JP2005185433A - Bioceramic composite structure - Google Patents

Bioceramic composite structure Download PDF

Info

Publication number
JP2005185433A
JP2005185433A JP2003429391A JP2003429391A JP2005185433A JP 2005185433 A JP2005185433 A JP 2005185433A JP 2003429391 A JP2003429391 A JP 2003429391A JP 2003429391 A JP2003429391 A JP 2003429391A JP 2005185433 A JP2005185433 A JP 2005185433A
Authority
JP
Japan
Prior art keywords
core
composite structure
molded body
skin material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003429391A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003429391A priority Critical patent/JP2005185433A/en
Publication of JP2005185433A publication Critical patent/JP2005185433A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-toughness and high-strength bioceramic composite structure without impairing biocompatibility in the composite structure combining a core material of dense ceramics with sufficient strength or a metal and a porous skin material of a calcium phosphate-based sintered compact. <P>SOLUTION: The composite structure 1 in which a plurality of single-core structural bodies 4 formed by covering an outer periphery of an elongated core material 2 with the porosity of 5% or less with the skin material 3 with the porosity of 25% or more and having pores communicating in three dimensions are gathered and bundled side by side is biologically used such as for a bone filling material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、長尺状の芯材の外周を異なる組成からなる表皮材にて被覆してなる単芯構造体を複数本収束した略円柱状の複合構造体からなる生体用セラミックス部材であり、生体内に埋入する骨補填材料に関する。   The present invention is a biological ceramic member comprising a substantially cylindrical composite structure in which a plurality of single core structures formed by coating the outer periphery of a long core material with a skin material having a different composition, The present invention relates to a bone filling material to be embedded in a living body.

従来より、外傷などによって生じた骨の欠損部に骨補填材を用いて骨を修復させることが行われている。この骨補填材には骨形成の足場を提供するものやそれ自体が骨に吸収されつつ新生骨芽細胞の成長を促進するものなどが知られている。これらの材料に必要な特性としては無毒、安全でしかも機械的強度に優れていること、また生体組織に対して親和性があり骨組織の細胞や血管組織と結合しやすい材料であることが要求される。   2. Description of the Related Art Conventionally, bone has been repaired using a bone prosthetic material in a bone defect caused by trauma or the like. As this bone prosthetic material, those that provide a scaffold for bone formation and those that promote the growth of new osteoblasts while being absorbed by bone are known. The properties required for these materials are non-toxic, safe and excellent in mechanical strength, and must be compatible with living tissue and easily bind to bone tissue cells and vascular tissue. Is done.

このような材料として、これまでにリン酸三カルシウム(TCP)、ハイドロキシアパタイト(HAP)などの焼結体からなるリン酸カルシウム系焼結体が提案されている。しかし、これらのリン酸カルシウム系焼結体は生体親和性に優れているものの靭性値が極めて小さく、容易に破折するため信頼性のある実用材料として使用することが困難であった。   As such a material, a calcium phosphate-based sintered body made of a sintered body such as tricalcium phosphate (TCP) or hydroxyapatite (HAP) has been proposed so far. However, these calcium phosphate-based sintered bodies have excellent biocompatibility, but have extremely low toughness values and easily break, making it difficult to use them as reliable practical materials.

この破壊靱性値のリン酸カルシウム系焼結体の欠点をカバーする為に他の材料との複合化や、リン酸カルシウム自体の緻密化が試みられてきた。例えば特許文献1ではZrO、Al、TiO,SiC、Siからなる基体の全部または表面部に平均径0.1〜2mmの多数の空隙を設けて、該空隙内に多孔質のリン酸カルシウム系化合物を充填することにより高強度を保ちつつ良好な骨形成可能となることが開示されている。 In order to cover the defects of the calcium phosphate sintered body having this fracture toughness value, attempts have been made to combine it with other materials or to make the calcium phosphate itself dense. For example, in Patent Document 1, a large number of voids having an average diameter of 0.1 to 2 mm are provided in the entire or surface portion of a substrate made of ZrO 2 , Al 2 O 3 , TiO 2 , SiC, and Si 3 N 4. It is disclosed that filling with a porous calcium phosphate compound enables good bone formation while maintaining high strength.

また、特許文献2にはリン酸カルシウムに微量のピロリン酸ナトリウムを添加することにより硬化性水溶液を加えてセメント化した際の流動性が向上し緻密な硬化体が得られ、強度が上昇することが開示されている。
特開平2−52664号 特開平14−253664号
Patent Document 2 discloses that the addition of a small amount of sodium pyrophosphate to calcium phosphate improves the fluidity when cemented by adding a curable aqueous solution, resulting in a dense hardened body and increased strength. Has been.
JP-A-2-52664 JP-A-14-253664

しかしながら、上記特許文献1に記載された基体に多数の空隙を形成する方法では基体の強度が低下する傾向にあり、上述の従来のセラミックスでは強度が不十分で生体部材が破損する恐れがあった。   However, the method of forming a large number of voids in the substrate described in Patent Document 1 tends to lower the strength of the substrate, and the above-described conventional ceramics have insufficient strength and may cause damage to the biological member. .

また、上記特許文献2に記載された生体骨治療用リン酸カルシウムセメントの強化方法では、強度が向上するものの得られた焼結体の気孔率が低く、また連続したポアを形成していないため骨芽細胞の成長が遅いことから、生体に吸収されにくいという問題が残っていた。   Further, in the method for strengthening calcium phosphate cement for living bone treatment described in Patent Document 2, although the strength is improved, the obtained sintered body has a low porosity and does not form a continuous pore. Due to the slow growth of cells, the problem remains that it is difficult for the living body to absorb.

本発明は上記課題を解決するためになされたもので、その目的は、十分な強度を有する緻密なセラミックスあるいは金属の芯材と多孔質のリン酸カルシウム系焼結体の表皮材とを組み合わせた複合構造体において、生体親和性を損なうことなく、高靭性で高強度な生体用セラミックス複合構造体を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object thereof is a composite structure in which a dense ceramic or metal core material having sufficient strength and a skin material of a porous calcium phosphate sintered body are combined. An object of the present invention is to provide a ceramic composite structure for living body having high toughness and high strength without impairing biocompatibility in the body.

本発明者らは上記課題について検討した結果、十分な強度を有する緻密な酸化物系セラミックスあるいはチタンなどの合金を芯材とし、その表面を多孔質の生体親和性セラミックスで覆った構造の単芯構造体を複数本収束することにより、靭性および強度を高めることができるとともに、三次元的に連続した気孔を有して骨芽細胞が十分に成長することが可能な骨補填材料として好適な複合構造体となることを知見した。   As a result of studying the above problems, the present inventors have determined that a single core having a structure in which a dense oxide ceramic having sufficient strength or an alloy such as titanium is used as a core and the surface thereof is covered with porous biocompatible ceramics. By converging multiple structures, toughness and strength can be increased, and a composite suitable as a bone grafting material that has three-dimensionally continuous pores and allows osteoblasts to grow sufficiently It was found that it became a structure.

すなわち、本発明の複合構造体は、長尺状の芯材の外周を異なる組成からなる表皮材にて被覆してなる単芯構造体を複数本収束した複合構造体からなり前記芯材に緻密なセラミックスあるいは金属からなり、表皮材が三次元的に連続した気孔を有する生体親和性セラミックスからなることを特徴とするものである。   That is, the composite structure of the present invention comprises a composite structure obtained by converging a plurality of single-core structures formed by coating the outer periphery of a long core material with a skin material having a different composition. The skin material is made of biocompatible ceramics having three-dimensionally continuous pores.

ここで、前記複合構造体の断面における芯材cと表皮材sの面積比c/sが1〜10の間である場合に特に骨補填材料としての強度および生体親和性のバランスがよく、骨補填材料としての効果が有効に発揮される。   Here, when the area ratio c / s between the core material c and the skin material s in the cross section of the composite structure is between 1 and 10, the strength and biocompatibility balance as a bone filling material is good, and the bone The effect as a filling material is exhibited effectively.

以上詳述したとおり、本発明の複合構造体によれば、十分な強度を有する緻密な酸化物系セラミックスあるいは金属を芯材とし、その表面を多孔質の生体親和性セラミックスで覆った構造の単芯構造体を複数本収束することにより、三次元的に連続した気孔を骨芽細胞が十分に成長することが可能な骨補填材料として好適な複合構造体となる。   As described above in detail, according to the composite structure of the present invention, a simple oxide ceramic or metal having sufficient strength is used as a core, and the surface is covered with porous biocompatible ceramics. By converging a plurality of core structures, a composite structure suitable as a bone filling material capable of sufficiently growing osteoblasts in three-dimensionally continuous pores is obtained.

本発明の複合構造体について、その一実施例である図を基に説明する。  The composite structure of the present invention will be described with reference to the drawings which are one example thereof.

図1(a)によれば、複合構造体1は、緻密に焼結したセラミックスあるいは合金を芯材2とし、その外周を組成の異なる生体親和性セラミックス3にて被覆した単芯構造体4を基本構造としている。単芯構造体4は図1(b)の斜視図に示すように同心円断面を有する円柱状構造をなしている。   Referring to FIG. 1A, a composite structure 1 includes a single-core structure 4 in which a densely sintered ceramic or alloy is used as a core 2 and the outer periphery thereof is covered with biocompatible ceramics 3 having different compositions. Basic structure. The single-core structure 4 has a cylindrical structure having a concentric cross section as shown in the perspective view of FIG.

さらに図2(a)に示すように、本発明にかかる複合構造体1は単芯構造体4を複数本収束させた構造を有しており生体親和性セラミックスの表皮材3が緻密に焼結したセラミックスあるいは金属の芯材2の周囲を連続的に取り囲む構造になっている。この際、稠密構造で収束させると図のように芯材2は六角形の断面形状を呈するが意図的に丸型や星型などその他の形状であってもよく、収束する単芯構造体の数は補填材として用いられる生体骨の部位あるいは形状により制御することが出来る。また、複合構造体断面における表皮材3と芯材2の面積の比率c/sは1〜10であることが望ましい。複合構造体1は図2(b)の斜視図に示すように単芯構造体4が複数本集束された多芯構造からなる円柱状の多芯構造体であり、実用的には置換する生体骨の形状に合わせて加工し用いるものである。   Further, as shown in FIG. 2A, the composite structure 1 according to the present invention has a structure in which a plurality of single-core structures 4 are converged, and the skin material 3 of the biocompatible ceramic is densely sintered. The ceramic or metal core 2 is continuously surrounded. At this time, the core material 2 has a hexagonal cross-sectional shape as shown in the figure when converged with a dense structure, but may be intentionally other shapes such as a round shape or a star shape. The number can be controlled by the part or shape of the living bone used as the filling material. The area ratio c / s between the skin material 3 and the core material 2 in the cross section of the composite structure is preferably 1 to 10. As shown in the perspective view of FIG. 2 (b), the composite structure 1 is a cylindrical multi-core structure having a multi-core structure in which a plurality of single-core structures 4 are converged. It is processed and used according to the shape of the bone.

ここで、本発明にかかる生体用セラミックス用の複合構造体1においては例えば生体親和性を有する気孔率25%以上、特に40〜90%、さらに45〜70%の多孔質セラミックスからなる表皮材3を、気孔率5%以下、特に2%以下の緻密なセラミックスあるいは金属からなる芯材2で高靭化、高強度化したものであり、緻密なセラミックスあるいは金属の芯材が生体骨に対し二次元に配列することにより優れた圧縮強度および曲げ強度を有する。また、芯材2を覆うように三次元に配列された生体親和性多孔質セラミックスの表皮材3は生体骨から骨補填材への骨芽細胞の成長を促す働きをすることにより、強度と生体親和性に優れた複合構造体となる。   Here, in the composite structure 1 for living body ceramics according to the present invention, for example, a skin material 3 made of porous ceramics having a porosity of 25% or more, particularly 40 to 90%, more preferably 45 to 70%, having biocompatibility. The core material 2 is made of a dense ceramic or metal having a porosity of 5% or less, particularly 2% or less, and the toughness and strength are increased. Excellent compressive strength and bending strength by arranging in dimension. In addition, the biocompatible porous ceramic skin material 3 arranged three-dimensionally so as to cover the core material 2 works to promote the growth of osteoblasts from the living bone to the bone prosthetic material, thereby increasing the strength and the living body. It becomes a composite structure with excellent affinity.

本発明の複合構造体1は芯材2、表皮材3の材質の組み合わせを自由に選択することが出来、表皮材3と芯材2の比率も任意に制御することが可能である。ここで複合構造体1の断面における芯材2の面積cと表皮材3の面積sとの面積比c/sが1〜10の間であるときに骨補填材料として好適な強度と生体親和性とを有し、望ましくは1〜5であり、さらに望ましくは1〜3である。面積比c/sが1未満の場合は緻密なセラミックスの割合が少なくなり複合構造体自体の強度が低下し、例えば人口骨補填材料として必要とされる30MPaを下回ってしまう場合がある。一方、面積比c/sが10を超える場合には強度的には十分であるが、複合構造体内に占める気孔の存在密度が低いため、骨芽細胞の成長が抑制され治癒に長時間を必要とするようになる。   The composite structure 1 of the present invention can freely select a combination of materials of the core material 2 and the skin material 3, and the ratio between the skin material 3 and the core material 2 can be arbitrarily controlled. Here, when the area ratio c / s between the area c of the core material 2 and the area s of the skin material 3 in the cross section of the composite structure 1 is between 1 and 10, strength and biocompatibility suitable as a bone grafting material. And is preferably 1 to 5, more preferably 1 to 3. When the area ratio c / s is less than 1, the ratio of dense ceramics is reduced, and the strength of the composite structure itself is lowered. For example, it may be less than 30 MPa required as a artificial bone substitute material. On the other hand, when the area ratio c / s exceeds 10, the strength is sufficient, but since the density of pores in the composite structure is low, the growth of osteoblasts is suppressed and a long time is required for healing. It comes to be.

なお、本発明において、複合構造体1の断面における表皮材3と芯材2との面積比c/sを算出するには、例えば構造体1の任意横断面における走査型電子顕微鏡(SEM)写真にて観察される各芯材の断面積の和をc、複合構造体1の任意断面における総断面積から前記芯材2の面積cを引いたものをsとして計算することができる。簡単には画像解析法などによっても求めることができる。   In the present invention, in order to calculate the area ratio c / s between the skin material 3 and the core material 2 in the cross section of the composite structure 1, for example, a scanning electron microscope (SEM) photograph in an arbitrary cross section of the structure 1 The sum of the cross-sectional areas of the core materials observed in step c can be calculated as c, and the total cross-sectional area of the arbitrary cross section of the composite structure 1 minus the area c of the core material 2 can be calculated as s. It can be easily obtained by an image analysis method or the like.

さらに本発明の芯材cと表皮材sの面積比およびそれぞれの気孔率を制御することにより複合構造体のヤング率を調節することも可能であり、例えば生体骨のヤング率30GPa程度に制御することにより、骨補填材料としてより好適なものとなる。   Furthermore, the Young's modulus of the composite structure can be adjusted by controlling the area ratio between the core material c and the skin material s of the present invention and the porosity of each, and for example, the Young's modulus of living bone is controlled to about 30 GPa. As a result, it becomes more suitable as a bone filling material.

本発明において用いる複合構造体1の表皮材3としては生体親和性の多孔質セラミックスとして一般的に知られているリン酸カルシウム化合物が好適で、例えばリン酸三カルシウムTCP(Ca(PO)、リン酸四カルシウム(Ca(POO)、リン酸八カルシウム(Ca(PO・5HO)、リン酸一水素カルシウム(CaHPO)、リン酸二水素カルシウム(Ca(HPO)・HO)、ハイドロキシアパタイトHAP(Ca10(PO(OH))などである。 As the skin material 3 of the composite structure 1 used in the present invention, a calcium phosphate compound generally known as a biocompatible porous ceramic is suitable, for example, tricalcium phosphate TCP (Ca 3 (PO 4 ) 2 ). , tetracalcium phosphate (Ca 4 (PO 4) 2 O), octacalcium phosphate (Ca 8 H 2 (PO 4 ) 6 · 5H 2 O), calcium hydrogen phosphate (CaHPO 4), dihydrogen phosphate Calcium (Ca (H 2 PO 4 ) · H 2 O), hydroxyapatite HAP (Ca 10 (PO 4 ) 6 (OH) 2 ) and the like.

一方、芯材2の材質としては、生体為害性のない材料であり望ましくは生体適合性を有する緻密なセラミックスあるいは金属であり、例えばアルミナ(Al)、ジルコニア(ZrO)、シリカ(SiO)、チタニア(TiO)、チタンおよびチタン合金、コバルトクロム合金、ステンレス合金などが挙げられる。ここで挙げられたセラミックスには適宜Ti、Mg、Zr、Hf、Y系などの助剤を含んでいても良い。 On the other hand, the material of the core material 2 is a material that is not harmful to the living body and is preferably a dense ceramic or metal having biocompatibility. For example, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica ( SiO 2 ), titania (TiO 2 ), titanium and titanium alloys, cobalt chromium alloys, stainless steel alloys and the like. The ceramics listed here may contain auxiliary agents such as Ti, Mg, Zr, Hf, and Y as appropriate.

また、表皮材3をなすセラミックスの結晶粒子の平均二次粒径は、骨芽細胞を成長させるに必要な気孔を保持する為に10〜300μm、望ましくは50〜200μmであることがよい。一方、芯材2をなす緻密なセラミックスあるいは金属は靭性および強度向上の点で0.1〜10μm、特に0.5〜3μmであることが望ましい。   The average secondary particle size of the ceramic crystal particles forming the skin material 3 is 10 to 300 μm, preferably 50 to 200 μm, in order to maintain pores necessary for growing osteoblasts. On the other hand, the dense ceramic or metal forming the core material 2 is preferably 0.1 to 10 μm, particularly 0.5 to 3 μm in terms of improving toughness and strength.

また、複合構造体1のサイズは補填する生体骨の部位および形状に対応させて変化させるが、表皮材3の多孔質セラミックスの気孔サイズが50〜200μmであるため、単芯構造体4として0.5〜5mm程度が良い。   Moreover, although the size of the composite structure 1 is changed according to the part and shape of the living bone to be compensated, the pore size of the porous ceramics of the skin material 3 is 50 to 200 μm, so that the single core structure 4 is 0. About 5-5mm is good.

また、複合構造体1の構成としては、図1および2に示す構造体の形態の他に、図3に示すような(a)複合構造体1をシート状に並べたもの10A、(b)(a)のシートを同じ方向に複数枚積層したもの10B、(c)(a)のシートを異なる方向に複数枚積層したもの10Cのいずれであってもよい。これらの複合構造体は頭蓋骨や骨盤などの用いることが出来る。   In addition to the structure shown in FIGS. 1 and 2, the structure of the composite structure 1 is shown in FIG. 3 (a) 10A in which the composite structures 1 are arranged in a sheet shape, (b) Either 10B in which a plurality of sheets (a) are stacked in the same direction or 10C in which a plurality of sheets (c) and (a) are stacked in different directions may be used. These composite structures can be used for skulls, pelvises and the like.

(製造方法)
次に、本発明の複合構造体を製造する方法について、その一例である芯材がアルミナ、表皮材がハイドロキシアパタイトの場合について図4の模式図をもとに説明する。
(Production method)
Next, the method for producing the composite structure of the present invention will be described based on the schematic diagram of FIG. 4 in the case where the core material is alumina and the skin material is hydroxyapatite.

まず、平均粒径0.01〜3.5μmのアルミナ粉末に適宜助剤を添加・混合し、これにパラフィンワックス、ポリスチレン、ポリエチレン、エチレン−エチルアクリレ−ト、エチレン−ビニルアセテート、ポリブチルメタクリレート、ポリエチレングリコール、ジブチルフタレート等の有機バインダを添加、混錬して、プレス成形、押出成形または鋳込成形等の成形方法により円柱形状に芯材用成形体11を作製する。   First, an auxiliary agent is appropriately added to and mixed with alumina powder having an average particle diameter of 0.01 to 3.5 μm, and paraffin wax, polystyrene, polyethylene, ethylene-ethyl acrylate, ethylene-vinyl acetate, polybutyl methacrylate, polyethylene are added thereto. An organic binder such as glycol or dibutyl phthalate is added and kneaded, and the core material molded body 11 is formed into a cylindrical shape by a molding method such as press molding, extrusion molding, or cast molding.

一方、平均粒径0.1〜100μmのハイドロキシアパタイト原料粉末に前述のバインダ等に加え適宜、分散剤・発泡剤・消泡剤を添加、混錬して、プレス成形、押出成形または鋳込成形等の成形方法により半割円筒形状の2本の表皮材用成形体12を作製する。   On the other hand, a hydroxyapatite raw material powder having an average particle size of 0.1 to 100 μm is appropriately added with a dispersant, a foaming agent, and an antifoaming agent in addition to the above-mentioned binder and kneaded, and press molding, extrusion molding, or cast molding. The two skin material moldings 12 having a half-cylindrical shape are produced by a molding method such as the above.

本発明によれば、表皮材6の気孔率を25%以上に制御するために上記表皮材用成形体12用の原料を混合するに際して、前記有機バインダの添加量を100〜200体積部、特に120〜150体積部とすることが望ましい。また、前記ハイドロキシアパタイト原料粉末は二次粒子径が20〜400μm、特に50〜200μmに造粒しておいたほうが均一な気孔径および組織を作製する点で望ましい。   According to the present invention, when the raw material for the skin material molded body 12 is mixed in order to control the porosity of the skin material 6 to 25% or more, the amount of the organic binder added is 100 to 200 parts by volume, particularly It is desirable to set it as 120-150 volume parts. The hydroxyapatite raw material powder is preferably granulated to have a secondary particle size of 20 to 400 μm, particularly 50 to 200 μm, in terms of producing a uniform pore size and structure.

次に、芯材用成形体11の外周に2本の表皮材用成形体12を配した複合成形体13を作製し、この複合成形体13を共押出成形する(芯材用成形体11、および表皮材用成形体12を同時に押出成形する)ことにより芯材用成形体11の外周に表皮材用成形体12が被覆され細い径に伸延された単芯成形体14を作製する(工程(b)参照)。また、マルチ繊維(フィラメント)タイプの多芯成形体15を作製するには、上記共押出しした長尺状の単芯成形体14を複数本収束して再度共押出し成形すればよく、この方法によれば、成形体中の単芯成形体14同士のより強固な密着性を得ることができる。(図4(c)参照)。   Next, a composite molded body 13 in which two skin material molded bodies 12 are arranged on the outer periphery of the core material molded body 11 is manufactured, and the composite molded body 13 is coextruded (core body molded body 11, And the core material molded body 12 are simultaneously extrusion-molded) to produce the single core molded body 14 in which the skin material molded body 12 is coated on the outer periphery of the core material molded body 11 and extended to a thin diameter (step (step ( b)). Further, in order to produce a multi-fiber (filament) type multi-core molded body 15, a plurality of the co-extruded long single-core molded bodies 14 may be converged and co-extruded again. According to this, it is possible to obtain stronger adhesion between the single-core molded bodies 14 in the molded body. (See FIG. 4 (c)).

なお、上記共押出成形においては、口金を変えること等により、上記伸延された長尺状の単芯成形体14または多芯成形体15の断面形状を、円形、三角形、四角形または六角形等の所望の形状に成形することも可能である。   In the coextrusion molding, the elongated single-core molded body 14 or the multi-core molded body 15 has a cross-sectional shape such as a circle, a triangle, a rectangle, or a hexagon by changing the die. It is also possible to mold into a desired shape.

また、本発明によれば、図3に示したような、複合構造体1、または単芯構造体4をシート状に集束した複合構造体10を形成する場合には、前述のようにして作製した複合構造体1、または単芯構造体4を並べてシート状成形体10を形成する。そして、所望により、シート状成形体(図示せず。)中の複合成形体1、または単芯構造体4同士が平行、直交または45°等の所定の角度をなすように積層させた積層体とすることもできる。その場合、複合成形体1、または単芯構造体4間に所望により上記バインダなどの接着材を介在させ、さらに、このシート状成形体に冷間静水圧プレス(CIP)などによって圧力を印加するものであってもよいが、必要に応じ、ロール等を用いてシート状成形体をロール圧延成形することも可能である。さらには、シート状成形体を作製する場合には単芯成形体14または多芯成形体15を整列させる際に公知のラピッドプロトタイピング法などの成形法を用いて予め所望の複雑な形状に成形することも可能である。   Further, according to the present invention, as shown in FIG. 3, when the composite structure 1 or the composite structure 10 in which the single-core structure 4 is converged in a sheet shape is formed as described above. The sheet-like molded body 10 is formed by arranging the composite structures 1 or the single-core structures 4. And if desired, a laminated body in which a composite molded body 1 or single core structures 4 in a sheet-like molded body (not shown) are laminated so as to form a predetermined angle such as parallel, orthogonal or 45 °. It can also be. In that case, an adhesive such as the binder is interposed between the composite molded body 1 or the single-core structure 4 as desired, and pressure is applied to the sheet-shaped molded body by cold isostatic pressing (CIP) or the like. Although it may be a thing, it is also possible to roll-roll a sheet-like molded object using a roll etc. as needed. Furthermore, when producing a sheet-like molded body, when a single-core molded body 14 or a multi-core molded body 15 is aligned, it is molded into a desired complex shape in advance using a molding method such as a known rapid prototyping method. It is also possible to do.

その後、前記成形体を脱バインダ処理した後、焼成することにより本発明の複合構造体を作製することができる。焼成方法は、芯材および表皮材によって、真空または雰囲気焼成、ガス圧焼成、ホットプレス、放電プラズマ焼結法などが用いられる。焼成温度は750℃〜1300℃とすることが望ましい。   Thereafter, the molded body is subjected to a binder removal treatment and then fired to produce the composite structure of the present invention. As the firing method, vacuum or atmosphere firing, gas pressure firing, hot press, discharge plasma sintering, or the like is used depending on the core material and the skin material. The firing temperature is desirably 750 ° C to 1300 ° C.

焼結後、レントゲンやMRI、CTなどを用いて測定した生体骨の欠損部17に合致する形状に加工することにより、例えば図5に示すような骨補填材料として用いることが出来る。この場合には、上述したように、前記ラピッドプロトタイピング技術を用いてあらかじめ所望の形状に成形した後、焼結処理を行うことが望ましい。   After sintering, by processing into a shape that matches the defect 17 of the living bone measured using X-rays, MRI, CT, etc., it can be used as, for example, a bone filling material as shown in FIG. In this case, as described above, it is desirable to perform a sintering process after previously forming the desired shape using the rapid prototyping technique.

表1に示す組成物に表1に示す割合のバインダ、および滑剤を添加、混錬した後、プレス成形により焼結後の複合構造体において表1に示す面積比c/sとなるように合わせた径の芯材用成形体、および半割円筒状の表皮材用成形体を2本作製した。   After the binder shown in Table 1 and the lubricant shown in Table 1 were added to the composition shown in Table 1 and kneaded, the composite structure after sintering was pressed so as to have the area ratio c / s shown in Table 1. Two molded bodies for a core material having a diameter and two molded bodies for a skin material having a half-cylindrical shape were produced.

そして、芯材用成形体の周囲に図4に示すように表皮材用成形体を被覆し、単芯成形体を作製した(実施例1〜5)。比較として芯材・表皮材構造を有さない成形体も作製した(実施例6)。   Then, as shown in FIG. 4, the core material molded body was coated around the core material molded body to produce single-core molded bodies (Examples 1 to 5). For comparison, a molded article having no core / skin structure was also produced (Example 6).

そして、前記単芯複合成形体を共押出して伸延された多芯成形体を作製した後、該伸延された成形体100本を集束して再度成形し、複合成形体を作製した。その後、得られた成形体を300〜700℃まで72時間で昇温させることによって脱バインダ処理を行った後、昇温速度2.5℃/分でさらに昇温し、真空中、1200℃で2時間焼成し、さらに3℃/分で降温することにより多芯構造の複合構造体を得た。得られた複合構造体をφ10×30mmのサイズに加工し、JISR1601に基づく3点曲げ試験に供し曲げ強度を測定した。また、その際ひずみゲージ法を用いてJISR1602に基づくヤング率についても測定を行った。   Then, the single-core composite molded body was coextruded to produce a stretched multi-core molded body, and then the 100 stretched molded bodies were converged and molded again to produce a composite molded body. Thereafter, after removing the binder by heating the obtained molded body to 300 to 700 ° C. in 72 hours, the temperature was further raised at a heating rate of 2.5 ° C./min, and in vacuum at 1200 ° C. The composite structure of multi-core structure was obtained by baking for 2 hours, and also temperature-falling at 3 degree-C / min. The obtained composite structure was processed into a size of φ10 × 30 mm and subjected to a three-point bending test based on JIS R1601, and the bending strength was measured. At that time, the Young's modulus based on JIS R1602 was also measured using a strain gauge method.

さらに、得られた複合構造体の研磨した横断面を金属顕微鏡または走査型電子顕微鏡にて観察し、画像解析法にて芯材と表皮材との面積比率c/s、および芯材中に含まれる気孔の面積比率を測定し、芯材中の気孔率を算出した。さらには、水銀圧入法にて気孔率を算出した。結果は表1に示した。

Figure 2005185433
Furthermore, the polished cross section of the obtained composite structure was observed with a metal microscope or a scanning electron microscope, and the area ratio c / s between the core material and the skin material by the image analysis method, and included in the core material The area ratio of the pores to be measured was measured, and the porosity in the core material was calculated. Furthermore, the porosity was calculated by the mercury intrusion method. The results are shown in Table 1.
Figure 2005185433

表1の結果から明らかなように、芯材・表皮材構造を有さず、ハイドロキシアパタイト材料単体からなる試料No.6は強度が8.4MPaと低いものであった。   As is apparent from the results in Table 1, the sample No. 1 has no core / skin structure and is composed of a single hydroxyapatite material. No. 6 had a strength as low as 8.4 MPa.

これに対して、本発明に従い所定を配した実施例試料では、いずれも比較例試料に対して優れた曲げ強度を有していた。また生体骨に近いヤング率を有していることから合致性も高く、気孔も三次元的に配列されているため骨芽細胞の成長も促進される骨補填材料であると推定されるものである。   On the other hand, all of the example samples arranged according to the present invention had excellent bending strength with respect to the comparative example samples. Also, because it has a Young's modulus close to that of living bones, it is highly consistent, and since the pores are arranged three-dimensionally, it is estimated to be a bone filling material that promotes osteoblast growth. is there.

本発明の複合構造体の基本単位である単芯構造体の一例を示す斜視図および断面図である。It is the perspective view and sectional drawing which show an example of the single core structure which is a basic unit of the composite structure of this invention. 本発明の複合構造体の一例である図1の単芯構造体を複数本集束した多芯構造体を示す斜視図および断面図である。2 is a perspective view and a cross-sectional view showing a multi-core structure in which a plurality of single-core structures in FIG. 1 as an example of the composite structure of the present invention are converged. 本発明の複合構造体の他の実施態様を示す斜視図である。It is a perspective view which shows the other embodiment of the composite structure of this invention. 本発明の複合構造体の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the composite structure of this invention. 本発明の複合構造体を骨補填材料として用いる一例を示す模式図である。It is a schematic diagram which shows an example which uses the composite structure of this invention as a bone grafting material.

符号の説明Explanation of symbols

1 複合構造体(多芯構造体)
2 芯材
3 表皮材
4 単芯構造体
10 シート状の複合構造体
11 芯材用成形体
12 表皮材用成形体
13 複合成形体
14 単芯成形体
15 多芯成形体
17 損傷した生体骨
1 Composite structure (multi-core structure)
2 Core material 3 Skin material 4 Single core structure 10 Sheet-shaped composite structure 11 Core material molded body 12 Skin material molded body 13 Composite molded body 14 Single core molded body 15 Multicore molded body 17 Damaged living bone

Claims (2)

長尺状で、気孔率5%以下の芯材の外周を、気孔率25%以上で三次元に連通した気孔を有する表皮材にて被覆してなる単芯構造体を複数本並列に収束した複合構造体からなることを特徴とする生体用セラミックス複合構造体。 A plurality of single-core structures formed by covering the outer periphery of a long core material having a porosity of 5% or less with a skin material having pores communicating in three dimensions with a porosity of 25% or more were converged in parallel. A ceramic composite structure for living body, characterized by comprising a composite structure. 前記複合構造体の横断面における芯材cと表皮材sの面積比c/sが1〜10であることを特徴とする請求項1記載の複合構造体。 The composite structure according to claim 1, wherein an area ratio c / s between the core material c and the skin material s in a cross section of the composite structure is 1 to 10.
JP2003429391A 2003-12-25 2003-12-25 Bioceramic composite structure Pending JP2005185433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429391A JP2005185433A (en) 2003-12-25 2003-12-25 Bioceramic composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003429391A JP2005185433A (en) 2003-12-25 2003-12-25 Bioceramic composite structure

Publications (1)

Publication Number Publication Date
JP2005185433A true JP2005185433A (en) 2005-07-14

Family

ID=34788077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429391A Pending JP2005185433A (en) 2003-12-25 2003-12-25 Bioceramic composite structure

Country Status (1)

Country Link
JP (1) JP2005185433A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108411A1 (en) * 2006-03-17 2007-09-27 Hi-Lex Corporation Medical material
JP2008295777A (en) * 2007-05-31 2008-12-11 Hoya Corp Calcium phosphate-containing composite porous body and its production method
JP2010188022A (en) * 2009-02-20 2010-09-02 Pilot Corporation Structure for living body
CN114569223A (en) * 2022-01-25 2022-06-03 苏州卓恰医疗科技有限公司 Body implant with filler and method for the production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108411A1 (en) * 2006-03-17 2007-09-27 Hi-Lex Corporation Medical material
JPWO2007108411A1 (en) * 2006-03-17 2009-08-06 株式会社ハイレックスコーポレーション Medical materials
JP2008295777A (en) * 2007-05-31 2008-12-11 Hoya Corp Calcium phosphate-containing composite porous body and its production method
JP2010188022A (en) * 2009-02-20 2010-09-02 Pilot Corporation Structure for living body
CN114569223A (en) * 2022-01-25 2022-06-03 苏州卓恰医疗科技有限公司 Body implant with filler and method for the production thereof
CN114569223B (en) * 2022-01-25 2023-12-08 苏州卓恰医疗科技有限公司 Body implant with filler and method for producing the same

Similar Documents

Publication Publication Date Title
Kim et al. Effect of CaF2 on densification and properties of hydroxyapatite–zirconia composites for biomedical applications
EP2058014A1 (en) Composite artificial bone
Liu et al. Selective laser sintering of bio-metal scaffold
EP2195131B1 (en) Method for producing a three-dimensional macroporous filament construct based on phase inversion and construct thereby obtained
Kim et al. Synthesis of functional gradient BCP/ZrO2 bone substitutes using ZrO2 and BCP nanopowders
Liu et al. The effect of graded glass–zirconia structure on the bond between core and veneer in layered zirconia restorations
WO2020245645A1 (en) A green body composition and functional gradient materials prepared thereof
Wong et al. Functionally graded tricalcium phosphate/fluoroapatite composites
EP2359873A1 (en) Process for preparing a body having an osteointegrative surface
Yang et al. Micro-porous calcium phosphate coatings on load-bearing zirconia substrate: Processing, property and application
JP2005185433A (en) Bioceramic composite structure
KR101186370B1 (en) Porous bio-material with multi-layer structure and method for manufacturing the same
Dorozhkin Calcium orthophosphate-based bioceramics and its clinical applications
Michailidis et al. Production of novel ceramic porous surfaces tailored for bone tissue engineering
JP2006006756A (en) Biological ceramic composite structure
JP3769427B2 (en) Ceramic biomaterial
KR101241642B1 (en) Fabrication Method of a Novel Artificial Cortical Bone using a Multi-pass Extrusion Process
Rahaman et al. Three‐Dimensional Printing of Si3N4 Bioceramics by Robocasting
Miao et al. Highly interconnected and functionally graded porous bioceramics
JP3994152B2 (en) Hard tissue substitute material and manufacturing method thereof
JP2005312506A (en) Implant for bone compensation
Lee et al. Novel bamboo-like fibrous, micro-channeled and functional gradient microstructure control of ceramics
JPH0449972A (en) Preparation of substitute and composite molded body of hard tissue of human body
Koh et al. Macrochanneled tetragonal zirconia polycrystals coated by a calcium phosphate layer
JPH0340982A (en) Tube bundle and its production