JP2005184008A - Wafer flattening device and method - Google Patents

Wafer flattening device and method Download PDF

Info

Publication number
JP2005184008A
JP2005184008A JP2004371786A JP2004371786A JP2005184008A JP 2005184008 A JP2005184008 A JP 2005184008A JP 2004371786 A JP2004371786 A JP 2004371786A JP 2004371786 A JP2004371786 A JP 2004371786A JP 2005184008 A JP2005184008 A JP 2005184008A
Authority
JP
Japan
Prior art keywords
wafer
etching liquid
nitrogen gas
liquid supply
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004371786A
Other languages
Japanese (ja)
Other versions
JP4011579B2 (en
Inventor
Kwon Kim Sang
ウオン キム サン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DongbuAnam Semiconductor Inc
Original Assignee
DongbuAnam Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DongbuAnam Semiconductor Inc filed Critical DongbuAnam Semiconductor Inc
Publication of JP2005184008A publication Critical patent/JP2005184008A/en
Application granted granted Critical
Publication of JP4011579B2 publication Critical patent/JP4011579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly flatten the entire surface of a wafer and to replace a conventional CMP process by spraying a fume of an etching liquid with high pressure to the surface of a wafer rotating at a high speed. <P>SOLUTION: A device is constructed so as to comprise a liquid nitrogen supply tank 20, a nitrogen gas carrying pipe 21 connected to the liquid nitrogen supply tank via a valve, an etching liquid supply pipe 33 connected to the nitrogen gas carrying pipe, an etching liquid supply tank 30 connected to the etching liquid supply pipe, a spray nozzle 40 connected to the liquid nitrogen carrying pipe 21, and a chamber 50 to the upper surface of which the spray nozzle is attached and on the lower surface of which a wafer rotating device 45 is located, and so that the entire surface of the wafer is uniformly flattened by spraying the fume of the etching liquid with high pressure to the surface of a wafer 51 rotating at a high speed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ウェハ(wafer)平坦化装置及び方法に関し、より詳しくは、高圧の蝕刻液の蒸気(fume)を高速で回転するウェハ表面に噴霧することで、ウェハの全面を均一に平坦化することができて、従来のCMP(chemical mechanical polish)工程を取り替えることができるウェハの平坦化方法に関する。   The present invention relates to a wafer planarization apparatus and method, and more particularly, to uniformly planarize the entire surface of a wafer by spraying a high-pressure etchant vapor onto a rotating wafer surface at high speed. More particularly, the present invention relates to a method for planarizing a wafer, which can replace a conventional chemical mechanical polish (CMP) process.

従来技術によるウェハ加工装置、例えば、CMP装置を取り替えることができるスピン(spin)型ウェハ加工装置に対して説明すれば次のようである。   A conventional wafer processing apparatus, for example, a spin type wafer processing apparatus capable of replacing a CMP apparatus will be described as follows.

図1を参照すれば、従来技術によるスピン型ウェハ加工装置は、加工用ウェハがローディングされるウェハ尺10と前記ウェハ尺の上部に蝕刻用ケミカル(chemical)溶液を供給するケミカル供給ライン14で構成されている。図面に図示されたところのように、前記ウェハ尺の上にウェハ12がローディングされれば、前記ウェハ尺が回転するようになって、回転されているウェハ上に前記ケミカル供給ラインからケミカルがドロップ(drop)方式に供給される。前記ケミカル供給ラインは、前記ウェハの上で前記ウェハを横切って往復に移動される。参照符号14a及び14bは、前記ウェハの中心と端の間に位したケミカル供給ラインを現わす。   Referring to FIG. 1, a conventional spin-type wafer processing apparatus includes a wafer scale 10 on which a processing wafer is loaded and a chemical supply line 14 for supplying an etching chemical solution to the upper part of the wafer scale. Has been. As shown in the drawing, when the wafer 12 is loaded on the wafer scale, the wafer scale is rotated, and chemical is dropped from the chemical supply line onto the rotating wafer. (Drop) system. The chemical supply line is moved back and forth across the wafer over the wafer. Reference numerals 14a and 14b represent a chemical supply line positioned between the center and end of the wafer.

図2を参照すれば、前記ケミカル供給ライン14の移動線である仮想線18が示されている。前記ウェハ上に供給されたケミカルは初期にウェハの回転によって相対速度を持つようになって遠心力を受けるようになる。これによって、ウェハ上に供給されたケミカルは最初供給された地点からウェハの外方へ急激に移動されて、前記ウェハの加工、すなわち蝕刻やストリップ(strip)または洗浄が前記ウェハの領域別で違うように現われるようになる。   Referring to FIG. 2, a virtual line 18 that is a movement line of the chemical supply line 14 is shown. The chemical supplied on the wafer initially has a relative speed due to the rotation of the wafer and receives a centrifugal force. As a result, the chemical supplied on the wafer is rapidly moved from the point where the wafer is first supplied to the outside of the wafer, and the processing of the wafer, that is, etching, stripping or cleaning differs depending on the region of the wafer. Will appear as follows.

具体的に、図3を参照すれば、ウェハが回転されている状態でウェハ加工用ケミカルは前記ウェハの一地点、例えば前記ウェハの中心に触れながら前記ウェハと相当な相対速度を持つようになって前記ウェハの外側を向く遠心力も受けるようになる。よって、ケミカルは最初供給された地点から半径rの第1領域(R1)まで急速に移動される。前記第1領域(R1)を脱しながら前記ケミカルとウェハ12の相対速度は殆ど0になる。すなわち、前記ケミカルが遠心力を少し受けるが、前記ウェハ12の端に移動される速度は非常にのろくなる。よって、前記第1領域(R1)と端の間の第2領域(R2)に到逹されたケミカルはウェハと一緒に動くように見做すことができる。このように、前記ケミカルは、ウェハの第1領域(R1)までは急速に移動される一方前記第2領域(R2)からは移動速度がのろくなるから、前記第1領域(R1)でケミカルとウェハが応じることができる時間は非常に短い一方、前記第2領域(R2)では相対的に長くなる。よって、ウェハの第1領域(R1)は充分に加工されない一方、前記第2領域(R2)は十分な加工が成り立つ。これによって、前記ウェハは、第1領域(R1)は厚くて第2領域(R2)は薄い形態に加工される。   Specifically, referring to FIG. 3, while the wafer is rotated, the wafer processing chemical has a relative speed with the wafer while touching one point of the wafer, for example, the center of the wafer. Thus, a centrifugal force directed to the outside of the wafer is also received. Therefore, the chemical is rapidly moved from the first supply point to the first region (R1) having the radius r. The relative velocity between the chemical and the wafer 12 becomes almost zero while leaving the first region (R1). That is, the chemical receives a little centrifugal force, but the moving speed to the edge of the wafer 12 becomes very slow. Therefore, the chemical that reaches the second region (R2) between the first region (R1) and the end can be considered to move together with the wafer. As described above, the chemical is rapidly moved to the first region (R1) of the wafer, while the moving speed becomes slow from the second region (R2). While the time that the wafer can respond to is very short, it is relatively long in the second region (R2). Therefore, the first region (R1) of the wafer is not sufficiently processed, while the second region (R2) is sufficiently processed. Thus, the wafer is processed so that the first region (R1) is thick and the second region (R2) is thin.

前述したように、従来技術によるスピン型ウェハ加工装置は既存のCMP装置を使わないでウェハ表面を平坦化させるという長所を持っている。すなわち、CMP装置のポリッシングパッドとの摩擦による機械的研磨を遂行しないことによってスクラッチ(scratch)等の欠陷を防止することができるし、またスラーリ(slurry)を使わないことで、製造原価を低めて、副産物の処理費用が必要とならない長所を持っている。   As described above, the conventional spin-type wafer processing apparatus has an advantage that the wafer surface is planarized without using an existing CMP apparatus. In other words, scratches such as scratches can be prevented by not performing mechanical polishing due to friction with the polishing pad of the CMP apparatus, and manufacturing costs can be reduced by not using slurries. In addition, there is an advantage that the cost of processing by-products is not required.

しかし、上述したスピン型ウェハ加工装置は、蝕刻用ケミカルがウェハの限定された領域で十分な反応時間を持つからウェハの全領域を均一に加工することが難しいということをわかる。これを解消するためには、加工条件を変えて加工を繰り返さなければならない。例えば、前記酸化膜蝕刻工程で1次蝕刻の後、酸化膜の厚さが厚い第1領域(R1)で反応時間を長くして、酸化膜の厚さが相対的に薄い第2領域(R2)での反応時間は短くする条件で2次蝕刻をする。よって、ウェハ加工に必要となる時間が増加されて、半導体装置の生産性は低くなるようになる問題点がある。   However, it can be seen that the above-described spin-type wafer processing apparatus has difficulty in processing the entire region of the wafer uniformly because the etching chemical has a sufficient reaction time in a limited region of the wafer. In order to eliminate this, it is necessary to change the processing conditions and repeat the processing. For example, after the primary etching in the oxide film etching process, the reaction time is increased in the first region (R1) where the oxide film is thick, and the second region (R2) where the oxide film is relatively thin. The secondary etching is performed under the condition of shortening the reaction time. Therefore, there is a problem that the time required for wafer processing is increased and the productivity of the semiconductor device is lowered.

本発明は、前記のような従来技術の問題点を解決するものであり、高圧の蝕刻液の蒸気を高速で回転するウェハの表面に噴霧することで、ウェハの全面を均一に平坦化することができて、従来のCMP工程を取り替えることができるウェハの平坦化方法を提供するにその目的がある。   The present invention solves the problems of the prior art as described above, and sprays high-pressure etching solution vapor onto the surface of the rotating wafer at high speed to uniformly flatten the entire surface of the wafer. Therefore, it is an object of the present invention to provide a wafer planarization method that can replace the conventional CMP process.

前記目的を達成するために、本発明のウェハ平坦化装置及び方法は、高圧の蝕刻液の蒸気を高速で回転するウェハ表面に噴霧することでウェハの全面を均一に平坦化する。   In order to achieve the above object, the wafer flattening apparatus and method of the present invention uniformly flatten the entire surface of the wafer by spraying high-pressure etching solution vapor on the surface of the rotating wafer at high speed.

本発明は、従来のCMP工程を取り替えることで、平坦化後残留の不純物によるスクラッチ問題、高価のスラーリ使用問題、廃液処理問題などを解決することができる。   The present invention can solve the scratch problem due to impurities remaining after planarization, the expensive slurry use problem, the waste liquid treatment problem, etc. by replacing the conventional CMP process.

以下、本発明に係る好ましい実施形態を添付図面を参照しつつ詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明の前記目的は 液体窒素供給タンクと;前記液体窒素供給タンクとバルブで繋がれた窒素ガス移送管と;前記窒素ガス移送管と繋がれる蝕刻液の供給配管と;前記蝕刻液の供給配管と繋がれる蝕刻液の供給タンクと;前記窒素ガス移送管と繋がれる噴射ノズル部の上部面に附着してウェハ回転装置が下部面に位したチャンバで成り立ったウェハ平坦化装置によって逹成される。   The object of the present invention is: a liquid nitrogen supply tank; a nitrogen gas transfer pipe connected to the liquid nitrogen supply tank by a valve; an etching liquid supply pipe connected to the nitrogen gas transfer pipe; and an etching liquid supply pipe An etching liquid supply tank connected to the nitrogen gas transfer pipe; and attached to an upper surface of the spray nozzle connected to the nitrogen gas transfer pipe, and a wafer rotation device formed by a wafer flattening device comprising a chamber positioned on the lower surface. .

また、本発明の前記目的は、窒素ガスを移送管で放出する段階;前記放出された窒素ガスと蝕刻液が混合する段階;前記混合した蝕刻液がチャンバ内の噴射ノズル部からウェハの全面に噴射されてウェハを平坦化する段階;及び前記ウェハを洗浄する段階で成り立ったウェハの平坦化方法によって逹成される。   Further, the object of the present invention is to discharge nitrogen gas through a transfer pipe; to mix the released nitrogen gas and etching liquid; and to mix the etched liquid into the entire surface of the wafer from the spray nozzle in the chamber. A wafer planarization method comprising: spraying and planarizing the wafer; and cleaning the wafer.

本発明の前記目的と技術的構成及びそれによる作用・効果に関する詳しい事項は、本発明の望ましい実施例を図示している図面を参照した以下詳細な説明によって、明確に理解されるはずである。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Details of the above-mentioned objects and technical configurations of the present invention, as well as the operations and effects thereof, will be clearly understood by the following detailed description with reference to the drawings illustrating preferred embodiments of the present invention.

先ず、図4は、本発明によるウェハ平坦化装置の概路図を示したものである。ウェハ平坦化装置は、高圧の蝕刻液を供給する供給部と、ウェハ平坦化が成り立つチャンバ(chamber)部50で構成されている。より詳しくよく見れば、前記蝕刻液供給部は液体窒素(LN)供給タンク20と蝕刻液の供給タンク30そして噴射ノズル40で構成され、前記チャンバ部はウェハ回転装置45と洗浄装置(未図示)で構成されている。 First, FIG. 4 shows a schematic diagram of a wafer flattening apparatus according to the present invention. The wafer flattening apparatus includes a supply unit that supplies a high-pressure etching solution and a chamber unit 50 that achieves wafer flattening. More specifically, the etchant supply unit includes a liquid nitrogen (LN 2 ) supply tank 20, an etchant supply tank 30 and an injection nozzle 40, and the chamber unit includes a wafer rotating device 45 and a cleaning device (not shown). ).

前記それぞれの装置部によってウェハが平坦化される方法に対して図面を参照して詳らかに説明すれば次のようである。   The method of planarizing the wafer by each of the apparatus units will be described in detail with reference to the drawings.

前記図4で、液体窒素供給タンク20には、極低温の液体窒素が高圧の供給タンクに保存されている途中タンクのバルブが開かれれば圧力が急激に減少して液体、気体、固体が同時に存在する三重点(triple point)が形成されながら高い圧力が発生する。この際、発生する高い圧力を持って液体窒素で気化された窒素ガスが、移送管21に放出される。前記移送管21は、蝕刻液が保存されているタンク30と繋がれた蝕刻液の供給配管33と繋がれる。前記窒素ガス移送管21と蝕刻液の供給配管33が会う部位には移送される窒素ガスの高い速度によって低気圧が形成されて大気圧状態の蝕刻液の供給配管33との高い圧力差が発生する。前記圧力差によって蝕刻液の供給タンク30に保管されている蝕刻液31が前記蝕刻液の供給配管33を通じて上昇移動して前記窒素ガスと混合する。この際、前記蝕刻液31は、脱イオン水と所定の濃度に希釈された状態に保管されて、蝕刻液の残留量は、前記蝕刻液の供給タンク30に附着したセンサー32によって感知される。また、前記蝕刻液の供給配管33は、前記窒素ガス移送管21と会う部位で前記蝕刻液の供給配管33の端の部分がノズルを成していて、供給配管を通じて上昇された蝕刻液が微細な粒子形態で窒素ガスと混合する。   In FIG. 4, the liquid nitrogen supply tank 20 has a sudden decrease in pressure when a tank valve is opened while cryogenic liquid nitrogen is stored in a high-pressure supply tank. A high pressure is generated while a triple point is formed. At this time, the generated nitrogen gas vaporized with liquid nitrogen with a high pressure is released to the transfer pipe 21. The transfer pipe 21 is connected to an etching liquid supply pipe 33 connected to a tank 30 in which the etching liquid is stored. A low pressure is formed at a portion where the nitrogen gas transfer pipe 21 and the etching liquid supply pipe 33 meet by a high speed of the transferred nitrogen gas, and a high pressure difference is generated between the etching liquid supply pipe 33 in the atmospheric pressure state. To do. Due to the pressure difference, the etchant 31 stored in the etchant supply tank 30 moves upward through the etchant supply pipe 33 and mixes with the nitrogen gas. At this time, the etching solution 31 is stored in a state diluted with deionized water to a predetermined concentration, and the residual amount of the etching solution is detected by a sensor 32 attached to the supply tank 30 of the etching solution. Further, the etching liquid supply pipe 33 has a nozzle at the end of the etching liquid supply pipe 33 at a portion meeting the nitrogen gas transfer pipe 21, and the etching liquid raised through the supply pipe is fine. Mix with nitrogen gas in the form of fine particles.

以後、前記窒素ガスと混合した微細な蝕刻液は、前記窒素ガスを移送ガス(carrier gas)にしてチャンバ50と繋がれる移送管を通じてチャンバ内部に附着している噴射ノズル40に移動する。前記噴射ノズル40は、チャンバ内部の上部面に位置と、複数個のノズルで構成されていて、蝕刻が行われるウェハの全面に蝕刻液を均一に振り撤く。この際、前記噴射ノズル40によって振り撤かれる蝕刻液は、ノズルの微細穴と窒素ガスの高い圧力によって蝕刻液の粒子がもっと微細化されて蒸気(fume)形態でチャンバ内部に振り撤かれて、高速で回転している蝕刻が行われるウェハの上部面に高い圧力を持って到逹するようになる。   Thereafter, the fine etching liquid mixed with the nitrogen gas moves to the injection nozzle 40 attached to the inside of the chamber through a transfer pipe connected to the chamber 50 using the nitrogen gas as a carrier gas. The spray nozzle 40 is composed of a plurality of nozzles and a position on the upper surface inside the chamber, and uniformly sprays the etching solution over the entire surface of the wafer to be etched. At this time, the etching liquid shaken off by the jet nozzle 40 is further finely divided by the fine holes of the nozzle and the high pressure of nitrogen gas, and is shaken off inside the chamber in the form of vapor. The upper surface of the wafer, which is etched at a high speed, reaches the upper surface with high pressure.

以後、前記ウェハの表面で蝕刻が進行される段階を一例を持って説明すれば次のようである。前記ウェハの表面にシリコーン酸化膜(SiO)が形成されていて前記蝕刻液として弗酸(Hydrofluoric acid; HF)を使うと、前記シリコーン酸化膜では蒸気形態の弗酸と応じて下記の化学反応が起きる。 Hereinafter, the process of etching on the surface of the wafer will be described with an example as follows. When a silicon oxide film (SiO 2 ) is formed on the surface of the wafer and hydrofluoric acid (HF) is used as the etchant, the following chemical reaction occurs in the silicone oxide film depending on the vapor form of hydrofluoric acid. Happens.

SiO + HF →SiF↑+ HO↑
しかし、前記の化学反応によってだけではシリコーン酸化膜が等方性蝕刻されるので平坦化が成り立たない。したがって、本発明では表面方向だけで異方性蝕刻が起きて平坦化が成り立つように前記ウェハを高速で回転させる。前記ウェハ高速回転の作用と蒸気形態で微細にウェハの全面に均一に振り撤かれた蝕刻液の作用でウェハは平坦化される。
SiO 2 + HF → SiF 4 ↑ + H 2 O ↑
However, since the silicone oxide film is isotropically etched only by the chemical reaction, flattening cannot be realized. Accordingly, in the present invention, the wafer is rotated at high speed so that anisotropic etching occurs only in the surface direction and flattening is achieved. The wafer is flattened by the action of the high-speed rotation of the wafer and the action of the etching solution that is finely shaken off the entire surface of the wafer in a vapor form.

図5はウェハ回転装置45を示している。平坦化が行われるウェハ51は、ウェハをローディング(loading)、アンローディング(unloading)するリフト54によってウェハステージ53の上部とウェハの離脱を防止するクランプ52の間に置かれる。クランプ52は、ウェハを固定するステージ53の上部に置かれて、前記ステージ53は、ウェハ51が位置したリフトの上部に置かれる。前記リフト54は、回転駆動部の上部に置かれる。前記ウェハ51はモーター(motor)で作動される高速回転駆動部55によって高速で回転する。蒸気形態の蝕刻液によって平坦化が成り立った後には、洗浄ノズル(未図示)で噴霧される脱イオン水で濯ぐことが成り立つ。   FIG. 5 shows the wafer rotating device 45. The wafer 51 to be planarized is placed between the upper part of the wafer stage 53 and a clamp 52 that prevents the wafer from being detached by a lift 54 that loads and unloads the wafer. The clamp 52 is placed on an upper part of a stage 53 for fixing the wafer, and the stage 53 is placed on an upper part of a lift on which the wafer 51 is located. The lift 54 is placed on the upper part of the rotation driving unit. The wafer 51 is rotated at a high speed by a high-speed rotation driving unit 55 operated by a motor. After flattening is achieved by the vapor-form etching liquid, rinsing with deionized water sprayed by a cleaning nozzle (not shown) can be achieved.

従来技術によるスピン型ウェハ加工装置を示す図である。It is a figure which shows the spin type wafer processing apparatus by a prior art. 従来技術によるスピン型ウェハ加工装置を示す図である。It is a figure which shows the spin type wafer processing apparatus by a prior art. 従来技術によるスピン型ウェハ加工装置を示す図である。It is a figure which shows the spin type wafer processing apparatus by a prior art. 本発明による高圧の蝕刻液の蒸気を利用したウェハ平坦化装置を示す図である。1 is a view showing a wafer flattening apparatus using vapor of a high-pressure etching solution according to the present invention. 本発明による高圧の蝕刻液の蒸気を利用したウェハ平坦化装置を示す図である。1 is a view showing a wafer flattening apparatus using vapor of a high-pressure etching solution according to the present invention.

符号の説明Explanation of symbols

20 液体窒素供給タンク
21 窒素ガス移送管
30 蝕刻液の供給タンク
31 蝕刻液
32 センサー
33 蝕刻液の供給配管
40 噴射ノズル
45 ウエハ回転装置
50 チャンバ
51 ウエハ
52 クランプ
53 ウエハステージ
54 リフト
55 高速回転駆動部
DESCRIPTION OF SYMBOLS 20 Liquid nitrogen supply tank 21 Nitrogen gas transfer pipe 30 Etching liquid supply tank 31 Etching liquid 32 Sensor 33 Etching liquid supply piping 40 Injection nozzle 45 Wafer rotation apparatus 50 Chamber 51 Wafer 52 Clamp 53 Wafer stage 54 Lift 55 High-speed rotation drive part

Claims (9)

ウェハ平坦化装置において、
液体窒素供給タンクと;
前記液体窒素供給タンクとバルブで繋がれた窒素ガス移送管と;
前記窒素ガス移送管と繋がれる蝕刻液の供給配管と;
前記蝕刻液の供給配管と繋がれる蝕刻液の供給タンクと;
前記窒素ガス移送管と繋がれる噴射ノズル部の上部面に附着してウェハ回転装置が下部面に位したチャンバと;
を含むことを特徴とするウェハ平坦化装置。
In wafer flattening equipment,
A liquid nitrogen supply tank;
A nitrogen gas transfer pipe connected to the liquid nitrogen supply tank by a valve;
An etching liquid supply pipe connected to the nitrogen gas transfer pipe;
An etching liquid supply tank connected to the etching liquid supply pipe;
A chamber attached to the upper surface of the spray nozzle connected to the nitrogen gas transfer pipe and having the wafer rotating device positioned on the lower surface;
A wafer flattening apparatus comprising:
前記蝕刻液の供給タンクは、蝕刻液の残留量を感知するセンサーが附着していることを特徴とする請求項1に記載のウェハ平坦化装置。   2. The wafer flattening apparatus according to claim 1, wherein the etching liquid supply tank is provided with a sensor for detecting a residual amount of the etching liquid. 前記蝕刻液の供給配管は、出口側がノズルで構成されていることを特徴とする請求項1に記載のウェハ平坦化装置。   2. The wafer flattening apparatus according to claim 1, wherein an outlet side of the etching liquid supply pipe is configured by a nozzle. 前記噴射ノズル部は、複数個のノズルで構成されていることを特徴とする請求項1に記載のウェハ平坦化装置。   The wafer flattening apparatus according to claim 1, wherein the spray nozzle unit includes a plurality of nozzles. 前記ウェハ回転装置は、
モーターを具備した回転駆動部と;
前記回転駆動部の上部に位してウェハをローディング、アンローディングするリフトと;
前記リフトの上部に位してウェハが置かれるステージと;
前記ステージの上部わくに位してウェハの離脱を防止するクランプと;
ウェハに脱イオン水を供給する洗浄ノズルと;
を含んで成り立つことを特徴とする請求項1に記載のウェハ平坦化装置。
The wafer rotation device includes:
A rotary drive with a motor;
A lift for loading and unloading a wafer on top of the rotational drive unit;
A stage on top of the lift on which the wafer is placed;
A clamp positioned on the upper side of the stage to prevent the wafer from being detached;
A cleaning nozzle for supplying deionized water to the wafer;
The wafer flattening apparatus according to claim 1, comprising:
ウェハの平坦化方法において、
窒素ガスを移送管へ放出する段階と;
前記放出された窒素ガスと蝕刻液が混合する段階と;
前記混合した蝕刻液がチャンバ内の噴射ノズル部からウェハの全面に噴射されてウェハを平坦化する段階と;
前記ウェハを洗浄する段階と;
を含むことを特徴とするウェハの平坦化方法。
In the wafer flattening method,
Releasing nitrogen gas into the transfer tube;
Mixing the released nitrogen gas with the etchant;
Spraying the mixed etching liquid onto the entire surface of the wafer from the spray nozzle in the chamber to flatten the wafer;
Cleaning the wafer;
A method for planarizing a wafer, comprising:
前記窒素ガスは、液体窒素供給タンクで高い圧力を持って移送管に放出されることを特徴とする請求項6に記載のウェハの平坦化方法。   7. The wafer flattening method according to claim 6, wherein the nitrogen gas is discharged to a transfer pipe with a high pressure in a liquid nitrogen supply tank. 前記窒素ガスと蝕刻液の混合する段階は、
蝕刻液が蝕刻液の供給配管を具備した蝕刻液の供給タンクに脱イオン水と希釈されて保管されている途中、前記高い圧力の窒素ガス移送管と前記蝕刻液の供給配管が会う地点での圧力差によって前記蝕刻液が上昇移動する段階と;
ノズルで構成された蝕刻液の供給配管の端の部分を通じて細かい粒子形態で前記窒素ガスと混合することを特徴とする請求項6に記載のウェハの平坦化方法。
The step of mixing the nitrogen gas and the etching solution includes:
While the etching liquid is stored diluted with deionized water in an etching liquid supply tank having an etching liquid supply pipe, the high pressure nitrogen gas transfer pipe and the etching liquid supply pipe meet at the point where A step in which the etching liquid moves upward due to a pressure difference;
7. The wafer flattening method according to claim 6, wherein the nitrogen gas is mixed in a fine particle form through an end portion of an etching liquid supply pipe constituted by a nozzle.
前記ウェハを平坦化する段階は、
噴射ノズル部で噴射された蝕刻液が、窒素ガスの高圧とノズルの作用によって蒸気形態に変換される段階と;
前記蒸気形態の蝕刻液が、高速で回転するウェハの全面に均一に振り撤かれる段階と;
前記ウェハの表面でウェハの回転方向に異方性蝕刻が起きる段階と;
を含んで成り立つことを特徴とする請求項6に記載のウェハの平坦化方法。
Planarizing the wafer comprises:
The etching liquid sprayed from the spray nozzle is converted into a vapor form by the high pressure of nitrogen gas and the action of the nozzle;
A step in which the vapor-form etching liquid is uniformly shaken off over the entire surface of the wafer rotating at high speed;
An anisotropic etching occurs in a rotation direction of the wafer on the surface of the wafer;
The method for planarizing a wafer according to claim 6, comprising:
JP2004371786A 2003-12-23 2004-12-22 Wafer planarization apparatus and method Expired - Fee Related JP4011579B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030095812A KR100582837B1 (en) 2003-12-23 2003-12-23 Appratus and method of wafer planarization

Publications (2)

Publication Number Publication Date
JP2005184008A true JP2005184008A (en) 2005-07-07
JP4011579B2 JP4011579B2 (en) 2007-11-21

Family

ID=34675990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371786A Expired - Fee Related JP4011579B2 (en) 2003-12-23 2004-12-22 Wafer planarization apparatus and method

Country Status (4)

Country Link
US (1) US20050133156A1 (en)
JP (1) JP4011579B2 (en)
KR (1) KR100582837B1 (en)
DE (1) DE102004063066B4 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955982B2 (en) * 2006-01-20 2011-06-07 Sumco Corporation Method for smoothing wafer surface and apparatus used therefor
US10593603B2 (en) 2018-03-16 2020-03-17 Sandisk Technologies Llc Chemical mechanical polishing apparatus containing hydraulic multi-chamber bladder and method of using thereof
KR102651367B1 (en) 2018-11-22 2024-03-27 에스케이하이닉스 주식회사 Data center
TWI810563B (en) * 2021-05-14 2023-08-01 達運精密工業股份有限公司 Mask manufacturing method and mask manufacturing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205153A (en) * 1982-05-25 1983-11-30 Dainippon Screen Mfg Co Ltd Sprayer of chemical solution
JP2003282527A (en) * 2002-03-27 2003-10-03 Dainippon Screen Mfg Co Ltd Substrate treatment device and substrate treatment method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370192A (en) * 1980-10-20 1983-01-25 American Microsystems, Inc. Apparatus for chemical etching of silicon
DE3273475D1 (en) * 1982-10-14 1986-10-30 Ibm Deutschland Method to measure the thickness of eroded layers at subtractive work treatment processes
US4793895A (en) * 1988-01-25 1988-12-27 Ibm Corporation In situ conductivity monitoring technique for chemical/mechanical planarization endpoint detection
US4954142A (en) * 1989-03-07 1990-09-04 International Business Machines Corporation Method of chemical-mechanical polishing an electronic component substrate and polishing slurry therefor
US5081421A (en) * 1990-05-01 1992-01-14 At&T Bell Laboratories In situ monitoring technique and apparatus for chemical/mechanical planarization endpoint detection
US5081796A (en) * 1990-08-06 1992-01-21 Micron Technology, Inc. Method and apparatus for mechanical planarization and endpoint detection of a semiconductor wafer
US5036015A (en) * 1990-09-24 1991-07-30 Micron Technology, Inc. Method of endpoint detection during chemical/mechanical planarization of semiconductor wafers
JP2583152B2 (en) * 1990-11-06 1997-02-19 大日本スクリーン製造株式会社 Substrate rotating surface treatment method
US5433651A (en) * 1993-12-22 1995-07-18 International Business Machines Corporation In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing
US6537133B1 (en) * 1995-03-28 2003-03-25 Applied Materials, Inc. Method for in-situ endpoint detection for chemical mechanical polishing operations
US20020064961A1 (en) * 2000-06-26 2002-05-30 Applied Materials, Inc. Method and apparatus for dissolving a gas into a liquid for single wet wafer processing
DE50015481D1 (en) * 2000-10-31 2009-01-22 Sez Ag Device for liquid treatment of disc-shaped objects
US6811680B2 (en) * 2001-03-14 2004-11-02 Applied Materials Inc. Planarization of substrates using electrochemical mechanical polishing
US6699356B2 (en) * 2001-08-17 2004-03-02 Applied Materials, Inc. Method and apparatus for chemical-mechanical jet etching of semiconductor structures
US6827633B2 (en) * 2001-12-28 2004-12-07 Ebara Corporation Polishing method
US6770565B2 (en) * 2002-01-08 2004-08-03 Applied Materials Inc. System for planarizing metal conductive layers
JP2003273064A (en) * 2002-03-15 2003-09-26 Fujitsu Ltd Method and apparatus for removing deposit
US20030209069A1 (en) * 2002-05-13 2003-11-13 Silicon Integrated Systems Corp. Chemical bath having liquid level indications in outer trough
US6806193B2 (en) * 2003-01-15 2004-10-19 Texas Instruments Incorporated CMP in-situ conditioning with pad and retaining ring clean

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205153A (en) * 1982-05-25 1983-11-30 Dainippon Screen Mfg Co Ltd Sprayer of chemical solution
JP2003282527A (en) * 2002-03-27 2003-10-03 Dainippon Screen Mfg Co Ltd Substrate treatment device and substrate treatment method

Also Published As

Publication number Publication date
DE102004063066B4 (en) 2008-01-17
JP4011579B2 (en) 2007-11-21
US20050133156A1 (en) 2005-06-23
KR20050064445A (en) 2005-06-29
DE102004063066A1 (en) 2005-11-03
KR100582837B1 (en) 2006-05-23

Similar Documents

Publication Publication Date Title
US6423640B1 (en) Headless CMP process for oxide planarization
US6494985B1 (en) Method and apparatus for polishing a substrate
US5876508A (en) Method of cleaning slurry remnants after the completion of a chemical-mechanical polish process
EP1612847B1 (en) Cleaning apparatus
US6722949B2 (en) Ventilated platen/polishing pad assembly for chemcial mechanical polishing and method of using
KR20130123404A (en) Ultrahigh-speed wet etching device
US6227949B1 (en) Two-slurry CMP polishing with different particle size abrasives
KR100222186B1 (en) Manufacture of semiconductor device and apparatus therefor
US6213852B1 (en) Polishing apparatus and method of manufacturing a semiconductor device using the same
US6688945B2 (en) CMP endpoint detection system
US20060148205A1 (en) Semiconductor manufacturing method for device isolation
KR20130090209A (en) Apparatus and method for treating substrate
JP4011579B2 (en) Wafer planarization apparatus and method
US20240082885A1 (en) Substrate cleaning device and method of cleaning substrate
WO2001031691A1 (en) Method and apparatus for cleaning a semiconductor wafer
US20030211743A1 (en) Method for avoiding slurry sedimentation in CMP slurry delivery systems
US20080014751A1 (en) Method of manufacturing semiconductor device
US6634930B1 (en) Method and apparatus for preventing metal corrosion during chemical mechanical polishing
JP2004056046A (en) Method of processing soi substrate
KR20090068640A (en) Chemical-mechanical polishing apparatus for manufacturing semiconductor devices and method thereof
JP2008200771A (en) Method for polishing substrate, semiconductor apparatus, and its manufacturing method
KR100698747B1 (en) Device and driving method thereof
WO2023176051A1 (en) Substrate processing method and substrate processing apparatus
WO2023276458A1 (en) Substrate treatment method and substrate treatment device
KR100873235B1 (en) Method of polishing wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees