JP2005183385A - Grounding power electrode and manufacturing method thereof - Google Patents

Grounding power electrode and manufacturing method thereof Download PDF

Info

Publication number
JP2005183385A
JP2005183385A JP2004362766A JP2004362766A JP2005183385A JP 2005183385 A JP2005183385 A JP 2005183385A JP 2004362766 A JP2004362766 A JP 2004362766A JP 2004362766 A JP2004362766 A JP 2004362766A JP 2005183385 A JP2005183385 A JP 2005183385A
Authority
JP
Japan
Prior art keywords
discharge
core rod
ground electrode
electrode
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004362766A
Other languages
Japanese (ja)
Other versions
JP4495583B2 (en
Inventor
Shokyoku Tei
鍾旭 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2005183385A publication Critical patent/JP2005183385A/en
Application granted granted Critical
Publication of JP4495583B2 publication Critical patent/JP4495583B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/66Connections with the terrestrial mass, e.g. earth plate, earth pin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/53Bases or cases for heavy duty; Bases or cases for high voltage with means for preventing corona or arcing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • H02G13/40Connection to earth

Landscapes

  • Insulators (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Catching Or Destruction (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To protect power and a communication system by effectively generating discharge inside a grounding electrode. <P>SOLUTION: In regard to the grounding power electrode and a manufacturing method thereof, the grounding electrode is formed of a cylindrical discharge tube and a core provided in the discharge tube and electrically connected to a lower stage part of the discharge tube. In order to dispersively generate discharge, the core is formed with a plurality of spiral discharge electrodes in the peripheral surface of the core, and thickness of the lower stage part of the core is formed smaller than that of an upper stage to relay speed of the surge current of travelling waves and to obtain reflected waves and surface effect. In the plurality of discharge electrodes, holes are arranged at positions corresponding to the electrode to easily discharge through a triode discharge electrode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,接地電極に係り,詳細には電気的に接続された同一極上の2点で効果的に放電を発生させ,電力,通信系統を保護する電力用接地電極(functional grounding electrode)およびその製作方法に関する。   The present invention relates to a grounding electrode, and more particularly to a power grounding electrode (functional grounding electrode) that effectively generates a discharge at two points on the same electrode that are electrically connected to protect the power and communication system, and its It relates to the production method.

現在の高度情報化社会において,電力および通信設備はますます発展している。しかし,さまざまな異常条件および異常電圧からこれらの設備を保護する装置の発展は遅れているのが現状である。   In the current advanced information society, power and communication facilities are increasingly developed. However, the development of devices that protect these facilities from various abnormal conditions and abnormal voltages is currently delayed.

電力および通信設備の故障による被害は,不特定多数に広範囲に渡って波及され,社会全般の混乱を招くため,事故発生時正確な原因究明と適切な対策を講じる必要がある。このような自然現象による事故は,予測困難な上にその規模が大きいので,正確な故障原因分析とその対策も必要になる。   Damage caused by failure of power and communication equipment is spread over a wide range of unspecified numbers, causing confusion for society as a whole. Therefore, it is necessary to investigate the exact cause and take appropriate measures when an accident occurs. An accident caused by such a natural phenomenon is difficult to predict and has a large scale. Therefore, an accurate failure cause analysis and countermeasures are required.

電力系統線路事故時の故障電流や落雷による雷撃電流は,電圧がとても高く,短時間にピーク値に達するいわゆるパルス特性があるため,線路とつながる設備に多大な被害を与え得る。したがって,このような電圧,電流の瞬間的な立ち上がりを逆に利用し,その大きさおよび立ち上がりから上記の電圧を検知し,その度に対応できる短時間除去能力をもつ保護設備が必要となる。   The fault current at the time of power system line faults and the lightning strike current caused by lightning strikes can cause a great deal of damage to the equipment connected to the line because of its so-called pulse characteristics that reach a peak value in a short time. Therefore, a protection facility having a short-time removal capability that can use the instantaneous rise of the voltage and current in reverse, detect the voltage from the magnitude and the rise, and respond to it each time is required.

上記のような保護設備は,電力および通信設備における接地が電気的に連係されている関連設備を保護し,人体に対する感電および火災の発生を予防する重要な役割を担っている。   The above-mentioned protective equipment plays an important role in protecting related equipment in which grounding in power and communication equipment is electrically linked, and preventing electric shock and fire on the human body.

しかし,今までの接地に対する概念は,幾つかの接地原理,接地時,接地電極および電極に添加する接地抵抗低減材による施工方法の改善,また接地設計時および接地施工後の大地電位上昇の解析などが主流であり,接地電極自体を改善・発展させる努力はあまりなされていなかった。   However, the concept of grounding so far is based on several grounding principles, grounding electrode, ground electrode and improvement of construction method using grounding resistance reducing material added to the electrode, and analysis of ground potential rise during and after grounding design. The mainstream has been the mainstream, and little effort has been made to improve and develop the ground electrode itself.

また,研究者によっては電力系統で発生するさまざまな異常現象を利用し,接地電極自体を改善する努力がなされて来たが,異常電圧や過度現象のような予測困難な諸問題を改善した接地電極であるにもかかわらず,新たな欠点が見つかるなどの問題があった。   Also, some researchers have made efforts to improve the ground electrode itself by using various abnormal phenomena that occur in the power system, but grounding has improved various problems that are difficult to predict such as abnormal voltage and transient phenomenon. Despite being an electrode, there were problems such as finding new defects.

たとえば,既存の一般接地電極は接地抵抗を減らすため,深打法やボーリング(boring)工法で地中に埋設し,目標設置抵抗を得られるため接地電極を並列に追加施工する方法が主に使用されている。しかし,このような方法は大地に対する固有抵抗が低い所では効果が得られる反面,土砂や岩盤などの高抵抗性土壌では満足できる効果は得られない。   For example, in order to reduce the grounding resistance of existing general grounding electrodes, it is mainly used to embed them in the ground by the deep hitting method or boring method and to add the grounding electrode in parallel to obtain the target installation resistance. Has been. However, this method is effective in places where the specific resistance to the ground is low, but is not satisfactory in highly resistant soils such as earth and sand.

また,上記のような方法では,非常に短い時間幅で非常に高い電圧をもたらす雷撃や開閉異常電圧のような電圧が接地電極に流入した場合,接地電極の周りに瞬間的な大地電位の上昇を招き,同時に隣接している他の接地電極にも瞬間的な異常電圧を誘起させる問題がある。このような瞬間的な大地電位上昇は,接地極が埋設された周辺の設備被害は無論のこと,人命被害にも至る。   In addition, in the above method, when a voltage such as a lightning strike or an abnormal switching voltage that causes a very high voltage in a very short time period flows into the ground electrode, an instantaneous rise in ground potential occurs around the ground electrode. At the same time, there is a problem of inducing instantaneous abnormal voltage to other adjacent ground electrodes. Such a momentary increase in earth potential can, of course, cause damage to human life as well as damage to the surrounding facilities where the ground electrode is buried.

また,メッシュ(mesh)のような接地電極は,建物の底鉄筋を電気的に結束することで異常電圧流入時に建物内部の各設備に誘起される電圧を殆ど等電位化させ,電位差を除去する概念である。しかし,施工面積が広く,対象たる建築物の設計時から反映しないとならないので,追加接地が困難になるなどの難点がある。   In addition, a grounding electrode such as a mesh makes the voltage induced in each facility in the building almost equal when an abnormal voltage flows in by electrically binding the bottom rebar of the building, and removes the potential difference. It is a concept. However, since the construction area is large and must be reflected from the design of the target building, there is a problem that additional grounding becomes difficult.

上記の二つの方法は特定原理がなく,大地に対する固有抵抗および施工方法によって決定される構造的パラメータにより性能が左右されてきた。   The above two methods have no specific principle, and their performance has been affected by the specific resistance to the ground and the structural parameters determined by the construction method.

それに対して,サージ(surge)の電圧がとても高く,放電によってこの高い電圧をターンオフできるという点に注目し,海外では針状設置棒が開発された。この接地棒は図1に示したように従来の一般接地棒に針をつけることで,地中で放電を誘発できる構成となっている。この針状接地棒は,高抵抗性の土壌においてサージのような高電圧印加時に地中で放電し,瞬間的な大地電位上昇を効果的に抑制できる。しかし,低抵抗性土壌においては確実な動作が保障されず,地中放電の頻度が多くなると放電熱および瞬間的な圧力によって土壌成分の劣化を進行し,正常状態での接地抵抗が却って増加する。また,施工方法が不便な短点も指摘され,この針状接地棒は,韓国内においても電力会社の送電線路,通信会社の通信線路のような一部のみに制限的に利用され,一般的にはあまり使用されていない。   On the other hand, focusing on the fact that the surge voltage is very high and this high voltage can be turned off by discharge, a needle-like installation bar has been developed overseas. As shown in FIG. 1, this grounding rod is configured to induce a discharge in the ground by attaching a needle to a conventional general grounding rod. This needle-shaped grounding rod discharges in the ground when a high voltage such as a surge is applied in highly resistant soil, and can effectively suppress an instantaneous increase in ground potential. However, in low-resistance soils, reliable operation is not guaranteed, and when the frequency of underground discharge increases, the soil component deteriorates due to discharge heat and instantaneous pressure, and the ground resistance in the normal state increases on the contrary. . In addition, it is pointed out that the construction method is inconvenient, and this needle-shaped grounding rod is also used in limited areas such as the transmission lines of power companies and communication lines of communication companies in Korea. Is not used much.

このような問題を解決するため,例えば,特許文献1のようにアーク誘導型針付接地棒が開発された。   In order to solve such a problem, for example, an arc induction type grounding rod with a needle has been developed as disclosed in Patent Document 1.

上記アーク誘導型針付接地棒は図2および図3に示したように,接地棒(9)の上段に形成されているリード端子(11)が電気的に接続されると,落雷発生時故障電流がリード端子(11)を通し,最初に地中に流入され,リード端子(11)を通して流入される故障電流は,接地棒(9)に装着される針ホルダー(5〜8)に,円周方向に位置移動可能に装着された針(1−4)を経由して,接地棒(9)の下段に接続されたアーク誘導型コイル(13)を通して放電管(10)に伝わるように構成される。   2 and 3, when the lead terminal (11) formed on the upper stage of the grounding rod (9) is electrically connected, the arc induction type grounding rod with a needle breaks down when a lightning strike occurs. The fault current that flows through the lead terminal (11), first through the lead terminal (11), and through the lead terminal (11) is applied to the needle holder (5-8) attached to the grounding rod (9). It is configured to be transmitted to the discharge tube (10) through the arc induction coil (13) connected to the lower stage of the grounding rod (9) via the needle (1-4) mounted so as to be movable in the circumferential direction. Is done.

しかし,このような従来のアーク誘導型針接地棒は,放電を誘導できるように接地棒と放電管の間に接続されているアーク誘導型コイル(13)がアーク誘導型接地棒回路のインピーダンスを増加させ,アーク誘導型針付接地棒内部路の水分流入および落雷時の大電流に対するアーク誘導用コイルの耐久性など,主にアークを誘導するためのアーク誘導用コイルがさまざまな副作用を誘発する。従って,電力系統への適用が難しいという問題がある。   However, in such a conventional arc induction type needle grounding rod, the arc induction type coil (13) connected between the grounding rod and the discharge tube can induce the impedance of the arc induction type grounding rod circuit so that the discharge can be induced. The arc induction coil mainly induces various side effects, such as the durability of the arc induction coil against the inflow of moisture inside the arc-guided ground rod with a needle and the large current during lightning strike. . Therefore, there is a problem that it is difficult to apply to the power system.

韓国特許0339924号公報(2002.05.27登録)Korean Patent No. 0399924 (registered 2002.5.27)

本発明の目的は,上記のような問題点を解決するために案出されたもので,電気的に接続された同一極上の2点,即ち,サージの短時間急峻特性を利用して同一極性を有する2電極間において効果的に放電を発生させることで,電力系統に侵入する異常パルス状サージに対処し,正常状態で運転される電力系統の3相負荷の不均衡による中性点残留電圧が増加した接地電極の表面を通して放流させ効果的に処理することは勿論,直接接地方式の設置環境における電力系統の故障発生時にも保護リレーの確実な動作を保障することができ,電力および通信系統の信頼性を向上させることである。   The object of the present invention has been devised in order to solve the above-mentioned problems. Two points on the same pole that are electrically connected, that is, the same polarity by utilizing the short-time steep characteristics of the surge. By effectively generating a discharge between the two electrodes having a noise, the neutral point residual voltage due to the imbalance of the three-phase load of the power system operated in a normal state is dealt with by the abnormal pulsed surge entering the power system. As a result, the relay can be discharged through the surface of the grounded electrode and treated effectively, and it is possible to ensure the reliable operation of the protection relay even in the event of a power system failure in a direct grounding installation environment. It is to improve the reliability.

上記目的を達成するため本発明は,円筒形の放流管と,上記放流管の中の軸上に設置され,上記放流管の下段部と電気的に接続される芯棒を設置する接地電極製作方法において:上記芯棒は,放電を分散発生させるため上記芯棒の外周に,複数の放電電極をらせん状に形成し,サージ印加時に進行波であるサージの速度遅延と反射波および表皮効果(skin effect)が生じるように,上記芯棒の下段部を上段部より細く形成し,これを誘電体で包み,上記複数の放電電極は,3極放電電極(trigatoronで通用される。)を通して放電が容易に発生するように,上記放電電極の対応位置にホールを配置することを特徴とする。   In order to achieve the above object, the present invention provides a grounded electrode manufacturing method in which a cylindrical discharge pipe and a core rod which is installed on a shaft in the discharge pipe and is electrically connected to a lower stage portion of the discharge pipe are installed. In the method: The core rod has a plurality of discharge electrodes spirally formed on the outer periphery of the core rod in order to disperse discharge, and the surge speed delay, reflected wave and skin effect (skin wave) when applying a surge ( The lower part of the core rod is formed to be thinner than the upper part so that a skin effect occurs, and this is wrapped with a dielectric, and the plurality of discharge electrodes are discharged through a tripolar discharge electrode (used by trigatron). It is characterized in that a hole is arranged at a corresponding position of the discharge electrode so as to easily occur.

本発明の他の観点では,略円筒形状にステンレスで形成され,3極放電電極で放電が容易に行われるようにらせん状の複数の3極放電電極用ホールが設けられた放流管と;上段部にはリード端子が一体に,かつ下段部は上端および中央部より細く,ステンレスで形成され,上記放流管の長手方向内部に挿入される芯棒と;絶縁材で形成され,上記芯棒の上部を固定する絶縁体と;ステンレスで形成され,上記絶縁体を固定し,上記放流管の上部に固定される芯棒ホルダーと;くさび形状にステンレスで形成され,上記芯棒の下部を固定し,上記放流管の下部に固定される接地電極先端とを備え,上記芯棒には,タングステンまたはニクロム材質で,上段部が尖っており上段部と比較して下段が広い針状で形成され,上記3極放電電極用ホールの各々に対応した位置に,上記芯棒の中央部でらせん状に付着される複数の放電電極と;上記芯棒の下段外周に付着される誘電体とが設けられている電力用接地電極が提供される。   In another aspect of the present invention, the discharge tube is formed of stainless steel in a substantially cylindrical shape, and is provided with a plurality of spiral three-electrode discharge electrode holes so that discharge is easily performed by the three-electrode discharge electrode; The lead terminal is integrated with the lower part, the lower step part is thinner than the upper end and the central part, and is formed of stainless steel, and is inserted into the longitudinal direction of the discharge pipe; and is formed of an insulating material; An insulator for fixing the upper part; made of stainless steel, a core rod holder for fixing the insulator and fixed to the upper part of the discharge pipe; and a wedge-shaped stainless steel for fixing the lower part of the core bar A ground electrode tip fixed to the lower part of the discharge pipe, and the core bar is made of tungsten or nichrome, the upper part is pointed, and the lower part is formed in a needle shape wider than the upper part, Hole for the above three-pole discharge electrode Provided is a power ground electrode provided with a plurality of discharge electrodes spirally attached at the center of the core rod and a dielectric attached to the lower outer periphery of the core rod at positions corresponding to each Is done.

本発明のさらに他の観点によれば,略円筒形状にステンレスで形成され,両端部の内周に放流管を嵌合するための放流管用ボルトねじ山が形成され,3極放電電極で放電が容易に行われるようにらせん状の複数の3極放電電極用ホールが設けられた放流管と;上段部にはリード端子が一体にかつ下段部は上端および中央部より細く,ステンレスで形成され,下段部の先端外周には深棒用ボルトねじ山が形成され,上記放流管の内部に長さ方向に挿入される芯棒と;下面が開放された円筒形状に絶縁材で形成され,上面に芯棒固定用固定ホールが設けられ上記芯棒の上段部が上記芯棒固定用固定ホールを通して内部に挿入固定させる絶縁体と;ステンレスで形成され,内部には上記絶縁体と対応した大きさの絶縁体固定用貫通ホールが,下段部外周には芯棒ホルダー用ボルトねじ山が設けられ,上記絶縁体を上記絶縁体固定用貫通ホールに挿入した状態で,上記放流管用ボルトねじ山と上記芯棒ホルダー用ボルトねじ山を結合して固定させる芯棒ホルダーと;ステンレスで形成され,上段部は上記放流管と同じ径を有し,下段部はくさび状に形成され,上段面の中央部では垂直方向に上記芯棒用ボルトねじ山と結合可能となるようにこれと対応する大きさの芯棒挿入用ボルトねじ山が形成され,上段部外周に上記放流管の下段に形成された放流管用ボルトねじ山と結合可能となるように接地電極先端用ボルトねじ山が形成され,上記放流管に固定設置される接地電極先端とを備え,上記芯棒には,タングステンまたはニクロム材質で,上段部が尖っており上段部と比較して下段が広い針状で形成され,上記各々の3極放電電極用ホールに対応される位置に,上記芯棒の中央部でらせん状に付着される複数の放電電極と;上記芯棒の下段外周に付着される誘電体とが設けられていることを特徴とする,電力用接地電極が提供される。   According to still another aspect of the present invention, a stainless steel tube having a substantially cylindrical shape is formed, and a bolt thread for a discharge tube for fitting the discharge tube is formed on the inner periphery of both end portions. A discharge tube provided with a plurality of spiral three-pole discharge electrode holes for easy operation; a lead terminal is integrally formed in the upper stage and the lower stage is thinner than the upper end and the central part, and is formed of stainless steel; A deep rod bolt thread is formed on the outer periphery of the tip of the lower step, and a core rod inserted in the longitudinal direction inside the discharge pipe; formed of an insulating material in a cylindrical shape with an open bottom surface, An insulator that is provided with a fixing hole for fixing the core rod, and an upper portion of the core rod is inserted and fixed therein through the fixing hole for fixing the core rod; and is formed of stainless steel and has a size corresponding to the insulator. The through hole for fixing the insulator is the lower part A screw thread for the core rod holder is provided on the periphery, and the bolt screw thread for the discharge tube and the bolt thread for the core rod holder are coupled with the insulator inserted into the through hole for fixing the insulator. A core rod holder to be fixed; made of stainless steel, the upper portion has the same diameter as the discharge pipe, the lower portion is formed in a wedge shape, and the center portion of the upper step surface has a bolt thread for the core rod in the vertical direction. A core rod insertion bolt thread of a size corresponding to this is formed so that it can be coupled to the discharge pipe bolt thread formed in the lower stage of the discharge pipe on the outer periphery of the upper stage. A bolt thread for a ground electrode tip is formed, and a ground electrode tip fixed to the discharge pipe is provided. The core rod is made of tungsten or nichrome and has a sharp upper portion compared to the upper portion. Wide bottom A plurality of discharge electrodes spirally attached at the center of the core rod at positions corresponding to the respective three-pole discharge electrode holes; and attached to the lower outer periphery of the core rod A power ground electrode is provided, characterized in that a dielectric is provided.

また,上記絶縁体は,側面中央部両端に固定用ボルトが備えられ,上記芯棒ホルダーは,上記固定用ボルトホールと対応される位置である側面中央部両端に並列追加接地電極を連結させる並列追加設置極用ボルトホールが形成され,上記並列追加接地電極用ボルトホールの底面中央で上記絶縁体の上記固定用ボルトホールと結合可能となるよう,同一形状の固定用ボルトホールを備えるとしても良い。   The insulator is provided with fixing bolts at both ends of the center of the side surface, and the core rod holder is connected in parallel with a parallel additional ground electrode connected to both ends of the center of the side surface corresponding to the fixing bolt holes. A bolt hole for an additional electrode may be formed, and a fixing bolt hole having the same shape may be provided so that it can be coupled to the fixing bolt hole of the insulator at the bottom center of the parallel additional ground electrode bolt hole. .

また,上記接地電極先端は,上記放流管内部に流入された水分を地中に排水し,放電発生時,生じた圧力を外部に放出するよう,上記芯棒挿入用ボルトねじ山と上記接地電極先端用ボルトねじ山の間に垂直方向に1または2以上の排水および放圧ホールが形成され,底面中央には上段部方向に直列追加設置電極を挿入して固定できる固定ねじ山が形成されているとしても良い。   The tip of the ground electrode drains the water flowing into the discharge pipe into the ground, and discharges the generated pressure to the outside when a discharge occurs. One or more drainage and discharge holes are formed in the vertical direction between the bolt bolts for the tip, and a fixed screw thread is formed at the center of the bottom surface to insert and fix additional electrodes in series in the upper step direction. It's okay.

以上で説明したように,本発明による電力用接地電極およびこの製作方法によると,同一極性上で効果的に放電を発生させることで,電力系統に立ち上がり時間の非常に短い異常電圧が侵入した時の電圧,電流が処理され,かつ,電力系統が正常な状態における3相負荷の不均衡による中性点残留電圧も処理できる。このため,保護リレーを確実に動作することができ,大きなエネルギーを持つ雷撃のような異常電圧も効果的に処理できるため,電力および通信設備のあるすべての施設に利用することができる。   As described above, according to the power ground electrode and the manufacturing method according to the present invention, when an abnormal voltage having a very short rise time enters the power system by effectively generating discharge on the same polarity. The neutral point residual voltage due to the imbalance of the three-phase load when the power system is normal can be processed. For this reason, the protection relay can be operated reliably, and an abnormal voltage such as a lightning strike having large energy can be effectively processed, so that it can be used for all facilities having electric power and communication equipment.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書および図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

本実施形態による電力用接地電極の構成を,図4〜図6を参照に説明する。   The configuration of the power ground electrode according to the present embodiment will be described with reference to FIGS.

図4は本実施形態の電力用接地電極の構成を示した断面図で,図5は本実施形態による電力用接地電極の構成を示した分解斜視図であり,図6は本実施形態による電力用接地電極に並列追加接地電極と直列追加接地電極が付着されている様子を示す平面図である。   FIG. 4 is a cross-sectional view showing the configuration of the power ground electrode according to the present embodiment, FIG. 5 is an exploded perspective view showing the configuration of the power ground electrode according to the present embodiment, and FIG. 6 shows the power according to the present embodiment. It is a top view which shows a mode that the parallel additional ground electrode and the series additional ground electrode are adhered to the ground electrode for operation.

本実施形態の電力用接地電極(100)は,放流管(110),芯棒(120),放電電極(130),誘電体(140),絶縁体(150),芯棒ホルダー(160)および接地電極先端(170)からなる。   The power ground electrode (100) of the present embodiment includes a discharge tube (110), a core rod (120), a discharge electrode (130), a dielectric (140), an insulator (150), a core rod holder (160) and It consists of a ground electrode tip (170).

まず,放流管(110)は,内部放電が起きる重要部位であり,内部放電時に瞬間的に増加する温度と圧力上昇に耐えられるよう耐熱,耐圧に優れており,機械的強度が強く,比較的低価格で構成可能なステンレスで形成される。また,放流管(110)の上下が開放され,両端部内周に放流管用ボルトねじ山(111)が形成される。放流管(110)には各々の放電電極(130)と対応する位置に3極放電電極を形成し,容易に放電が起きるよう3極放電電極用ホール(113)が備えられる。   First, the discharge pipe (110) is an important part where internal discharge occurs, and has excellent heat resistance and pressure resistance to withstand the temperature and pressure increase that instantaneously increases during internal discharge, has high mechanical strength, and is relatively Made of stainless steel that can be configured at low cost. Moreover, the upper and lower sides of the discharge pipe (110) are opened, and the bolt thread (111) for the discharge pipe is formed on the inner periphery of both ends. The discharge tube (110) is provided with a triode discharge electrode hole (113) so that a triode discharge electrode is formed at a position corresponding to each discharge electrode (130) and discharge is easily caused.

芯棒(120)は,ステンレスで形成され,上段部にリード端子(121)が一体に延長形成され,下段部の径が上段部や中央部と比べ細く形成され,下段部の端部外周には芯棒用ボルトねじ山(123)が形成され,放流管(110)の内部に挿入される。ここで芯棒(120)の下段部を上段部より小さく形成する理由は,電圧と周波数が高くなるほど,電流は導体の表面から移動しやすくなるという表皮効果により,サージ電流の移動渋滞が生じると,下段部まで到達するサージ電荷が瞬間的に上段に蓄積され,より放電しやすい条件が整う。従って,芯棒(120)のリード端子(121)には,外部の印加導線と電気的にまた機械的に接続させる印加導線用ジョイントナット(125)を備えることが望ましい。   The core rod (120) is made of stainless steel, and the lead terminal (121) is integrally extended to the upper step portion, and the diameter of the lower step portion is narrower than the upper step portion and the central portion. Is formed with a core rod bolt thread (123) and inserted into the discharge pipe (110). Here, the reason why the lower part of the core rod (120) is formed smaller than the upper part is that, as the voltage and frequency are higher, the current is easier to move from the surface of the conductor, and the surge current is caused by traffic congestion. , Surge charge reaching the lower stage is instantaneously accumulated in the upper stage, and the conditions for easier discharge are established. Therefore, it is desirable that the lead terminal (121) of the core rod (120) is provided with an application lead joint nut (125) that is electrically and mechanically connected to an external application lead.

また,放電電極(130)は,耐熱性を向上させるため,融点(melting point)が高いタングステンまたはニクロム材質でなり,上段部が尖って下段が広い針状のものを芯棒(120)の中央にらせん状に付着させて形成する。ここで放電電極(130)は,針対平板(放流管の側面)電極での不均一電界形成が,他の形態の電極より激しいことを用い,サージ電流が進行波である特性を利用し,一箇所に内部発生熱が集中することによる放電電極(130)および放流管(110)の損傷を防止するように,らせん状に分散配列し,熱の分散を図った。   Further, the discharge electrode (130) is made of tungsten or nichrome having a high melting point in order to improve heat resistance, and a needle-like electrode having a sharp upper step and a wide lower step is formed in the center of the core rod (120). It is formed by adhering to a spiral. Here, the discharge electrode (130) uses the characteristic that the non-uniform electric field formation at the needle-to-flat plate (side surface of the discharge tube) electrode is more intense than the other forms of electrodes, and the surge current is a traveling wave. In order to prevent damage to the discharge electrode (130) and the discharge tube (110) due to concentration of internally generated heat in one place, the heat was dispersed and arranged in a spiral shape.

また,誘電体(140)は,芯棒(120)の下段が挿入される。誘電体(140)の材質としては,エポキシ(epoxy)樹脂,ベークライト(Bakelite),ポリスチレン(polystyrene),架橋ポリエチレン(XLPE),ポリエチレン(polyethylene),ポリカーボネート(polycarbonate),ポリグラス(polyglass)などが用いられる。誘電体(140)を用いる理由は,芯棒(120)を通して流入されるサージは光速で移動するが,このサージの伝導速度を,誘電体(140)を使うことで誘電率の平方根相当に減速させることができるからである。これによって,一定の地点で放電電極(130)に印加されている電位と,大地と接触されている放流管(110)の間により大きい電位差を誘起する。また,この誘電体(140)は,サージが異種媒質通過時にサージ進行とは反対方向に発生する反射波を生成し,瞬間的に放電電極(130)に印加される電圧を上昇させて放流管(110)との電位差を増加させる役割をなす。   In addition, the lower part of the core rod (120) is inserted into the dielectric (140). As the material of the dielectric (140), epoxy resin, bakelite, polystyrene, crosslinked polyethylene (XLPE), polyethylene (polyethylene), polycarbonate, polyglass, etc. are used. . The reason for using the dielectric (140) is that the surge flowing through the core rod (120) moves at the speed of light, but the conduction speed of this surge is reduced to the square root of the dielectric constant by using the dielectric (140). It is because it can be made. This induces a larger potential difference between the potential applied to the discharge electrode (130) at a certain point and the discharge tube (110) in contact with the ground. In addition, the dielectric (140) generates a reflected wave that is generated in a direction opposite to the progress of the surge when the surge passes through a different medium, and instantaneously increases the voltage applied to the discharge electrode (130) to discharge the discharge tube. It serves to increase the potential difference from (110).

一方,絶縁体(150)は,絶縁材で形成され,上段部には芯棒(120)を固定するための芯棒固定用固定ホール(151)が中央部が空いている円筒形に形成され,リード端子(121)を,上記芯棒固定用固定ホール(151)を通して内部挿入することで,リード端子(121)と放流管(110)との距離を確保する。絶縁体(150)には,固定ボルト(105)によって芯棒ホルダー(160)に固定可能となるよう側面下段部両端に固定用ボルトホール(153)が形成される。   On the other hand, the insulator (150) is formed of an insulating material, and a core rod fixing fixing hole (151) for fixing the core rod (120) is formed in a cylindrical shape with an empty central portion in the upper portion. The lead terminal (121) is inserted through the core rod fixing fixing hole (151) to secure a distance between the lead terminal (121) and the discharge pipe (110). In the insulator (150), fixing bolt holes (153) are formed at both ends of the lower side of the side surface so as to be fixed to the core rod holder (160) by the fixing bolt (105).

芯棒ホルダー(160)は,ステンレスであり,内部に絶縁体(150)と対応する大きさの絶縁体固定用貫通ホール(161)が形成され,下段外周に芯棒ホルダー用ボルトねじ山(163)も形成され,絶縁体(150)を絶縁体固定用貫通ホール(161)に挿入した状態で,放流管用ボルトねじ山(111)と芯棒ホルダー用ボルトねじ山(163)を結合させ,固定する。また,芯棒ホルダー(160)には側面両端に並列追加接地電極用ボルトホール(165)が形成され,並列追加接地電極用ボルトホール(165)の底面には固定ボルト(105)が締められるよう絶縁体(150)の固定用ボルトホール(153)との対応位置に固定用ボルトホール(153)と同一形状の固定用ホール(153)が備えられる。   The core rod holder (160) is made of stainless steel, and has an insulator fixing through hole (161) having a size corresponding to the insulator (150). The core rod holder bolt thread (163) is formed on the lower outer periphery. ), And with the insulator (150) inserted into the insulator fixing through hole (161), the bolt screw thread (111) for the discharge pipe and the bolt screw thread (163) for the core rod holder are coupled and fixed. To do. Further, the core rod holder (160) is formed with parallel additional ground electrode bolt holes (165) at both ends of the side surface, and the fixing bolt (105) is fastened to the bottom surface of the parallel additional ground electrode bolt hole (165). A fixing hole (153) having the same shape as the fixing bolt hole (153) is provided at a position corresponding to the fixing bolt hole (153) of the insulator (150).

ここで,芯棒ホルダー(160)は,電力用接地電極(100)だけで目標接地抵抗が得られない場合,図6に示したように,側面中央両端の並列追加接地電極用ボルトホール(165)に並列追加接地電極(101)を連結する。この場合にも,絶縁体(150)を絶縁材で形成する。その理由は,サージ侵入時放電電極(130)まで異常電圧が到達する前に,事前に放流されることを防止するためであり,芯棒(120)のリード端子(121)を通してて流入されるサージは短時間内にピーク値まで上がる。これによって放電電極(130)に至る前に芯棒(120)のリード端子(121)および放流管(110)の間に沿面放電が発生することとなり,土壌を化学的に劣化,電力用接地電極(100)の正常動作障害を生じさせる結果となる。従って,放電を放流管(110)内部にのみ発生させるため,適切な沿面距離を確保する必要があり,このためリード端子(121)と放流管(110)の間に絶縁体を挿入するのである。   Here, when the target ground resistance cannot be obtained only by the power ground electrode (100), the core rod holder (160) has a parallel additional ground electrode bolt hole (165) at both ends of the center of the side surface as shown in FIG. ) To the parallel additional ground electrode (101). Also in this case, the insulator (150) is formed of an insulating material. The reason is to prevent the abnormal voltage from being discharged in advance before the abnormal voltage reaches the discharge electrode (130) at the time of surge intrusion, and it flows through the lead terminal (121) of the core rod (120). The surge increases to the peak value within a short time. As a result, creeping discharge is generated between the lead terminal (121) of the core rod (120) and the discharge pipe (110) before reaching the discharge electrode (130), and the soil is chemically deteriorated. As a result, the normal operation failure of (100) is caused. Therefore, since the discharge is generated only inside the discharge tube (110), it is necessary to ensure an appropriate creepage distance. For this reason, an insulator is inserted between the lead terminal (121) and the discharge tube (110). .

接地電極先端(170)はステンレスで形成され,上段部は,放流管と同じ厚さを持ち,下段はくさび型となっており,上段面中央部で垂直下方向に芯棒用ボルトねじ山(123)と結合可能となるよう芯棒挿入用ボルトねじ山(171)が形成される。また接地電極先端(170)は,上段部外周に放流管(110)の下段に形成されている放流管用ボルトねじ山(111)と結合可能となるよう,接地電極先端用ボルトねじ山(173)が形成され,放流管(110)に固定される。   The tip of the ground electrode (170) is made of stainless steel, the upper part has the same thickness as the discharge pipe, the lower part has a wedge shape, and the core screw bolt thread ( 123) A core rod insertion bolt thread (171) is formed so as to be connectable to the shaft 123). In addition, the ground electrode tip bolt thread (173) is configured so that the ground electrode tip (170) can be coupled to the discharge pipe bolt thread (111) formed in the lower stage of the discharge pipe (110) on the outer periphery of the upper stage. Is formed and fixed to the discharge pipe (110).

接地電極先端(170)は,放流管(110)内部に侵入した水分を地中に排水し,また,放電発生時生じる圧力を外部に放出するため,芯棒挿入用ボルトねじ山(171)と接地電極先端用ボルトねじ山(173)との間に,垂直下方に向かって,1または2以上の排水および放圧ホール(175)が形成される。また,接地電極先端(170)は電力用接地電極(100)だけで目標接地抵抗が得られにくい場合,図6に示したように直列追加接地電極(103)の連結が可能となるよう底面中央で上向きに直列追加接地電極(103)を圧入固定できる固定ねじ山(177)が形成されている。また,直列追加接地電極(103)が必要でない場合には,固定ねじ山(177)に合う芯状の丈夫なものを挿入することで深打が容易になるようにする。   The tip of the ground electrode (170) drains moisture that has entered the discharge pipe (110) into the ground, and discharges the pressure generated when the discharge occurs to the outside. One or more drainage and pressure relief holes (175) are formed vertically downward between the ground electrode tip bolt thread (173). In addition, when the ground electrode tip (170) is difficult to obtain the target ground resistance only by the power ground electrode (100), the center of the bottom surface is connected so that the series additional ground electrode (103) can be connected as shown in FIG. Thus, a fixing thread (177) capable of press-fitting and fixing the series additional ground electrode (103) upward is formed. In addition, when the series additional ground electrode (103) is not required, a deep core can be easily inserted by inserting a strong core-like one that matches the fixing screw thread (177).

以下,本実施形態による電力用接地電極の動作を,図4〜図8d(特に,図7a〜図8d)を参照して説明する。   Hereinafter, the operation of the power ground electrode according to the present embodiment will be described with reference to FIGS. 4 to 8d (particularly, FIGS. 7a to 8d).

図7aは接地電極の動作を誘発するサージの基本波形を示す波形図であり,図7bは図7aの波形の立ち上がり部(increase wave)の拡大図であり,図7cは接地電極におけるサージ侵入時大地電位上昇概念図であり,図8aは電力用接地電極に印加した電流波形を示した波形図であり,図8bと図8cは電力用接地電極にサージが流入された点(リード端子)で測定した電圧波形を示した波形図であり,図8dはサージが流入されて放電が発生した時,放電電極の直下で測定した電流波形を示した波形図である。   FIG. 7a is a waveform diagram showing a basic waveform of a surge that induces the operation of the ground electrode, FIG. 7b is an enlarged view of a rise portion (increase wave) of the waveform of FIG. 7a, and FIG. FIG. 8A is a waveform diagram showing a current waveform applied to the power ground electrode, and FIGS. 8B and 8C are points (lead terminals) where a surge flows into the power ground electrode. FIG. 8D is a waveform diagram showing a current waveform measured immediately under the discharge electrode when a surge is introduced and a discharge is generated.

まず,電気系統が正常運転状態のとき,系統の中性点に残留している電圧は迅速に除去されるべきであり,これは電力用接地電極(100)の接地抵抗と密接な関係がある。つまり,中性点残留電圧の円滑な除去のため,接地抵抗は低いことが望ましく,電力用接地電極(100)を地中に埋設する場合,下記数式1に従って接地抵抗が減少する。

Figure 2005183385
…(数式1)
Rは接地抵抗,ρは大地固有抵抗,lは接地電極の長さ,rは接地電極の半径である。 First, when the electrical system is in a normal operating state, the voltage remaining at the neutral point of the system should be removed quickly, which is closely related to the ground resistance of the power ground electrode (100). . That is, it is desirable that the ground resistance is low for smooth removal of the neutral point residual voltage, and when the power ground electrode (100) is buried in the ground, the ground resistance is reduced according to the following formula 1.
Figure 2005183385
... (Formula 1)
R is the ground resistance, ρ is the earth resistivity, l is the length of the ground electrode, and r is the radius of the ground electrode.

また,韓国のように中性点直接接地方式をとっている環境では,電気系統に異常が発生した場合,線路上の設備保護のため,系統と連係して動作する保護リレー(protective relay)を迅速に動作させる。この保護リレーの動作性能は故障電流の大きさによっても決定されるので,この場合には上記数学式(数式1)によって決定される接地抵抗が低ければ低いほど保護性能が向上することとなる。本実施形態による電力用接地電極は,放流管(110)と接地電極先端(170)との接続により大地との接触面積が数倍以上増加するので,中性点残留電圧の迅速処理および保護リレーの確実な動作を保障する。   Also, in an environment where the neutral point direct grounding system is used, such as in Korea, when an abnormality occurs in the electrical system, a protective relay that operates in conjunction with the system is installed to protect the equipment on the line. Operate quickly. Since the operation performance of the protection relay is also determined by the magnitude of the fault current, in this case, the lower the ground resistance determined by the mathematical formula (Formula 1), the better the protection performance. In the power ground electrode according to the present embodiment, the contact area with the ground increases several times or more due to the connection between the discharge pipe (110) and the tip of the ground electrode (170). Ensures reliable operation.

一方,雷サージ(lightning surge)や開閉サージ(switching surge)のような異常電圧が流入した場合にも,系統からの迅速な除去が要求される。この時電力用接地電極(100)に流入されるサージは,電力用接地電極内部での進行特性を把握して利用することでターンオフすることが可能となる。   On the other hand, when an abnormal voltage such as a lightning surge or a switching surge flows in, rapid removal from the system is required. At this time, the surge flowing into the power ground electrode (100) can be turned off by grasping and utilizing the traveling characteristics inside the power ground electrode.

つまり,サージと比べて相対的に低い周波数である60Hzの状態でこれより大きさが小さい高周波成分だけが考慮された正常状態下では,接地抵抗値だけで中性点残留電圧処理能力が決定されるが,サージのような異常電圧侵入時には放電を誘発する電圧の大きさをどれ位低くするかによって,サージのターンオフ能力が決定される。即ち,その大きさがとても大きく,短い時間間隔においてとても高いピーク値に達するという特徴から,これらの値が分かれば放電によって発生できる電位差を作れる同一極性の二つの点間距離を逆算できる。   In other words, the neutral point residual voltage processing capability is determined only by the ground resistance value under normal conditions in which only a high-frequency component having a smaller size is considered in the state of 60 Hz, which is a relatively low frequency compared to the surge. However, the surge turn-off capability is determined by how much the voltage that induces discharge is reduced when an abnormal voltage such as a surge enters. That is, since the size is very large and reaches a very high peak value in a short time interval, if these values are known, the distance between two points of the same polarity that can generate a potential difference that can be generated by discharge can be calculated.

これに対する理解を助けるため,サージに対する電力用接地電極の動作原理を,図7a〜図7cを参照に説明すると,系統に接続された電力用接地電極(100)に図7aの波形のようなサージが侵入すると,印加導線に沿ってリード端子(121)に至り,大地電位が上昇し始める。この大地電位上昇は図7cのように電力用接地電極(100)(図7cのA)が埋設された部位で最大となり,電力用接地電極(100)からの距離に指数関数的に反比例して減少する。仮に,電力用接地電極がサージに対し内部放電を発生させない状態では,電力用接地電極とSほど離隔された他の接地電極(図7cのB)においてΔVほどの電位が上昇する。   To help understand this, the operation principle of the power ground electrode with respect to surge will be described with reference to FIGS. 7a to 7c. The power ground electrode (100) connected to the system has a surge like the waveform of FIG. 7a. Intrusions lead to the lead terminal (121) along the applied lead, and the ground potential starts to rise. This ground potential rise is greatest at the site where the power ground electrode (100) (A in FIG. 7c) is embedded as shown in FIG. 7c, and is exponentially inversely proportional to the distance from the power ground electrode (100). Decrease. If the power ground electrode does not generate an internal discharge in response to a surge, the potential of ΔV rises at another ground electrode (B in FIG. 7c) that is separated from the power ground electrode by S.

しかし,電力用接地電極内部で放電が発生すると,電力用接地電極が埋設された地点の電位が急減し,それにより他の接地電極に印加する電位が減少する。   However, when a discharge occurs inside the power ground electrode, the potential at the point where the power ground electrode is buried decreases rapidly, thereby decreasing the potential applied to the other ground electrode.

電力用接地電極にサージが侵入すると,リード端子(121)を通過して芯棒(120)の放電電極(130)とこれに対応される3極放電電極用ホール(113)に流れ,この周辺では,サージの急激度により不均衡電解が形成され,空気の絶縁破壊電圧とされている30kV/cmを超えると内部放電が発生する。   When a surge enters the power ground electrode, it passes through the lead terminal (121) and flows into the discharge electrode (130) of the core rod (120) and the corresponding three-pole discharge electrode hole (113). In this case, unbalanced electrolysis is formed due to the rapidity of the surge, and internal discharge occurs when the air breakdown voltage exceeds 30 kV / cm.

図7a,図7bに示したように,サージの立ち上がり(Tf)と立下り(Tt)の時間はとても短く,韓国および日本の場合,1.2×50μsの値を用いる。つまり,韓国および日本の雷撃電圧の場合,1億〜10億Vまで上昇するのに要する時間は1.2μs程度である。   As shown in FIGS. 7a and 7b, the surge rise time (Tf) and fall time (Tt) are very short, and a value of 1.2 × 50 μs is used in Korea and Japan. In other words, in the case of lightning strike voltage in Korea and Japan, the time required to rise to 100 million to 1 billion V is about 1.2 μs.

誘電体が被覆されていない裸線において,サージは光速である3×10m/sで移動するため,ピーク値までの1.2μsの間,サージ電圧が移動する距離はおよそ360mになる。つまり,サージ電圧は360mの裸線の間,電位差を生じることになる。 In the bare wire not covered with the dielectric, the surge moves at the speed of light of 3 × 10 8 m / s. Therefore, the distance that the surge voltage moves is about 360 m during 1.2 μs up to the peak value. That is, the surge voltage causes a potential difference between the bare wires of 360 m.

このとき裸線の各地点間には,異なる電位分布となり,サージ進行中に異なる2つの点間には電位差が発生する。この電位差が,一般に空気中絶縁破壊強度といわれるmm当たり3kVdcを超える場合に放電が発生する。 At this time, different potential distributions occur between the points of the bare wire, and a potential difference is generated between the two different points during the progress of the surge. Discharge occurs when this potential difference exceeds 3 kV dc per mm, generally referred to as air breakdown strength.

この放電開始電圧を決定するパラメータとしては空気中の湿度,温度および使用電極の種類などさまざまな要因が考慮される。一般に地中内では水分および各種イオン物質などの存在により放電が比較的発生しやすい条件が満たされているので,理論的な条件より低い電圧で放電することになる。よって,実際に問題となるのは,波高値が1億V中,1mm間隔において,3kVの電圧をかけるための二つの地点間距離である。計算ではこの距離は1.08cmに過ぎないが,実際この程度の距離で実験的に放電を発生させることは困難である。   Various parameters such as humidity in air, temperature, and type of electrode used are considered as parameters for determining the discharge start voltage. In general, the conditions under which discharge is relatively likely to occur due to the presence of moisture and various ionic substances in the ground are discharged at a voltage lower than the theoretical condition. Therefore, what actually becomes a problem is the distance between two points for applying a voltage of 3 kV at 1 mm intervals in a peak value of 100 million V. In the calculation, this distance is only 1.08 cm, but it is actually difficult to experimentally generate discharge at such a distance.

従って,電力用接地電極のインピーダンスは殆ど変化させないで,急激に上がるサージに対していつでも放電させられる他の処理が必要となる。このため本実施形態の電力用接地電極(100)では芯棒(120)の上段より下段を薄く作り,下段の厚さを補う誘電体(140)をつけたのである。   Accordingly, the impedance of the power ground electrode is hardly changed, and another process is required to be discharged at any time against a surge that suddenly increases. For this reason, in the power ground electrode (100) of this embodiment, the lower part is made thinner than the upper part of the core rod (120), and the dielectric (140) is added to compensate for the thickness of the lower part.

このような処理は,異種媒質を通過するサージの反射波発生および電圧と周波数によって決定される表皮効果(skin effect)を高めるものであり,芯棒(120)を経由して,誘電体(140)によりサージ進行速度が下記の数式2のように誘電体の持つ誘電率の平方根に反比例して遅延され,放電電極(130)と放流管(110)との間の電位差を増加させる。このように異種媒質を通過する際に発生する反射波と芯棒(120)下段部の径において,数式3のような高周波性サージの表皮効果が電位の同伴上昇作用を起こし,放電電極(130)と放流管(110)との電位差をますます増加させる。   Such processing enhances the generation of reflected waves of surges passing through different media and the skin effect determined by the voltage and frequency, and passes through the core rod (120) to form the dielectric (140 ), The surge speed is delayed in inverse proportion to the square root of the dielectric constant of the dielectric, as shown in Equation 2 below, and the potential difference between the discharge electrode (130) and the discharge tube (110) is increased. In this way, the skin effect of the high frequency surge as shown in Equation 3 causes an increase in potential entrainment in the reflected wave generated when passing through the different medium and the diameter of the lower portion of the core rod (120), and the discharge electrode (130 ) And the discharge pipe (110).

上記の値が電力用接地電極(100)の内部絶縁媒質の絶縁破壊強度を超える瞬間に内部放電が発生する。この電力用接地電極(100)の内部放電はらせん形に付着されている各々の放電電極(130)に沿って連続発生し,サージエネルギーを光,熱および音エネルギーに変換させ,このエネルギーに相当する大地電位の上昇が抑制される。

Figure 2005183385
…(数式2)
Figure 2005183385
…(数式3)
ここで,lは電流の浸透深さ,ωは2πfで,fは周波数(Hz),ρは材料の導電率,μは材料の透磁率である。 Internal discharge occurs at the moment when the above value exceeds the dielectric breakdown strength of the internal insulating medium of the power ground electrode (100). The internal discharge of the power ground electrode (100) is continuously generated along each discharge electrode (130) attached in a spiral shape, and the surge energy is converted into light, heat and sound energy, which corresponds to this energy. The rise in ground potential is suppressed.
Figure 2005183385
... (Formula 2)
Figure 2005183385
... (Formula 3)
Here, l is the current penetration depth, ω is 2πf, f is the frequency (Hz), ρ is the conductivity of the material, and μ is the permeability of the material.

上記のような動作原理によって,サージ流入時の大地電位上昇は抑制され,その抑制度は電力用接地電極(100)に侵入するサージ電圧が急激に上がれば上がるほど,優れた効果が得られる。この効果は,図7cで示したように,接地電極埋設地点においての人命および設備保護という観点と結びつく。   According to the operation principle as described above, an increase in ground potential at the time of surge inflow is suppressed, and the degree of suppression increases as the surge voltage entering the power ground electrode (100) increases rapidly. This effect is combined with the viewpoint of human life and equipment protection at the ground electrode buried point as shown in FIG. 7c.

以下,本実施形態による電力用接地電極を用いた実験結果を図8a〜図8dで示す。実験方法は,電力用接地電極(100)のリード端子(121)に衝撃電流発生装置(図示しない)を接続し,放流管(110)を接地させた。ここで衝撃電流発生装置は,印加される電流および電圧の波形を測定できる計測器内蔵型である。また,衝撃電流発生装置で衝撃電流を印加して,電力用接地電極(100)内部で放電が発生した場合,放電電極(130)で消耗されるサージ電流を測定するため,CT(計器用変流器)を放電電極の下につけ,CT出力を別途オシロスコープに接続した。最初の実験は,内部放電発生時との比較実験のため,内部放電が発生しない場合に対して実験を行い,このため実験前に電力用接地電極(100)内部の放電電極(130)を除去した状態で,衝撃電流を印加した結果を図8a,図8bで示す。   Hereinafter, experimental results using the power ground electrode according to the present embodiment are shown in FIGS. In the experiment method, an impact current generator (not shown) was connected to the lead terminal (121) of the power ground electrode (100), and the discharge pipe (110) was grounded. Here, the impact current generator is a built-in measuring instrument that can measure the waveform of the applied current and voltage. In addition, when an impact current is applied by the impact current generator and a discharge is generated inside the power ground electrode (100), the CT (instrument variable) is used to measure the surge current consumed in the discharge electrode (130). The CT output was connected to a separate oscilloscope. Since the first experiment is a comparison experiment with the occurrence of internal discharge, the experiment was conducted for the case where no internal discharge occurred. For this reason, the discharge electrode (130) inside the power ground electrode (100) was removed before the experiment. 8a and 8b show the results of applying the impact current in the state of the above.

図8aは,電力用接地電極に印加した電流波形を示したもので,図のx軸とy軸は一目盛り各々5μs,10kAであり,持続時間8×20μs,最大値約25kAの電流が印加されている。   FIG. 8a shows the current waveform applied to the power ground electrode. The x-axis and y-axis of the figure are 5 μs and 10 kA on a scale, respectively, and a current of 8 × 20 μs in duration and a maximum value of about 25 kA is applied. Has been.

図8bは,電力用接地電極にサージが流入された地点(リード端子)で測定した電圧波形を示した波形図で,x軸とy軸の一目盛りは各々20μs,2kAであり,持続時間1.2×50μs,最大値約6kVの電圧が測定された。   FIG. 8b is a waveform diagram showing a voltage waveform measured at a point (lead terminal) where a surge flows into the power ground electrode. The scales of the x-axis and y-axis are 20 μs and 2 kA, respectively, and the duration is 1 A voltage of 2 × 50 μs and a maximum value of about 6 kV was measured.

一方,電力用接地電極(100)内放電発生時,大地電位上昇抑制効果を見るため,放電電極(130)を設置し,その後,同一条件の衝撃電流を印加し,電力用接地電極(100)の内部で放電が発生するようにした結果は図8cおよび図8dに示される。   On the other hand, when the discharge in the power ground electrode (100) is generated, the discharge electrode (130) is installed in order to see the effect of suppressing the rise in ground potential, and then the impact current of the same condition is applied to the power ground electrode (100). 8c and 8d show the result of the discharge generated inside the.

このとき,リード端子(121)で測定された衝撃電流の波形は,電力用接地電極(100)から放電電極(130)を除去した時と同一の波形と大きさを持つ図8aのような波形が測定されたため,図は省略する。図8cのx軸,y軸は一目盛りが各々20μs,2kVを示しており,持続時間1.2×40μs,3.8kV程度の電圧が測定されたため,内部で放電が発生しない場合に比べて電位上昇が約1/3程度抑制されることが観察できた。   At this time, the waveform of the impact current measured at the lead terminal (121) is the same as that when the discharge electrode (130) is removed from the power ground electrode (100) as shown in FIG. 8a. Because of the measurement, the figure is omitted. In FIG. 8c, the x-axis and y-axis indicate 20 μs and 2 kV, respectively, and a voltage of about 1.2 × 40 μs and 3.8 kV is measured. It was observed that the potential increase was suppressed by about 1/3.

また,電力用接地電極(100)で放電発生による印加衝撃電流の減少度を観察するため,CTを放電電極(130)の下に設置し,この出力を別途計測器で測定した時の電流波形を図8dに示した。x軸とy軸は一目盛り各々5μs,7kVを示す。図8dで示したように,電力用接地電極(100)で内部放電が発生した放電電極(130)のすぐ下では約5kA程度の電流が測定された。これは電力用接地電極(100)に印加された電流が25kAであることを考慮すると約20%以下に激減されたことになり,印加衝撃電流の約80%が電力用接地電極(100)の内部放電によって熱,光,音エネルギーに変換されたことを意味する。   In addition, in order to observe the degree of decrease in the applied impact current due to the occurrence of discharge at the power ground electrode (100), the current waveform when CT is installed under the discharge electrode (130) and this output is measured by a separate measuring instrument. Is shown in FIG. 8d. The x-axis and y-axis indicate a scale of 5 μs and 7 kV, respectively. As shown in FIG. 8d, a current of about 5 kA was measured immediately below the discharge electrode (130) where internal discharge occurred in the power ground electrode (100). Considering that the current applied to the power ground electrode (100) is 25 kA, this is drastically reduced to about 20% or less, and about 80% of the applied impact current is reduced to the power ground electrode (100). It means that it has been converted into heat, light, and sound energy by internal discharge.

本実験で得られた結果は,韓国内で発生する落雷電流の平均値である25kAで実験結果であり,落雷電圧は約1億V以上であるため,本実験では考慮しなかった。仮に,電圧の大きさが1億V以上であると仮定すると1.2μs内に上昇する電圧がより立ち上がり時間が短いと予想されるため,本実施形態による電力用接地電極(100)はより確実に動作が保障される。   The result obtained in this experiment was an experimental result at 25 kA, which is the average value of lightning current generated in Korea, and the lightning voltage was about 100 million V or more, so it was not considered in this experiment. Assuming that the magnitude of the voltage is 100 million V or more, the voltage rising within 1.2 μs is expected to have a shorter rise time. Therefore, the power ground electrode (100) according to the present embodiment is more reliable. The operation is guaranteed.

従って,本実験によると,正常運転時電力系統の中性点に残留する電圧を大地を通して効果的に除去し,異常時の故障電流遮断のための保護リレーの動作性能を保証すること,および,電力系統に各種異常電圧が侵入した時,サージ電圧・電流を電力用接地電極内部の放電によって効果的にターンオフさせ,接地電極周りの大地電位上昇を抑制し,電圧を低下させることで人命および電力設備を保護できるのである。   Therefore, according to this experiment, it is possible to effectively remove the voltage remaining at the neutral point of the power system during normal operation through the ground, guarantee the operation performance of the protection relay for interrupting the fault current at the time of abnormality, When various abnormal voltages enter the power system, the surge voltage and current are effectively turned off by the discharge inside the power ground electrode, the rise in ground potential around the ground electrode is suppressed, and the voltage is lowered to reduce human life and power. The equipment can be protected.

また,施工方法においても,地中埋設が比較的容易な深打法,およびボーリング法を利用したものや,接地抵抗を低減させるため,直列,並列接地電極の追加施工は勿論,比較的狭い空間でも施工可能である。   In addition, in the construction method, a method using a deep-blow method and a boring method, which are relatively easy to embed underground, and additional construction of series and parallel ground electrodes to reduce ground resistance, as well as a relatively narrow space. But construction is possible.

また,電極構造に3極放電電極を導入することで,電力用接地電極に流入されたサージをより低い電圧で効果的に処理できるようにし,また,異常電圧が進行波である特性を利用して接地電極内部電極をらせん状に配列し,放圧ホールを備えることで接地電極内部エネルギーを適切に分散,放圧させ接地電極が内部圧力膨張によって損傷されることを防止し,排水ホールを設けることで電力用接地電極内部に流入された水分を効果的に除去することが可能となる。   In addition, by introducing a tripolar discharge electrode into the electrode structure, surges flowing into the power ground electrode can be effectively processed at a lower voltage, and the characteristic that abnormal voltage is a traveling wave is utilized. The ground electrode internal electrode is arranged in a spiral shape and the release hole is provided to properly disperse and release the internal energy of the ground electrode to prevent the ground electrode from being damaged by internal pressure expansion and provide a drainage hole. This makes it possible to effectively remove the water that has flowed into the power ground electrode.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は,接地電極に係り,詳細には電気的に接続された同一極上の2点で効果的に放電を発生させ,電力,通信系統を保護する電力用接地電極およびその製作方法に適用可能である。   The present invention relates to a ground electrode, and in particular, can be applied to a power ground electrode for effectively generating a discharge at two points on the same electrically connected pole to protect power and a communication system, and a method for manufacturing the same. It is.

従来の針状設置棒の構成を示す斜視図。The perspective view which shows the structure of the conventional needle-shaped installation stick | rod. 従来のアーク誘導型針付接地棒の断面図。Sectional drawing of the conventional arc induction type grounding rod with a needle. 従来のアーク誘導型針付接地棒の分解斜視図。The exploded perspective view of the conventional arc induction type grounding rod with a needle. 本実施形態による電力用機能性設置電極の構成を示す断面図。Sectional drawing which shows the structure of the functional installation electrode for electric power by this embodiment. 本実施形態による電力用機能性設置電極の構成を示す分解斜視図。The disassembled perspective view which shows the structure of the functional installation electrode for electric power by this embodiment. 本実施形態による電力用接地電極に並列追加接地電極と,直列追加接地電極が付着されている様子を示す平面図。The top view which shows a mode that the parallel additional ground electrode and the series additional ground electrode are adhered to the power ground electrode by this embodiment. 接地電極の動作を誘発するサージの基本波形を示す波形図。The wave form diagram which shows the basic waveform of the surge which induces the operation | movement of a ground electrode. 図7aの立ち上がり波形(increase wave)の拡大図Enlarged view of the rise waveform in Fig. 7a 接地電極にサージ侵入時の大地電位上昇(ground potential rise)概念図。FIG. 3 is a conceptual diagram of ground potential rise when a surge enters the ground electrode. 電力用接地電極に印加した電流波形を示した波形図。The wave form diagram which showed the electric current waveform applied to the power ground electrode. 電力用機能性設置電極にサージが流入した時点(リード端子)から測定した電圧波形を示した波形図。The wave form diagram which showed the voltage waveform measured from the time (lead terminal) when the surge flowed into the functional installation electrode for electric power. 電力用機能性設置電極にサージが流入した時点(リード端子)から測定した電圧波形を示した波形図。The wave form diagram which showed the voltage waveform measured from the time (lead terminal) when the surge flowed into the functional installation electrode for electric power. 放電時の放電電極直下で測定した電流波形を示した波形図。The wave form diagram which showed the electric current waveform measured just under the discharge electrode at the time of discharge.

符号の説明Explanation of symbols

110 放流管
113 3極放電電極用ホール
120 芯棒
130 放電電極
140 誘電体(dielectric)
150 絶縁体
160 芯棒ホルダー
170 接地電極先端

110 Discharge tube 113 Triode discharge electrode hole 120 Core rod 130 Discharge electrode 140 Dielectric
150 Insulator 160 Core rod holder 170 Ground electrode tip

Claims (5)

円筒形の放流管と,前記放流管の中の軸上に設置され,前記放流管の下段部と電気的に接続される芯棒を設置する接地電極製作方法において:
前記芯棒は,放電を分散発生させるため前記芯棒の外周に,複数の放電電極をらせん状に形成し,
サージ印加時に進行波であるサージの速度遅延と反射波および表皮効果が生じるように,前記芯棒の下段部を上段部より細く形成し,これを誘電体で包み,
前記複数の放電電極は,3極放電電極を通して放電が容易に発生するように,前記放電電極の対応位置にホールを配置することを特徴とする,電力用接地電極の製作方法。
In a method for producing a ground electrode comprising a cylindrical discharge pipe and a core rod installed on an axis in the discharge pipe and electrically connected to a lower step portion of the discharge pipe:
The core rod is formed with a plurality of discharge electrodes in a spiral shape on the outer periphery of the core rod in order to disperse discharge.
The lower part of the core rod is made thinner than the upper part so that the speed delay of the surge wave, the reflected wave, and the skin effect occur when the surge is applied, and this is wrapped with a dielectric,
A method of manufacturing a power ground electrode, wherein the plurality of discharge electrodes are arranged such that holes are disposed at corresponding positions of the discharge electrodes so that discharge easily occurs through the tripolar discharge electrodes.
略円筒形状にステンレスで形成され,3極放電電極で放電が容易に行われるようにらせん状の複数の3極放電電極用ホールが設けられた放流管と;
上段部にはリード端子が一体に,かつ下段部は上端および中央部より細く,ステンレスで形成され,前記放流管の長手方向内部に挿入される芯棒と;
絶縁材で形成され,前記芯棒の上部を固定する絶縁体と;
ステンレスで形成され,前記絶縁体を固定し,前記放流管の上部に固定される芯棒ホルダーと;
くさび形状にステンレスで形成され,前記芯棒の下部を固定し,前記放流管の下部に固定される接地電極先端と;
を備え,
前記芯棒には,
タングステンまたはニクロム材質で,上段部が尖っており上段部と比較して下段が広い針状で形成され,前記3極放電電極用ホールの各々に対応した位置に,前記芯棒の中央部でらせん状に付着される複数の放電電極と;
前記芯棒の下段外周に付着される誘電体と;
が設けられていることを特徴とする,電力用接地電極。
A discharge tube formed of stainless steel in a substantially cylindrical shape and provided with a plurality of spiral holes for a triode discharge electrode so that discharge is easily performed by the triode discharge electrode;
A lead bar is integrally formed with the upper stage part, and the lower stage part is thinner than the upper end and the central part, is formed of stainless steel, and is inserted into the longitudinal direction of the discharge pipe;
An insulator formed of an insulating material and fixing an upper portion of the core rod;
A core rod holder formed of stainless steel, fixing the insulator, and fixed to the upper part of the discharge pipe;
A ground electrode tip formed of stainless steel in a wedge shape, fixing a lower portion of the core rod, and fixed to a lower portion of the discharge pipe;
With
In the core rod,
Made of tungsten or nichrome, the upper part is pointed and the lower part is wider than the upper part. A plurality of discharge electrodes attached in a shape;
A dielectric material attached to the lower outer periphery of the core rod;
A ground electrode for electric power, characterized in that is provided.
略円筒形状にステンレスで形成され,両端部の内周に放流管を嵌合するための放流管用ボルトねじ山が形成され,3極放電電極で放電が容易に行われるようにらせん状の複数の3極放電電極用ホールが設けられた放流管と;
上段部にはリード端子が一体にかつ下段部は上端および中央部より細く,ステンレスで形成され,下段部の先端外周には深棒用ボルトねじ山が形成され,前記放流管の内部に長さ方向に挿入される芯棒と;
下面が開放された円筒形状に絶縁材で形成され,上面に芯棒固定用固定ホールが設けられ前記芯棒の上段部が前記芯棒固定用固定ホールを通して内部に挿入固定させる絶縁体と;
ステンレスで形成され,内部には前記絶縁体と対応した大きさの絶縁体固定用貫通ホールが,下段部外周には芯棒ホルダー用ボルトねじ山が設けられ,前記絶縁体を前記絶縁体固定用貫通ホールに挿入した状態で,前記放流管用ボルトねじ山と前記芯棒ホルダー用ボルトねじ山を結合して固定させる芯棒ホルダーと;
ステンレスで形成され,上段部は前記放流管と同じ径を有し,下段部はくさび状に形成され,上段面の中央部では垂直方向に前記芯棒用ボルトねじ山と結合可能となるようにこれと対応する大きさの芯棒挿入用ボルトねじ山が形成され,上段部外周に前記放流管の下段に形成された放流管用ボルトねじ山と結合可能となるように接地電極先端用ボルトねじ山が形成され,前記放流管に固定設置される接地電極先端と;
を備え,
前記芯棒には,
タングステンまたはニクロム材質で,上段部が尖っており上段部と比較して下段が広い針状で形成され,前記各々の3極放電電極用ホールに対応される位置に,前記芯棒の中央部でらせん状に付着される複数の放電電極と;
前記芯棒の下段外周に付着される誘電体と;
が設けられていることを特徴とする,電力用接地電極。
It is made of stainless steel in a substantially cylindrical shape, and a bolt thread for a discharge tube is formed on the inner periphery of both ends to form a discharge tube bolt thread. A discharge tube provided with a hole for a triode discharge electrode;
Lead terminals are integrated in the upper part, and the lower part is thinner than the upper and center parts, and is formed of stainless steel. Deep rod bolt threads are formed on the outer periphery of the lower part, and the length of the inside of the discharge pipe is long. A core rod inserted in the direction;
An insulator that is formed of an insulating material in a cylindrical shape with an open bottom surface, a core rod fixing fixing hole is provided on the top surface, and an upper portion of the core rod is inserted and fixed therein through the core rod fixing fixing hole;
It is made of stainless steel, and has a through hole for fixing the insulator corresponding to the size of the insulator inside, and a bolt thread for a core rod holder on the outer periphery of the lower part, and the insulator is used for fixing the insulator. A core rod holder for coupling and fixing the outlet pipe bolt thread and the core rod holder bolt thread in a state of being inserted into the through hole;
It is made of stainless steel, the upper part has the same diameter as the discharge pipe, the lower part is formed in a wedge shape, and the center part of the upper part surface can be connected to the bolt screw thread for the core rod in the vertical direction. Corresponding size of core screw insertion bolt thread is formed, and the bolt thread for the tip of the ground electrode is connected to the discharge pipe bolt thread formed in the lower stage of the discharge pipe on the outer periphery of the upper stage. And a ground electrode tip fixedly installed on the discharge pipe;
With
In the core rod,
Made of tungsten or nichrome, the upper part is pointed and the lower part is formed in a needle shape wider than the upper part. A plurality of spirally attached discharge electrodes;
A dielectric material attached to the lower outer periphery of the core rod;
A ground electrode for electric power, characterized in that is provided.
前記絶縁体は,側面中央部両端に固定用ボルトが備えられ,前記芯棒ホルダーは,前記固定用ボルトホールと対応される位置である側面中央部両端に並列追加接地電極を連結させる並列追加設置極用ボルトホールが形成され,前記並列追加接地電極用ボルトホールの底面中央で前記絶縁体の前記固定用ボルトホールと結合可能となるよう,同一形状の固定用ボルトホールを備えることを特徴とする,請求項3に記載の電力用接地電極。   The insulator is provided with fixing bolts at both ends of the center of the side surface, and the core rod holder is additionally installed in parallel by connecting parallel additional ground electrodes to both ends of the center of the side surface corresponding to the fixing bolt holes. A pole bolt hole is formed, and a fixing bolt hole having the same shape is provided so as to be coupled to the fixing bolt hole of the insulator at the center of the bottom surface of the parallel additional ground electrode bolt hole. The power ground electrode according to claim 3. 前記接地電極先端は,
前記放流管内部に流入された水分を地中に排水し,放電発生時,生じた圧力を外部に放出するよう,前記芯棒挿入用ボルトねじ山と前記接地電極先端用ボルトねじ山の間に垂直方向に1または2以上の排水および放圧ホールが形成され,
底面中央には上段部方向に直列追加設置電極を挿入して固定できる固定ねじ山が形成されていることを特徴とする,請求項3に記載の電力用接地電極。



The tip of the ground electrode is
Moisture that has flowed into the discharge pipe is drained into the ground, and when discharge occurs, the generated pressure is discharged to the outside between the bolt thread for inserting the core rod and the bolt thread for the tip of the ground electrode. One or more drainage and pressure relief holes are formed in the vertical direction,
4. The power ground electrode according to claim 3, wherein a fixing screw thread is formed at the center of the bottom surface so as to insert and fix the additional electrode in series in the upper step direction.



JP2004362766A 2003-12-18 2004-12-15 Power ground electrode and manufacturing method thereof Expired - Fee Related JP4495583B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0092889A KR100536074B1 (en) 2003-12-18 2003-12-18 Earth electrode of functional for electric power and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005183385A true JP2005183385A (en) 2005-07-07
JP4495583B2 JP4495583B2 (en) 2010-07-07

Family

ID=34793182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362766A Expired - Fee Related JP4495583B2 (en) 2003-12-18 2004-12-15 Power ground electrode and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP4495583B2 (en)
KR (1) KR100536074B1 (en)
CN (1) CN1630136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977656A (en) * 2016-05-13 2016-09-28 国网四川省电力公司电力科学研究院 Multi-metal lightning stroke overvoltage and overcurrent releaser
CN109142429A (en) * 2017-06-15 2019-01-04 南方电网科学研究院有限责任公司 A kind of detection system and detection method of vertical grounding electrode temperature characteristic

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648059B1 (en) * 2005-10-25 2006-11-27 김귀연 The constitution and method making of the stainless covered wire
JP4709715B2 (en) * 2006-08-30 2011-06-22 新日本製鐵株式会社 Lightning arrester, structural pillar having lightning protection function, and method of reducing lightning surge voltage
KR101228413B1 (en) * 2012-06-18 2013-01-31 주식회사 대농엔지니어링 An earth bar
CN107959136A (en) * 2017-12-23 2018-04-24 河南智金网络技术有限公司 A kind of slide rail type grounding flat steel attachment device
KR102062071B1 (en) * 2019-07-11 2020-01-03 김문식 Integrated ground plate, method of manufacturing the same, and method of constructing the ground portion using the same
CN113406532A (en) * 2021-05-21 2021-09-17 中国电力科学研究院有限公司 Direct current grounding electrode element with state monitoring function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061649A (en) * 1973-10-01 1975-05-27
JPS55124969A (en) * 1979-03-19 1980-09-26 Kato Giichirou Deep grounding electrode bar with needle electrode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR820001036B1 (en) * 1978-12-20 1982-06-10 기이찌로오 가도오 Dash earth bar
JPH0883633A (en) * 1994-09-09 1996-03-26 Touden Sekkei Kk Earth electrode with branch and execution method thereof
KR20000001481U (en) * 1998-06-22 2000-01-25 박종태 Lightning strike
KR20010001279U (en) * 1999-06-28 2001-01-15 김형벽 Portable Earthing Rod for Electrostatic Precipitator
JP2001313101A (en) * 2000-04-27 2001-11-09 Sankosha Corp Grounding system
KR100544696B1 (en) * 2003-04-25 2006-01-24 주식회사 티지오 Earth-pole for boring
KR101514842B1 (en) * 2008-08-27 2015-04-23 주식회사 엘지유플러스 Method and system for transmitting e-mail using address book in mobile terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061649A (en) * 1973-10-01 1975-05-27
JPS55124969A (en) * 1979-03-19 1980-09-26 Kato Giichirou Deep grounding electrode bar with needle electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977656A (en) * 2016-05-13 2016-09-28 国网四川省电力公司电力科学研究院 Multi-metal lightning stroke overvoltage and overcurrent releaser
CN109142429A (en) * 2017-06-15 2019-01-04 南方电网科学研究院有限责任公司 A kind of detection system and detection method of vertical grounding electrode temperature characteristic
CN109142429B (en) * 2017-06-15 2024-04-16 南方电网科学研究院有限责任公司 Detection system and detection method for temperature rise characteristic of vertical grounding electrode

Also Published As

Publication number Publication date
KR20040010455A (en) 2004-01-31
JP4495583B2 (en) 2010-07-07
KR100536074B1 (en) 2005-12-14
CN1630136A (en) 2005-06-22

Similar Documents

Publication Publication Date Title
KR101343188B1 (en) Lightning arrester and a power transmission line provided with such an arrester
CN206250405U (en) A kind of protective earthing device
JP4709715B2 (en) Lightning arrester, structural pillar having lightning protection function, and method of reducing lightning surge voltage
KR100605533B1 (en) Ground rod having induction discharge skin-effect plate
JP4495583B2 (en) Power ground electrode and manufacturing method thereof
US5845854A (en) Method of solid insulator destruction
KR101025499B1 (en) Flat electrode type dipole lightning arrester
KR100856719B1 (en) Lightning Arrester
KR100463438B1 (en) Streamer of Discharge Type generating plenty of Ions
JP2009168489A (en) Insulation monitoring apparatus and insulation diagnosis method
US6717790B1 (en) Creeping discharge lightning protection device
RU2312441C2 (en) Power transmission line
JP2005005240A (en) Grounding block
KR20080035556A (en) Lightning arrester
JP4397780B2 (en) Grounding device
RU2336617C2 (en) Lightning-arrester with accelerated air ionisation
EA002071B1 (en) An arrangement for preventing break of insulated wire in overhead distribution system
KR20050036145A (en) Earth apparatus and method of constructing earth using the same
PL237640B1 (en) Lightning protection of metal construction objects
KR100751830B1 (en) Ground line having restraint of potential raising
KR19990075452A (en) Ground resistance reduction method and apparatus using underground discharge phenomenon
JPS5956399A (en) Arrester for ionizing by corona action
KR100930992B1 (en) Complex type earthing equipment
JP2000164266A (en) Dielectric earthed electrode
KR200163436Y1 (en) Device for reducing earth resistance using phenomenon of under ground electric discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees