JP2005184945A - Load connection type distribution line - Google Patents

Load connection type distribution line Download PDF

Info

Publication number
JP2005184945A
JP2005184945A JP2003420379A JP2003420379A JP2005184945A JP 2005184945 A JP2005184945 A JP 2005184945A JP 2003420379 A JP2003420379 A JP 2003420379A JP 2003420379 A JP2003420379 A JP 2003420379A JP 2005184945 A JP2005184945 A JP 2005184945A
Authority
JP
Japan
Prior art keywords
ground fault
distribution line
load
power supply
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003420379A
Other languages
Japanese (ja)
Inventor
Yoshinori Nagasaki
善範 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003420379A priority Critical patent/JP2005184945A/en
Publication of JP2005184945A publication Critical patent/JP2005184945A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a load connection type distribution line capable of quickly estimating a ground fault section without the movement of a maintenance serviceman when the ground fault occurs to a target load connection type distribution line. <P>SOLUTION: The load connection type distribution line has the following constitution. A ground fault detector, which is composed of a zero-phase current transformer and a ground fault relay having an operating contact closed by a detected current of the zero-phase current transformer, is installed in the power supply side of each branch connection point of the load connection type distribution line branched and connected to a plurality of loads arranged at intervals from a power supply part, in which a contactor provided with a breaker and a leakage protection function is connected to a three-phase four-wire type power supply. A resistor is connected between each branch connection point and the ground via the operating contact of the ground fault relay. A ground fault section estimating device, which is provided with a selection switch for selecting each line and impressing an inspection voltage, is installed in the output side of the power supply part. The breaker is made into a closed state by maintaining a closed state of the contactor during the occurrence of the ground fault. The inspection voltage is impressed to each line. The ground fault section is estimated by a current detection value flowing in each line. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、例えば高速道路の照明設備や石油基地の照明設備等のように、複数の負荷が間隔を置いて配置された負荷に給電する負荷連接型配電線に関するものである。   The present invention relates to a load-connected distribution line that supplies power to a load in which a plurality of loads are arranged at intervals, such as lighting equipment on highways and lighting equipment on oil bases.

例えば高速道路の照明灯や都市公園の照明灯などのような電気設備においては、配電線に負荷が間隔を置いて分岐接続された負荷連接型配電線の形態であり、電源部分には地絡保護装置が設けられ、地絡故障発生時には、地絡保護装置によって地絡故障が検出され、電力供給が遮断されるようになっている。
地絡故障時の地絡故障区間の検知は、一般的には、保守係員がいわゆる2分割法により地絡区間を評定している。この2分割法による地絡区間の評定は、一連の配電線の中央付近の配電線を切り離し、配電線の上流側および下流側の絶縁抵抗を測定し、絶縁抵抗値が小さい方に地絡点があると判断し、地絡点側をさらに2分割して上流側と下流側の絶縁抵抗を測定して地絡点を特定し、順次最小単位区間に至るまで繰り返して地絡区間を絞り込んで行く方法である。この2分割法による地絡区間の評定方法は、配電線の全路を対象に繰り返し絶縁抵抗を測定する作業となり、多人数の保守係員が必要で、評定に至るまでには長時間を要するという問題点がある。
For example, in an electrical installation such as a highway lamp or a city park lamp, it is a load-connected distribution line in which the load is branched and connected to the distribution line, and the power supply part has a ground fault. A protection device is provided, and when a ground fault occurs, the ground fault is detected by the ground fault protection device and the power supply is cut off.
In general, when a ground fault failure is detected, a maintenance staff assesses the ground fault interval by a so-called two-division method. The evaluation of the ground fault section by this two-division method is to disconnect the distribution line near the center of a series of distribution lines, measure the insulation resistance on the upstream and downstream sides of the distribution line, and select the ground fault point for the smaller insulation resistance value. The ground fault point side is further divided into two, the upstream and downstream insulation resistances are measured to identify the ground fault point, and the ground fault section is narrowed down repeatedly until reaching the minimum unit section. Is the way to go. The evaluation method of the ground fault section by this two-division method is the work of repeatedly measuring the insulation resistance for all the distribution lines, requiring a large number of maintenance personnel, and it takes a long time to reach the rating. There is a problem.

上記の2分割法による負荷連接型配電線の地絡区間評定方法の問題点を解消する方法として、例えば特許文献1に開示されている。
その方法は、特許文献1の図2に示されているように、複数の負荷が間隔を置いて分岐接続された配電線の各分岐接続点の電源側または下流側に漏れ電流計測用CTを設け、この漏れ電流計測用CTにより検出された漏れ電流値を漏れ電流情報として無線送信する端末子局を備え、端末子局より送信された漏れ電流情報は、配電線に沿って移動する保守点検車に搭載された移動親局で受信し、受信した漏れ電流情報により、地絡区間を評定するものである。
地絡区間評定方法は、配電線において地絡が発生すると、地絡地点から電源側の漏れ電流検出手段が漏れ電流値を検出し、地絡地点から下流側は漏れ電流が検出されないことより、地絡区間を評定するものである。
For example, Patent Document 1 discloses a method for solving the problems of the ground fault section evaluation method for the load-connected distribution line by the above two-division method.
As shown in FIG. 2 of Patent Document 1, a leakage current measurement CT is provided on the power supply side or downstream side of each branch connection point of a distribution line in which a plurality of loads are branch-connected at intervals. Provided with a terminal slave station that wirelessly transmits the leakage current value detected by this leakage current measurement CT as leakage current information, and the leakage current information transmitted from the terminal slave station moves along the distribution line It is received by the mobile master station mounted on the car, and the ground fault section is evaluated based on the received leakage current information.
The ground fault section evaluation method is that when a ground fault occurs in the distribution line, the leakage current detection means on the power source side detects the leakage current value from the ground fault point, and the leakage current is not detected downstream from the ground fault point. The ground fault section is evaluated.

特開平11−41796号公報JP 11-41796 A

従来から行われている2分割法による地絡区間の評定方法では、地絡が発生すると、保守係員により、対象の配電線を切り離して絶縁抵抗を測定する必要があり、多人数の保守係員が必要であり、評定に至るまでの時間がかかり、修復に手間取る問題点がある。
また、特許文献1による地絡地点の評定方法では、対象配電線を切り離さないで評定できるが、保守点検車が対象の配電線に沿って移動し、漏れ電流情報を受信して評定するので地絡区間の評定に時間を要し、復旧に手間取る問題点があった。
In the conventional evaluation method of the ground fault section by the two-division method, when a ground fault occurs, it is necessary for the maintenance staff to cut the target distribution line and measure the insulation resistance. It is necessary, takes time to reach the rating, and there is a problem that it takes time to repair.
In addition, in the method for evaluating a ground fault point according to Patent Document 1, the evaluation can be made without disconnecting the target distribution line, but the maintenance inspection vehicle moves along the target distribution line and receives and evaluates the leakage current information. There was a problem that it took time to evaluate the section of the cable and it took time to recover.

この発明は、上記問題点を解消するためになされたものであり、対象とする負荷連接型配電線に地絡故障が発生したときに、保守係員が移動することなく地絡区間が速やかに評定できる負荷連接型配電線を提供することを目的とする。   The present invention has been made to solve the above problems, and when a ground fault occurs in the target load-connected distribution line, the ground fault section is promptly evaluated without the maintenance staff moving. It aims at providing the load connection type distribution line which can be performed.

この発明に係る負荷連接型配電線は、3相4線式電源に遮断器および漏電保護機能を備えたコンタクタが接続された電源部から、間隔を置いて配置された複数の負荷が高圧側のいずれかの相と中性線との間に分岐接続された構成であり、複数の負荷が接続された各分岐接続点の電源側に設けた零相変流器と、この零相変流器の検出電流により閉路する動作接点を有する地絡継電器とで構成された地絡検出器を装備し、複数の負荷が接続された各分岐接続点と大地間に、地絡継電器の動作接点を介して抵抗器を接続し、電源部の出力側に負荷連接型配電線の各線を選択して検査電圧を印加する選択スイッチを備えた地絡区間評定装置を装備し、地絡故障発生時にコンタクタの開路状態を維持して遮断器を開路状態として地絡区間評定装置により3相4線式配電線の各線に検査電圧を印加し、各線の検出電流値により地絡区間を評定するものである。   In the load connection type distribution line according to the present invention, a plurality of loads arranged at intervals from the power source portion in which a contactor having a circuit breaker and a leakage protection function is connected to a three-phase four-wire power source A zero-phase current transformer provided on the power supply side of each branch connection point to which a plurality of loads are connected, and the zero-phase current transformer, which is configured to be branched between any phase and a neutral wire Equipped with a ground fault detector consisting of a ground fault relay that has an operating contact that is closed by the detected current of the earth, and via the operating contact of the ground fault relay between each branch connection point where multiple loads are connected and the ground A ground fault section rating device equipped with a selection switch that selects each line of the load-connected distribution line and applies the inspection voltage to the output side of the power supply unit is installed. Maintaining the open circuit state and setting the circuit breaker to the open circuit state, the ground fault section rating device Applying each line to test the voltage of phase four-wire distribution line, it is intended to assess the inter-land 絡区 by the detected current value of each line.

この発明によれば、負荷連接型配電線に地絡故障が発生したときに、保守係員が移動することなく地絡区間が速やかに評定できる。   According to this invention, when a ground fault occurs in the load-connected distribution line, the ground fault section can be quickly evaluated without the maintenance staff moving.

実施の形態1.
図1は実施の形態1の負荷連接型配電線である例えば高速道路の照明設備の場合の構成を示す回路図である。この図1の構成は、電源は変電所の二次回路が三相4線式で出力される電源変圧器二次回路1に遮断器2とコンタクタ3が接続された電源部の出力側に負荷連接型配電線5が接続されている。コンタクタ3は主接点と補助接点3a、零相変流器3b、地絡断電器3cを備え、負荷連接型配電線5において地絡が発生すると地絡断電器3cにより回路が遮断される構成である。負荷連接型配電線5は、高圧線は5R、5S、5Tの3線と、コンタクタ3の補助接点3aを介して調光線5Xと、中性線スイッチ4を介して中性線5Nの5線で出力されている。電源部の出力側には、負荷連接型配電線5の中性線5Nを除く各線を選択して検査電流が通電できるように構成された地絡区間評定装置8が装備されている。地絡区間評定装置8は、負荷連接型配電線5に直流の検査電流を通電する直流電源8a、電流検出器8b、電流計測器8c、および負荷連接型配電線5の各線を選択して通電する切替スイッチ8dを備えている。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a configuration in the case of, for example, a highway lighting facility that is a load-connected distribution line according to the first embodiment. In the configuration of FIG. 1, the power supply is loaded on the output side of the power supply section in which the circuit breaker 2 and the contactor 3 are connected to the power transformer secondary circuit 1 in which the secondary circuit of the substation is output in a three-phase four-wire system An articulated distribution line 5 is connected. The contactor 3 includes a main contact and an auxiliary contact 3a, a zero-phase current transformer 3b, and a ground fault disconnector 3c. When a ground fault occurs in the load connection type distribution line 5, the circuit is interrupted by the ground fault disconnector 3c. is there. The load connection type distribution line 5 includes five lines of 5R, 5S, and 5T high voltage lines, a dimming light 5X via the auxiliary contact 3a of the contactor 3, and a neutral line 5N via the neutral line switch 4. Is output. On the output side of the power supply unit, a ground fault section evaluation device 8 configured to select each line excluding the neutral line 5N of the load connection type distribution line 5 and to allow an inspection current to flow therethrough is provided. The ground fault section evaluation device 8 selects each line of the DC power supply 8a, the current detector 8b, the current measuring instrument 8c, and the load connection type distribution line 5 for supplying a DC inspection current to the load connection type distribution line 5 and energizes it. The changeover switch 8d is provided.

負荷連接型配電線5は、間隔をおいて配置された複数の負荷に至る間に上記の5線で配線され、それぞれの負荷が分岐接続される。図1の複数の負荷の内、例えば1番目の負荷は、ランプL1が安定器M1を介して高圧線5Rと中性線5Nの間に分岐接続され、安定器M1にはランプL1の照度制御線の調光線5Xから分岐接続されている。2番目のランプL2、3番目のランプL3・・・n番目のランプLnは、1番目のランプL1と同様に3相平衡するように高圧側は5R、5S、5Tの各相に分散して分岐接続されている。
そして、各ランプL1、L2・・・Lnが分岐接続された各位置の電源側に零相変流器Z1、Z2・・・Znを装着し、そのそれぞれに地絡継電器Y1、Y2・・・Ynを接続している。地絡継電器Y1、Y2・・・Ynは、それぞれに接点X1、X2・・・Xnを有している。
各ランプL1、L2・・・Lnの分岐接続点から大地に対して、上記地絡継電器Y1、Y2・・・Ynのそれぞれの接点X1、X2・・・Xnを介して抵抗器R1、R2・・・Rnを接続している。
The load-connecting distribution line 5 is wired with the above-described five wires while reaching a plurality of loads arranged at intervals, and each load is branched and connected. In the first load among the plurality of loads in FIG. 1, for example, the lamp L1 is branched and connected between the high voltage line 5R and the neutral line 5N via the ballast M1, and the ballast M1 has an illuminance control of the lamp L1. A branch connection is made from the dimming line 5X of the line. The second lamp L2, the third lamp L3,..., The nth lamp Ln is dispersed in the 5R, 5S, and 5T phases so that the three-phase equilibrium is achieved in the same way as the first lamp L1. Branch connected.
Then, zero-phase current transformers Z1, Z2,... Zn are mounted on the power supply side at each position where the lamps L1, L2,... Ln are branched and connected, and ground fault relays Y1, Y2,. Yn is connected. The ground fault relays Y1, Y2,... Yn have contacts X1, X2,.
From the branch connection point of each lamp L1, L2... Ln to the ground, resistors R1, R2,... Via the respective contacts X1, X2. ..Rn is connected.

このように構成された負荷連接型配電線5において、例えば、4番目ランプL4の下流側で地絡故障が発生したとすると、地絡点より地絡電流が大地に流れ、電源部から負荷連接型配電線5の地絡点の間の零相変流器Z1、Z2、Z3、Z4が零相電流を検出し、地絡継電器Y1、Y2、Y3、Y4が動作し、コンタクタ3が地絡電流によって動作し、高圧線5R、5S、5Tの各相と調光線5Xが遮断される。   In the load connection type distribution line 5 configured in this way, for example, if a ground fault occurs on the downstream side of the fourth lamp L4, a ground fault current flows to the ground from the ground fault point, and the load connection is connected from the power supply unit. Zero-phase current transformers Z1, Z2, Z3, and Z4 between the ground fault points of the distribution line 5 detect the zero-phase current, the ground fault relays Y1, Y2, Y3, and Y4 operate, and the contactor 3 is grounded. Each phase of the high-voltage lines 5R, 5S, and 5T and the dimming light 5X are blocked by operating with current.

コンタクタ3が開極した状態で、中性線5Nの中性線スイッチ4を開極し、遮断器2を開極した状態とし、地絡区間評定装置8により、中性線5Nを除く各線5R、5S、5Tおよび調光線5Xの各線を切替スイッチ8dにより選択して各線毎に所定の検査電圧を印加し、通電される電流値を検出する。4番目のランプL4の部分で地絡故障がある場合では、高圧線5Rでは2箇所の抵抗器R1、R4と地絡位置における地絡状態の大地との間の抵抗値が並列状態となるので、地絡区間評定装置の電流リミッタ値まで流れる。高圧線5Sでは抵抗器R2、5Tでは抵抗器R3の1箇所の抵抗器に流れる電流が検出される。調光線5Xでは、抵抗器は接続されていないので、正常であれば電流は検出されない。
なお、抵抗器R1、R2・・・Rnの抵抗値は、配電線の抵抗値に対して十分大きくしておけば、配電線の抵抗値は無視できる。検査電圧値をV、抵抗器R1、R2・・・Rnのそれぞれの抵抗値をRとすると、検出電流値Iは、I=V/R×N(Nは接続された抵抗器の個数)で求めることができる。
With the contactor 3 opened, the neutral wire switch 4 of the neutral wire 5N is opened, the circuit breaker 2 is opened, and each line 5R excluding the neutral wire 5N is detected by the ground fault section evaluation device 8. Each line of 5S, 5T and dimming light 5X is selected by the changeover switch 8d, a predetermined inspection voltage is applied to each line, and a current value to be energized is detected. When there is a ground fault in the fourth lamp L4, the resistance value between the two resistors R1 and R4 and the ground in the ground fault position is in a parallel state in the high voltage line 5R. It flows up to the current limiter value of the ground fault section rating device. In the high voltage line 5S, the current flowing in one resistor of the resistor R3 is detected in the resistors R2 and 5T. In the dimming light 5X, since no resistor is connected, no current is detected if it is normal.
In addition, if resistance value of resistor R1, R2 ... Rn is made sufficiently large with respect to the resistance value of a distribution line, the resistance value of a distribution line can be disregarded. If the inspection voltage value is V, and the resistance values of the resistors R1, R2,... Rn are R, the detected current value I is I = V / R × N (N is the number of connected resistors). Can be sought.

図1における負荷は三相平衡するように順次高圧線5R、5S、5Tに振り分けて接続されているので、5Rにおける電流値が抵抗器2個分の電流が検出され、5S、5Tにおける通電電流が抵抗器1個分の電流値であることから、地絡区間は4番目のランプL4と5番目のランプL5の間であると評定する。   Since the load in FIG. 1 is sequentially distributed and connected to the high-voltage lines 5R, 5S, and 5T so as to be three-phase balanced, the current value at 5R is detected as the current of two resistors, and the energization current at 5S and 5T is detected. Is the current value for one resistor, the ground fault interval is evaluated to be between the fourth lamp L4 and the fifth lamp L5.

上記は、地絡区間評定装置8の検査電圧を印加する電源は直流電圧を印加する電源としたが、交流電圧を印加する電源としてもよい。交流の場合は、負荷連接型配電線5の対地静電容量に充電電流が流れるので、この静電容量を考慮して判定する必要があるが、電流検出器8b、電流計測器8cが簡単な構成となるメリットがある。   In the above description, the power source for applying the inspection voltage of the ground fault section evaluation device 8 is the power source for applying the DC voltage, but may be the power source for applying the AC voltage. In the case of alternating current, the charging current flows through the ground capacitance of the load-connected distribution line 5, and therefore it is necessary to make a determination in consideration of this capacitance. However, the current detector 8b and the current measuring device 8c are simple. There is merit to become composition.

実施の形態2.
実施の形態2の構成を図2に示す。実施の形態2は、実施の形態1の電源部に微少な漏れ電流を検出する零相変流器6と漏れ電流計測手段7を設けたものである。図2の構成は、零相変流器6、漏れ電流計測手段7以外の部分は実施の形態1の図1と同一であり説明は省略する。
このように構成して、常時負荷連接型配電線の漏れ電流を計測すると、その変化の状態が監視できるので、予防保全情報として、地絡故障の発生を予測するために活用できる。
Embodiment 2. FIG.
The configuration of the second embodiment is shown in FIG. In the second embodiment, the power supply unit of the first embodiment is provided with a zero-phase current transformer 6 and a leakage current measuring means 7 for detecting a minute leakage current. The configuration of FIG. 2 is the same as that of FIG. 1 of the first embodiment except for the zero-phase current transformer 6 and the leakage current measuring means 7, and a description thereof will be omitted.
By configuring in this way and measuring the leakage current of the always load-connected distribution line, the state of the change can be monitored, so that it can be utilized as preventive maintenance information to predict the occurrence of a ground fault.

実施の形態3.
例えば、高速道路の照明灯設備などにおいては、負荷の設置位置の周囲環境が、トンネル内などのように湿気が多く地絡故障が起こりやすい環境や、屋外のように比較的良好な環境もある。また、設置後は経年的に地絡しやすくなる場合もあるので、照明灯設備の設置当初からすべての回路に設ける必要性はなく、当初は地絡故障が発生しやすい部分に限定して設け、環境のよい部分には漏れ電流の変化状態か必要性が生じたときに付加するようにしてもよい。
Embodiment 3 FIG.
For example, in highway lighting equipment, there are environments where the load is located near the environment where there is a lot of moisture, such as in tunnels, where ground faults are likely to occur, and where the environment is relatively good, such as outdoors. . In addition, it may be easy to cause ground faults over time after installation, so it is not necessary to install them in all circuits from the beginning of the installation of lighting equipment, and initially limited to parts where ground faults are likely to occur. In addition, it may be added to the portion with good environment when the leakage current changes or needs arise.

実施の形態3は、設置環境を考慮して、高速道路の照明灯などにおいては区間延長した場合の既設部分のみに地絡評定装置を装備し、新設部分には設けない場合の実施の形態である。その例を図3に示す。図中既設部分は実施の形態2と同様に地絡区間評定装置8、零相変流器Z1、Z2・・・Znと、それぞれに接点X1、X2・・・Xnを有する地絡継電器Y1、Y2・・・Ynと、各ランプL1、L2・・・Lnの分岐接続点から大地に対して、上記地絡継電器Y1、Y2・・・Ynのそれぞれの接点X1、X2・・・Xnを介して接続した抵抗器R1、R2・・・Rnを設け、常時漏れ電流を監視できるように微少漏れ電流検出用の零相変流器6と電流計測装置7を設けたものである。新設部分には地絡故障に対応する部分は設けないで初期投資を抑えた構成とし、電源部の変圧器二次回路1の中性点側に、零相変流器9および微少漏れ電流計測器10を設けて、既設部分の負荷連接型配電線5、増設部分の負荷連接型配電線15および25の回路全体の漏れ電流を監視できる構成としたものである。設置当初は、このように構成しておき、回路全体の漏れ電流を常時監視し、漏れ電流が大きくなって地絡故障の可能性が生じた時点で、必要な部分に地絡区間評定装置を設けるようにすると初期投資を抑えることができる。   In the third embodiment, in consideration of the installation environment, the ground fault rating device is installed only in the existing part when the section is extended in the illumination lamp of the highway and the like is not provided in the new part. is there. An example is shown in FIG. The existing part in the figure is the ground fault section rating device 8, the zero phase current transformers Z1, Z2... Zn, and the ground fault relay Y1 having the contacts X1, X2. Y2... To Yn and the branch connection point of each lamp L1, L2... Ln to the ground via the respective contacts X1, X2... Xn of the ground fault relays Y1, Y2. Resistors R1, R2... Rn connected to each other, and a zero-phase current transformer 6 and a current measuring device 7 for detecting a minute leakage current are provided so that the leakage current can be constantly monitored. The newly installed part does not have a part corresponding to the ground fault, and the initial investment is suppressed. On the neutral point side of the transformer secondary circuit 1 in the power supply part, the zero-phase current transformer 9 and the minute leakage current measurement The device 10 is provided so that the leakage current of the entire circuit of the load connection type distribution line 5 in the existing part and the load connection type distribution lines 15 and 25 in the extension part can be monitored. At the beginning of installation, it is configured in this way, the leakage current of the entire circuit is constantly monitored, and when the leakage current becomes large and the possibility of a ground fault has occurred, a ground fault section evaluation device is installed at the necessary part. If it is provided, initial investment can be suppressed.

実施の形態1の負荷連接型配電線の構成を示す回路図である。FIG. 3 is a circuit diagram illustrating a configuration of a load-connected distribution line according to the first embodiment. 実施の形態2の負荷連接型配電線の構成を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration of a load-connected distribution line according to a second embodiment. 実施の形態3の負荷連接型配電線の構成を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration of a load-connected distribution line according to a third embodiment.

符号の説明Explanation of symbols

1 電源変圧器二次回路、2 遮断器、3 コンタクタ、4 中性線スイッチ、
5 負荷連接型配電線、6 零相変流器、7 微少漏れ電流計測装置、
8 地絡区間評定装置、9 零相変流器、10 微少漏れ電流計測装置、
L1,L2・・・Ln 負荷、M1,M2・・・Mn 安定器、
Y1,Y2・・・Yn 地絡継電器、X1,X2・・・Xn 接点、
R1,R2・・・Rn 抵抗器。
1 Power transformer secondary circuit 2 Circuit breaker 3 Contactor 4 Neutral wire switch
5 Load-connected distribution line, 6 Zero phase current transformer, 7 Micro leak current measuring device,
8 Ground fault section rating device, 9 Zero phase current transformer, 10 Micro leak current measuring device,
L1, L2 ... Ln load, M1, M2 ... Mn ballast,
Y1, Y2 ... Yn ground fault relay, X1, X2 ... Xn contact,
R1, R2... Rn resistors.

Claims (4)

3相4線式電源に遮断器および漏電保護機能を備えたコンタクタが接続された電源部から、間隔を置いて配置された複数の負荷がいずれかの相と中性線との間に分岐接続された3相4線式の負荷連接型配電線において、上記複数の負荷が接続された各分岐接続点の電源側に配置された零相変流器と、該零相変流器の検出電流により閉路する動作接点を有する地絡継電器とで構成された地絡検出器を装備し、上記複数の負荷が接続された各分岐接続点と大地間に、上記地絡継電器の動作接点を介して抵抗器を接続し、上記電源部の出力側に、上記負荷連接型配電線の各線を選択する選択スイッチを備え、選択した線に所定の電圧を印加して検査電流を通電する地絡区間評定装置を装備し、地絡故障発生時に上記コンタクタの開路状態を維持し遮断器を開路状態として上記地絡区間評定装置により上記3相4線式配電線の各線に所定の検査電圧を印加し、検出された電流値により地絡区間を評定することを特徴とする負荷連接型配電線。 A multi-phase four-wire power source is connected to a contactor with a circuit breaker and a leakage protection function, and multiple loads arranged at intervals are branched between any phase and neutral wire A zero-phase current transformer disposed on the power supply side of each branch connection point to which the plurality of loads are connected, and a detected current of the zero-phase current transformer Equipped with a ground fault detector composed of a ground fault relay having an operating contact that is closed by a circuit, between each branch connection point to which the plurality of loads are connected and the ground, via the operating contact of the ground fault relay A ground fault interval rating that connects a resistor and includes a selection switch for selecting each line of the load-connected distribution line on the output side of the power supply unit, and applies a predetermined voltage to the selected line to pass an inspection current. Equipped with a device to keep the contactor open and shut off when a ground fault occurs. A load connection characterized in that a grounding section is evaluated by applying a predetermined inspection voltage to each line of the three-phase four-wire distribution line by the ground fault section evaluation device with the device in an open circuit state, and detecting the current value. Type distribution line. 上記地絡区間評定装置は、直流の所定の電圧が印加できる構成としたことを特徴とする請求項1記載の負荷連接型配電線。 The load-connected distribution line according to claim 1, wherein the ground fault section evaluation device is configured to be able to apply a predetermined direct current voltage. 上記地絡区間評定装置は、交流の所定の電圧が印加できる構成としたことを特徴とする請求項1記載の負荷連接型配電線。 The load-connected distribution line according to claim 1, wherein the ground fault section rating device is configured to be able to apply a predetermined alternating voltage. 上記電源部の出力側に微少漏れ電流計測装置を設けたことを特徴とする請求項1〜請求項3のいずれかに記載の負荷連接型配電線。
The load connection type distribution line according to any one of claims 1 to 3, wherein a minute leakage current measuring device is provided on an output side of the power supply unit.
JP2003420379A 2003-12-18 2003-12-18 Load connection type distribution line Pending JP2005184945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420379A JP2005184945A (en) 2003-12-18 2003-12-18 Load connection type distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420379A JP2005184945A (en) 2003-12-18 2003-12-18 Load connection type distribution line

Publications (1)

Publication Number Publication Date
JP2005184945A true JP2005184945A (en) 2005-07-07

Family

ID=34781923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420379A Pending JP2005184945A (en) 2003-12-18 2003-12-18 Load connection type distribution line

Country Status (1)

Country Link
JP (1) JP2005184945A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295754A (en) * 2006-04-26 2007-11-08 Kajima Corp Power distribution system
CN102211531A (en) * 2011-04-29 2011-10-12 上海磁浮交通发展有限公司 Method for confirming one-phase multipoint ground fault of long stator
CN103001198A (en) * 2012-12-12 2013-03-27 邯郸供电公司 Power box
CN106291229A (en) * 2016-07-14 2017-01-04 南京南瑞继保电气有限公司 A kind of power distribution network earthing wire-selecting method based on Distributed power termination
KR102083600B1 (en) * 2018-11-19 2020-03-02 엘에스산전 주식회사 Elcb(earth leakage circuit breaker) and control method for the elcb

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295754A (en) * 2006-04-26 2007-11-08 Kajima Corp Power distribution system
CN102211531A (en) * 2011-04-29 2011-10-12 上海磁浮交通发展有限公司 Method for confirming one-phase multipoint ground fault of long stator
CN103001198A (en) * 2012-12-12 2013-03-27 邯郸供电公司 Power box
CN106291229A (en) * 2016-07-14 2017-01-04 南京南瑞继保电气有限公司 A kind of power distribution network earthing wire-selecting method based on Distributed power termination
CN106291229B (en) * 2016-07-14 2019-05-07 南京南瑞继保电气有限公司 A kind of power distribution network earthing wire-selecting method based on Distributed power terminal installation
KR102083600B1 (en) * 2018-11-19 2020-03-02 엘에스산전 주식회사 Elcb(earth leakage circuit breaker) and control method for the elcb
WO2020105844A1 (en) * 2018-11-19 2020-05-28 엘에스산전 주식회사 Earth leakage breaker and method for controlling earth leakage breaker
CN112840518A (en) * 2018-11-19 2021-05-25 Ls电气株式会社 Residual current circuit breaker and control method thereof
US11456140B2 (en) 2018-11-19 2022-09-27 Ls Electric Co., Ltd. Earth leakage breaker and method for controlling earth leakage breaker
CN112840518B (en) * 2018-11-19 2023-04-11 Ls电气株式会社 Residual current circuit breaker and control method thereof

Similar Documents

Publication Publication Date Title
JP4653238B2 (en) Delta I ground fault protection relay system for DC traction power supply system and control method thereof
US10859612B2 (en) Method and testing device for testing wiring of transformers
US5990685A (en) Apparatus for and method of monitoring an earth-leakage state of a power distribution system
US20150077891A1 (en) Power supply monitoring system
US11506546B2 (en) Systems and methods for measuring internal transformer temperatures
RU2356151C1 (en) METHOD FOR AUTOMATIC CONTROL OF 0,4 kV OVERHEAD LINE NEUTRAL WIRE
RU2558266C1 (en) Method of finding of distance to places of earth faults on two power lines in networks with low earth fault currents
KR20110081008A (en) Fault detecting and predicting apparatus for metering out fit
KR20110133512A (en) On-line cable monitoring system
JP2005184945A (en) Load connection type distribution line
KR20090022716A (en) Apparatus and method for fault detection and fault location decision on a distribution line using load current
JP4068624B2 (en) Electrostatic high voltage synchronous phase detection method and apparatus
JP4142608B2 (en) Tree contact monitoring device for distribution lines
RU2463696C1 (en) Method for control of false actuation of circuit breaker of automatic load transfer network station during ring network operation as per normal power supply scheme
JP2006267002A (en) Insulation deterioration position locating device and method thereof
KR101225449B1 (en) Integrated high resistance ground device
RU2293342C2 (en) METHOD FOR DETERMINING POSITION AND DISTANCE FOR ONE-PHASED GROUNDING SPOT IN ELECTRIC NETWORKS OF 6-35 kV WITH ISOLATED OR COMPENSATED NEUTRAL
JP2010091581A (en) Device for measuring leakage current state of low-voltage electrical facility
JP2014066563A (en) Ac control circuit insulation-monitoring device
JP2004286687A (en) Watthour meter
Selkirk et al. Why neutral-grounding resistors need continuous monitoring
KOUIDRI et al. Distribution Grid Protection
JP2010115006A (en) System for determining bus line accident section
RU2644626C1 (en) Method and device for control of isolation of electrical supply system with isolated neutral
JP2015001516A (en) Insulation level monitoring device