JP2005183501A - Method of forming through-hole in thin-film substrate and its apparatus, and method of manufacturing thin-film solar battery using the method - Google Patents

Method of forming through-hole in thin-film substrate and its apparatus, and method of manufacturing thin-film solar battery using the method Download PDF

Info

Publication number
JP2005183501A
JP2005183501A JP2003418992A JP2003418992A JP2005183501A JP 2005183501 A JP2005183501 A JP 2005183501A JP 2003418992 A JP2003418992 A JP 2003418992A JP 2003418992 A JP2003418992 A JP 2003418992A JP 2005183501 A JP2005183501 A JP 2005183501A
Authority
JP
Japan
Prior art keywords
substrate
die
punch
thin
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003418992A
Other languages
Japanese (ja)
Inventor
Shinji Kiyofuji
真次 清藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003418992A priority Critical patent/JP2005183501A/en
Publication of JP2005183501A publication Critical patent/JP2005183501A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Details Of Cutting Devices (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost method and apparatus of forming through-holes in a thin-film substrate which can suppress the occurrence of sagging and cracking of the substrate and can smoothly remove slag after punching even if a clearance between a punch and a corresponding die opening is enlarged, and to provide a method of manufacturing a thin-film solar battery using the method. <P>SOLUTION: The apparatus of forming through-holes in the thin-film substrate comprises a punch plate 11 having a plurality of punches 2, die 3 having a plurality of openings 3a facing the punches 2, press plate 7 which has a plurality of holes for passing the punch through which is installed on the punch plate 11 via a spring means 13 for pressing the substrate, lower mold 4 for fixing the die, upper mold 5 which is installed opposite to the lower mold 4 and moves the punch plate 11 up and down, and press unit 14 for pressurizing the upper mold 5. The air 10 of a prescribed pressure is supplied from the anti-substrate side of the plurality of openings of the die 3. With the prescribed pressure of the air working on the die opening-side surface of the substrate 1a, punching is carried out by the punches 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、薄膜太陽電池の製造方法ならびに、同薄膜太陽電池や半導体,感光体などの機能性薄膜および電極層や保護層などの薄膜を積層形成してなる薄膜機能素子の基板または少なくとも一部の薄膜を形成した基板に、複数個の所定の貫通孔を形成するための薄膜基板貫通孔加工方法および装置に関する。   The present invention relates to a method of manufacturing a thin film solar cell, and a substrate or at least a part of a thin film functional element formed by laminating a functional thin film such as the thin film solar cell, a semiconductor, and a photoreceptor, and a thin film such as an electrode layer and a protective layer. The present invention relates to a thin-film substrate through-hole processing method and apparatus for forming a plurality of predetermined through-holes on a substrate on which a thin film is formed.

電気絶縁性を有するフィルム基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層は互いに位置をずらして単位部分に分離してなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して,前記表面上の互いに分離された隣合う単位光電変換部分を電気的に直列に接続してなる薄膜太陽電池の製造方法であって、前記接続孔および集電孔を、ポンチとダイとからなる金型を用いて加工する製造方法が特許文献1に開示されている。   A photoelectric conversion part formed by sequentially laminating a first electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) as a lower electrode layer on the surface of a film substrate having electrical insulation, and formed on the back surface of the substrate A third electrode layer and a fourth electrode layer serving as connection electrode layers, wherein the photoelectric conversion portion and the connection electrode layer are separated from each other and separated into unit parts, and formed outside the transparent electrode layer formation region The adjacent unit photoelectric conversion portions separated from each other on the surface are electrically connected in series via the connection hole for electrical series connection and the current collection hole formed in the transparent electrode layer forming region. A manufacturing method of a thin film solar cell is disclosed in Patent Document 1 in which the connection hole and the current collecting hole are processed using a mold including a punch and a die.

図10は、特許文献1に記載された図であり、構造の理解の容易化のために、前述のような薄膜太陽電池の構成を簡略化して斜視図で示したものである。図10において、基板61の表面に形成した単位光電変換素子62および基板61の裏面に形成した接続電極層63は、それぞれ複数の単位ユニットに完全に分離され、それぞれの分離位置をずらして形成されている。このため、光電変換素子62のアモルファス半導体部分である光電変換層65で発生した電流は、まず透明電極層66に集められ、次に該透明電極層領域に形成された集電孔67(h2)を介して背面の接続電極層63に通じ、さらに該接続電極層領域で素子の透明電極層領域の外側に形成された直列接続用の接続孔68(h1)を介して上記素子と隣り合う素子の透明電極層領域の外側に延びている下電極層64に達し、両素子の直列接続が行われている。なお、前記接続電極層63は、製造の都合上、図示しない第3電極層および第4電極層とに分けて層形成されて、一つの電極層を形成している。   FIG. 10 is a diagram described in Patent Document 1, and shows a simplified perspective view of the structure of the thin film solar cell as described above for easy understanding of the structure. In FIG. 10, the unit photoelectric conversion element 62 formed on the surface of the substrate 61 and the connection electrode layer 63 formed on the back surface of the substrate 61 are completely separated into a plurality of unit units, and are formed by shifting the separation positions. ing. For this reason, the current generated in the photoelectric conversion layer 65, which is an amorphous semiconductor portion of the photoelectric conversion element 62, is first collected in the transparent electrode layer 66, and then the current collection hole 67 (h2) formed in the transparent electrode layer region. Is connected to the connection electrode layer 63 on the back surface, and is connected to the element via the connection hole 68 (h1) for series connection formed outside the transparent electrode layer region of the element in the connection electrode layer region. The lower electrode layer 64 extending outside the transparent electrode layer region is reached, and the two elements are connected in series. The connection electrode layer 63 is divided into a third electrode layer and a fourth electrode layer (not shown) to form one electrode layer for convenience of manufacture.

図8は、上記薄膜太陽電池における基板の位置検出用孔(h3)と接続孔(h1)の配置を示す平面図の一例であり、図9は、図8に対して、前記下電極層と第3電極層を形成後に、さらに集電孔(h2)が開けられた基板の平面図の一例である。以下に、各孔の形成手順について述べる(詳細は、特許文献1参照)。   FIG. 8 is an example of a plan view showing the arrangement of the position detection holes (h3) and the connection holes (h1) of the substrate in the thin film solar cell, and FIG. It is an example of the top view of the board | substrate with which the current collection hole (h2) was further opened after forming the 3rd electrode layer. Below, the formation procedure of each hole is described (for details, refer patent document 1).

基板1aには位置検出孔h3,接続孔h1の順に開孔される。位置検出孔h3は太陽電池の所定のユニットパターンの長さ間隔に開けられ、以降の搬送の位置決めに用いられる。先ず、位置検出孔h3を開け、以降基板1aを所定の距離づつ搬送して停止し、フィルムの幅方向に1回のポンチ操作で複数個の接続孔h1の列を形成する。これを所定の回数繰り返した後、位置検出孔h3を開ける。この位置検出用孔h3の距離を1基本パターンの長さとし、この繰り返しにより長尺の基板1aに多数の基本パターンを形成することができる。前記下電極層と第3電極層を形成後、同じ開孔装置に装着し、位置検出用孔h3を位置検出センサにより検知し停止した後、集電孔h2の列を所定数開ける。この場合も、前記接続孔h1形成と同じ方法により形成する。   The substrate 1a is opened in the order of the position detection hole h3 and the connection hole h1. The position detection holes h3 are opened at intervals of a predetermined unit pattern of the solar cell, and are used for subsequent transport positioning. First, the position detection hole h3 is opened, and thereafter, the substrate 1a is conveyed by a predetermined distance and stopped, and a row of a plurality of connection holes h1 is formed by one punch operation in the width direction of the film. After repeating this a predetermined number of times, the position detection hole h3 is opened. The distance of the position detection hole h3 is defined as the length of one basic pattern, and by repeating this, a large number of basic patterns can be formed on the long substrate 1a. After forming the lower electrode layer and the third electrode layer, they are attached to the same opening device, the position detection holes h3 are detected by the position detection sensor and stopped, and then a predetermined number of rows of current collecting holes h2 are opened. Also in this case, the connection hole h1 is formed by the same method.

次に、上記孔加工に関わり、ポンチとダイとからなる金型を用いて加工する、いわゆるパンチを用いた打抜き加工に関して、図6および図7により述べる。図6は、薄膜太陽電池の製造装置における開孔装置の断面模式図であり、基板搬送手段と貫通孔加工手段と加工位置検出孔加工手段とを備える。巻出しロールR1から送り出された基板1aは、順次、加工位置検出用の孔開孔部P3、集電孔開孔部P2、および接続孔開孔部P1により、所定位置に所定数の加工位置検出孔、集電孔および接続孔が開けられ、洗浄装置で洗浄された後、巻取りロールR2に巻き取られる。各種の孔位置に対応して、加工位置検出用の孔を基準として、基板1aの搬送方向および搬送距離が制御される。   Next, the punching process using a so-called punch, which is related to the above hole processing and is processed using a die composed of a punch and a die, will be described with reference to FIGS. FIG. 6 is a schematic cross-sectional view of an opening device in a thin-film solar cell manufacturing apparatus, and includes substrate transporting means, through-hole processing means, and processing position detection hole processing means. The substrate 1a fed from the unwinding roll R1 is sequentially processed into a predetermined number of processing positions at a predetermined position by a hole opening portion P3 for detecting a processing position, a current collecting hole opening portion P2, and a connection hole opening portion P1. After the detection hole, the current collecting hole and the connection hole are opened and cleaned by the cleaning device, the detection hole, the current collecting hole and the connection hole are wound around the winding roll R2. Corresponding to the various hole positions, the transport direction and transport distance of the substrate 1a are controlled using the processing position detection hole as a reference.

図7は、従来の開孔装置の開孔部の拡大模式図である。開孔部は断面が基板の孔形状のポンチPとポンチPと同じ断面形状の開孔部を有するストリッパープレートPsと同じ開口部を有するダイDとからなる。ダイDとポンチPとは所定のクリアランスCを有するように構成されている。ダイDとストリッパープレートPsとの間に搬送され停止した基板1aは、ストリッパープレートPsにより押さえられ、この状態でポンチPが基板1aを打抜き(貫通し)、基板1aに孔が開けられる。   FIG. 7 is an enlarged schematic view of a hole portion of a conventional hole opening device. The opening portion includes a punch P having a hole cross-section of the substrate, and a die D having the same opening as the stripper plate Ps having an opening portion having the same cross-sectional shape as the punch P. The die D and the punch P are configured to have a predetermined clearance C. The substrate 1a that has been transported and stopped between the die D and the stripper plate Ps is pressed by the stripper plate Ps. In this state, the punch P punches (penetrates) the substrate 1a, and a hole is formed in the substrate 1a.

前記のパンチPとこれに対応するダイDの開孔部は1つの金型に多数個形成され、パンチ間ピッチ、ダイ開孔部間ピッチおよびパンチ径・ダイ開孔部の孔径は高精度に仕上げられている。また、パンチ径とダイ開孔部の孔径の隙間(片側クリアランス)は1μm〜4μmとし、高精度に組合わされている。   The punch P and the corresponding opening portions of the die D are formed in a single die, and the pitch between punches, the pitch between die opening portions, and the punch diameter and the hole diameter of the die opening portion are highly accurate. It has been finished. Further, the gap (one-side clearance) between the punch diameter and the hole diameter of the die opening portion is 1 μm to 4 μm, and is combined with high accuracy.

ところで、パンチを用いて打抜き加工を行った後、打ち抜きカス(スラグ)を円滑に排除する必要がある。このスラグの排除方法については種々の方法が提案されており、ダイ側にエアー導入ノズルを形成し、抜きカスをエアーブローにより圧送排出する方法(特許文献2および3参照)や、その他ブロワーの吸引による真空差圧力を利用した排出方法が提案されている。   By the way, after punching is performed using a punch, it is necessary to smoothly remove punching sludge (slag). Various methods for removing this slag have been proposed. A method of forming an air introduction nozzle on the die side and pumping and discharging the discharged residue by air blow (see Patent Documents 2 and 3), and other suction of a blower A discharge method using a vacuum differential pressure due to is proposed.

図5は、特許文献2に開示されたパンチ型の断面図を示し、一部、部番を変更して示す。図5に示す装置は、特許文献2の記載によれば、「穿孔ピッチが極めて短縮化されてきているグリーンシートやフレキシブル基板等のワークに対してもパンチ先端に付着したチップを排除できるパンチ型を提供する」ことを目的とし、下記のような構成を備える。   FIG. 5 shows a cross-sectional view of the punch die disclosed in Patent Document 2, with a part number changed. According to the description of Patent Document 2, the apparatus shown in FIG. 5 is “a punch type that can eliminate the tip attached to the punch tip even for a workpiece such as a green sheet or a flexible substrate whose punching pitch has been extremely shortened. The following configuration is provided.

即ち、「1枚のプレートに近接したダイ孔21aを開設してダイプレート21とし、そのダイプレート21を支持する支持体22の表面に外部と連絡する連絡孔22cと逃げ孔22bとを連絡する連絡溝22dを設けて空気流通路23を形成し、外部からの圧搾空気がその空気流通路23を通って穿孔時に逃げ孔22bに突出したパンチ先端をエアブローして先端に付着したチップW1を排除するようにする。」
また、「可動型Aは、ラムBの下端に連結されたパンチホルダ31と、2段の階段状の凹段部32aが形成されそのパンチホルダ31に連結するパンチパッド32と、凹段部32aの下段にヘッド部33aが係止され5次の正方行列状に複数本挿設されたパンチ33と、パンチパッド32の上面から段設した凹段部32aの上段を被蓋しパンチ33を固定するバッキングプレート34と、パンチ33先部を案内しガイドポスト35を介して上下動可能に連絡されたストリッパ36とを備えて構成され、ストリッパ36がワークWに当接して相対的に上下動することにより、穿孔を実行するパンチ33先端がストリッパ36下面から出没するようになっている。」
また、図示は省略するが、前記特許文献3に開示されたパンチ金型は、特許文献3の記載によれば、「パンチ金型のダイに設けた噴射口から高速高圧エアーを噴射し、ダイの内径部に渦巻流を発生させ、この渦巻流でパンチピン先端に付着した抜カスを強制的に引き離す。これにより抜カスの除去、回収効率を飛躍的に向上し、グリーンシートのカス詰り不良の防止を図るような構成」としている。
特開2001−156312号公報(第2〜6頁、図5〜11) 特開平11−33997号公報(第2〜3頁、図1〜3) 特開平11−58297号公報(第3頁、図1〜4)
That is, “the die hole 21a close to one plate is opened to form the die plate 21, and the contact hole 22c communicating with the outside and the escape hole 22b are communicated with the surface of the support 22 that supports the die plate 21. An air flow passage 23 is formed by providing a communication groove 22d, and the tip W1 sticking to the tip is removed by air blowing the punch tip protruding from the outside compressed air through the air flow passage 23 to the escape hole 22b when drilling. To do. "
“The movable mold A has a punch holder 31 connected to the lower end of the ram B, a stepped concave step 32a formed in two steps, a punch pad 32 connected to the punch holder 31, and a concave step 32a. The punch 33 having a plurality of fifth-order square matrices inserted and the upper stage of the concave step 32a stepped from the upper surface of the punch pad 32 is covered and the punch 33 is fixed. And a stripper 36 that guides the tip of the punch 33 and communicates with the guide post 35 so as to be movable up and down. The stripper 36 abuts against the workpiece W and moves up and down relatively. As a result, the tip of the punch 33 that performs drilling protrudes and descends from the lower surface of the stripper 36. "
Although not shown, according to the description of Patent Document 3, the punch mold disclosed in Patent Document 3 is described as follows: “High-speed and high-pressure air is ejected from an injection port provided in a die of the punch mold, A swirl flow is generated at the inner diameter of the punch pin, and the swirl flow forcibly pulls off the waste that adheres to the tip of the punch pin. The configuration is designed to prevent this.
JP 2001-156212 A (pages 2-6, FIGS. 5-11) Japanese Patent Laid-Open No. 11-33997 (pages 2 and 3, FIGS. 1 to 3) JP-A-11-58297 (page 3, FIGS. 1 to 4)

ところで、前記従来のパンチとダイで各種の貫通孔を形成する方法においては、下記のような問題がある。例えば、薄膜太陽電池に用いるフイルム基板の厚みは50μm〜100μmと薄く、上記のパンチによる開孔の場合のパンチとダイ開孔部の隙間(クリアランス)は、前述のように、1μm〜4μmとする必要がある。前記の1μm〜4μmの隙間を形成するためには、高精度な加工と組立精度が要求され、加工費・組立調整費などの製作費が高く、また製作期間も1ヶ月など長い期間を要する問題がある。   However, the conventional method of forming various through holes with a punch and die has the following problems. For example, the thickness of the film substrate used in the thin film solar cell is as thin as 50 μm to 100 μm, and the gap (clearance) between the punch and the die opening in the case of opening by the above punch is 1 μm to 4 μm as described above. There is a need. In order to form the gap of 1 μm to 4 μm, high precision processing and assembly accuracy are required, and manufacturing costs such as processing costs and assembly adjustment costs are high, and the manufacturing period is also long, such as one month. There is.

パンチとダイはフイルム基板に穴明け加工をする際にパンチは上方からダイ孔へ勘合し、パンチは再度上昇し基板が搬送されパンチが下降し穴形成を繰り返す。この動作でパンチとダイは相対位置が維持され穴明け加工が達成できる。この高精度の動作が達成できるのは、フイルム基板の幅が500mm程度以下と比較的幅の短い寸法の場合に実現が可能である。即ち、パンチとダイが構成されるダイセットの動作精度、加工精度が精密な穴を形成する上で必要である。   When the punch and die are punched into the film substrate, the punch is fitted into the die hole from above, the punch is raised again, the substrate is conveyed, the punch is lowered, and hole formation is repeated. With this operation, the punch and die are maintained in relative positions, and drilling can be achieved. This highly accurate operation can be achieved when the width of the film substrate is about 500 mm or less and the dimensions are relatively short. In other words, it is necessary for forming a hole with high precision of operation and processing accuracy of a die set including a punch and a die.

また、初期精度は十分であっても、温度変化による熱膨張差によりパンチとダイの位置がずれた場合には、パンチやダイにカケ(チッピング)や、パンチを折損する故障が発生するので、これを防止するための運転環境として、均一に温度コントロールされた加工室が必要となる問題がある。   In addition, even if the initial accuracy is sufficient, if the punch and die are misaligned due to a difference in thermal expansion due to temperature changes, chipping (chipping) or failure that breaks the punch occurs. As an operating environment for preventing this, there is a problem that a processing chamber whose temperature is uniformly controlled is required.

現在、フイルム基板としては1m幅など大きな幅の適用が求められている。前述した1μm〜4μmの隙間はダイセット幅が長くなると、加工ピッチ精度誤差および熱膨張誤差によりパンチとダイ孔の適切な勘合ができず、前述したパンチやダイにカケや折損が発生するので、1m幅の穴明け装置の実現が困難な状況にある。また、これを実現させるためには、高度な加工技術と加工・検査・調整などに時間がかかり装置全体の費用が高額なものとなる問題がある。   At present, application of a large width such as 1 m is required as a film substrate. When the die set width is increased in the gap of 1 μm to 4 μm described above, the punch and die hole cannot be properly fitted due to a processing pitch accuracy error and a thermal expansion error, and chipping or breakage occurs in the punch or die described above. It is difficult to realize a 1 m wide drilling device. Moreover, in order to realize this, there is a problem that it takes time for advanced processing technology and processing / inspection / adjustment, and the cost of the entire apparatus becomes high.

さらに、クリアランスが小さいと加工磨耗が発生し、型寿命を低下させる問題もある。現実には、前記型寿命に至る前に、パンチとダイの切れ歯部を再研磨し使用するが、この再研磨期間は、20万ショットから50万ショットと短く、装置稼働率を低下させ、研磨費用などメンテナンス経費がかかることとなる。   Furthermore, when the clearance is small, there is a problem that processing wear occurs and the mold life is shortened. Actually, before reaching the mold life, the cutting edge portion of the punch and die is re-polished and used, but this re-polishing period is as short as 200,000 shots to 500,000 shots, reducing the apparatus operating rate, Maintenance costs such as polishing costs will be required.

一方、上記問題を解消するためにクリアランスを大きくした場合には、前記カケや折損等の問題は防げるものの、打ち抜き方向にフイルム基板面が押し下げられ、裏面側には大きなだれやバリが発生してしまう問題がある。このだれやバリが発生した場合には、基板に形成する電極が均一に形成されなかったり、基板上に形成された電極層に亀裂が生じたりする不良の問題につながる。   On the other hand, when the clearance is increased to solve the above problems, the film substrate surface is pushed down in the punching direction and large dripping and burrs are generated on the back side, although the problems such as chipping and breakage can be prevented. There is a problem. When such drooling or burring occurs, an electrode formed on the substrate is not formed uniformly, or a defect such as a crack in the electrode layer formed on the substrate is caused.

以上、要するに、貫通孔のパンチ加工において、貫通孔の良好な断面形状を得るためにポンチとこれに対応するダイ開口部とのクリアランスを小さくした場合には、1)ポンチやダイにカケや磨耗による寿命低下を起こす問題や、2)金型の高い加工精度や組立精度を必要とし、装置およびメンテナンスコスト等が高額となる等の問題がある。一方、これらの問題を解決するために、前記クリアランスを大きくすると、基板にダレや亀裂を生ずる新たな問題が発生する。   In short, in punching of through holes, if the clearance between the punch and the corresponding die opening is reduced in order to obtain a good cross-sectional shape of the through hole, 1) chipping or wear on the punch or die There is a problem that the service life is reduced by 2), and 2) a high machining accuracy and assembly accuracy of the mold are required, and the apparatus and the maintenance cost are high. On the other hand, if the clearance is increased in order to solve these problems, a new problem that causes sagging or cracks in the substrate occurs.

即ち、クリアランスの大小によって生ずる前記諸問題は、お互いにトレードオフの関係にあり、これらの問題を総合的に解消することが望まれる。さらに、前記打ち抜き後のスラグは、従来と同様に、円滑に排除可能な方法とすることが望まれる。   That is, the above problems caused by the size of the clearance are in a trade-off relationship with each other, and it is desirable to comprehensively solve these problems. Furthermore, it is desired that the slag after punching be made a method that can be smoothly removed as in the conventional case.

この発明は、上記の点に鑑みてなされたもので、本発明の課題は、ポンチとこれに対応するダイ開口部とのクリアランスを大きくしても、基板にダレや亀裂が発生することを抑制し、かつ打ち抜き後のスラグが円滑に排除できる安価な薄膜基板貫通孔加工方法と装置ならびに同貫通孔加工方法を用いた薄膜太陽電池の製造方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to suppress the occurrence of sagging or cracking in the substrate even if the clearance between the punch and the die opening corresponding thereto is increased. In addition, an inexpensive thin-film substrate through-hole processing method and apparatus that can smoothly eliminate slag after punching and a thin-film solar cell manufacturing method using the through-hole processing method are provided.

上記課題は、以下により達成される。即ち、請求項1の発明によれば、電気絶縁性を有するフィルム基板の表面に、半導体,太陽電池,感光体などの機能性薄膜ならびに電極層や保護層などの薄膜を、積層形成してなる薄膜機能素子用の基板または少なくとも一部の薄膜を形成した基板に、複数個の所定の貫通孔を、前記複数個の孔に対応するポンチと、ポンチに対向する複数個の開口部を有するダイとからなる金型を用いて打ち抜き加工する薄膜基板貫通孔加工方法において、前記打ち抜き加工の際、前記電気絶縁性基板を前記複数個の開口部を有するダイ上に、ポンチ貫通用の孔を有するプレスプレートにより押圧して載置した上で、前記ダイの開口部の反基板側から所定圧力の空気を供給し、基板の前記ダイの開口部側の面に前記空気の所定圧力を作用させた状態で、ポンチによる打ち抜きを行うことを特徴とする。   The above-mentioned subject is achieved by the following. That is, according to the first aspect of the present invention, a functional thin film such as a semiconductor, a solar cell, or a photoreceptor and a thin film such as an electrode layer or a protective layer are laminated on the surface of the film substrate having electrical insulation. A die having a plurality of predetermined through holes, punches corresponding to the plurality of holes, and a plurality of openings facing the punches on a substrate for a thin film functional element or a substrate on which at least a part of the thin film is formed. In the thin-film substrate through-hole processing method in which punching is performed using a die composed of: a punch-through hole is formed on the die having the plurality of openings when the punching is performed. After pressing and placing by a press plate, air of a predetermined pressure was supplied from the opposite side of the opening of the die to the surface of the opening of the substrate on the side of the opening of the die. In state And performing punching by.

前記加工方法によれば、基板の前記ダイの開口部側の面に作用する空気圧力が、あたかも、ダイによる基板裏面の支持と同等の機能を果たし、ポンチとこれに対応するダイ開口部とのクリアランスを大きくしても、クリアランスが実質的に小さい場合の加工状態を生み出す。従って、クリアランスを大きくした場合の基板にダレや亀裂が発生する問題が解消できる。   According to the processing method, the air pressure acting on the surface of the substrate on the side of the opening of the die performs the same function as that of supporting the back surface of the substrate by the die, and the punch and the die opening corresponding to the punch. Even if the clearance is increased, a machining state is generated when the clearance is substantially small. Therefore, the problem of sagging or cracking in the substrate when the clearance is increased can be solved.

なお、前記空気の所定圧力は、基板の材質や厚さ、貫通孔の直径、ポンチの加圧力等の諸仕様によって異なり、最終的には実験により定める必要があるが、例えば、前記薄膜太陽電池用の貫通孔加工においては、0.2〜1.0MPaが望ましい。詳細は後述する。   The predetermined pressure of the air varies depending on various specifications such as the material and thickness of the substrate, the diameter of the through hole, the pressurizing force of the punch, and the like, and finally needs to be determined experimentally. For example, the thin film solar cell In the through hole processing for use, 0.2 to 1.0 MPa is desirable. Details will be described later.

また、前記請求項1の発明の実施態様としては、下記請求項2ないし3の発明が好ましい。即ち、請求項1に記載の加工方法において、前記ポンチと前記ダイの開口部との間のクリアランスを5μm以上とすることを特徴とする(請求項2)。これにより、従来の加工方法よりは、大きなクリアランスを有し、かつ基板にダレや亀裂の発生がない加工が可能となる。   As an embodiment of the invention of claim 1, the inventions of claims 2 to 3 below are preferable. That is, in the processing method according to claim 1, a clearance between the punch and the opening of the die is set to 5 μm or more (claim 2). Thereby, it is possible to perform processing that has a larger clearance than the conventional processing method and that does not cause sagging or cracking in the substrate.

さらに、前記請求項1または2に記載の加工方法において、前記ポンチによる打ち抜き加工直後もしくは所定の時間経過後に、前記所定圧力の空気を大気に開放し、ポンチ打ち抜きにより生じたスラグを、前記大気開放により生じた気流により排出することを特徴とする(請求項3)。前記所定の時間は、前記ダイによる基板裏面の支持機能を確保する観点から、最終的には実験により定める必要がある。   Furthermore, in the processing method according to claim 1 or 2, the air having the predetermined pressure is released to the atmosphere immediately after the punching with the punch or after a predetermined time has elapsed, and the slag generated by punching is released to the atmosphere. It discharges with the airflow produced by (claim 3). The predetermined time needs to be finally determined by experiment from the viewpoint of ensuring the function of supporting the back surface of the substrate by the die.

上記方法によれば、打ち抜き加工後のスラグが好適に排出できる。なお、気流により排出する点では、前記特許文献2や特許文献3の方法と同様であるが、特許文献2や3の方法の場合は、加圧された空気は当初から大気開放端に排出されるように構成されており、本発明のように、打ち抜き加工時には空気圧が保持されて基板を押圧し、打ち抜き圧力に対抗するように構成されてはいない点が異なる。   According to the above method, the slag after punching can be suitably discharged. In addition, although it is the same as the method of the said patent document 2 and the patent document 3 in the point discharged | emitted by an airflow, in the case of the method of the patent document 2 and 3, the pressurized air is discharged | emitted from the beginning to the atmosphere open end. Unlike the present invention, the air pressure is maintained at the time of punching and the substrate is pressed so that it is not configured to counter the punching pressure.

また、上記加工方法を薄膜太陽電池に適用した発明としては下記請求項4の発明が好ましい。即ち、電気絶縁性を有するフィルム基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層は互いに位置をずらして単位部分に分離してなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いに分離された隣合う単位光電変換部分を電気的に直列に接続してなる薄膜太陽電池の製造方法において、前記電気絶縁性基板をステップ搬送し、前記複数個の接続孔および/または複数個の集電孔を、前記請求項1ないし3のいずれか1項に記載の薄膜基板貫通孔加工方法により打ち抜き加工することを特徴とする(請求項4)。   Further, as an invention in which the above processing method is applied to a thin film solar cell, the invention of claim 4 is preferable. That is, a photoelectric conversion part formed by sequentially laminating a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) on the surface of an electrically insulating film substrate, and a back surface of the substrate A third electrode layer and a fourth electrode layer as connection electrode layers formed on the substrate, wherein the photoelectric conversion portion and the connection electrode layer are separated from each other into unit parts by shifting positions from each other, and outside the transparent electrode layer formation region The adjacent unit photoelectric conversion portions separated from each other on the surface are electrically connected in series via the connection hole for electrical series connection formed in and the current collection hole formed in the transparent electrode layer formation region. In the manufacturing method of the thin film solar cell thus formed, the electrically insulating substrate is step-conveyed, and the plurality of connection holes and / or the plurality of current collecting holes are provided in any one of claims 1 to 3. Thin film substrate through hole processing method Characterized by punching by (claim 4).

さらに、前記加工方法を実施するための装置としては、下記請求項5または6の発明が好ましい。即ち、請求項1に記載の薄膜基板貫通孔加工方法を実施するための装置であって、複数個のポンチを有するポンチプレートと、ポンチに対向する複数個の開口部を有するダイと、前記ポンチプレートに基板押圧用のばね手段を介して取り付けられ、ポンチ貫通用の複数個の孔を有するプレスプレートと、前記ダイ固定用の下型と、この下型に対向して設けられ、前記ポンチプレートを昇降させる可動型としての上型と、この上型を加圧する手段と、前記ダイの複数個の開口部の反基板側から、基板の前記ダイの開口部側の面に所定圧力の空気圧を作用させる手段とを備えることを特徴とする(請求項5)。   Furthermore, as an apparatus for carrying out the processing method, the invention of claim 5 or 6 is preferable. An apparatus for carrying out the thin-film substrate through-hole processing method according to claim 1, comprising: a punch plate having a plurality of punches; a die having a plurality of openings facing the punches; and the punches. A punch plate that is attached to the plate via a spring means for pressing the substrate and has a plurality of holes for penetrating the punch; a lower die for fixing the die; An upper mold as a movable mold for moving up and down, a means for pressurizing the upper mold, and an air pressure of a predetermined pressure from the opposite side of the plurality of openings of the die to the surface of the opening of the die on the substrate And a means for acting. (Claim 5).

また、前記請求項5に記載の薄膜基板貫通孔加工装置において、前記空気圧を作用させる手段は、前記ダイの複数個の開口部に対応して前記下型に設けた複数個の給気口と、この給気口に連通して前記下型の下方に設けた密閉管路体と、この密閉管路体に設けた加圧空気導入手段および加圧空気排出手段とからなることを特徴とする(請求項6)。   Further, in the thin-film substrate through-hole processing apparatus according to claim 5, the means for applying the air pressure includes a plurality of air supply ports provided in the lower mold corresponding to the plurality of openings of the die. And a sealed conduit provided below the lower mold in communication with the air supply port, and a pressurized air introducing means and a pressurized air discharging means provided in the sealed conduit. (Claim 6).

この発明によれば、高精度の金型装置の加工や組立を必要とせず、部品製作費や金型組立時間が短縮され短納期製作が実現でき、さらにコストも低減できる。またポンチとダイのクリアランスは従来1μm〜4μmで製作していたがこのクリアランスを5μm以上に拡大でき、磨耗やチッピングによる寿命低下が防止でき、さらにメンテナンス周期が延長され装置の稼働率が向上し低コストの金型装置を提供できる。   According to the present invention, it is not necessary to process or assemble a high-precision mold apparatus, the parts production cost and the mold assembly time can be shortened, a short delivery time can be realized, and the cost can be reduced. In addition, the punch and die clearances were conventionally manufactured from 1 μm to 4 μm. However, this clearance can be expanded to 5 μm or more, and the service life can be prevented from being shortened due to wear and chipping. Cost mold equipment can be provided.

従来、フイルム基板の幅が500mm程度以下と比較的幅の短い製品に適用していたパンチ加工方法が、前記のクリアランス拡大による本発明の適用により、1m幅のフイルム基板でも加工ができるようになり、量産性の向上が可能となる。また、運転環境に関しても、均一に温度コントロールされた加工室ではなく一般空調の部屋でよく、建屋工事費・運転コストを削減することができる。   Conventionally, the punching method, which has been applied to products having a relatively short width of about 500 mm or less, can be applied to a 1 m wide film substrate by applying the present invention by increasing the clearance. This makes it possible to improve mass productivity. In addition, the operating environment may be a general air-conditioning room rather than a uniform temperature-controlled processing room, which can reduce building construction costs and operating costs.

さらに、ポンチによる基板の打ち抜き時に、加圧空気の圧力により基板が支えられ、だれ・亀裂の発生のない良好な加工が達成できる。また、打ち抜き後の加圧空気の排気によりポンチで打ち抜かれたカスを排気流により容易に排出でき、装置の繰り返し運転が可能となる。   In addition, when the substrate is punched out by a punch, the substrate is supported by the pressure of the pressurized air, and good processing can be achieved without dripping or cracking. Further, the waste punched out by the punch by exhausting the pressurized air after punching can be easily discharged by the exhaust flow, and the apparatus can be operated repeatedly.

また、この発明によれば、クリアランスが大きいにも拘らず、ダレや亀裂のない良好な孔加工ができ、前述した薄膜太陽電池の製造方法にこの発明を適用することにより、量産性が向上し、低コストの薄膜太陽電池が提供できる。   In addition, according to the present invention, although the clearance is large, good hole processing without sagging and cracking can be performed, and mass productivity is improved by applying the present invention to the above-described thin film solar cell manufacturing method. A low-cost thin film solar cell can be provided.

次に、この発明の実施形態に関して、図1ないし図4に基いて説明する。図1は本発明の実施形態に係るパンチ金型の模式的断面図、図2は図1におけるポンチとダイの部分拡大断面図、図3は本発明に関わる打ち抜き加工状態を示す模式図、図4は加圧空気が作用しない従来方法の打ち抜き加工状態を示す模式図(図3との比較図)である。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 is a schematic cross-sectional view of a punch die according to an embodiment of the present invention, FIG. 2 is a partially enlarged cross-sectional view of a punch and a die in FIG. 1, and FIG. 3 is a schematic view showing a punching state according to the present invention. 4 is a schematic diagram (comparative diagram with FIG. 3) showing a punching state of a conventional method in which pressurized air does not act.

図1に示すパンチ金型は、基板1aに貫通孔加工方法を実施するための装置であって、複数個のポンチ2を有するポンチプレート11と、ポンチ2に対向する複数個の開口部3aを有するダイ3と、前記ポンチプレート11に基板押圧用のばね13とガイド12とを介して取り付けられ、ポンチ貫通用の複数個の孔を有するプレスプレート7と、前記ダイ固定用の下型4と、この下型4に対向して設けられ、前記ポンチプレート11を昇降させる可動型としての上型5と、この上型5を加圧する手段としてのプレスユニット14と、前記ダイ3の複数個の開口部の反基板側から、基板の前記ダイの開口部側の面に所定圧力の空気圧を作用させる手段とを備える。   The punch die shown in FIG. 1 is an apparatus for carrying out a through hole processing method on a substrate 1a, and includes a punch plate 11 having a plurality of punches 2 and a plurality of openings 3a facing the punches 2. A die 3, a press plate 7 attached to the punch plate 11 via a substrate pressing spring 13 and a guide 12, and having a plurality of holes for punch penetration, and the die fixing lower mold 4 The upper die 5 that is provided facing the lower die 4 and moves the punch plate 11 up and down, the press unit 14 as a means for pressurizing the upper die 5, and a plurality of the die 3 Means for applying an air pressure of a predetermined pressure to the surface of the substrate on the side of the opening of the die from the opposite side of the opening.

また、前記空気圧を作用させる手段は、前記ダイ3の複数個の開口部に対応して前記下型4に設けた複数個の給気口16と、この給気口16に連通して前記下型4の下方に設けた密閉管路体8と、この密閉管路体8に設けた加圧空気導入手段および加圧空気排出手段とからなる。なお、図1において、6は上型5の上下動をガイドするガイドポスト、9は加圧空気の排出バルブ、10は加圧エアー、15は給気バルブを示す。   The means for applying the air pressure includes a plurality of air supply ports 16 provided in the lower mold 4 corresponding to the plurality of openings of the die 3, and the lower air ports communicating with the air supply ports 16. It consists of a sealed conduit 8 provided below the mold 4, and pressurized air introduction means and pressurized air discharge means provided on the sealed conduit 8. In FIG. 1, reference numeral 6 denotes a guide post that guides the vertical movement of the upper die 5, 9 denotes a discharge valve for pressurized air, 10 denotes pressurized air, and 15 denotes an air supply valve.

次に、図1に示すパンチ金型の動作について述べる。フイルム状の基板1aは、図示しないコアーに巻かれており、自動的に金型内に搬送されて位置決めされる。即ち、図2に示すように、基板1aはダイ3とプレスプレート7の間に搬送され孔加工が行われる。まず、搬送され停止した基板1aに対して、図1において矢印でイメージ的に示したプレスユニット14により上型5を押し下げ、この動作により、まずプレスプレート7がガイド12に沿って下降して基板を押え、ダイ3と基板1aを介して密着する。密着力はバネ13で決定される。   Next, the operation of the punch mold shown in FIG. 1 will be described. The film-like substrate 1a is wound around a core (not shown), and is automatically conveyed into a mold and positioned. That is, as shown in FIG. 2, the substrate 1a is transported between the die 3 and the press plate 7 to perform hole processing. First, the upper die 5 is pushed down by the press unit 14 indicated by an arrow in FIG. 1 with respect to the substrate 1a that has been transported and stopped, and by this operation, the press plate 7 first descends along the guide 12 and the substrate. And is in close contact with the die 3 via the substrate 1a. The adhesion force is determined by the spring 13.

このバネ力は、プレスプレート7と基板1aおよびダイ3に作用し、基板のダイへの密着性を高める。この状態で、給気バルブ15が開かれ加圧エアー10が導入される。加圧エアー10は、密閉管路体8・下型4・ダイ3に充気され、所定圧力まで上昇する。次に、プレスユニット14の押し下げ動作により、上型5がさらに押し下げられ、ポンチ2のみが下降し、基板1aに孔加工を行ってダイ3の開口部3a内に挿通される。加圧エアー10の加圧力が基板1aに作用した状態で、ポンチ2のパンチ力により基板を切断し、そのままダイ3の開口部へ押し込まれる。   This spring force acts on the press plate 7, the substrate 1a, and the die 3 to enhance the adhesion of the substrate to the die. In this state, the air supply valve 15 is opened and the pressurized air 10 is introduced. The pressurized air 10 is filled in the sealed pipe body 8, the lower mold 4, and the die 3 and rises to a predetermined pressure. Next, the upper die 5 is further pushed down by the pressing operation of the press unit 14, and only the punch 2 is lowered, and the substrate 1 a is drilled and inserted into the opening 3 a of the die 3. In a state where the pressurizing force of the pressurized air 10 is applied to the substrate 1 a, the substrate is cut by the punching force of the punch 2 and is directly pushed into the opening of the die 3.

次に、給気バルブ15が閉じられ、排気バルブ9が開かれ加圧エアーは開放される。この時、ポンチ2により打ち抜かれたカスは、気流により外部へ排出される。また、プレスユニット14は上昇駆動し上型5がこれに追随する。また、ポンチ2がダイ3の開口部3aおよび基板に形成された孔から抜かれて上昇する。さらに、プレスプレート7が基板との密着をとかれ上昇して停止する。これにより、基板1aはフリーとなり、所定の搬送ピッチだけ送られ停止する。上記のような動作の繰り返しにより孔加工が行われる。   Next, the air supply valve 15 is closed, the exhaust valve 9 is opened, and the pressurized air is released. At this time, the residue punched out by the punch 2 is discharged to the outside by the airflow. Further, the press unit 14 is driven up and the upper die 5 follows this. Further, the punch 2 is lifted out of the opening 3a of the die 3 and the hole formed in the substrate. Further, the press plate 7 is lifted and stopped after being brought into close contact with the substrate. Thereby, the board | substrate 1a becomes free, and only a predetermined conveyance pitch is sent and stops. Drilling is performed by repeating the above operation.

次に図3および図4について述べる。前述のように、図3は本発明に関わる打ち抜き加工状態を示す模式図であって、ポンチ2とダイの開口部3aとの間のクリアランスを図示し、良好な加工状態をイメージ的に示す。これに対して、図4は加圧空気が作用しない従来方法の打ち抜き加工状態を示す比較図であって、だれや亀裂が生じた状態をイメージ的に示す。図3において、クリアランスは5μm以上とする。但し、ダイ3とポンチ2のセンター位置のずれが2〜3μmあってもよい。   Next, FIG. 3 and FIG. 4 will be described. As described above, FIG. 3 is a schematic view showing a punching state according to the present invention, showing the clearance between the punch 2 and the opening 3a of the die, and showing a good processing state as an image. On the other hand, FIG. 4 is a comparative view showing a punching state of a conventional method in which pressurized air does not act, and shows an image of a state in which anyone or a crack has occurred. In FIG. 3, the clearance is 5 μm or more. However, the deviation of the center position between the die 3 and the punch 2 may be 2 to 3 μm.

次に、前記薄膜太陽電池における貫通孔の加工例について述べる。まず、貫通孔の直径は、0.5〜3mmの範囲であるが、直径3mmの孔200個を同時に加工する場合について述べる。この場合、基板の裏面に作用する空気圧力は、例えば、0.98MPaとする。この場合、200個のダイの開口部3aの基板面に作用する力は、計算上、約1.4KNとなる。従って、前記プレスユニット14の押し下げ力は、少なくとも1.4KNより大とする必要がある。プレスユニット14は、例えば、1〜40KNの範囲で選択可能であり、種々の加工仕様に対応できるようになっている。   Next, an example of processing the through hole in the thin film solar cell will be described. First, although the diameter of the through hole is in the range of 0.5 to 3 mm, a case where 200 holes with a diameter of 3 mm are processed simultaneously will be described. In this case, the air pressure acting on the back surface of the substrate is, for example, 0.98 MPa. In this case, the force acting on the substrate surface of the openings 3a of the 200 dies is about 1.4 KN in calculation. Therefore, the pressing force of the press unit 14 needs to be greater than at least 1.4 KN. The press unit 14 can be selected within a range of 1 to 40 KN, for example, and can cope with various processing specifications.

上記のような実施形態により、ポンチとこれに対応するダイ開口部とのクリアランスを大きくしても、基板貫通孔部におけるダレや亀裂の発生を抑制できる。また、打ち抜き後のスラグが円滑に排除でき、安価な貫通孔加工が実施できる。   According to the embodiment as described above, even if the clearance between the punch and the die opening corresponding to the punch is increased, the occurrence of sagging and cracks in the substrate through-hole portion can be suppressed. Moreover, the slag after punching can be removed smoothly, and inexpensive through-hole processing can be performed.

この発明の実施形態に関わるパンチ金型の模式的断面図。The typical sectional view of the punch metallic mold concerning the embodiment of this invention. 図1におけるポンチとダイの部分拡大断面図。The partial expanded sectional view of the punch and die in FIG. 本発明に関わる打ち抜き加工状態を示す模式図。The schematic diagram which shows the punching process state in connection with this invention. 加圧空気が作用しない従来方法の打ち抜き加工状態を示す比較模式図。The comparison schematic diagram which shows the punching processing state of the conventional method where pressurized air does not act. 特許文献2に開示されたパンチ型の断面図。Sectional drawing of the punch type | mold disclosed by patent document 2. FIG. 薄膜太陽電池の製造装置における開孔装置の断面模式図。The cross-sectional schematic diagram of the opening apparatus in the manufacturing apparatus of a thin film solar cell. 従来の開孔装置の開孔部の拡大模式図。The expansion schematic diagram of the opening part of the conventional opening apparatus. 薄膜太陽電池用基板の位置検出用孔と接続孔の配置の一例を示す平面図。The top view which shows an example of arrangement | positioning of the position detection hole and connection hole of a board | substrate for thin film solar cells. 図8にさらに集電孔が開けられた基板の一例を示す平面図。The top view which shows an example of the board | substrate with which the current collection hole was further opened in FIG. 薄膜太陽電池の構成を簡略化して示す斜視図。The perspective view which simplifies and shows the structure of a thin film solar cell.

符号の説明Explanation of symbols

1a 基板
2 ポンチ
3 ダイ
3a 開口部
4 下型
5 上型
7 プレスプレート
8 密閉管路体
9 排出バルブ
10 加圧エアー
11 ポンチプレート
13 バネ
14 プレスユニット
15 給気バルブ
16 給気口

DESCRIPTION OF SYMBOLS 1a Substrate 2 Punch 3 Die 3a Opening 4 Lower mold 5 Upper mold 7 Press plate 8 Sealed conduit 9 Discharge valve 10 Pressurized air 11 Punch plate 13 Spring 14 Press unit 15 Air supply valve 16 Air supply port

Claims (6)

電気絶縁性を有するフィルム基板の表面に、半導体,太陽電池,感光体などの機能性薄膜ならびに電極層や保護層などの薄膜を、積層形成してなる薄膜機能素子用の基板または少なくとも一部の薄膜を形成した基板に、複数個の所定の貫通孔を、前記複数個の孔に対応するポンチと、ポンチに対向する複数個の開口部を有するダイとからなる金型を用いて打ち抜き加工する薄膜基板貫通孔加工方法において、
前記打ち抜き加工の際、前記電気絶縁性基板を前記複数個の開口部を有するダイ上に、ポンチ貫通用の孔を有するプレスプレートにより押圧して載置した上で、前記ダイの開口部の反基板側から所定圧力の空気を供給し、基板の前記ダイの開口部側の面に前記空気の所定圧力を作用させた状態で、ポンチによる打ち抜きを行うことを特徴とする薄膜基板貫通孔加工方法。
A thin film functional element substrate or at least a part of a thin film such as a functional thin film such as a semiconductor, a solar cell, or a photoreceptor and a thin film such as an electrode layer or a protective layer formed on the surface of an electrically insulating film substrate A plurality of predetermined through holes are punched into a substrate on which a thin film has been formed using a die comprising a punch corresponding to the plurality of holes and a die having a plurality of openings facing the punch. In the thin film substrate through hole processing method,
In the punching process, the electrically insulating substrate is placed on the die having the plurality of openings by pressing it with a press plate having a hole for penetrating holes, and then the reaction of the opening of the die is reversed. A thin-film substrate through-hole machining method comprising: punching with a punch while supplying air at a predetermined pressure from the substrate side and applying the predetermined pressure of the air to a surface of the substrate on the opening side of the die .
請求項1に記載の加工方法において、前記ポンチと前記ダイの開口部との間のクリアランスを5μm以上とすることを特徴とする薄膜基板貫通孔加工方法。   2. The processing method according to claim 1, wherein a clearance between the punch and the opening of the die is 5 [mu] m or more. 請求項1または2に記載の加工方法において、前記ポンチによる打ち抜き加工直後もしくは所定の時間経過後に、前記所定圧力の空気を大気に開放し、ポンチ打ち抜きにより生じたスラグを、前記大気開放により生じた気流により排出することを特徴とする薄膜基板貫通孔加工方法。   3. The processing method according to claim 1, wherein immediately after the punching with the punch or after a predetermined time has elapsed, the air having the predetermined pressure is released to the atmosphere, and slag generated by punching is generated by the release of the atmosphere. A thin-film substrate through-hole machining method, wherein the thin-film substrate is discharged by an air flow. 電気絶縁性を有するフィルム基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層は互いに位置をずらして単位部分に分離してなり、前記透明電極層形成領域外に形成した電気的直列接続用の接続孔および前記透明電極層形成領域内に形成した集電孔を介して、前記表面上の互いに分離された隣合う単位光電変換部分を電気的に直列に接続してなる薄膜太陽電池の製造方法において、
前記電気絶縁性基板をステップ搬送し、前記複数個の接続孔および/または複数個の集電孔を、前記請求項1ないし3のいずれか1項に記載の薄膜基板貫通孔加工方法により打ち抜き加工することを特徴とする薄膜太陽電池の製造方法。
A photoelectric conversion part formed by sequentially laminating a first electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) as a lower electrode layer on the surface of a film substrate having electrical insulation, and formed on the back surface of the substrate A third electrode layer and a fourth electrode layer serving as connection electrode layers, wherein the photoelectric conversion portion and the connection electrode layer are separated from each other and separated into unit parts, and formed outside the transparent electrode layer formation region The adjacent unit photoelectric conversion portions separated from each other on the surface are electrically connected in series via the connection hole for electrical series connection and the current collection hole formed in the transparent electrode layer forming region. In the method for manufacturing a thin film solar cell,
4. The step of conveying the electrically insulating substrate, and punching out the plurality of connection holes and / or the plurality of current collecting holes by the thin film substrate through-hole processing method according to any one of claims 1 to 3. A method for producing a thin-film solar cell.
請求項1に記載の薄膜基板貫通孔加工方法を実施するための装置であって、複数個のポンチを有するポンチプレートと、ポンチに対向する複数個の開口部を有するダイと、前記ポンチプレートに基板押圧用のばね手段を介して取り付けられ、ポンチ貫通用の複数個の孔を有するプレスプレートと、前記ダイ固定用の下型と、この下型に対向して設けられ、前記ポンチプレートを昇降させる可動型としての上型と、この上型を加圧する手段と、前記ダイの複数個の開口部の反基板側から、基板の前記ダイの開口部側の面に所定圧力の空気圧を作用させる手段とを備えることを特徴とする薄膜基板貫通孔加工装置。   An apparatus for carrying out the thin-film substrate through-hole processing method according to claim 1, wherein a punch plate having a plurality of punches, a die having a plurality of openings facing the punches, and the punch plate A press plate that is attached via a spring means for pressing the substrate and has a plurality of holes for penetrating the punch, a lower die for fixing the die, and a lower die that is provided opposite to the lower die, and raising and lowering the punch plate An upper mold as a movable mold to be moved, means for pressurizing the upper mold, and air pressure of a predetermined pressure is applied to the surface of the substrate on the opening side of the die from the opposite side of the plurality of openings of the die A thin-film substrate through-hole processing apparatus. 請求項5に記載の薄膜基板貫通孔加工装置において、前記空気圧を作用させる手段は、前記ダイの複数個の開口部に対応して前記下型に設けた複数個の給気口と、この給気口に連通して前記下型の下方に設けた密閉管路体と、この密閉管路体に設けた加圧空気導入手段および加圧空気排出手段とからなることを特徴とする薄膜基板貫通孔加工装置。

6. The thin-film substrate through-hole processing apparatus according to claim 5, wherein the means for applying air pressure includes a plurality of air supply ports provided in the lower mold corresponding to the plurality of openings of the die, and the supply air. A through-thin film substrate comprising: a sealed conduit provided in a lower portion of the lower mold in communication with a vent; and a pressurized air introducing means and a pressurized air discharging means provided in the sealed conduit Drilling device.

JP2003418992A 2003-12-17 2003-12-17 Method of forming through-hole in thin-film substrate and its apparatus, and method of manufacturing thin-film solar battery using the method Pending JP2005183501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418992A JP2005183501A (en) 2003-12-17 2003-12-17 Method of forming through-hole in thin-film substrate and its apparatus, and method of manufacturing thin-film solar battery using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418992A JP2005183501A (en) 2003-12-17 2003-12-17 Method of forming through-hole in thin-film substrate and its apparatus, and method of manufacturing thin-film solar battery using the method

Publications (1)

Publication Number Publication Date
JP2005183501A true JP2005183501A (en) 2005-07-07

Family

ID=34781015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418992A Pending JP2005183501A (en) 2003-12-17 2003-12-17 Method of forming through-hole in thin-film substrate and its apparatus, and method of manufacturing thin-film solar battery using the method

Country Status (1)

Country Link
JP (1) JP2005183501A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267141A (en) * 2010-06-03 2011-12-07 苏州佳值电子工业有限公司 Perforation jig
US8303363B2 (en) 2009-09-18 2012-11-06 Fujifilm Corporation Method for bonding gas barrier film and electronic device, and electronic device and method for producing same
CN103659901A (en) * 2012-09-24 2014-03-26 吴悠 Material stab-cutting machining equipment, stab-cutting tool assembly and flat materials
CN103934858A (en) * 2014-04-25 2014-07-23 隆扬电子(昆山)有限公司 Anti-sticking cutter punching die
KR20170013014A (en) * 2015-07-27 2017-02-06 현대성우메탈 주식회사 Apparatus for cutting prepreg
CN107234169A (en) * 2017-06-05 2017-10-10 昆山钣源冲压技术有限公司 A kind of micropore mold for reducing punching position burr
CN107457831A (en) * 2017-07-15 2017-12-12 滁州凯旋模具制造有限公司 A kind of punching jig of auto parts and components
JP2018507115A (en) * 2015-02-06 2018-03-15 ブルックス オートメーション インコーポレイテッド Tube sealer
CN107900688A (en) * 2017-10-31 2018-04-13 重庆达小丰机械有限公司 A kind of process equipment of lateral load shaft coupling
CN113618831A (en) * 2021-07-20 2021-11-09 涂新玲 Film stamping device
CN114589748A (en) * 2022-03-03 2022-06-07 江苏奇纳新材料科技有限公司 Cotton punching device of refractory material heat preservation

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303363B2 (en) 2009-09-18 2012-11-06 Fujifilm Corporation Method for bonding gas barrier film and electronic device, and electronic device and method for producing same
CN102267141A (en) * 2010-06-03 2011-12-07 苏州佳值电子工业有限公司 Perforation jig
CN103659901A (en) * 2012-09-24 2014-03-26 吴悠 Material stab-cutting machining equipment, stab-cutting tool assembly and flat materials
CN103659901B (en) * 2012-09-24 2016-08-24 吴悠 The thorn of a kind of material cuts process equipment
CN103934858A (en) * 2014-04-25 2014-07-23 隆扬电子(昆山)有限公司 Anti-sticking cutter punching die
CN103934858B (en) * 2014-04-25 2016-04-13 隆扬电子(昆山)有限公司 A kind of Non-stick knife punching die
US10875255B2 (en) 2015-02-06 2020-12-29 Brooks Automation, Inc. Tube sealer
US11179898B2 (en) 2015-02-06 2021-11-23 Brooks Automation, Inc. Tube sealer
JP2018507115A (en) * 2015-02-06 2018-03-15 ブルックス オートメーション インコーポレイテッド Tube sealer
KR20170013014A (en) * 2015-07-27 2017-02-06 현대성우메탈 주식회사 Apparatus for cutting prepreg
KR101709479B1 (en) 2015-07-27 2017-02-24 현대성우메탈 주식회사 Apparatus for cutting prepreg
CN107234169A (en) * 2017-06-05 2017-10-10 昆山钣源冲压技术有限公司 A kind of micropore mold for reducing punching position burr
CN107457831A (en) * 2017-07-15 2017-12-12 滁州凯旋模具制造有限公司 A kind of punching jig of auto parts and components
CN107900688B (en) * 2017-10-31 2019-04-09 重庆达小丰机械有限公司 A kind of process equipment of lateral load shaft coupling
CN107900688A (en) * 2017-10-31 2018-04-13 重庆达小丰机械有限公司 A kind of process equipment of lateral load shaft coupling
CN113618831A (en) * 2021-07-20 2021-11-09 涂新玲 Film stamping device
CN114589748A (en) * 2022-03-03 2022-06-07 江苏奇纳新材料科技有限公司 Cotton punching device of refractory material heat preservation

Similar Documents

Publication Publication Date Title
JP2005183501A (en) Method of forming through-hole in thin-film substrate and its apparatus, and method of manufacturing thin-film solar battery using the method
US20160129491A1 (en) Device and method for forming thin plate-shaped substrate
JPH04148594A (en) Device and method for forming multipin through hole formation
JP2000301626A (en) Conveying and perforating device
EP3765392B1 (en) Vaccuum plate, sheet material handling apparatus comprising such vaccuum plate, and method for making the plate
JP2003142641A (en) Removal apparatus and method for tie bar after resin sealing for semiconductor device, and method for manufacturing semiconductor device
CN101432211B (en) Procedure and mechanical configuration for the handling of a component with at least one passage opening
JP2001038806A (en) Apparatus and method for laminating film under vacuum
KR102162301B1 (en) Porous metal body manufacturing apparatus
WO2006060143A3 (en) Method of making a fuel cell device assembly and frame
JP2001300653A (en) Punching die apparatus and manufacturing method of electronic part using it
KR102162302B1 (en) Porous metal body manufacturing method
JP3305220B2 (en) Sheet material progressive processing method
KR101530229B1 (en) Cutting mold die device equipped with an upper pinhole punch
JP2013141679A (en) Blanking method and apparatus
US6706236B2 (en) Method for making holes in ceramic green sheets
TW200420207A (en) Manufacturing method of substrate, release sheet, manufacturing method of substrate, and manufacturing method using the same
JP2003145522A (en) Apparatus and method for manufacturing ceramic laminate
CN118380376B (en) Anti-adhesion sintering device and control method thereof
JP2006110696A (en) Method for punching green sheet, and punching apparatus therefor
JP2006224250A (en) Punching method and punching device
CN215033750U (en) Spare part processing device
JP3756684B2 (en) Green sheet laminating equipment
JPH09234696A (en) Sheet material sequential feeding machining device
CN118380376A (en) Anti-adhesion sintering device and control method thereof