JP2005185785A - Superconducting magnet apparatus and magnetic resonance imaging equipment - Google Patents

Superconducting magnet apparatus and magnetic resonance imaging equipment Download PDF

Info

Publication number
JP2005185785A
JP2005185785A JP2003434782A JP2003434782A JP2005185785A JP 2005185785 A JP2005185785 A JP 2005185785A JP 2003434782 A JP2003434782 A JP 2003434782A JP 2003434782 A JP2003434782 A JP 2003434782A JP 2005185785 A JP2005185785 A JP 2005185785A
Authority
JP
Japan
Prior art keywords
magnetic field
cryostat
connecting column
static magnetic
uniform static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003434782A
Other languages
Japanese (ja)
Inventor
Akihiko Ariyoshi
昭彦 有吉
Shuichi Nakagawa
修一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003434782A priority Critical patent/JP2005185785A/en
Publication of JP2005185785A publication Critical patent/JP2005185785A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve opening performance between cryostats and facilitate to receive a load applied to a connecting pillar section between the cryostats in a superconducting magnet apparatus and magnetic resonance imaging equipment. <P>SOLUTION: This superconducting magnet apparatus is provided with the connecting pillar section 5 extending over and connecting the first and second cryostat sections 2 and 4 incorporating superconducting coils. The connecting pillar section has an approximately rectangular shape in a part of the connecting pillar section corresponding to a uniform static magnetic field space area 8 viewed in the extending direction, the connecting pillar section extends in the radial direction of the superconducting coils over the inside/outside the first and second cryostat sections, and the width of the connecting pillar section in the circumferential direction of the superconducting coils is so formed that a side W2 farther than the front side W1 facing the uniform static magnetic space area from the uniform static magnetic field space area is made wider inside the first and second cryostat sections in the radial direction of the superconducting coils. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、生体の画像診断に利用されるMRI(Magnetic Resonance Imaging)装置(通称「磁気共鳴イメ−ジング装置」)に使用される超電導電磁石装置、および磁気共鳴イメ−ジング装置に関するものである。   The present invention relates to a superconducting electromagnet apparatus and a magnetic resonance imaging apparatus used in an MRI (Magnetic Resonance Imaging) apparatus (commonly referred to as “magnetic resonance imaging apparatus”) used for diagnostic imaging of a living body.

超電導電磁石装置を使用している磁気共鳴イメ−ジング装置においては、超電導コイルを内蔵するクライオスタットの形状により大別して円筒形と、一対のクライオスタット間に球状の均一静磁場空間領域を形成する対向形とがあり、近年では、被検者に対する開放性や診断関係者の被検者へのアクセスの利便性の観点等で優れた対向形が主流になりつつある。この対向形の磁気共鳴イメ−ジング装置における球状の均一静磁場空間領域の磁場の強さは、一般的には6000〜10000ガウス前後であり、その許容誤差は通常は数ppmである。尚、対向形の磁気共鳴イメ−ジング装置の大きさや重さは、例えば、高さ3m前後、平面における最大奥行長2m前後、重さ40トン前後である。   In a magnetic resonance imaging apparatus using a superconducting electromagnet apparatus, a cylinder is roughly classified according to the shape of a cryostat having a built-in superconducting coil, and an opposing form that forms a spherical uniform static magnetic field space region between a pair of cryostats. In recent years, the facing type, which is excellent in terms of the openness to the subject and the convenience of access to the subject by the diagnostic personnel, is becoming mainstream. In this opposed magnetic resonance imaging apparatus, the strength of the magnetic field in the spherical uniform static magnetic field space region is generally around 6000 to 10000 gauss, and its tolerance is usually several ppm. The size and weight of the opposing magnetic resonance imaging apparatus are, for example, about 3 m in height, about 2 m in maximum depth in the plane, and about 40 tons in weight.

前述のような対向形の磁気共鳴イメ−ジング装置においては、一対のクライオスタットを垂直方向に配設した垂直形が主流であり、例えば特開平9−262223号公報(特許文献1)や特開2002−17709号公報(特許文献2)に見られるように、2本の円柱で、上側のクライオスタットを支えると共に、上下一対のクライオスタット間に生じる大きな相互吸引力を受けている。   In the opposed magnetic resonance imaging apparatus as described above, a vertical type in which a pair of cryostats are arranged in the vertical direction is the mainstream. For example, Japanese Patent Application Laid-Open No. 9-262223 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2002-2002. As shown in Japanese Patent Laid-Open No. 17709 (Patent Document 2), two cylinders support the upper cryostat and receive a large mutual attractive force generated between a pair of upper and lower cryostats.

特開平9−262223号公報(図1(b)及びその説明)Japanese Patent Laid-Open No. 9-262223 (FIG. 1 (b) and description thereof) 特開2002−17709号公報(図6及びその説明)JP 2002-17709 A (FIG. 6 and its description)

特許文献1の磁気共鳴イメ−ジング装置においては、クライオスタットの径方向の内側に2本の円柱が配設されているので、被検者のベッドが2本の円柱の間に通されるときにすぐ傍の2本の柱により被検者は狭く感じ、即ち開放性がそれ程良くなく、人によっては恐怖感を感じる。しかも、被検者のすぐ近くに柱があるので、診断関係者の被検者へのアクセス時に柱が邪魔になり診断関係者の被検者へのアクセスの利便性が良くない。   In the magnetic resonance imaging apparatus of Patent Document 1, since two cylinders are disposed inside the cryostat in the radial direction, when the subject's bed is passed between the two cylinders. The two pillars in the immediate vicinity feel the subject narrow, that is, the openness is not so good, and some people feel a sense of fear. In addition, since there is a column in the immediate vicinity of the subject, the column becomes an obstacle when accessing the subject by the diagnostic personnel, and the convenience of access to the subject by the diagnostic personnel is not good.

特許文献2の磁気共鳴イメ−ジング装置においては、クライオスタットの径方向の外側に2本の円柱が配設されているので、クライオスタットの中心から円柱の中心までの距離が長く、上側のクライオスタットを支えると共に上下一対のクライオスタット間に生じる大きな相互吸引力を受ける為には図示(特許文献2の図6)のように直径の大きな円柱としなければならず、診断関係者の診断時の被検者へのアクセス時に直径の大きな2本の柱が邪魔になり、即ち開放性がそれ程良くなく、診断関係者の診断時の被検者へのアクセスの利便性が良くない。   In the magnetic resonance imaging apparatus of Patent Document 2, since two cylinders are arranged on the outer side in the radial direction of the cryostat, the distance from the center of the cryostat to the center of the cylinder is long, and the upper cryostat is supported. In addition, in order to receive a large mutual suction force generated between a pair of upper and lower cryostats, a cylinder with a large diameter as shown in FIG. The two pillars having a large diameter are in the way of access, that is, the openness is not so good, and the convenience of access to the subject at the time of diagnosis by the diagnostic personnel is not good.

この発明は、前述のような実情に鑑みてなされたもので、超電導電磁石装置および磁気共鳴イメ−ジング装置において、クライオスタット間の開放性を良くし、しかもクライオスタット間の連結柱部にかかる荷重を受け易くすることを目的とするものである。   The present invention has been made in view of the above-described circumstances. In the superconducting electromagnet apparatus and the magnetic resonance imaging apparatus, the openness between the cryostats is improved, and the load applied to the connecting column part between the cryostats is received. The purpose is to make it easier.

この発明に係る超電導電磁石装置は、冷凍機により冷却される液冷媒を夫々内蔵した第1及び第2のクライオスタット部を当該第1及び第2のクライオスタット部の相互間に当該第1及び第2のクライオスタット部に内蔵の環状の超電導コイルによる均一静磁場空間領域が存在する空間が形成されように当該第1及び第2のクライオスタット部に跨って延在して連結する連結柱部を備えた超電導電磁石装置において、前記連結柱部の前記均一静磁場空間領域に対応する部分における前記延在方向に見た形状をほぼ矩形とし、当該連結柱部を前記超電導コイルの径方向に前記第1及び第2のクライオスタット部の内外に跨って延在させてあると共に、前記連結柱部の前記超電導コイルの周方向の幅を、前記均一静磁場空間領域に面する前側より前記均一静磁場空間領域から遠い側の方を前記超電導コイルの径方向の前記第1及び第2のクライオスタット部内において広くしてあるものである。   In the superconducting electromagnet device according to the present invention, the first and second cryostat portions each containing a liquid refrigerant cooled by a refrigerator are provided between the first and second cryostat portions. A superconducting electromagnet having a connecting column portion extending and connected across the first and second cryostat portions so that a space in which a uniform static magnetic field space region is formed by an annular superconducting coil built in the cryostat portion is formed In the apparatus, a shape of the connecting column portion corresponding to the uniform static magnetic field space region as viewed in the extending direction is substantially rectangular, and the connecting column portion is arranged in the radial direction of the superconducting coil in the first and second directions. The width of the superconducting coil in the circumferential direction of the connecting column portion is extended from the front side facing the uniform static magnetic field space region. Serial in which a person far from uniform static magnetic field space region are widely in the superconducting within said first and second cryostat portion in the radial direction of the coil.

この発明は、冷凍機により冷却される液冷媒を夫々内蔵した第1及び第2のクライオスタット部を当該第1及び第2のクライオスタット部の相互間に当該第1及び第2のクライオスタット部に内蔵の環状の超電導コイルによる均一静磁場空間領域が存在する空間が形成されように当該第1及び第2のクライオスタット部に跨って延在して連結する連結柱部を備えた超電導電磁石装置において、前記連結柱部の前記均一静磁場空間領域に対応する部分における前記延在方向に見た形状をほぼ矩形とし、当該連結柱部を前記超電導コイルの径方向に前記第1及び第2のクライオスタット部の内外に跨って延在させてあると共に、前記連結柱部の前記超電導コイルの周方向の幅を、前記均一静磁場空間領域に面する前側より前記均一静磁場空間領域から遠い側の方を前記超電導コイルの径方向の前記第1及び第2のクライオスタット部内において広くしてあるので、クライオスタット間の開放性が良く、しかもクライオスタット間の連結柱部にかかる荷重を受け易くすることができる効果がある。   According to the present invention, first and second cryostat portions each containing liquid refrigerant cooled by a refrigerator are provided in the first and second cryostat portions between the first and second cryostat portions. In the superconducting electromagnet apparatus comprising a connecting column portion that extends and connects across the first and second cryostat portions so that a space in which a uniform static magnetic field space region exists by an annular superconducting coil is formed. The shape of the column portion corresponding to the uniform static magnetic field space region as viewed in the extending direction is substantially rectangular, and the connecting column portion is arranged in the radial direction of the superconducting coil inside and outside the first and second cryostat portions. And extending the circumferential width of the superconducting coil of the connecting column portion from the front side facing the uniform static magnetic field space region. Since the far side is widened in the first and second cryostats in the radial direction of the superconducting coil, the openness between the cryostats is good, and the load applied to the connecting pillars between the cryostats is easily received. There is an effect that can be done.

実施の形態1.
以下、この発明の実施の形態1を図1〜図6により説明する。図1は対向形の磁気共鳴イメ−ジング装置全体の主要部の構成の一例を示す平面図、図2は図1のII−II線における断面を矢印方向に見た縦断側面図である。図3は図2のIII−III線における断面を矢印方向に見た横断平面図で、この発明の実施の形態1の要部の詳細構成および効果の説明図、図4〜図6はこの発明の実施の形態1の効果の説明図である。尚、各図中、同一符号は同一部分を示す。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a plan view showing an example of the configuration of the main part of the entire opposing magnetic resonance imaging apparatus, and FIG. 2 is a longitudinal side view of the section taken along the line II-II in FIG. 3 is a cross-sectional plan view of the section taken along the line III-III in FIG. 2 as viewed in the direction of the arrow. FIG. It is explanatory drawing of the effect of Embodiment 1. In addition, in each figure, the same code | symbol shows the same part.

先ず、この発明の実施の形態1の全体の構造及び機能について説明する。   First, the overall structure and function of the first embodiment of the present invention will be described.

図1〜図2において、対向形の磁気共鳴イメ−ジング装置は、環状の第1の超電導コイル1を内蔵し外観が円柱状の第1のクライオスタット部2と、環状の第2の超電導コイル3を内蔵し外観が円柱状の第2のクライオスタット部4と、前記第1のクライオスタット部2と前記第2のクライオスタット部4とに跨って延在し前記第1のクライオスタット部2と前記第2のクライオスタット部4とを各クライオスタット部2,4の外周部において連結する連結柱部5とから構成されている。   1 to 2, an opposing magnetic resonance imaging apparatus includes a first cryostat portion 2 having an annular first superconducting coil 1 and having a cylindrical appearance, and an annular second superconducting coil 3. And the second cryostat portion 4 having a cylindrical appearance and extending across the first cryostat portion 2 and the second cryostat portion 4 and the first cryostat portion 2 and the second cryostat portion 2. It is comprised from the connection pillar part 5 which connects the cryostat part 4 in the outer peripheral part of each cryostat part 2 and 4. FIG.

前記第1のクライオスタット部2と前記第2のクライオスタット部4とは、それらの前記環状の第1及び第2の超電導コイル1,3の各中心6が図示のように同軸状になるように配設され、両者の対向面間には所定の空間7が、前記連結柱部5により保持されている。尚、前記空間7に、被検者の画像診断に必要な球状の均一静磁場空間領域8が存在する。又、前記空間7に、被検者を載せる被検者用ベッド71が、矢印イ(図1参照)あるいは矢印ロ(図1参照)の方向に挿入される。   The first cryostat unit 2 and the second cryostat unit 4 are arranged so that the centers 6 of the annular first and second superconducting coils 1 and 3 are coaxial as shown in the figure. A predetermined space 7 is held between the opposing surfaces of the two by the connecting column portion 5. Note that a spherical uniform static magnetic field space region 8 necessary for image diagnosis of the subject exists in the space 7. In addition, a subject bed 71 on which the subject is placed is inserted into the space 7 in the direction of arrow a (see FIG. 1) or arrow b (see FIG. 1).

前記第1のクライオスタット部2は、周知のように、非磁性金属製の真空容器部201と、この真空容器部201内に当該真空容器部201の器壁から離間して配設されたヘリウム(He)容器などの冷媒容器(図示省略)と、この冷媒容器(図示省略)と前記真空容器部201との間に当該冷媒容器(図示省略)および真空容器部201から離間して配設され前記真空容器部201から前記冷媒容器(図示省略)への輻射熱を遮る熱シ−ルド(図示省略)とから、主として構成されている。尚、前記冷媒容器(図示省略)内に前記第1の超電導コイル1が内蔵されている。   As is well known, the first cryostat unit 2 includes a vacuum container unit 201 made of nonmagnetic metal, and helium (within the vacuum container unit 201 spaced apart from the wall of the vacuum container unit 201). He) a refrigerant container (not shown) such as a container and a space between the refrigerant container (not shown) and the vacuum container part 201 and spaced from the refrigerant container (not shown) and the vacuum container part 201. It mainly comprises a heat shield (not shown) that blocks radiant heat from the vacuum vessel 201 to the refrigerant container (not shown). The first superconducting coil 1 is built in the refrigerant container (not shown).

前記真空容器部201は、前記中心6と同軸状をなす非磁性の円筒部2011と、この円筒部2011の両端に設けられた円板状の非磁性の端壁部2012,2013と、前記円筒部2011を囲繞し前記両端壁部2012,2013の各周面間に跨って延在している非磁性の周壁部2014とで構成されている。   The vacuum vessel portion 201 includes a nonmagnetic cylindrical portion 2011 that is coaxial with the center 6, disk-like nonmagnetic end wall portions 2012 and 2013 provided at both ends of the cylindrical portion 2011, and the cylinder A non-magnetic peripheral wall portion 2014 that surrounds the portion 2011 and extends across the peripheral surfaces of the both end wall portions 2012 and 2013 is formed.

尚、前記空間7側の前記端壁部2013には、前記空間7側にその中心が前記球状の均一静磁場空間領域8の中心6と同軸状となる円形凹み20131を形成する底壁部201311及び周壁部201312が設けられている。つまり、換言すれば、前記空間7側の前記端壁部2013を、その外周部近傍が前記空間7側に突出した構造とし、当該突出した円形壁部2015に連なる前記各周壁部2014,201312と当該円形壁部2015とにより前記真空容器部201の内側にド−ナツ状の凹み2016が形成されている。このド−ナツ状凹み2016内に、前記真空容器部201内の前記冷媒容器(図示省略)内に内蔵の前記第1の超電導コイル1が配設されている。   The end wall portion 2013 on the space 7 side has a bottom wall portion 20131 forming a circular recess 20131 whose center is coaxial with the center 6 of the spherical uniform static magnetic field space region 8 on the space 7 side. And a peripheral wall portion 201312 is provided. That is, in other words, the end wall portion 2013 on the space 7 side has a structure in which the vicinity of the outer peripheral portion protrudes toward the space 7 side, and the peripheral wall portions 2014 and 201312 connected to the protruding circular wall portion 2015 A donut-shaped recess 2016 is formed inside the vacuum vessel 201 by the circular wall portion 2015. In the donut-shaped recess 2016, the first superconducting coil 1 built in the refrigerant container (not shown) in the vacuum container portion 201 is disposed.

前記第1のクライオスタット部2内には、前記第1の超電導コイル1と前記円筒部2011との間に、前記円形凹み20131の底壁部201311に対向して環状の第1の調整磁石91が配設されている。換言すれば、前記第1の調整磁石91は、前記円筒部2011を囲繞し、前記第1の超電導コイル1に囲繞されており、その中心線は前記中心線6と同軸状である。尚、前記第1の調整磁石91としては、例えば、前記真空容器部201内の前記冷媒容器(図示省略)内に内蔵された超電導コイルが使用される。   In the first cryostat portion 2, an annular first adjusting magnet 91 is provided between the first superconducting coil 1 and the cylindrical portion 2011 so as to face the bottom wall portion 201311 of the circular recess 20131. It is arranged. In other words, the first adjusting magnet 91 surrounds the cylindrical portion 2011 and is surrounded by the first superconducting coil 1, and its center line is coaxial with the center line 6. As the first adjustment magnet 91, for example, a superconducting coil built in the refrigerant container (not shown) in the vacuum container 201 is used.

又、前記第1のクライオスタット部2内には、前記同軸6と同軸状をなす環状の外域磁場打消磁石10,11が設けられている。これら外域磁場打消磁石10,11としては、前記真空容器部201内の前記冷媒容器(図示省略)内に内蔵された超電導コイル、或は前記冷媒容器(図示省略)外の前記真空容器部201内に設けられた非超電導コイルが使用されている。又、前記外域磁場打消磁石10は、前記真空容器部201の前記周壁部2014に近接して設けられ、前記外域磁場打消磁石11は、前記外域磁場打消磁石10より前記円筒部2011寄りに設けられている。   In the first cryostat portion 2, annular outer field magnetic field canceling magnets 10 and 11 that are coaxial with the coaxial 6 are provided. These outer field magnetic field canceling magnets 10 and 11 include a superconducting coil built in the refrigerant container (not shown) in the vacuum container part 201 or the inside of the vacuum container part 201 outside the refrigerant container (not shown). The non-superconducting coil provided in is used. Further, the outer field magnetic field canceling magnet 10 is provided in the vicinity of the peripheral wall portion 2014 of the vacuum vessel part 201, and the outer field magnetic field canceling magnet 11 is provided closer to the cylindrical part 2011 than the outer field magnetic field canceling magnet 10. ing.

前記第2のクライオスタット部4は、周知のように、非磁性金属製の真空容器部401と、この真空容器部401内に当該真空容器部401の器壁から離間して配設されたヘリウム(He)容器などの冷媒容器(図示省略)と、この冷媒容器(図示省略)と前記真空容器部401との間に当該冷媒容器(図示省略)および真空容器部401から離間して配設され前記真空容器部401から前記冷媒容器(図示省略)への輻射熱を遮る熱シ−ルド(図示省略)とから、主として構成されている。尚、前記冷媒容器(図示省略)内に超電導コイル等の前記第2の超電導コイル3が内蔵されている。   As is well known, the second cryostat unit 4 includes a vacuum container unit 401 made of non-magnetic metal, and helium (within the vacuum container unit 401 spaced apart from the wall of the vacuum container unit 401). He) a refrigerant container (not shown) such as a container, and a space between the refrigerant container (not shown) and the vacuum container part 401 and spaced from the refrigerant container (not shown) and the vacuum container part 401. It mainly comprises a heat shield (not shown) that blocks radiant heat from the vacuum vessel 401 to the refrigerant container (not shown). The second superconducting coil 3 such as a superconducting coil is built in the refrigerant container (not shown).

前記真空容器部401は、前記中心6と同軸状をなす非磁性の円筒部4011と、この円筒部4011の両端に設けられた円板状の非磁性の端壁部4012,4013と、前記円筒部4011を囲繞し前記両端壁部4012,4013の各周面間に跨って延在している周壁部4014とで構成されている。   The vacuum vessel portion 401 includes a nonmagnetic cylindrical portion 4011 that is coaxial with the center 6, disk-like nonmagnetic end wall portions 4012 and 4013 provided at both ends of the cylindrical portion 4011, and the cylindrical portion The peripheral wall portion 4014 surrounds the portion 4011 and extends between the peripheral surfaces of the both end wall portions 4012 and 4013.

尚、前記空間7側の前記端壁部4013には、前記空間7側にその中心が前記球状の均一静磁場空間領域8の中心6と同軸状となる円形凹み40131を形成する底壁部401311及び周壁部401312が設けられている。つまり、換言すれば、前記空間7側の前記端壁部4013を、その外周部近傍を前記空間7側に突出した形状とし、当該突出した円形壁部4015に連なる前記各周壁部4014,401312と当該円形壁部4015とにより前記真空容器部401の内側にド−ナツ状の凹み4016が形成されている。このド−ナツ状凹み4016内に、前記真空容器部401内の前記冷媒容器(図示省略)内に内蔵の前記第2の超電導コイル3が配設されている。   The end wall portion 4013 on the space 7 side has a bottom wall portion 401311 forming a circular recess 40131 whose center is coaxial with the center 6 of the spherical uniform static magnetic field space region 8 on the space 7 side. And a peripheral wall 401312 is provided. That is, in other words, the end wall portion 4013 on the space 7 side has a shape in which the vicinity of the outer peripheral portion protrudes toward the space 7 side, and the peripheral wall portions 4014 and 401312 connected to the protruding circular wall portion 4015 The circular wall portion 4015 forms a donut-shaped recess 4016 inside the vacuum vessel portion 401. In the donut-shaped recess 4016, the second superconducting coil 3 built in the refrigerant container (not shown) in the vacuum container 401 is disposed.

前記第2のクライオスタット部4内には、前記第2の超電導コイル3と前記円筒部4011との間に、前記円形凹み40131の底壁部401311に対向して環状の第2の調整磁石92が配設されている。換言すれば、前記第2の調整磁石92は、前記円筒部4011を囲繞し、前記第2の超電導コイル3に囲繞されており、その中心線は前記中心線6と同軸状である。尚、前記第2の調整磁石92としては、例えば前記真空容器部401内の前記冷媒容器(図示省略)内に内蔵された超電導コイルが使用される。   In the second cryostat portion 4, an annular second adjusting magnet 92 is provided between the second superconducting coil 3 and the cylindrical portion 4011 so as to face the bottom wall portion 401311 of the circular recess 40131. It is arranged. In other words, the second adjustment magnet 92 surrounds the cylindrical portion 4011 and is surrounded by the second superconducting coil 3, and its center line is coaxial with the center line 6. As the second adjustment magnet 92, for example, a superconducting coil built in the refrigerant container (not shown) in the vacuum container 401 is used.

又、前記第2のクライオスタット部4内には、前記同軸6と同軸状をなす環状の外域磁場打消磁石12,13が設けられている。これら外域磁場打消磁石12,13としては、前記真空容器部401内の前記冷媒容器(図示省略)内に内蔵された超電導コイル、或は前記冷媒容器(図示省略)外の前記真空容器部401内に設けられた非超電導コイルが使用されている。又、前記外域磁場打消磁石12は、前記真空容器部401の前記周壁部4014に近接して設けられ、前記外域磁場打消磁石13は、前記外域磁場打消磁石12より前記円筒部4011寄りに設けられている。換言すれば、前記外域磁場打消磁石13は、前記円筒部4011を囲繞し、前記外域磁場打消磁石12に囲繞されている。   In the second cryostat section 4, annular outer field magnetic field canceling magnets 12 and 13 that are coaxial with the coaxial 6 are provided. These outer field magnetic field canceling magnets 12 and 13 include a superconducting coil built in the refrigerant container (not shown) in the vacuum container 401 or the inside of the vacuum container 401 outside the refrigerant container (not shown). The non-superconducting coil provided in is used. Further, the outer field magnetic field canceling magnet 12 is provided in the vicinity of the peripheral wall portion 4014 of the vacuum vessel section 401, and the outer field magnetic field canceling magnet 13 is provided closer to the cylindrical portion 4011 than the outer field magnetic field canceling magnet 12. ing. In other words, the outer field magnetic field canceling magnet 13 surrounds the cylindrical portion 4011 and is surrounded by the outer field magnetic field canceling magnet 12.

前記連結柱部5は、非磁性の支持骨部501と、この支持骨部501を内蔵する非磁性の外壁部502とから構成されており、前記第1及び第2の超電導コイル1,3間の相互吸引力による荷重や前記第1及び第2のクライオスタット部2,4の各部の荷重などを受るものである。   The connecting column portion 5 includes a nonmagnetic support bone portion 501 and a nonmagnetic outer wall portion 502 containing the support bone portion 501, and is connected between the first and second superconducting coils 1 and 3. And the load of each part of the first and second cryostat parts 2 and 4.

前記支持骨部501は、非磁性の前部支柱部5011と、非磁性の後部支柱部5012と、非磁性の端部支柱部5013,5014とで構成されている。又、前記前部支柱部5011と、前記後部支柱部5012と、前記端部支柱部5013,5014とは溶接などにより一体化されている。又、この支持骨部501と前記外壁部502とは溶接などにより一体化されている。   The supporting bone portion 501 is composed of a nonmagnetic front strut portion 5011, a nonmagnetic rear strut portion 5012, and nonmagnetic end strut portions 5013 and 5014. The front column 5011, the rear column 5012, and the end columns 5013 and 5014 are integrated by welding or the like. Further, the support bone portion 501 and the outer wall portion 502 are integrated by welding or the like.

前記外壁部502は、非磁性の前壁部5021と、非磁性の後壁部5022と、非磁性の端壁部5023,5024と、非磁性の上壁部5025と、非磁性の底壁部5026とで構成されている。又、前記前壁部5021と、前記後壁部5022と、前記端壁部5023,5024、前記上壁部5025と、前記底壁部5026とは溶接などにより一体化されている。更に又、この外壁部502と前記支持骨部501とは溶接などにより一体化され、1つの構造体となっている。尚、1つの構造体となっている連結柱部5を前記第1及び第2のクライオスタット部2,4の周方向に複数個連結してそれら複数個の連結柱部を1つの構造体としてもよい。つまり、連結柱部5は実質的に1つの構造体とすればよい。このように前記連結柱部5を実質的に1つの構造体とすれば、前述の特許文献1に記載のような相互に離間した2つの連結柱部を設けてある場合に比べ、磁気共鳴イメ−ジング装置を据え付ける部屋内における当該磁気共鳴イメ−ジング装置の配置の自由度が向上する。   The outer wall 502 includes a nonmagnetic front wall 5021, a nonmagnetic rear wall 5022, nonmagnetic end walls 5023 and 5024, a nonmagnetic upper wall 5025, and a nonmagnetic bottom wall. It consists of 5026. Further, the front wall portion 5021, the rear wall portion 5022, the end wall portions 5023 and 5024, the upper wall portion 5025, and the bottom wall portion 5026 are integrated by welding or the like. Furthermore, the outer wall portion 502 and the supporting bone portion 501 are integrated by welding or the like to form one structure. It is also possible to connect a plurality of connecting pillar portions 5 which are one structure in the circumferential direction of the first and second cryostat portions 2 and 4 so that the plurality of connecting pillar portions serve as one structure. Good. That is, the connecting column portion 5 may be substantially one structure. In this way, when the connecting column part 5 is substantially one structure, the magnetic resonance image is compared with the case where two connecting column parts spaced apart from each other as described in Patent Document 1 are provided. -The freedom degree of arrangement | positioning of the said magnetic resonance imaging apparatus in the room which installs a zing apparatus improves.

尚、前記連結柱部5は、その前記外壁部502は内部が真空の真空容器となっており、後述の冷媒連通管18及び電線挿通管181(図3参照)を内蔵し、前記外壁部502から当該冷媒連通管18への輻射熱を遮る熱シ−ルド503(図3参照)も内蔵している。又、前記連結柱部5の前記上壁部5025には、冷凍機14および非磁性の冷媒注入口部15が設けられている。   The connecting column portion 5 has a vacuum container whose inside wall 502 is a vacuum, and incorporates a refrigerant communication pipe 18 and a wire insertion pipe 181 (see FIG. 3), which will be described later, and the outer wall section 502. A heat shield 503 (see FIG. 3) for blocking radiant heat from the refrigerant to the refrigerant communication pipe 18 is also incorporated. The upper wall portion 5025 of the connecting column portion 5 is provided with a refrigerator 14 and a non-magnetic refrigerant inlet 15.

前記冷凍機14は、その動力源は電動機であり、前記上壁部5025の上側つまり外側に位置し、前記真空容器部201内における前記冷媒容器(図示省略)内の冷媒を冷却して前記冷媒容器(図示省略)内へ連通路16を介して戻すと共に、前記真空容器部201内の前記熱シ−ルド(図示省略)を、前記真空容器部201の温度と前記冷媒容器(図示省略)の温度との中間の温度まで冷却するために設けられている。又、冷凍機14は、前記冷媒容器(図示省略)内の液冷媒2017の液面20171より高い位置に配設されている。従って、前記冷媒容器(図示省略)内の冷媒が液化ヘリウム(He)の場合、つまり前記冷媒容器(図示省略)内の前記第1の超電導コイル1および前記第2の超電導コイル3が液化ヘリウム(He)により極低温に冷却される超電導コイルの場合には、前記冷凍機14は、前記真空容器部201内における前記冷媒容器(図示省略)内のヘリウム(He)ガスを冷却することによって液化したヘリウム(He)は、自重により前記連通路16内に入り、当該連通路16内に入った液化ヘリウムは、自重により前記冷媒容器(図示省略)内へ戻る。尚、この冷凍機14は、その重量は20kg前後あり、定期的な保守点検時には、前記上壁部5025から取り外される。   The refrigeration machine 14 is powered by an electric motor and is located above or outside the upper wall portion 5025, and cools the refrigerant in the refrigerant container (not shown) in the vacuum vessel portion 201 to cool the refrigerant. While returning to the inside of the container (not shown) through the communication path 16, the heat shield (not shown) in the vacuum container part 201 is supplied to the temperature of the vacuum container part 201 and the refrigerant container (not shown). It is provided for cooling to a temperature intermediate to the temperature. The refrigerator 14 is disposed at a position higher than the liquid level 20171 of the liquid refrigerant 2017 in the refrigerant container (not shown). Therefore, when the refrigerant in the refrigerant container (not shown) is liquefied helium (He), that is, the first superconducting coil 1 and the second superconducting coil 3 in the refrigerant container (not shown) are liquefied helium ( In the case of a superconducting coil cooled to a cryogenic temperature by He), the refrigerator 14 is liquefied by cooling helium (He) gas in the refrigerant container (not shown) in the vacuum container part 201. Helium (He) enters the communication path 16 by its own weight, and liquefied helium that has entered the communication path 16 returns to the refrigerant container (not shown) by its own weight. The refrigerator 14 has a weight of about 20 kg, and is removed from the upper wall portion 5025 during regular maintenance and inspection.

前記冷媒注入口部15は、前記上壁部5025の上側つまり外側に位置し、前記真空容器部201内の前記冷媒容器(図示省略)内へ連通路17を介して注入するために設けられている。前記冷媒容器(図示省略)内の液冷媒が液化ヘリウム(He)の場合、つまり前記冷媒容器(図示省略)内の前記第1の超電導コイル1および前記第2の超電導コイル3が超電導コイルの場合には、前記冷媒注入口部15から前記真空容器部201内における前記冷媒容器(図示省略)内へ液化ヘリウム(He)が注入される。又、前記冷媒注入口部15は、前記真空容器部201内における前記冷媒容器(図示省略)内の冷媒ガスを抜き出す場合にも使用される。   The refrigerant inlet 15 is located above or outside the upper wall 5025 and is provided to inject into the refrigerant container (not shown) in the vacuum vessel 201 via the communication passage 17. Yes. When the liquid refrigerant in the refrigerant container (not shown) is liquefied helium (He), that is, when the first superconducting coil 1 and the second superconducting coil 3 in the refrigerant container (not shown) are superconducting coils. Then, liquefied helium (He) is injected from the refrigerant inlet 15 into the refrigerant container (not shown) in the vacuum container 201. The refrigerant inlet 15 is also used when extracting refrigerant gas from the refrigerant container (not shown) in the vacuum container 201.

尚、前記第1のクライオスタット部2の前記真空容器部201内における前記冷媒容器(図示省略)と第2のクライオスタット部4の前記真空容器部401内における前記冷媒容器(図示省略)とは冷媒連通管18を介して連通されており、前記第1のクライオスタット部2の前記冷媒容器(図示省略)内の液冷媒は前記第2のクライオスタット部4の前記冷媒容器(図示省略)内へ前記連通管18を介して供給される。尚、前記冷媒が液化ヘリウム(He)の場合は、当該液冷媒はその自重により前記第1のクライオスタット部2の前記冷媒容器(図示省略)内から前記第2のクライオスタット部4の前記冷媒容器(図示省略)内へ入っていく。   The refrigerant container (not shown) in the vacuum vessel part 201 of the first cryostat part 2 and the refrigerant container (not shown) in the vacuum container part 401 of the second cryostat part 4 are in communication with the refrigerant. The liquid refrigerant in the refrigerant container (not shown) of the first cryostat section 2 is communicated via the pipe 18 and into the refrigerant container (not shown) of the second cryostat section 4. 18 is supplied. When the refrigerant is liquefied helium (He), the liquid refrigerant is caused by its own weight from the refrigerant container (not shown) of the first cryostat unit 2 to the refrigerant container (of the second cryostat unit 4). Enter (not shown).

前記第1のクライオスタット部2の前記円形凹み20131における前記底壁部201311には、その前記球状の均一静磁場空間領域8側の面に、円板状のシム取付部材191が取り付けられている。この円板状のシム取付部材191は、前記球状の均一静磁場空間領域8の中心6と同軸状に配設されている。又、このシム取付部材191の前記均一静磁場空間領域8側の面には多数のシム取付穴1911(図3参照)が配設されており、この多数のシム取付穴1911のうちの必要な位置のシム取付穴には、磁性片からなるシム(shim)(以下、「第1のシム」と呼称する)19111が着脱可能に螺着されている。   A disc-shaped shim mounting member 191 is mounted on the bottom wall portion 201311 of the circular recess 20131 of the first cryostat portion 2 on the surface of the spherical uniform static magnetic field space region 8 side. The disk-shaped shim mounting member 191 is disposed coaxially with the center 6 of the spherical uniform static magnetic field space region 8. In addition, a large number of shim mounting holes 1911 (see FIG. 3) are provided on the surface of the shim mounting member 191 on the side of the uniform static magnetic field space region 8, and a necessary one of the many shim mounting holes 1911 is required. A shim (hereinafter referred to as “first shim”) 19111 made of a magnetic piece is detachably screwed into the shim mounting hole at the position.

前記円形凹み20131における前記周壁部201312の内周面(前記球状の均一静磁場空間領域8側の面)に、当該周壁部201312の中心線6方向に延在(即ち、当該周壁部201312の中心線6と平行に延在)する多数のシム(以下、「第2のシム」と呼称する)202が、当該周壁部201312の全周に亘って必要な間隔で、当該周壁部201312に着脱可能に取り付けられている。   The inner surface (surface on the spherical uniform static magnetic field space region 8 side) of the peripheral wall portion 201312 in the circular recess 20131 extends in the direction of the center line 6 of the peripheral wall portion 201312 (that is, the center of the peripheral wall portion 201312). A large number of shims (hereinafter referred to as “second shims”) 202 extending in parallel with the line 6 can be attached to and detached from the peripheral wall portion 201312 at necessary intervals over the entire circumference of the peripheral wall portion 201312. Is attached.

前記第2のクライオスタット部4の前記円形凹み40131における前記底壁部401311には、その前記球状の均一静磁場空間領域8側の面に、円板状のシム取付部材192が取り付けられている。この円板状のシム取付部材192は、前記球状の均一静磁場空間領域8の中心6と同軸状に配設されている。又、このシム取付部材192には、前記第1のクライオスタット部2側の前記シム取付部材191と同様に、その前記均一静磁場空間領域8側の面には多数のシム取付穴(図示省略)が設けられており、この多数のシム取付穴のうちの必要な位置のシム取付穴には、前記第1のクライオスタット部2側の前記シム19111と同様に、磁性片からなるシム(以下、「第3のシム」と呼称する)(図示省略)が着脱可能に螺着されている。   A disk-shaped shim mounting member 192 is attached to the bottom wall portion 401311 of the circular recess 40131 of the second cryostat portion 4 on the surface of the spherical uniform static magnetic field space region 8 side. The disk-shaped shim mounting member 192 is disposed coaxially with the center 6 of the spherical uniform static magnetic field space region 8. Further, the shim mounting member 192 has a number of shim mounting holes (not shown) on the surface of the uniform static magnetic field space region 8 side, similarly to the shim mounting member 191 on the first cryostat portion 2 side. As in the shim 19111 on the first cryostat portion 2 side, a shim made of a magnetic piece (hereinafter referred to as “the shim 19111”) is provided in a shim mounting hole at a required position among the plurality of shim mounting holes. (Referred to as “third shim”) (not shown) is detachably screwed.

前記円形凹み40131における前記周壁部401312の内周面(前記球状の均一静磁場空間領域8側の面)に、当該周壁部401312の中心線6方向に延在(即ち、当該周壁部401312の中心線6と平行に延在)する多数のシム(以下、「第4のシム」と呼称する)203が、当該周壁部401312の全周に亘って必要な間隔で、当該周壁部401312に着脱可能に取り付けられている。   Extending in the direction of the center line 6 of the peripheral wall portion 401312 (that is, the center of the peripheral wall portion 401312) on the inner peripheral surface of the peripheral wall portion 401312 (the surface on the spherical uniform static magnetic field space region 8 side) A large number of shims (hereinafter referred to as “fourth shims”) 203 extending in parallel with the line 6 can be attached to and detached from the peripheral wall portion 401312 at necessary intervals over the entire circumference of the peripheral wall portion 401312. Is attached.

前記第1のクライオスタット部2の前記円形凹み20131には、前記シム取付部材191、前記第1のシム19111、及び前記第2のシム202と所定の空隙gを介して第1の傾斜磁場コイル211が設けられている。この第1の傾斜磁場コイル211は、通常はX軸傾斜磁場コイルとY軸傾斜磁場コイルとZ軸傾斜磁場コイルとを絶縁材料で一体化して構成され、又、前記底壁部201311に隣接する前記熱シ−ルド(図示省略)に前記X軸傾斜磁場コイルとY軸傾斜磁場コイルとZ軸傾斜磁場コイルとによる磁界によって生じる渦電流を抑制するシ−ルドコイルを前記底壁部201311側に有している場合もある。   In the circular recess 20131 of the first cryostat portion 2, the first gradient magnetic field coil 211 is connected to the shim mounting member 191, the first shim 19111, and the second shim 202 via a predetermined gap g. Is provided. This first gradient magnetic field coil 211 is generally configured by integrating an X-axis gradient magnetic field coil, a Y-axis gradient magnetic field coil, and a Z-axis gradient magnetic field coil with an insulating material, and is adjacent to the bottom wall 201311. The heat shield (not shown) has a shield coil on the bottom wall 201311 side for suppressing an eddy current generated by a magnetic field generated by the X-axis gradient magnetic field coil, the Y-axis gradient magnetic field coil, and the Z-axis gradient magnetic field coil. Sometimes it is.

尚、前記所定の空隙gとは、前記第1の傾斜磁場コイル211に所定の数百アンペアのパルス電流が供給された際に生じる当該第1の傾斜磁場コイル211の振動によって、当該第1の傾斜磁場コイル211が、前記第1のクライオスタット部2側の前記シム取付部材191、前記第1のシム19111、前記第2のシム202等の各部材に接触しないように確保してある空隙である。   The predetermined gap g means that the first gradient magnetic field coil 211 is caused by vibration of the first gradient magnetic field coil 211 that is generated when a pulse current of several hundred amperes is supplied to the first gradient magnetic field coil 211. The gradient magnetic field coil 211 is a gap secured so as not to contact each member such as the shim mounting member 191, the first shim 19111, and the second shim 202 on the first cryostat portion 2 side. .

又、図示してないが、前記第1の傾斜磁場コイル211は、前記第1のクライオスタット部2、前記第2のクライオスタット部4、および前記連結柱部5とは非接触の支持体により、前記第2のクライオスタット部4および前記連結柱部5と同様に据付フロア22上に取り付けられたり、振動吸収機構や振動吸収部材を介して前記連結柱部5に取り付けられたりしている。   Although not shown, the first gradient magnetic field coil 211 includes a support member that is not in contact with the first cryostat unit 2, the second cryostat unit 4, and the connecting column unit 5. It is attached on the installation floor 22 like the 2nd cryostat part 4 and the said connection pillar part 5, or is attached to the said connection pillar part 5 via a vibration absorption mechanism or a vibration absorption member.

前記第1の傾斜磁場コイル211の前記均一静磁場空間領域8側には、当該均一静磁場空間領域8に対応して第1の高周波コイル(RFコイルとも言われる)231が配設されている。   A first high-frequency coil (also referred to as an RF coil) 231 is disposed on the side of the uniform static magnetic field space region 8 of the first gradient magnetic field coil 211 so as to correspond to the uniform static magnetic field space region 8. .

前記第2のクライオスタット部4の前記円形凹み40131には、前記シム取付部材192、前記第3のシム(図示省略)、及び前記第4のシム203と所定の空隙gを介して第2の傾斜磁場コイル212が設けられている。この第2の傾斜磁場コイル212は、通常はX軸傾斜磁場コイルとY軸傾斜磁場コイルとZ軸傾斜磁場コイルとを絶縁材料で一体化して構成され、又、前記底壁部401311に隣接する前記熱シ−ルド(図示省略)に前記X軸傾斜磁場コイルとY軸傾斜磁場コイルとZ軸傾斜磁場コイルとによる磁界によって生じる渦電流を抑制するシ−ルドコイルを前記底壁部401311側に有している場合もある。   The circular recess 40131 of the second cryostat portion 4 has a second inclination through the shim mounting member 192, the third shim (not shown), and the fourth shim 203 with a predetermined gap g. A magnetic field coil 212 is provided. The second gradient magnetic field coil 212 is generally configured by integrating an X-axis gradient magnetic field coil, a Y-axis gradient magnetic field coil, and a Z-axis gradient magnetic field coil with an insulating material, and is adjacent to the bottom wall portion 401311. The thermal shield (not shown) has a shield coil on the bottom wall portion 401311 side for suppressing eddy current generated by the magnetic field generated by the X-axis gradient magnetic field coil, the Y-axis gradient magnetic field coil, and the Z-axis gradient magnetic field coil. Sometimes it is.

尚、前記所定の空隙gとは、前記第2の傾斜磁場コイル212に所定の数百アンペアのパルス電流が供給された際に生じる当該第2の傾斜磁場コイル212の振動によって、当該第2の傾斜磁場コイル212が、前記第2のクライオスタット部4側の前記シム取付部材192、前記第3のシム(図示省略)、前記第4のシム203等の各部材に接触しないように確保してある空隙である。   The predetermined gap g means that the second gradient magnetic field coil 212 is caused by vibration of the second gradient magnetic field coil 212 that is generated when a pulse current of several hundred amperes is supplied to the second gradient magnetic field coil 212. The gradient magnetic field coil 212 is ensured not to contact each member such as the shim mounting member 192, the third shim (not shown), the fourth shim 203, etc. on the second cryostat section 4 side. It is a void.

又、図示してないが、前記第2の傾斜磁場コイル212は、前記第1のクライオスタット部2、前記第2のクライオスタット部4、および前記連結柱部5とは非接触の支持体により、前記第2のクライオスタット部4および前記連結柱部5と同様に据付フロア22上に取り付けられたり、振動吸収機構や振動吸収部材を介して前記連結柱部5に取り付けられたりしている。   Although not shown, the second gradient magnetic field coil 212 is formed of a support that is not in contact with the first cryostat unit 2, the second cryostat unit 4, and the connecting column unit 5, and It is attached on the installation floor 22 like the 2nd cryostat part 4 and the said connection pillar part 5, or is attached to the said connection pillar part 5 via a vibration absorption mechanism or a vibration absorption member.

前記第2の傾斜磁場コイル212の前記均一静磁場空間領域8側には、当該均一静磁場空間領域8に対応して第2の高周波コイル(RFコイルとも言われる)232が配設されている。   A second high frequency coil (also referred to as an RF coil) 232 is disposed on the second gradient magnetic field coil 212 on the side of the uniform static magnetic field space region 8 so as to correspond to the uniform static magnetic field space region 8. .

次に前記各磁石や各コイルの機能、および前記各磁石や各コイル、シムの相対的機能について説明する。   Next, the functions of the magnets and coils and the relative functions of the magnets, coils, and shims will be described.

前記第1のクライオスタット部2側の前記第1の超電導コイル1および前記第2のクライオスタット部4側の前記第2の超電導コイル3は、両者で、前記球状均一静磁場空間領域8およびその近傍に図示矢印で示すような前記第1のクライオスタット部2から前記第2のクライオスタット部4へ向かう均一静磁場を発生する。   The first superconducting coil 1 on the first cryostat unit 2 side and the second superconducting coil 3 on the second cryostat unit 4 side are both in the spherical uniform static magnetic field space region 8 and the vicinity thereof. A uniform static magnetic field is generated from the first cryostat unit 2 toward the second cryostat unit 4 as shown by the arrows in the figure.

前記第1のクライオスタット部2側の前記第1の調整磁石9、前記第2のクライオスタット部4側の前記第2の調整磁石10、前記第1のクライオスタット部2側の前記シム取付部材191に取り付けられた第1のシム19111(図1参照)、前記第2のクライオスタット部4側の前記シム取付部材192に取り付けられた第3のシム(図示省略)、前記第1のクライオスタット部2側の前記第2のシム202、および前記第2のクライオスタット部4側の前記第4のシム203は、それらにより、前記球状均一静磁場空間領域8における前記第1の超電導コイル1および前記第2の超電導コイル3による均一静磁場の均一度を、前記許容誤差の数ppmまで上げるものである。   The first adjustment magnet 9 on the first cryostat portion 2 side, the second adjustment magnet 10 on the second cryostat portion 4 side, and the shim attachment member 191 on the first cryostat portion 2 side are attached. A first shim 19111 (see FIG. 1), a third shim (not shown) attached to the shim mounting member 192 on the second cryostat portion 4 side, and the first shim 19111 on the first cryostat portion 2 side. The second shim 202 and the fourth shim 203 on the second cryostat section 4 side thereby cause the first superconducting coil 1 and the second superconducting coil in the spherical uniform static magnetic field space region 8 to be the same. 3 to increase the uniformity of the uniform static magnetic field up to several ppm of the allowable error.

前記第1のクライオスタット部2側の前記外域磁場打消磁石10,11、および前記第2のクライオスタット部4側の前記外域磁場打消磁石12,13は、前記連結柱部5の上部(前記冷凍機14が在る部分)、前記球状均一静磁場空間領域8より遠い側、および前記連結柱部5の各部A,B,C,Dにおける前記第1の超電導コイル1および前記第2の超電導コイル3の外域磁場(図2に点線矢印131Oで示してある磁場)を打ち消す方向に磁場(図2に、前記点線矢印と逆方向の一点鎖線1113で示してある磁場(前記外域磁場と逆方向の磁場))を発生し、前記連結柱部5の前記各部A,B,C,Dにおける前記第1の超電導コイル1および前記第2の超電導コイル3の外域磁場(図2に点線矢印で示してある磁場)の強さを、前記冷凍機14の電動機の特性低下や寿命低下を来たさない或は軽減する強さまで抑制するものである。   The outer field magnetic field canceling magnets 10 and 11 on the first cryostat section 2 side and the outer field magnetic field canceling magnets 12 and 13 on the second cryostat section 4 side are arranged above the connecting column section 5 (the refrigerator 14). Of the first superconducting coil 1 and the second superconducting coil 3 on the side farther than the spherical uniform static magnetic field space region 8 and on each part A, B, C, D of the connecting column part 5. Magnetic field in the direction to cancel the outer field magnetic field (the magnetic field indicated by the dotted arrow 131O in FIG. 2) (the magnetic field indicated by the one-dot chain line 1113 in the opposite direction to the dotted arrow in FIG. 2 (the magnetic field in the direction opposite to the outer magnetic field)) ) And the external magnetic field of the first superconducting coil 1 and the second superconducting coil 3 in the respective parts A, B, C, D of the connecting column part 5 (the magnetic field indicated by the dotted arrows in FIG. 2) ) The strength of the refrigerator 1 It is intended to suppress to the strength to the not to cause property deterioration and reduced life of the motor or reduce of.

尚、前記連結柱部5の各部A,B,C,Dは、当該連結柱部5をその前記延在方向(矢印ハの方向)に見た投影面上、即ち当該連結柱部5の前記延在方向の投影面上、に存在する。   In addition, each part A, B, C, D of the said connection pillar part 5 is on the projection surface which looked at the said connection pillar part 5 in the said extension direction (the direction of arrow C), ie, the said of the said connection pillar part 5. It exists on the projection surface in the extending direction.

尚、前記外域磁場打消磁石10〜13を設けることにより、前記球状均一静磁場空間領域8における前記第1の超電導コイル1および前記第2の超電導コイル3による磁場の強さは若干低減するので、前記第1の超電導コイル1および前記第2の超電導コイル3にる磁場の強さは、前記外域磁場打消磁石10〜13を設けない場合に比べて大きくして前記球状均一静磁場空間領域8における磁場の強さを所定の強さにしてある。   In addition, since the outer field magnetic field canceling magnets 10 to 13 are provided, the strength of the magnetic field by the first superconducting coil 1 and the second superconducting coil 3 in the spherical uniform static magnetic field space region 8 is slightly reduced. The intensity of the magnetic field applied to the first superconducting coil 1 and the second superconducting coil 3 is larger than that in the case where the outer field magnetic field canceling magnets 10 to 13 are not provided. The strength of the magnetic field is set to a predetermined strength.

又、前記連結柱部5は、その前記支持骨部501及び前記外壁部502の何れも非磁性としてあるが、これら支持骨部501及び外壁部502の少なくとも一を磁性にした場合は、当該磁性の支持骨部501及び外壁部502の少なくとも一に前記第1の超電導コイル1及び前記第2の超電導コイル3による磁場が集中するので、前記各部A,B,C,D等、所謂前記連結柱部5の前記延在方向の投影面における磁場が強くなるので、その場合は、前記第1及び第2の超電導コイル1,3の前記外域磁場を打ち消す方向に磁場を発生する前記外域磁場打消磁石10,11,12,13の発生磁場を、前記支持骨部501及び前記外壁部502の何れもが非磁性の場合に比べて大きくする必要があり、その分、前記第1の超電導コイル1及び前記第2の超電導コイル3による磁場の強さを更に強くして前記球状均一静磁場空間領域8における磁場の強さを所定の強さにする必要がある。   Further, in the connecting column part 5, both the supporting bone part 501 and the outer wall part 502 are non-magnetic. However, when at least one of the supporting bone part 501 and the outer wall part 502 is made magnetic, the magnetic property is reduced. Since the magnetic field generated by the first superconducting coil 1 and the second superconducting coil 3 is concentrated on at least one of the supporting bone part 501 and the outer wall part 502, the so-called connecting columns such as the parts A, B, C, D, etc. In this case, the magnetic field canceling magnet that generates a magnetic field in a direction that cancels the external magnetic field of the first and second superconducting coils 1 and 3 is strong. The generated magnetic fields of 10, 11, 12, and 13 need to be increased as compared to the case where both the supporting bone portion 501 and the outer wall portion 502 are nonmagnetic, and accordingly, the first superconducting coil 1 and Previous The strength of the magnetic field of the second superconducting coil 3 above with the more strongly strength of the magnetic field due to the spherical homogeneous static magnetic field space region 8 has to be a predetermined intensity.

なお、前記第2のクライオスタット部4内の前述の各コイル3,12,13,92への通電は、前記前記連結柱部5に内蔵の前記電線挿通管181(図3参照)の中の電線(図示省略)により行われる。   Note that energization of the coils 3, 12, 13, 92 in the second cryostat section 4 is performed by the electric wires in the wire insertion pipe 181 (see FIG. 3) built in the connecting column section 5. (Not shown).

次いで、この発明の実施の形態1の要部の詳細構造および効果について図3により説明する。   Next, the detailed structure and effects of the main part of the first embodiment of the present invention will be described with reference to FIG.

即ち、図3において、この発明の実施の形態1の構造上の特徴は、次の1〜3を全て備えている点である。   That is, in FIG. 3, the structural feature of Embodiment 1 of the present invention is that all of the following 1-3 are provided.

1.前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部
4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の形状を、図3に図示のようにほぼ矩形としてある。即ち、前記形状は前壁部5021と後壁部5022と端壁部5023,5024とを有するほぼ矩形としてある。
1. A portion corresponding to the uniform static magnetic field space region 8 (see FIG. 2) of the connecting column portion 5 (that is, between the first cryostat portion 2 and the second cryostat portion 4 of the connecting column portion 5). The shape of the connecting column part 5 when the connecting column part 5 in the portion) is viewed in the extending direction is substantially rectangular as shown in FIG. That is, the shape is a substantially rectangular shape having a front wall portion 5021, a rear wall portion 5022, and end wall portions 5023, 5024.

2.当該連結柱部5を、図示のように前記超電導コイル1,3の径方向に前記第1及び
第2のクライオスタット部2,4の内外に跨って延在させてある。
2. The connecting column 5 extends in the radial direction of the superconducting coils 1 and 3 across the inside and outside of the first and second cryostats 2 and 4 as shown in the figure.

3.前記連結柱部5の前記超電導コイル1,3の周方向の幅を、図示のように前記均一
静磁場空間領域に面する前側W1より前記均一静磁場空間領域から遠い側W2の方を前記超電導コイル1,3の径方向の前記第1及び第2のクライオスタット2,4部内において広くしてある。具体的には、前記前壁部5021と前記端壁部5023との間に傾斜部50271を設け、前記前壁部5021と前記端壁部5024との間に傾斜部50281を設けてある。換言すれば、前記傾斜部50271と前記端壁部5023との境界の曲部50272と、前記傾斜部50271と前記前壁部5021との境界の曲部50273との間に、前記傾斜部50271が、前記超電導コイル1,3の径方向に直線状に延在し、同様に、前記傾斜部50281と前記端壁部5024との境界の曲部50282と、前記傾斜部50281と前記前壁部5021との境界の曲部50283との間に、前記傾斜部50281が、前記超電導コイル1,3の径方向に直線状に延在している。そして、前記傾斜部50271と前記端壁部5023との境界の曲部50272と、前記傾斜部50281と前記端壁部5024との境界の曲部50282とが、前記第1及び第2のクライオスタット2,4部(図3では第2のクライオスタット4のみ図示されている)内に位置している。換言すれば、前記連結柱部5をその前記延在方向に見た前記傾斜部50271と前記端壁部5023との境界の曲部50272及び前記傾斜部50281と前記端壁部5024との境界の曲部50282の位置を、図3に図示のように、前記第1及び第2のクライオスタット2,4部(図3では第2のクライオスタット4の
み図示されている)の外周面より内側、つまり当該外周面から中心6寄りとしてある。
3. As shown in the drawing, the width of the connecting column 5 in the circumferential direction of the superconducting coils 1 and 3 is set on the side W2 farther from the uniform static magnetic field space region than the front side W1 facing the uniform static magnetic field space region. The first and second cryostats 2 and 4 in the radial direction of the coils 1 and 3 are widened. Specifically, an inclined portion 50271 is provided between the front wall portion 5021 and the end wall portion 5023, and an inclined portion 50281 is provided between the front wall portion 5021 and the end wall portion 5024. In other words, the inclined portion 50271 is between the curved portion 50272 at the boundary between the inclined portion 50271 and the end wall portion 5023, and the curved portion 50273 at the boundary between the inclined portion 50271 and the front wall portion 5021. The superconducting coils 1 and 3 extend linearly in the radial direction, and similarly, the curved portion 50282 at the boundary between the inclined portion 50281 and the end wall portion 5024, the inclined portion 50281, and the front wall portion 5021. The inclined portion 50281 extends linearly in the radial direction of the superconducting coils 1 and 3 between the curved portion 50283 and the curved portion 50283. The curved portion 50272 at the boundary between the inclined portion 50271 and the end wall portion 5023 and the curved portion 50282 at the boundary between the inclined portion 50281 and the end wall portion 5024 are the first and second cryostats 2. , 4 (only the second cryostat 4 is shown in FIG. 3). In other words, the curved portion 50272 at the boundary between the inclined portion 50271 and the end wall portion 5023 and the boundary between the inclined portion 50281 and the end wall portion 5024 when the connecting column portion 5 is viewed in the extending direction. As shown in FIG. 3, the position of the curved portion 50282 is located inside the outer peripheral surface of the first and second cryostats 2 and 4 (only the second cryostat 4 is shown in FIG. 3). It is closer to the center 6 from the outer peripheral surface.

なお、前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分における前記連結柱部5をその前記延在方向に見た形状は、前記傾斜部50271,50281を設けることにより厳密には6角形になるが、矩形の連結柱部の均一静磁場空間領域8側の角部に傾斜部を設けることにより6角形状やほぼ台形状等となる場合において、当該傾斜部50271,50281と前記端壁部5023,5024との境界の前記曲部50272,50282が、図3に図示のように、前記第1及び第2のクライオスタット2,4部の外周面より内側、つまり当該外周面から中心6寄りに位置している場合は、本件発明で言う「ほぼ矩形」の範疇に入るものである。   In addition, the shape which looked at the said connection pillar part 5 in the said extension direction in the part corresponding to the said uniform static magnetic field space area | region 8 (refer FIG. 2) of the said connection pillar part 5 provides the said inclination parts 50271 and 50281. Strictly speaking, it becomes a hexagon, but when the inclined portion is provided at the corner on the side of the uniform static magnetic field space region 8 of the rectangular connecting pillar portion, the inclined portion becomes a hexagonal shape or a substantially trapezoidal shape. As shown in FIG. 3, the curved portions 50272, 50282 at the boundary between the 50271, 50281 and the end wall portions 5023, 5024 are inside the outer peripheral surfaces of the first and second cryostats 2, 4 as shown in FIG. When it is located closer to the center 6 from the outer peripheral surface, it falls within the category of “substantially rectangular” in the present invention.

次いで、前述のこの発明の実施の形態1の構造上の特徴による効果について説明する。   Next, the effects of the structural features of the first embodiment of the present invention will be described.

前述のこの発明の実施の形態1の構造上の特徴による効果1   Effect 1 of the structural features of the first embodiment of the present invention described above

図3において、前記連結柱部5を、図示のように前記超電導コイル1,3の径方向に前記第1及び第2のクライオスタット部2,4の内外に跨って延在させ、しかも前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の形状を、前記傾斜部50271,50281を設けることなく図3に図示の一点鎖線のように正四辺形とした場合は、図3に示すように、前記第1のクライオスタット部2と第2のクライオスタット部4との間の空間7(図2も参照)における一点鎖線のハッチングの領域ニが、当該正四辺形により占有される。   In FIG. 3, the connecting column 5 extends in the radial direction of the superconducting coils 1, 3 as shown in the figure, straddling the inside and outside of the first and second cryostat units 2, 4. In a portion corresponding to the uniform static magnetic field space region 8 (see FIG. 2) of the portion 5 (that is, a portion of the connecting column portion 5 between the first cryostat portion 2 and the second cryostat portion 4). When the shape of the connecting column portion 5 when the connecting column portion 5 is viewed in the extending direction is a regular quadrilateral as shown by a one-dot chain line in FIG. 3 without providing the inclined portions 50271 and 50281. As shown in FIG. 3, the hatched area D of the alternate long and short dash line in the space 7 (see also FIG. 2) between the first cryostat portion 2 and the second cryostat portion 4 is occupied by the regular quadrilateral. Is done.

これに対し、図3に実線で示す前述のこの発明の実施の形態1ように、前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の形状をほぼ矩形とし、前記連結柱部5を、図示のように前記超電導コイル1,3の径方向に前記第1及び第2のクライオスタット部2,4の内外に跨って延在させ、前記連結柱部5の前記超電導コイル1,3の周方向の幅を、図示のように前記均一静磁場空間領域8に面する前側W1より前記均一静磁場空間領域から遠い側W2の方を前記超電導コイル1,3の径方向の前記第1及び第2のクライオスタット2,4部内において広くすれば(前記傾斜部50271,50281を設ければ)、前記一点鎖線のハッチングの領域ニは空間(以下「拡大空間ニ」と呼称する)となり、前記第1のクライオスタット部2及び前記第2のクライオスタット部4内の前記空間7が、前記拡大空間ニの分だけ広くなる。従って、被検者に対する開放性が良くなり、しかも診断関係者が診断時に被検者へアクセスし易くなる。   On the other hand, as in the above-described first embodiment of the present invention indicated by a solid line in FIG. 3, the portion corresponding to the uniform static magnetic field space region 8 (see FIG. 2) of the connecting column portion 5 (that is, the connecting column). The shape of the connecting column portion 5 when the connecting column portion 5 is viewed in the extending direction of the connecting column portion 5 in the portion 5 between the first cryostat portion 2 and the second cryostat portion 4 is substantially rectangular. As shown in the drawing, the connecting column portion 5 extends in the radial direction of the superconducting coils 1 and 3 across the inside and outside of the first and second cryostat portions 2 and 4, and the connecting column portion 5 The circumferential width of the superconducting coils 1 and 3 is set so that the diameter of the superconducting coils 1 and 3 is larger on the side W2 farther from the uniform static magnetic field space region than the front side W1 facing the uniform static magnetic field space region 8 as shown. In the first and second cryostats 2, 4 in the direction If the inclined portions 50271 and 50281 are provided, the hatched area d of the alternate long and short dash line becomes a space (hereinafter referred to as “enlarged space d”), and the first cryostat portion 2 and the first The space 7 in the second cryostat section 4 is widened by the expansion space d. Therefore, the openness to the subject is improved, and the diagnostic staff can easily access the subject at the time of diagnosis.

前述のこの発明の実施の形態1の構造上の特徴による効果2   Effect 2 due to the structural features of the first embodiment of the present invention described above

前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の形状を、前述の「拡大空間ニ」を確保するために、例えば、図4に一点鎖線で示すような角ABCDを有する正四辺形とした場合は、前述の「拡大空間ニ」を確実に確保できるが、前記第1及び第2の超電導コイル1,3間の相互吸引力による荷重や前記第1及び第2のクライオスタット部2,4の各部の荷重などの所謂前記連結柱部5が受けるべき荷重を受ける面積(以下「対荷重有効面積」と呼称する)が、前記ABCDで囲まれる面積ABCDとなる。   A portion corresponding to the uniform static magnetic field space region 8 (see FIG. 2) of the connecting column portion 5 (that is, between the first cryostat portion 2 and the second cryostat portion 4 of the connecting column portion 5). In order to secure the above-mentioned “enlarged space d”, the shape of the connecting column portion 5 when the connecting column portion 5 in the portion is viewed in the extending direction is, for example, shown by a one-dot chain line in FIG. In the case of a regular quadrilateral having an angle ABCD, the above-mentioned “expanded space d” can be ensured, but the load caused by the mutual attractive force between the first and second superconducting coils 1 and 3 and the first and second The area that receives the load that the so-called connecting column part 5 should receive, such as the load of each part of the second cryostat parts 2, 4 (hereinafter referred to as “effective area for load”) is the area ABCD surrounded by the ABCD. .

これに対し、図3に実線で示す前述のこの発明の実施の形態1の場合の前記対荷重有効面積は、角ABEFGHで囲まれる面積ABEFGHであり、前記正四辺形の場合の対荷重有効面積ABCDよりも明らかに広い。また、この対荷重有効面積が広い分、前記支持骨部501の対荷重有効面積も広くできる。従って、前記「拡大空間ニ」を確保するための正四辺形ABCDに比べ、この発明の実施の形態1の方が、前記連結柱部5にかかる前記荷重を安定的に的確に受けることができるようになる、即ち前記連結柱部5にかかる前記荷重を受け易くなる。   On the other hand, the effective load area in the case of the above-described first embodiment of the present invention indicated by the solid line in FIG. 3 is the area AEFGH surrounded by the angle AFEGH, and the effective load area in the case of the regular quadrilateral. Obviously wider than ABCD. Further, since the effective area for load is large, the effective area for load of the supporting bone portion 501 can be increased. Therefore, in comparison with the regular quadrilateral ABCD for securing the “expanded space d”, the first embodiment of the present invention can stably and accurately receive the load applied to the connecting column portion 5. That is, it becomes easy to receive the load applied to the connecting column portion 5.

前述のこの発明の実施の形態1の構造上の特徴による効果3   Effect 3 due to the structural features of the first embodiment of the present invention described above

前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の形状を、例えば、前述の特許文献1や特許文献2のような円柱状とした場合(図5の一点鎖線の円)、その前記対荷重有効面積は、前述のこの発明の実施の形態1の場合の前記対荷重有効面積ABEFGHより、明らかに小さくなり、しかも、前記クライオスタット2,4内の前記対荷重有効面積も小さくなり、前記連結柱部5にかかる前記荷重を安定的に的確に受けることが難しくなる。前記クライオスタット2,4内の前記対荷重有効面積を、この発明の実施の形態1の場合の前記対荷重有効面積ABEFGHと同等の面積とする為には、図5に2点鎖線で示す円のように径が極めて大きな円柱としなければならず、前述の被検者や診断関係者に対する開放性が低下する。   A portion corresponding to the uniform static magnetic field space region 8 (see FIG. 2) of the connecting column portion 5 (that is, between the first cryostat portion 2 and the second cryostat portion 4 of the connecting column portion 5). When the shape of the connecting column part 5 when the connecting column part 5 is viewed in the extending direction in the portion is, for example, a cylindrical shape as in the above-mentioned Patent Document 1 and Patent Document 2 (one point in FIG. 5) The effective area against load is smaller than the effective area AEFGH in the first embodiment of the present invention, and the load against the cryostats 2 and 4 The effective area is also reduced, and it is difficult to stably and accurately receive the load applied to the connecting column portion 5. In order to make the effective area for load in the cryostats 2 and 4 equal to the effective area for load ABEFGH in the first embodiment of the present invention, a circle indicated by a two-dot chain line in FIG. In this way, the cylinder must have a very large diameter, and the openness to the above-mentioned subject and the person concerned with diagnosis is lowered.

これに対し、図3に実線で示す前述のこの発明の実施の形態1の場合は、前記連結柱部5の前記均一静磁場空間領域8(図2も参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の形状を前述のように円柱状とした場合に比べ、前記連結柱部5にかかる前記荷重を受け易くなる。   On the other hand, in the case of the above-described first embodiment of the present invention indicated by a solid line in FIG. 3, the portion corresponding to the uniform static magnetic field space region 8 (see also FIG. The shape of the connecting column portion 5 when the connecting column portion 5 is viewed in the extending direction in the connecting column portion 5 (the portion between the first cryostat portion 2 and the second cryostat portion 4) is described above. As compared with the case of the columnar shape as described above, it becomes easier to receive the load applied to the connecting column portion 5.

前述のこの発明の実施の形態1の構造上の特徴による効果4   Effect 4 due to the structural features of the first embodiment of the present invention described above

前記連結柱部5の形状を円柱状とする場合において、前記クライオスタット2,4内の前記対荷重有効面積を、前述のこの発明の実施の形態1の場合の前記クライオスタット2,4内の前記対荷重有効面積と同等にする為に、図6に一点鎖線で示すように、前記円柱状の前記連結柱部5を前記均一静磁場空間領域8(図2も参照)寄りに配設した場合には、当該円柱状の前記連結柱部5の前記均一静磁場空間領域8側が前記均一静磁場空間領域8側へ大きくはみ出してしまい、当該はみ出した部分が前記第1及び前記第2のクライオスタット部2,4内の前記空間7を大幅に占有し、前述の被検者や診断関係者に対する開放性が著しく低下する。   In the case where the shape of the connecting column portion 5 is a columnar shape, the effective area for the load in the cryostats 2 and 4 is the same as the pair in the cryostats 2 and 4 in the first embodiment of the present invention described above. In order to make it equal to the effective load area, as shown by the alternate long and short dash line in FIG. 6, when the column-shaped connecting column portion 5 is disposed closer to the uniform static magnetic field space region 8 (see also FIG. 2). Is that the uniform static magnetic field space region 8 side of the columnar connecting column part 5 protrudes greatly to the uniform static magnetic field space region 8 side, and the protruding portions are the first and second cryostat portions 2. , 4 occupies a large space 7 and remarkably lowers the openness to the above-mentioned subjects and persons concerned with diagnosis.

これに対し、図3に実線で示す前述のこの発明の実施の形態1の場合は、前記円柱状の前記連結柱部5を前記均一静磁場空間領域8寄りに配設した場合(図5の2点鎖線の円を参照)に比べ、前述の被検者や診断関係者に対する前記開放性が格段に良い。   On the other hand, in the case of the above-described first embodiment of the present invention indicated by a solid line in FIG. 3, the columnar connecting column portion 5 is disposed closer to the uniform static magnetic field space region 8 (FIG. 5). Compared to the circle of the two-dot chain line), the above openness for the above-mentioned subject and the person concerned with diagnosis is much better.

実施の形態2.
以下、この発明の実施の形態2を図7により、前述のこの発明の実施の形態1と異なる点について主体的に説明し、その他の説明は割愛する。図7は前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の他の一事例を示す横断平面図である。なお、図7において前記図1〜図6と同一又は相当する部分には同一符号を付してある。
Embodiment 2. FIG.
Hereinafter, the second embodiment of the present invention will be described mainly with reference to FIG. 7 with respect to differences from the above-described first embodiment of the present invention, and other descriptions will be omitted. FIG. 7 shows a portion corresponding to the uniform static magnetic field space region 8 (see FIG. 2) of the connecting column portion 5 (that is, the first cryostat portion 2 and the second cryostat portion 4 of the connecting column portion 5). It is a cross-sectional top view which shows the other example of the said connection pillar part 5 which looked at the said connection pillar part 5 in the said extension direction in the part between). In FIG. 7, the same or corresponding parts as those in FIGS.

この発明の実施の形態2は、図7に示すように、前記連結柱部5の外壁部502の傾斜部50271,50281に対応して、支持骨部501の前記超電導コイル1,3の周方向の幅を、前記均一静磁場空間領域8の側の前側W3より前記均一静磁場空間領域8から遠い側W4の方を前記超電導コイル1,3の径方向の前記第1及び第2のクライオスタット2,4部内において広くしたものである。換言すれば、前記連結柱部5の外壁部502の傾斜部50271,50281に対応して、傾斜部50151,50161を設けたものである。   As shown in FIG. 7, the second embodiment of the present invention corresponds to the inclined portions 50271 and 50281 of the outer wall portion 502 of the connecting column portion 5, and the circumferential direction of the superconducting coils 1 and 3 of the supporting bone portion 501. Of the first and second cryostats 2 in the radial direction of the superconducting coils 1 and 3 on the side W4 farther from the uniform static magnetic field space region 8 than the front side W3 on the uniform static magnetic field space region 8 side. , 4 parts widened. In other words, inclined portions 50151 and 50161 are provided corresponding to the inclined portions 50271 and 50281 of the outer wall portion 502 of the connecting column portion 5.

この発明の実施の形態2によれば、前述のように構成することにより、前記支持骨部501の前記超電導コイル1,3の周方向の幅が、前記第1及び第2のクライオスタット2,4部内から前記第1及び第2のクライオスタット2,4部外に亘って、前述のこの発明の実施の形態1における幅W3に比べて広幅W4となるので、前記支持骨部501の「対荷重有効面積」が広くなり、前述のこの発明の実施の形態1に比べ、前記連結柱部5にかかる前記荷重を、より安定的により的確に受けることができるようになる、即ち前記連結柱部5にかかる前記荷重を、より受け易くなる。   According to the second embodiment of the present invention, by configuring as described above, the circumferential width of the superconducting coils 1 and 3 of the supporting bone portion 501 is the first and second cryostats 2 and 4. Since the width W4 extends from the inside to the outside of the first and second cryostats 2 and 4 as compared with the width W3 in the first embodiment of the present invention described above, As compared with the first embodiment of the present invention described above, the load applied to the connecting column portion 5 can be more stably and accurately received, that is, the connecting column portion 5 This load is more easily received.

実施の形態3.
以下、この発明の実施の形態3を図8により、前述のこの発明の実施の形態1及び実施の形態1と異なる点について主体的に説明し、その他の説明は割愛する。図8は前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の他の一事例を示す横断平面図である。なお、図8において前記図1〜図7と同一又は相当する部分には同一符号を付してある。
Embodiment 3 FIG.
Hereinafter, the third embodiment of the present invention will be described mainly with reference to FIG. 8 with respect to differences from the first embodiment and the first embodiment of the present invention described above, and the other description will be omitted. FIG. 8 shows a portion corresponding to the uniform static magnetic field space region 8 (see FIG. 2) of the connecting column portion 5 (that is, the first cryostat portion 2 and the second cryostat portion 4 of the connecting column portion 5). It is a cross-sectional top view which shows the other example of the said connection pillar part 5 which looked at the said connection pillar part 5 in the said extension direction in the part between). In FIG. 8, the same or corresponding parts as those in FIGS.

この発明の実施の形態3は、図8に示すように、前記連結柱部5の前記外壁部502の前記前壁部5021における前記均一静磁場空間領域8に面する壁面50211が、前記連結柱部5の内側の方へ湾曲するように、前記前壁部5021が前記連結柱部5の内側の方へ湾曲している。換言すれば、前記壁面50211が、前記均一静磁場空間領域8の中心6から離れる方向に湾曲している。   In the third embodiment of the present invention, as shown in FIG. 8, a wall surface 50211 facing the uniform static magnetic field space region 8 in the front wall portion 5021 of the outer wall portion 502 of the connecting column portion 5 is The front wall portion 5021 is curved toward the inner side of the connecting column portion 5 so as to be bent toward the inner side of the portion 5. In other words, the wall surface 50211 is curved in a direction away from the center 6 of the uniform static magnetic field space region 8.

この発明の実施の形態3によれば、前述のように構成することにより、前記連結柱部5の前記前壁部5021における前記均一静磁場空間領域8に面する壁面50211の前記均一静磁場空間領域8側に、拡大空間ホが形成され、前記第1のクライオスタット部2及び前記第2のクライオスタット部4間の前記空間7が、前述のこの発明の実施の形態1及び実施の形態2に比べて前記拡大空間ホの分だけ広くなる。従って、被検者に対する開放性が、前述のこの発明の実施の形態1及び実施の形態2に比べて更に良くなる。   According to the third embodiment of the present invention, the uniform static magnetic field space of the wall surface 50211 facing the uniform static magnetic field space region 8 in the front wall portion 5021 of the connecting column portion 5 is configured as described above. An enlarged space E is formed on the region 8 side, and the space 7 between the first cryostat portion 2 and the second cryostat portion 4 is compared with the first and second embodiments of the present invention described above. As a result, it becomes wider by the enlarged space e. Therefore, the openness to the subject is further improved as compared with the first and second embodiments of the present invention described above.

実施の形態4.
以下、この発明の実施の形態4を図9により、前述のこの発明の実施の形態1〜実施の形態3と異なる点について主体的に説明し、その他の説明は割愛する。図9は前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の他の一事例を示す横断平面図である。なお、図9において前記図1〜図8と同一又は相当する部分には同一符号を付してある。
Embodiment 4 FIG.
Hereinafter, the fourth embodiment of the present invention will be described mainly with reference to FIG. 9 with respect to differences from the first to third embodiments of the present invention described above, and the other description will be omitted. 9 shows a portion of the connecting column portion 5 corresponding to the uniform static magnetic field space region 8 (see FIG. 2) (that is, the first cryostat portion 2 and the second cryostat portion 4 of the connecting column portion 5). It is a cross-sectional top view which shows the other example of the said connection pillar part 5 which looked at the said connection pillar part 5 in the said extension direction in the part between). In FIG. 9, the same or corresponding parts as those in FIGS.

この発明の実施の形態4は、図9に示すように、前記連結柱部5の前記支持骨部501の前部支柱部5011が、前記連結柱部5の内側の方へ湾曲している。その結果、前記連結柱部5の前記外壁部502の前記前壁部5021が、前述のこの発明の実施の形態3に比べ、前記連結柱部5の内側の方へ深く湾曲している。その結果、前記外壁部502の前記前壁部5021における前記均一静磁場空間領域8に面する壁面50211が、前述のこの発明の実施の形態3に比べ、前記均一静磁場空間領域8の中心6から、より離れる方向に深く湾曲している。換言すれば、前記連結柱部5が外壁部502と当該外壁部内の支柱部501とから構成されており、前記支柱部501の、前記壁面50211の前記内側への湾曲に対応する部分が当該湾曲に対応して湾曲している。   In the fourth embodiment of the present invention, as shown in FIG. 9, the front column part 5011 of the support bone part 501 of the connecting column part 5 is curved toward the inside of the connecting column part 5. As a result, the front wall portion 5021 of the outer wall portion 502 of the connecting column portion 5 is deeply curved toward the inside of the connecting column portion 5 as compared with the third embodiment of the present invention described above. As a result, the wall surface 50211 facing the uniform static magnetic field space region 8 in the front wall portion 5021 of the outer wall portion 502 is the center 6 of the uniform static magnetic field space region 8 as compared with the third embodiment of the present invention described above. It is deeply curved in the direction away from. In other words, the connecting column portion 5 is composed of an outer wall portion 502 and a column portion 501 in the outer wall portion, and a portion of the column portion 501 corresponding to the inward bending of the wall surface 50211 is the curve. Curved to correspond to.

この発明の実施の形態4によれば、前述のように構成することにより、前記連結柱部5の前記前壁部5021における前記均一静磁場空間領域8に面する壁面50211の前記均一静磁場空間領域8側に、前述のこの発明の実施の形態3に比べ、より広い拡大空間ホが形成され、前記第1のクライオスタット部2及び前記第2のクライオスタット部4間の前記空間7が、前述のこの発明の実施の形態3に比べて、より広くなる。従って、被検者に対する開放性が、前述のこの発明の実施の形態3に比べて更に良くなる。   According to the fourth embodiment of the present invention, the uniform static magnetic field space of the wall surface 50211 facing the uniform static magnetic field space region 8 in the front wall portion 5021 of the connecting column portion 5 is configured as described above. Compared to the third embodiment of the present invention described above, a wider enlarged space E is formed on the region 8 side, and the space 7 between the first cryostat section 2 and the second cryostat section 4 is formed as described above. Compared to Embodiment 3 of the present invention, it becomes wider. Therefore, the openness to the subject is further improved compared to the above-described third embodiment of the present invention.

実施の形態5.
以下、この発明の実施の形態5を図10により、前述のこの発明の実施の形態1〜実施の形態4と異なる点について主体的に説明し、その他の説明は割愛する。図10は前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の他の一事例を示す横断平面図である。なお、図10において前記図1〜図9と同一又は相当する部分には同一符号を付してある。
Embodiment 5 FIG.
Hereinafter, the fifth embodiment of the present invention will be mainly described with respect to the differences from the first to fourth embodiments of the present invention described above with reference to FIG. 10, and the other description will be omitted. 10 shows a portion of the connecting column portion 5 corresponding to the uniform static magnetic field space region 8 (see FIG. 2) (that is, the first cryostat portion 2 and the second cryostat portion 4 of the connecting column portion 5). It is a cross-sectional top view which shows the other example of the said connection pillar part 5 which looked at the said connection pillar part 5 in the said extension direction in the part between). In FIG. 10, parts that are the same as or correspond to those in FIGS.

この発明の実施の形態5は、図10に示すように、前述のこの発明の実施の形態4の図9における前記連結柱部5の前記外壁部502の直線状に延在する傾斜部50271,50281、及び前記支持骨部501の直線状に延在する傾斜部50151,50161に代えて、前記連結柱部5の外側の方へ湾曲した湾曲部50274,50284を前記連結柱部5の前記外壁部502に、湾曲部50152,50162を前記連結柱部5の前記支持骨部501に、それぞれ形成してある。換言すれば、前記連結柱部5の前記均一静磁場空間領域8に面する前側と前記均一静磁場空間領域8から遠い幅広の部分との間の両側の端壁部5023,5024が、その外側へ湾曲している。   As shown in FIG. 10, the fifth embodiment of the present invention has an inclined portion 50271 extending linearly of the outer wall portion 502 of the connecting column portion 5 in FIG. 9 of the aforementioned fourth embodiment of the present invention. 50281 and the inclined portions 50151 and 50161 extending linearly of the supporting bone portion 501, curved portions 50274 and 50284 curved toward the outside of the connecting column portion 5 are used as the outer wall of the connecting column portion 5. In the portion 502, curved portions 50152 and 50162 are formed on the supporting bone portion 501 of the connecting column portion 5, respectively. In other words, the end wall portions 5023 and 5024 on both sides between the front side of the connecting column portion 5 facing the uniform static magnetic field space region 8 and the wide portion far from the uniform static magnetic field space region 8 Curved to

この発明の実施の形態5によれば、前述のように構成することにより、前記外壁部502の前記湾曲部50274,50284の表面積が、前述のこの発明の実施の形態1〜実施の形態4に比べて小さくなるので、液冷媒が通る連通管18を内蔵した前記連結柱部5の外部から当該連結柱部5の内部への熱侵入が、より小さくなる。   According to Embodiment 5 of the present invention, by configuring as described above, the surface areas of the curved portions 50274 and 50284 of the outer wall portion 502 are the same as those of Embodiments 1 to 4 of the present invention described above. Since it becomes small compared, the heat penetration | invasion to the inside of the said connection pillar part 5 from the outside of the said connection pillar part 5 which incorporated the communicating pipe | tube 18 through which a liquid refrigerant passes becomes smaller.

なお、前記支持骨部501に前記湾曲部50152,50162を形成することにより、前記支持骨部501に前記湾曲部50152,50162を形成しない場合に比べて、前記外壁部502の前記湾曲部50274,50284の曲率半径が小さくなり、前記連結柱部5の外部から当該連結柱部5の内部への熱侵入が、より小さくなる。   In addition, by forming the curved portions 50152 and 50162 in the support bone portion 501, the curved portions 50274 and 50274 of the outer wall portion 502 are compared with the case where the curved portions 50152 and 50162 are not formed in the support bone portion 501. The curvature radius of 50284 becomes small, and the heat intrusion from the outside of the connecting column portion 5 to the inside of the connecting column portion 5 becomes smaller.

実施の形態6.
以下、この発明の実施の形態6を図11により、前述のこの発明の実施の形態1〜実施の形態5と異なる点について主体的に説明し、その他の説明は割愛する。図11は前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の他の一事例を示す横断平面図である。なお、図11において前記図1〜図10と同一又は相当する部分には同一符号を付してある。
Embodiment 6 FIG.
Hereinafter, the sixth embodiment of the present invention will be mainly described with reference to FIG. 11 with respect to differences from the first to fifth embodiments of the present invention described above, and the other description will be omitted. FIG. 11 shows a portion corresponding to the uniform static magnetic field space region 8 (see FIG. 2) of the connecting column portion 5 (that is, the first cryostat portion 2 and the second cryostat portion 4 of the connecting column portion 5). It is a cross-sectional top view which shows the other example of the said connection pillar part 5 which looked at the said connection pillar part 5 in the said extension direction in the part between). In FIG. 11, parts that are the same as or correspond to those in FIGS.

この発明の実施の形態6は、図11に示すように、前述のこの発明の実施の形態4の図9における前記連結柱部5の前記前壁部5021の壁面50211が、前記第1及び第2のクライオスタット部2,4の円形凹み20131,40131の周面と一致している。なお、図11においては、前記第2のクライオスタット部4の円形凹み40131のみが図示されている。   In Embodiment 6 of the present invention, as shown in FIG. 11, the wall surface 50211 of the front wall portion 5021 of the connecting column portion 5 in FIG. 9 of Embodiment 4 of the present invention described above is the first and first 2 coincides with the circumferential surface of the circular recesses 20131 and 40131 of the cryostat portions 2 and 4. In FIG. 11, only the circular recess 40131 of the second cryostat portion 4 is shown.

この発明の実施の形態6によれば、前述のように構成することにより、前記連結柱部5の前記前壁部5021における前記均一静磁場空間領域8に面する壁面50211の前記均一静磁場空間領域8側に、前述のこの発明の実施の形態4に比べ、より広い拡大空間ホが形成され、前記第1のクライオスタット部2及び前記第2のクライオスタット部4間の前記空間7が、前述のこの発明の実施の形態5に比べて、より広くなる。従って、被検者に対する開放性が、前述のこの発明の実施の形態5に比べて更に良くなる。   According to the sixth embodiment of the present invention, the uniform static magnetic field space of the wall surface 50211 facing the uniform static magnetic field space region 8 in the front wall portion 5021 of the connecting column portion 5 is configured as described above. Compared to the above-described fourth embodiment of the present invention, a wider expanded space E is formed on the region 8 side, and the space 7 between the first cryostat portion 2 and the second cryostat portion 4 is formed as described above. Compared to the fifth embodiment of the present invention, it becomes wider. Therefore, the openness to the subject is further improved compared to the above-described fifth embodiment of the present invention.

実施の形態7.
以下、この発明の実施の形態7を図12及び図13により、前述のこの発明の実施の形態1〜実施の形態6と異なる点について主体的に説明し、その他の説明は割愛する。図12は前記連結柱部5の前記均一静磁場空間領域8(図2参照)に対応する部分(つまり、前記連結柱部5の、前記第1のクライオスタット部2と第2のクライオスタット部4との間の部分)における前記連結柱部5をその前記延在方向に見た当該連結柱部5の他の一事例を示す横断平面図、図13は図12の外観側面図である。なお、図12及び図13において前記図1〜図11と同一又は相当する部分には同一符号を付してある。
Embodiment 7 FIG.
Hereinafter, the seventh embodiment of the present invention will be mainly described with respect to the differences from the first to sixth embodiments of the present invention described above with reference to FIGS. 12 and 13, and the other description will be omitted. FIG. 12 shows a portion corresponding to the uniform static magnetic field space region 8 (see FIG. 2) of the connecting column portion 5 (that is, the first cryostat portion 2 and the second cryostat portion 4 of the connecting column portion 5). FIG. 13 is an external side view of FIG. 12, showing another example of the connecting column part 5 when the connecting column part 5 is viewed in the extending direction. 12 and 13, the same or corresponding parts as those in FIGS. 1 to 11 are denoted by the same reference numerals.

この発明の実施の形態7は、図13に明示してあるように、前述のこの発明の実施の形態6の図11における前記連結柱部5の前記前壁部5021の壁面50211が、側面からみても前記連結柱部5の内側へ湾曲している。換言すれば、前述のこの発明の実施の形態6の図11における前記連結柱部5の前記前壁部5021の壁面50211が、側面からみても、前記均一静磁場空間領域8から、更に遠くなるように湾曲している。   In the seventh embodiment of the present invention, as clearly shown in FIG. 13, the wall surface 50211 of the front wall portion 5021 of the connecting column portion 5 in FIG. Even if it sees, it curves to the inner side of the said connection pillar part 5. FIG. In other words, the wall surface 50211 of the front wall portion 5021 of the connecting column portion 5 in FIG. 11 of the above-described sixth embodiment of the present invention is further away from the uniform static magnetic field space region 8 even when viewed from the side. Is so curved.

この発明の実施の形態7によれば、前述のように構成することにより、前記連結柱部5の前記前壁部5021における前記均一静磁場空間領域8に面する壁面50211の前記均一静磁場空間領域8側に、前述のこの発明の実施の形態6に比べ、より広い拡大空間ホが形成され、前記第1のクライオスタット部2及び前記第2のクライオスタット部4間の前記空間7が、前述のこの発明の実施の形態6に比べて、より広くなる。従って、被検者に対する開放性が、前述のこの発明の実施の形態6に比べて更に良くなる。   According to Embodiment 7 of the present invention, the uniform static magnetic field space of the wall surface 50211 facing the uniform static magnetic field space region 8 in the front wall portion 5021 of the connecting column portion 5 is configured as described above. Compared to the above-described sixth embodiment of the present invention, a wider expansion space E is formed on the region 8 side, and the space 7 between the first cryostat portion 2 and the second cryostat portion 4 is formed as described above. Compared to the sixth embodiment of the present invention, it becomes wider. Therefore, the openness to the subject is further improved compared to the above-described sixth embodiment of the present invention.

この発明の実施の形態1を示す図で、対向形の磁気共鳴イメ−ジング装置全体の主要部の構成の一例を示す平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and is a top view which shows an example of a structure of the principal part of the whole opposing magnetic resonance imaging apparatus. この発明の実施の形態1を示す図で、図1のII−II線における断面を矢印方向に見た縦断側面図である。It is a figure which shows Embodiment 1 of this invention, and is the vertical side view which looked at the cross section in the II-II line | wire of FIG. 1 in the arrow direction. この発明の実施の形態1を示す図で、図2のIII−III線における断面を矢印方向に見た横断平面図であり、この発明の実施の形態1の要部の詳細構成および効果の説明図である。FIG. 3 is a diagram illustrating the first embodiment of the present invention, and is a cross-sectional plan view of the cross section taken along the line III-III in FIG. 2 as viewed in the direction of the arrows; FIG. この発明の実施の形態1を示す図で、この発明の実施の形態1の効果のである。It is a figure which shows Embodiment 1 of this invention, and is the effect of Embodiment 1 of this invention. この発明の実施の形態1を示す図で、この発明の実施の形態1の効果の説明図である。It is a figure which shows Embodiment 1 of this invention, and is explanatory drawing of the effect of Embodiment 1 of this invention. この発明の実施の形態1を示す図で、この発明の実施の形態1の効果の説明図である。It is a figure which shows Embodiment 1 of this invention, and is explanatory drawing of the effect of Embodiment 1 of this invention. この発明の実施の形態2を示す図で、連結柱部の均一静磁場空間領域に対応する部分における前記連結柱部をその前記延在方向に見た当該連結柱部の他の一事例を示す横断平面図である。It is a figure which shows Embodiment 2 of this invention, and shows the other example of the said connection pillar part which looked at the said connection pillar part in the part corresponding to the uniform static magnetic field space area | region of a connection pillar part in the said extension direction. FIG. この発明の実施の形態3を示す図で、連結柱部の均一静磁場空間領域に対応する部分における前記連結柱部をその前記延在方向に見た当該連結柱部の他の一事例を示す横断平面図である。It is a figure which shows Embodiment 3 of this invention, and shows the other example of the said connection pillar part which looked at the said connection pillar part in the part corresponding to the uniform static magnetic field space area | region of a connection pillar part in the said extension direction. FIG. この発明の実施の形態4を示す図で、連結柱部の均一静磁場空間領域に対応する部分における前記連結柱部をその前記延在方向に見た当該連結柱部の他の一事例を示す横断平面図である。It is a figure which shows Embodiment 4 of this invention, and shows the other example of the said connection pillar part which looked at the said connection pillar part in the part corresponding to the uniform static magnetic field space area | region of a connection pillar part in the said extension direction. FIG. この発明の実施の形態5を示す図で、連結柱部の均一静磁場空間領域に対応する部分における前記連結柱部をその前記延在方向に見た当該連結柱部の他の一事例を示す横断平面図である。It is a figure which shows Embodiment 5 of this invention, and shows the other example of the said connection pillar part which looked at the said connection pillar part in the part corresponding to the uniform static magnetic field space area | region of a connection pillar part in the said extension direction. FIG. この発明の実施の形態6を示す図で、連結柱部の均一静磁場空間領域に対応する部分における前記連結柱部をその前記延在方向に見た当該連結柱部の他の一事例を示す横断平面図である。It is a figure which shows Embodiment 6 of this invention, and shows the other example of the said connection pillar part which looked at the said connection pillar part in the part corresponding to the uniform static magnetic field space area | region of a connection pillar part in the said extension direction. FIG. この発明の実施の形態7を示す図で、連結柱部の均一静磁場空間領域に対応する部分における前記連結柱部をその前記延在方向に見た当該連結柱部の他の一事例を示す横断平面図である。It is a figure which shows Embodiment 7 of this invention, and shows the other example of the said connection pillar part which looked at the said connection pillar part in the part corresponding to the uniform static magnetic field space area | region of a connection pillar part in the said extension direction. FIG. この発明の実施の形態7を示す図で、図12の外観側面図である。It is a figure which shows Embodiment 7 of this invention, and is an external appearance side view of FIG.

符号の説明Explanation of symbols

1 第1の超電導コイル、
2 第1のクライオスタット部、
201 真空容器部、
2011 円筒部、
2012 端壁部、
2013 端壁部、
20131 円形凹み、
201311 底壁部、
201312 周壁部、
2014 端壁部、
2015 円形壁部、
2016 ド−ナツ状凹み、
2017 液冷媒、
20171 液冷媒の液面、
3 第2の超電導コイル、
4 第2のクライオスタット部、
401 真空容器部、
4011 円筒部、
4012 端壁部、
4013 端壁部、
40131 円形凹み、
401311 底壁部、
401312 周壁部、
4014 周壁部、
4015 円形壁部、
4016 ド−ナツ状凹み、
5 連結柱部、
501 支持骨部、
5011 前部支柱部、
5012 後部支柱部、
5013 端部支柱部、
5014 端部支柱部、
50151 傾斜部、
50161 傾斜部、
50152 湾曲部、
50162 湾曲部、
502 外壁部、
5021 前壁部、
50211 壁面、
5022 後壁部、
5023 端壁部、
5024 端壁部、
5025 上壁部、
5026 底壁部、
50271 傾斜部、
50272 曲部、
50273 曲部、
50274 湾曲部、
50281 傾斜部、
50282 曲部、
50283 曲部、
50284 湾曲部、
503 熱シ−ルド、
6 中心(中心線)、
7 空間、
71 被検者用ベッド、
8 均一静磁場空間領域、
91 第1の調整磁石、
92 第2の調整磁石、
10 外域磁場打消磁石、
11 外域磁場打消磁石、
12 外域磁場打消磁石、
13 外域磁場打消磁石、
14 冷凍機、
15 冷媒注入口部、
16 連通路、
17 連通路、
18 冷媒連通管、
181 電線挿通管、
191 シム取付部材、
1911 シム取付穴
19111 第1のシム、
192 シム取付部材、
202 第2のシム、
203 第4のシム、
211 第1の傾斜磁場コイル、
212 第2の傾斜磁場コイル、
22 据付フロア、
231 第1の高周波コイル、
232 第2の高周波コイル、
ニ 拡大空間
ホ 拡大空間。
1 first superconducting coil,
2 First cryostat section,
201 vacuum vessel,
2011 Cylindrical part,
2012 end wall,
2013 end wall,
20131 circular dent,
201311 Bottom wall,
201312 Perimeter wall,
2014 end wall,
2015 round wall,
2016 donut shaped dent,
2017 Liquid refrigerant,
20171 Liquid refrigerant level,
3 Second superconducting coil,
4 Second cryostat section,
401 vacuum vessel,
4011 cylindrical part,
4012 end wall,
4013 end wall,
40131 circular dent,
401311 bottom wall,
401312 perimeter wall,
4014 perimeter wall,
4015 circular wall,
4016 donut shaped dent,
5 connecting pillars,
501 support bone,
5011 front strut,
5012 rear strut,
5013 end struts,
5014 end struts,
50151 inclined part,
50161 slope,
50152 curved part,
50162 curved part,
502 outer wall,
5021 Front wall,
50211 wall surface,
5022 rear wall,
5023 end wall,
5024 end wall,
5025 Upper wall,
5026 bottom wall,
50271 slope,
50272 songs,
50273 songs,
50274 curved part,
50281 inclined part,
50282 songs,
50283 songs,
50284 curved part,
503 heat shield,
6 Center (center line),
7 space,
71 Patient bed,
8 uniform static magnetic field space region,
91 first adjusting magnet,
92 second adjusting magnet,
10 outer field magnetic field canceling magnet,
11 Outer magnetic field canceling magnet,
12 outer field magnetic field canceling magnet,
13 Outer magnetic field canceling magnet,
14 refrigerator,
15 refrigerant inlet,
16 passages,
17 Communication path,
18 Refrigerant communication pipe,
181 Electric wire insertion tube,
191 shim mounting members,
1911 Shim mounting holes
19111 The first shim,
192 shim mounting members,
202 second shim,
203 4th shim,
211 a first gradient coil;
212 second gradient coil,
22 Installation floor,
231 a first high frequency coil;
232 second high frequency coil,
D Expansion space E Expansion space.

Claims (5)

冷凍機により冷却される液冷媒を夫々内蔵した第1及び第2のクライオスタット部を当該第1及び第2のクライオスタット部の相互間に当該第1及び第2のクライオスタット部に内蔵の環状の超電導コイルによる均一静磁場空間領域が存在する空間が形成されように当該第1及び第2のクライオスタット部に跨って延在して連結する連結柱部を備えた超電導電磁石装置において、前記連結柱部の前記均一静磁場空間領域に対応する部分における前記延在方向に見た形状をほぼ矩形とし、当該連結柱部を前記超電導コイルの径方向に前記第1及び第2のクライオスタット部の内外に跨って延在させてあると共に、前記連結柱部の前記超電導コイルの周方向の幅を、前記均一静磁場空間領域に面する前側より前記均一静磁場空間領域から遠い側の方を前記超電導コイルの径方向の前記第1及び第2のクライオスタット部内において広くしてあることを特徴とする超電導電磁石装置。   Annular superconducting coils in which the first and second cryostats each containing liquid refrigerant cooled by a refrigerator are built in the first and second cryostats between the first and second cryostats In the superconducting electromagnet apparatus including a connecting column portion that extends across and connects the first and second cryostat portions so that a space in which a uniform static magnetic field space region exists is formed, The shape of the portion corresponding to the uniform static magnetic field space region viewed in the extending direction is substantially rectangular, and the connecting column portion extends in the radial direction of the superconducting coil across the inside and outside of the first and second cryostat portions. And the width of the superconducting coil in the circumferential direction of the connecting pillar portion is farther from the uniform static magnetic field space region than the front side facing the uniform static magnetic field space region. Superconducting electromagnet apparatus, wherein a are widely within the first and second cryostat portion in the radial direction of the superconducting coil. 請求項1に記載の超電導電磁石装置において、前記連結柱部の前記均一静磁場空間領域に面する前側と前記均一静磁場空間領域から遠い幅広の部分との間の両側の端壁部が、その外側へ湾曲していることを特徴とする超電導電磁石装置。   The superconducting electromagnet apparatus according to claim 1, wherein end walls on both sides between a front side of the connecting column portion facing the uniform static magnetic field space region and a wide portion far from the uniform static magnetic field space region are A superconducting electromagnet apparatus characterized by bending outward. 請求項1に記載の超電導電磁石装置において、前記連結柱部の前記均一静磁場空間領域に面する壁面が連結柱部の内側へ湾曲していることを特徴とする超電導電磁石装置。   2. The superconducting electromagnet apparatus according to claim 1, wherein a wall surface facing the uniform static magnetic field space region of the connecting column portion is curved inward of the connecting column portion. 請求項3に記載の超電導電磁石装置において、前記連結柱部が外壁部と当該外壁部内の支柱部とから構成されており、前記支柱部の、前記壁面の前記内側への湾曲に対応する部分が当該湾曲に対応して湾曲していることを特徴とする超電導電磁石装置。   4. The superconducting electromagnet device according to claim 3, wherein the connecting column portion is composed of an outer wall portion and a support portion in the outer wall portion, and a portion of the support portion corresponding to the inward bending of the wall surface. A superconducting electromagnet apparatus that is curved corresponding to the curvature. 請求項1〜請求項4の何れか一に記載の超電導電磁石装置を備えた磁気共鳴イメ−ジング装置。   A magnetic resonance imaging apparatus comprising the superconducting electromagnet apparatus according to any one of claims 1 to 4.
JP2003434782A 2003-12-26 2003-12-26 Superconducting magnet apparatus and magnetic resonance imaging equipment Pending JP2005185785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003434782A JP2005185785A (en) 2003-12-26 2003-12-26 Superconducting magnet apparatus and magnetic resonance imaging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434782A JP2005185785A (en) 2003-12-26 2003-12-26 Superconducting magnet apparatus and magnetic resonance imaging equipment

Publications (1)

Publication Number Publication Date
JP2005185785A true JP2005185785A (en) 2005-07-14

Family

ID=34791736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003434782A Pending JP2005185785A (en) 2003-12-26 2003-12-26 Superconducting magnet apparatus and magnetic resonance imaging equipment

Country Status (1)

Country Link
JP (1) JP2005185785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2458370A (en) * 2008-03-20 2009-09-23 Gen Electric Magnetic Resonance Imaging System

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2458370A (en) * 2008-03-20 2009-09-23 Gen Electric Magnetic Resonance Imaging System
GB2458370B (en) * 2008-03-20 2012-11-14 Gen Electric Magnetic resonance imaging system having a multiple-section magnet

Similar Documents

Publication Publication Date Title
JP3631533B2 (en) Magnetic resonance imaging magnet
JP3527310B2 (en) Open magnetic resonance imaging magnet
JP3711659B2 (en) Open magnetic resonance imaging magnet
JP3615119B2 (en) Apparatus and method for superconducting magnet with pole pieces
JP3673556B2 (en) Open magnetic resonance imaging magnet with superconducting shield
JP3706658B2 (en) Over shoulder type magnetic resonance imaging magnet
JP3537912B2 (en) Treatment tomography device with homogenization device
EP1882958B1 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP3663262B2 (en) Open magnetic resonance imaging magnet
JP3728199B2 (en) Magnetic resonance imaging system
US20040100261A1 (en) Cold mass support structure and helium vessel of actively shielded high field open MRI magnets
US6198371B1 (en) Open magnet with floor mount
EP1531337A1 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
EP1293993A2 (en) Superconducting magnet and magnetic resonance imaging apparatus using the same
JP2005185785A (en) Superconducting magnet apparatus and magnetic resonance imaging equipment
US6667676B2 (en) Superconducting magnet and magnetic resonance imaging apparatus using the same
JP4866213B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP4391227B2 (en) Magnet apparatus and magnetic resonance imaging apparatus
JP2005185550A (en) Magnet apparatus and magnetic resonance imaging apparatus
JP2005185784A (en) Magnet apparatus and magnetic resonance imaging equipment
US7205767B2 (en) Magnetic apparatus, installation method for magnetic apparatus, and magnetic resonance imaging diagnosis system
JP2005185318A (en) Magnetic device, and magnetic resonance imaging device
JP2005185551A (en) Magnetic device, and magnetic resonance imaging device
JP2005185552A (en) Magnet apparatus and magnetic resonance imaging equipment
JP2006141613A (en) Magnet system and magnetic resonance image diagnostic apparatus