕様用途に合わせて適当な材料配合比と共にバインダーの選定とその含有量を決定すればよい。水ガラスを使用した場合には天然ゼオライト粉砕物と二酸化チタン粉末の混合物に対し40重量%以上含有させた場合において光触媒効果がほとんど確認できなくなった。 The binder content increases as the binder content increases, and the strength of the composite particles also increases. On the other hand, the binder coats the titanium dioxide fine particles, thereby reducing the photocatalytic effect. . In addition, the size of the composite particles by spray drying of the slurry obtained by adding natural zeolite pulverized product and titanium dioxide powder to the binder-containing liquid is less than a few tens of μm due to the characteristics of spray drying. The more the composite particles produced in (1), the more difficult it is for light to reach the inner center. From this, the produced composite particles can be controlled on the small particle diameter side, and the binder selection and content can be determined together with an appropriate material blending ratio in accordance with the specification application. When water glass was used, the photocatalytic effect could hardly be confirmed when it was contained in an amount of 40% by weight or more based on the mixture of the pulverized natural zeolite and the titanium dioxide powder.
つぎに、この発明を具体的に説明するために、この発明の実施例およびこれとの比較を示す比較例をいくつか挙げ、さらに得られた各複合粒子の性能試験を示す。 Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples showing comparison with the examples are given, and performance tests of the obtained composite particles are shown.
実施例1〜6
天然ゼオライト粉砕物(北海道余市町産)と、二酸化チタン粉末(アナターゼ型、個数中位直径0.003μm)とを、バインダー含有液としての水ガラス水溶液中で混合し、これに塩酸の添加と共に撹拌調製(pH=8)によりスラリー状とすることにより、噴霧乾燥用の原液試料を調製した。試料の調製条件を表2に示す。得られたスラリーを、スプレードライヤー(大川原化工機社製「L-8型」)を用いて試料供給量4.0×10-4・s-1及びアトマイザー回転数15000rpmの条件で噴霧乾燥により造粒し、複合粒子試料(ZTW-2からZTW−7)を調製した。
Examples 1-6
Natural zeolite ground product (produced in Yoichi-cho, Hokkaido) and titanium dioxide powder (anatase type, number median diameter 0.003μm) are mixed in a water glass aqueous solution as a binder-containing solution, and this is stirred and added with hydrochloric acid. A stock solution sample for spray drying was prepared by slurrying with (pH = 8). Table 2 shows the sample preparation conditions. The obtained slurry is granulated by spray drying using a spray dryer (“L-8 type” manufactured by Okawara Chemical Industries Co., Ltd.) under the conditions of a sample supply rate of 4.0 × 10 −4 · s −1 and an atomizer speed of 15000 rpm. Composite particle samples (ZTW-2 to ZTW-7) were prepared.
比較例1
二酸化チタン粉末及び水ガラスを用いない点を除いて実施例1と同様に操作を行い、天然ゼオライト粉砕物のみからなる造粒物の球状粒子(ZW-1)を調製した。
Comparative Example 1
Except that the titanium dioxide powder and water glass were not used, the same operation as in Example 1 was carried out to prepare granulated spherical particles (ZW-1) consisting only of pulverized natural zeolite.
比較例2,3
実施例1と同様に操作を行い、天然ゼオライト粉砕物と二酸化チタン粉末(TiO2 )の混合物に対してTiO2の重量比で9%及び71.1%とした球状複合粒子(ZTW-l、ZTW-8)を調製した。
Comparative Examples 2 and 3
Spherical composite particles (ZTW-l, ZTW-) having the same TiO 2 weight ratio of 9% and 71.1% with respect to the mixture of pulverized natural zeolite and titanium dioxide powder (TiO 2 ) were performed in the same manner as in Example 1. 8) was prepared.
比較例4
実施例1と同様に操作を行い、天然ゼオライト粉砕物の代わりに合成ゼオライト粉末(和光純薬社製「モレキュラーシーブスlinde 13X」)を使用し、合成ゼオライトとTiO2の混合物に対してTiO2の重量比で50%とした球状複合粒子AZTW-1を調製した。
Treating as in Example 1, using instead synthetic zeolite powder natural zeolite ground material (manufactured by Wako Pure Chemical Industries, Ltd., "molecular sieves linde 13X"), of TiO 2 with respect to the mixture of synthetic zeolite and TiO 2 Spherical composite particles AZTW-1 having a weight ratio of 50% were prepared.
性能試験
実施例及び比較例で得られた複合粒子について、次の方法で性能試験を行った。
Performance test About the composite particle obtained by the Example and the comparative example, the performance test was done with the following method.
a)粒子特性
図2は代表例として複合粒子(ZTW-6)の走査型電子顕微鏡の写真を示す。この粒子は同図中の(a)から球状の複合粒子であることが確認され、また同図中の(b)から、この複合粒子の表面が破砕状ゼオライト結晶粒子の集合状態による大きな細孔構造になっており、微小粒子のTiO2が高分散していることが確認された。
a) Particle characteristics Fig. 2 shows a scanning electron microscope photograph of a composite particle (ZTW-6) as a representative example. This particle is confirmed to be a spherical composite particle from (a) in the figure, and from (b) in the figure, the surface of this composite particle has large pores due to the aggregated state of crushed zeolite crystal particles. The structure was confirmed, and it was confirmed that the fine particles of TiO 2 were highly dispersed.
複合粒子の粒径は、画像処理システム(ニレコ社製LUZEX5000X)により測定し、表3中の個数中位直径で示すように49〜52μmであった。 The particle size of the composite particles was measured by an image processing system (LUZEX5000X manufactured by Nireco Co.), and was 49 to 52 μm as indicated by the number-median diameter in Table 3.
複合粒子の流動性については、パウダーテスター(ホソカワミクロン社製)により測定し、この結果は表3中で安息角と圧縮度で示す。安息角は別に測定した天然ゼオライト粉砕生成物(個数中位直径54μm)の48.7[deg]に比べて27.0〜28.4[deg]のように低い値となり、さらに圧縮度は同じく天然ゼオライト粉砕生成物の39.3重量%に比べて10〜11重量%の低い値を示した。従って、複合粒子群の流動性は非常に良好であった。
b)複合粒子の吸着・光学特性及び二酸化チタン含有率
恒温振盪槽(温度:25℃)にて濃度0.2[kg・m -3]]のメチレンブルー水溶液に複合粒子50×10- 6 [kg・m-3]]-メチレンブルー水溶液]を加え、吸着平衡に至るまで振盪撹拌を行った後、残存溶液の吸光度を紫外・可視光光度計(島津製作所製、UV-1200)を用いて測定し、平衡濃度を求めた。この結果として図3は平均吸着量q[kg/kg]と平衡濃度C[kg/m3]との関係を示す。この図において、複合粒子中の二酸化チタン粉末の含有率が大きくなるに従って平均吸着量が低下していることがわかる。しかし、複合粒子中の二酸化チタン粉末含有率が67重量%(ZTW-7)においても天然ゼオライト(ZW-1)のもつ平均吸着量の50%以上の平均吸着量を有しており、複合粒子として天然ゼオライトの吸着能力を発揮させるためには、二酸化チタン粉末の含有率はおよそ70重量%以下であることが好ましい。
b) Adsorption and optical properties and titanium dioxide content thermostatic shaking bath of the composite particles (temperature: 25 ° C.) at a concentration 0.2 [kg · m -3]] composite particles in aqueous solution of methylene blue 50 × 10 in - 6 [kg・ M- 3 ]]-Methylene blue aqueous solution] was added, and after stirring and stirring until adsorption equilibrium was reached, the absorbance of the remaining solution was measured using an ultraviolet / visible photometer (manufactured by Shimadzu Corporation, UV-1200). The equilibrium concentration was determined. As a result, FIG. 3 shows the relationship between the average adsorption amount q [kg / kg] and the equilibrium concentration C [kg / m 3 ]. In this figure, it can be seen that the average adsorption amount decreases as the content of the titanium dioxide powder in the composite particles increases. However, even when the content of titanium dioxide powder in the composite particles is 67% by weight (ZTW-7), the composite particles have an average adsorption amount of 50% or more of the average adsorption amount of natural zeolite (ZW-1). In order to exhibit the adsorption ability of natural zeolite, the content of titanium dioxide powder is preferably about 70% by weight or less.
次いで、紫外線照射実験では、各複合粒子試料(ZW-1のみは二酸化チタンを含有せず)とも粒子中に含まれる天然ゼオライト量がいずれも等量0.4×10-3 [kg]になるように複合粒子重量を秤量し、それぞれの複合粒子試料ごとに1.0×10-2 [kg・m-3]のメチレンブルー水溶液50×10-6m3(50ml)に加え、紫外線照射(8W、波長:356nm、 UVランプ-試料間距離:100mm)及び非照射のもとで残存メチレンブルー水溶液の吸光度測定を行った。
表4は各複合粒子について紫外線の照射時間10000[s]後におけるメチレンブルー残留濃度の測定結果を示す。表中のC0[kg・m-3]は紫外線の非照射(液相吸着のみ)におけるメチレンブルー残留濃度、C1[kg・m-3]は紫外線の照射後のメチレンブルー残留濃度、さらにΔC[kg・m-3]は紫外線のC0とC1の差、すなわち10000[s]経過後のメチレンブルー残留濃度の変化である。
Table 4 shows the measurement results of the residual concentration of methylene blue after each ultraviolet irradiation time of 10,000 [s] for each composite particle. In the table, C 0 [kg · m −3 ] is the residual concentration of methylene blue in the non-irradiation of ultraviolet rays (liquid phase adsorption only), C 1 [kg · m −3 ] is the residual concentration of methylene blue after the irradiation of ultraviolet rays, and ΔC [ kg · m −3 ] is the difference between UV C 0 and C 1 , that is, the change in the residual concentration of methylene blue after 10000 [s].
なお、図4はメチレンブルー残留濃度の経時変化の代表例として複合粒子(ZTW-3)の紫外線照射とその非照射の場合におけるメチレンブルー残留濃度C1[kg・m-3]と時間t[s]の関係を示しておく。 In addition, FIG. 4 shows the methylene blue residual concentration C 1 [kg · m −3 ] and time t [s] as a representative example of the time-dependent change of the methylene blue residual concentration when the composite particle (ZTW-3) is irradiated with ultraviolet rays and without irradiation. Let's show the relationship.
以上の結果、紫外線照射における各複合粒子(ZWT-1〜7)は、メチレンブルー水溶液残留濃度の減少傾向が認められ、吸着物質(メチレンブルー)が複合粒子の光触媒作用によって分解されていることがわかる。しかし、複合粒子中の二酸化チタン粉末含有率が10重量%以下の複合粒子(ZWT-1)では、メチレンブルー水溶液残留濃度の低下が非常に小さく、二酸化チタンの光触媒効果があまり発揮されていないことが推測される。十分な効果を発揮させるためには二酸化チタンの含有率は10重量%以上が好ましい。 As a result of the above, each composite particle (ZWT-1 to 7) in the ultraviolet irradiation has a tendency of decreasing the residual concentration of the methylene blue aqueous solution, and it can be seen that the adsorbed substance (methylene blue) is decomposed by the photocatalytic action of the composite particle. However, in the composite particles (ZWT-1) having a titanium dioxide powder content of 10% by weight or less in the composite particles, the decrease in the residual concentration of the methylene blue aqueous solution is very small, and the photocatalytic effect of titanium dioxide is not exhibited so much. Guessed. In order to exhibit a sufficient effect, the content of titanium dioxide is preferably 10% by weight or more.
以上のことから天然ゼオライトのもつ吸着特性と、半導体光触媒である二酸化チタンの持つ光学特性とを合わせ持つ複合粒子の二酸化チタン含有率は、所望の用途によって適宜選択すればよいが、10重量%以上70重量%以下が好ましい。 From the above, the titanium dioxide content of the composite particles having both the adsorption characteristics of natural zeolite and the optical characteristics of titanium dioxide, which is a semiconductor photocatalyst, may be appropriately selected depending on the desired application. 70 weight% or less is preferable.
次の実験では、天然ゼオライト粉砕物のみによる造粒粒子 (ZW-1)、複合粒子(ZWT-6)、並びに天然ゼオライトと二酸化チタンの混合物(配合比率はZWT-6と同一)の三つの試料に関して、それぞれの試料について3×10-4kg(0.30g)の一定重量を濃度7.5×10-3 [kg・m-3 ] のメチレンブルー水溶液40×10-6m3(40ml)に加え、紫外線照射(24時間照射)後に乾燥させてから表面状態の色を観察した。これを図5の写真に示す。この光触媒効果に関する実験において、図5中の左側は、天然ゼオライトのみの造粒粒子(ZW-1)であって、この造粒粒子(ZW-1)に吸着したメチレンブルーが光分解していない状態が観察された。複合粒子ZWT-6の場合には図5中の右に示すように吸着と光分解の繰り返しによってメチレンブルーの色がほとんど消滅した状態が観察された。さらに図5中の中央は天然ゼオライトと二酸化チタンの混合物(非複合粒子)であって、複合粒子(ZWT-6)と同一の配合比にも拘わらず、メチレンブルーの消滅程度が複合粒子(ZWT-6)よりも小さいことが観察された。吸着材(天然ゼオライト粉砕物)と光触媒(二酸化チタン粉末)を単に混合するよりも、複合化を行うことによって光触媒効果がより効率的に発揮されることが推測される。 In the next experiment, three samples of granulated particles (ZW-1), composite particles (ZWT-6), and a mixture of natural zeolite and titanium dioxide (mixing ratio is the same as ZWT-6) using only natural zeolite ground product. For each sample, a constant weight of 3 x 10 -4 kg (0.30 g) is added to 40 x 10 -6 m 3 (40 ml) of methylene blue aqueous solution with a concentration of 7.5 x 10 -3 [kg · m -3 ] and UV After drying (irradiation for 24 hours), the surface state color was observed after drying. This is shown in the photograph of FIG. In the experiment on the photocatalytic effect, the left side in FIG. 5 is a granulated particle (ZW-1) of only natural zeolite, and the methylene blue adsorbed on the granulated particle (ZW-1) is not photolyzed. Was observed. In the case of the composite particle ZWT-6, a state in which the color of methylene blue almost disappeared due to repeated adsorption and photolysis was observed as shown on the right in FIG. Furthermore, the center in FIG. 5 is a mixture of natural zeolite and titanium dioxide (non-composite particles), and the degree of disappearance of methylene blue is the composite particles (ZWT-) despite the same blending ratio as the composite particles (ZWT-6). It was observed to be smaller than 6). It is presumed that the photocatalytic effect is more efficiently exhibited by performing the composite than simply mixing the adsorbent (natural zeolite pulverized product) and the photocatalyst (titanium dioxide powder).
c)複合粒子の吸着率とその経時変化
本実験ではバッフル付撹拌槽にて濃度0.36[kg・m-3]のメチレンブルー水溶液に複合粒子8.0×10-3[kg]を加え、攪拌機の回転数700rpmで3時間の回分吸着を行い、槽内の採取液の吸光度を紫外・可視光光度計(島津製作所製、UV-1200)によって測定し、この値から槽内液中のメチレンブルー濃度を求めた。こうして得られた値を複合粒子に吸着された吸着量qに換算し、さらに平衡吸着量q0に対する吸着量qの比、すなわち吸着率y(=q/q0)は時間t[s]との関係としてプロットしたのが図6である。この図において、吸着率yは複合粒子の各試料(ZW-1、ZTW3,7,5)のいずれにおいても急速に増加し、その後では徐々に吸着される状態を示している。これは図1(b)に天然ゼオライト(余市産)の細孔分布で示すように細孔径の大きい部分があるために、複合粒子内の拡散抵抗が少なく、ほとんど瞬間的に吸着される利点がある。さらに緩慢な吸着過程では小さな細孔径に依存して拡散抵抗の影響が表れている部分と推察される。
c) Adsorption rate of composite particles and its change over time In this experiment, 8.0 × 10 -3 [kg] of composite particles was added to a methylene blue aqueous solution with a concentration of 0.36 [kg · m -3 ] in a baffled stirring tank, and the rotation speed of the stirrer Absorption was performed at 700 rpm for 3 hours, and the absorbance of the collected liquid in the tank was measured with an ultraviolet / visible photometer (manufactured by Shimadzu Corporation, UV-1200), and the methylene blue concentration in the liquid in the tank was determined from this value. . The value thus obtained is converted into an adsorption amount q adsorbed on the composite particles, and the ratio of the adsorption amount q to the equilibrium adsorption amount q 0 , that is, the adsorption rate y (= q / q 0 ) is expressed as time t [s]. FIG. 6 is a plot of the relationship. In this figure, the adsorption rate y rapidly increases in each of the composite particle samples (ZW-1, ZTW3, 7, 5), and then gradually adsorbs. As shown in the pore distribution of natural zeolite (produced by Yoichi) in Fig. 1 (b), there is a part with a large pore diameter, so there is little diffusion resistance in the composite particles, and the advantage is that it is adsorbed almost instantaneously. is there. Furthermore, in the slow adsorption process, it is inferred that the influence of diffusion resistance appears depending on the small pore diameter.
これに対して合成ゼオライトを用いた複合粒子(AZW-1)は、天然ゼオライトを用いた複合粒子のような初期の急速な吸着がみられず、緩慢な吸着過程をもつことがわかる。これは、図1(a)合成ゼオライトの細孔分布で示すように、細孔径が非常に小さく、シャープな細孔分布をもつことから複合粒子内の拡散抵抗が大きいことによるものと推察される。また、水ガラスをバインダーとした天然ゼオライト(余市産)のみによる複合粒子(ZW-1)では、吸着率yが最も高くなる。これに対して複合粒子中に二酸化チタン粉末を含む場合(ZTW3,5,7)では、二酸化チタン量の増加と共に吸着率がやや低下するが、いずれも吸着率が0.85以上となる良好な傾向を示す。 In contrast, composite particles using synthetic zeolite (AZW-1) do not show rapid initial adsorption as in composite particles using natural zeolite, and have a slow adsorption process. This is presumed to be due to the large diffusion resistance in the composite particles because the pore diameter is very small and the pore distribution is sharp, as shown in FIG. 1 (a). . In addition, the adsorption rate y is the highest in the composite particles (ZW-1) made of only natural zeolite (Yoichi) with water glass as a binder. On the other hand, when the composite particles contain titanium dioxide powder (ZTW3, 5, 7), the adsorption rate decreases slightly as the amount of titanium dioxide increases, but in both cases, the adsorption rate tends to be 0.85 or higher. Show.
Claims (6)
A photocatalyst having an adsorption capacity, comprising the composite particles according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003429929A JP2005185941A (en) | 2003-12-25 | 2003-12-25 | Natural zeolite-titanium dioxide composite particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003429929A JP2005185941A (en) | 2003-12-25 | 2003-12-25 | Natural zeolite-titanium dioxide composite particle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005185941A true JP2005185941A (en) | 2005-07-14 |
Family
ID=34788452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003429929A Withdrawn JP2005185941A (en) | 2003-12-25 | 2003-12-25 | Natural zeolite-titanium dioxide composite particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005185941A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012515644A (en) * | 2009-01-23 | 2012-07-12 | エフェエメセ フォレト,ソシエダ アノニマ | Photocatalytic mixture for the decomposition of nitrogen oxides |
CN103165876A (en) * | 2011-12-15 | 2013-06-19 | 新奥科技发展有限公司 | A preparation method and applications of a lithium battery material with high rate performance |
-
2003
- 2003-12-25 JP JP2003429929A patent/JP2005185941A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012515644A (en) * | 2009-01-23 | 2012-07-12 | エフェエメセ フォレト,ソシエダ アノニマ | Photocatalytic mixture for the decomposition of nitrogen oxides |
CN103165876A (en) * | 2011-12-15 | 2013-06-19 | 新奥科技发展有限公司 | A preparation method and applications of a lithium battery material with high rate performance |
CN103165876B (en) * | 2011-12-15 | 2016-08-31 | 新奥科技发展有限公司 | A kind of preparation method and its usage of the lithium battery material possessing high rate capability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8202360B2 (en) | Method of producing amorphous aluminum silicate, amorphous aluminum silicate obtained with said method, and adsorbent using the same | |
JP6166378B2 (en) | Synthesis of ZSM-58 crystals with improved morphology | |
Taoufik et al. | Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants | |
Wang et al. | Effects of montmorillonite and anatase TiO2 support on CeO2 catalysts during NH3-SCR reaction | |
EP3532194A1 (en) | Composite filter aids and methods of using composite filter aids | |
CN104549146B (en) | Multi-walled carbon nanotube nano composite material of aluminum oxide modification and its preparation method and application | |
TW201132592A (en) | Stable sub-micron titania sols | |
JP6858055B2 (en) | Lead adsorbent | |
JP2006206425A (en) | Alkaline earth metal carbonate fine particles and method for manufacturing the same | |
Zhang et al. | Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash | |
WO2008045948A2 (en) | Adsorbent composition and method of making same | |
US8580226B2 (en) | Synthesis of sodium titanate and ion exchange use thereof | |
JP2005314208A (en) | Combined porous body and its manufacturing method and organic substance converting method using the same | |
CN110694607A (en) | Preparation method and application of activated carbon silicon dioxide/zinc oxide composite photocatalyst | |
CN102355946B (en) | Catalyst carrier based on silica gel | |
Zhang et al. | Removal of ammonium and heavy metals by cost-effective zeolite synthesized from waste quartz sand and calcium fluoride sludge | |
Kouotou et al. | Removal of metallic trace elements (Pb 2+, Cd 2+, Cu 2+, and Ni 2+) from aqueous solution by adsorption onto cerium oxide modified activated carbon | |
JPH08266897A (en) | Fixed photocatalyst and its production | |
JP2005185941A (en) | Natural zeolite-titanium dioxide composite particle | |
WO2007061073A1 (en) | Crossed-disk-, hamburger- or disk-shaped vaterite type calcium carbonate and process for producing the same | |
Vaschetto et al. | Engineering more sustainable catalysts based in ecological and economic synthesis routes from renewable raw material: Novel mesoporous silicas for remediation technologies | |
Hernández-Ramírez et al. | Removal and immobilisation of cobalt ions by a novel, hierarchically structured, diatomite/zeolite Y composite | |
Wang et al. | Template-free synthesis of high specific surface area gauze-like porous graphitic carbon nitride for efficient photocatalytic degradation of tetracycline hydrochloride | |
JP6926521B2 (en) | Silver-supported zeolite molded product | |
JP2004161592A (en) | Anatase type titania-silica composite and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070306 |