JP2005181810A - Illumination control unit - Google Patents

Illumination control unit Download PDF

Info

Publication number
JP2005181810A
JP2005181810A JP2003424494A JP2003424494A JP2005181810A JP 2005181810 A JP2005181810 A JP 2005181810A JP 2003424494 A JP2003424494 A JP 2003424494A JP 2003424494 A JP2003424494 A JP 2003424494A JP 2005181810 A JP2005181810 A JP 2005181810A
Authority
JP
Japan
Prior art keywords
wave signal
rectangular wave
signal
waveform
sawtooth wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003424494A
Other languages
Japanese (ja)
Other versions
JP4542774B2 (en
Inventor
Yukio Uenaka
行夫 上中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2003424494A priority Critical patent/JP4542774B2/en
Priority to US11/016,906 priority patent/US7643084B2/en
Publication of JP2005181810A publication Critical patent/JP2005181810A/en
Application granted granted Critical
Publication of JP4542774B2 publication Critical patent/JP4542774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination control unit which, when photographing is carried out using an illuminating device, drives the illuminating device with a signal that has a waveform including no high frequency of a rectangular wave signal, which reduces an influence of various noises. <P>SOLUTION: The illumination control unit for an imaging device includes: an illuminating means for emitting light to a subject by receiving a sawtooth wave signal that has a fixed length of off-period between a fall time and rise time for the subsequent waveform during exposure; and a signal supply means for supplying the sawtooth wave signal to the illuminating means. The signal supply means includes: a rectangular wave signal output means for outputting the rectangular wave signal with a constant pulse amplitude and a constant pulse cycle; a waveform conversion means for converting a rectangular wave signal into the sawtooth wave signal that has a constant amplitude and a constant cycle and indicates the peak when the rectangular wave signal falls, and then outputting the thus converted signal; and a lighting means for supplying the sawtooth wave signal to the illuminating means via the transistor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、撮像装置における照明制御装置に関し、特に照明用LEDを駆動する信号波形の改良に関する。   The present invention relates to an illumination control device in an imaging apparatus, and more particularly to improvement of a signal waveform for driving an illumination LED.

従来、カメラなどの撮像装置で広く用いられてきた、キセノン管などのストロボ発光による照明装置に代わり、低電圧駆動が可能で回路構成が簡単なLEDを使った照明装置が提案されている。   Conventionally, an illuminating device using an LED that can be driven at a low voltage and has a simple circuit configuration has been proposed in place of an illuminating device using strobe light emission such as a xenon tube that has been widely used in imaging devices such as cameras.

LEDを連続して発光させることにより、LEDは温度上昇する。この温度上昇はLEDの光量を下げる原因となる。図1は、温度上昇とLEDの光量の関係を示す図であり、温度上昇に伴って、LEDの光量すなわち輝度が落ちることが分かる。   By causing the LED to continuously emit light, the temperature of the LED increases. This increase in temperature causes the light amount of the LED to decrease. FIG. 1 is a diagram showing the relationship between the temperature rise and the light quantity of the LED, and it can be seen that the light quantity, that is, the luminance of the LED decreases with the temperature rise.

特許文献1は、撮像装置において、矩形波のパルス駆動によるLED発光を行い、静止画の発光撮影の連写を可能にしたLEDによる照明装置を開示している。DC駆動に比べてパルス駆動を用いると通電オフ期間が設けられるので、発光に伴い発生する熱によるLEDの温度上昇を抑えることが可能である。図2は、横軸に時間をとり、DC駆動の場合のLEDの温度上昇(図2の(1)線)と、矩形波のパルス駆動の場合のLEDの温度上昇(図2の(2)線)の違いを示す図である。いずれも信号がオン状態にある場合は、照明用LEDは点灯する。DC駆動の場合は、LEDを点灯すべき期間の間(T0〜T5)、定常電流が流れるため、LEDの温度は上昇し続ける。オフにした時点(T5)から、温度は下がる。一方、パルス駆動の場合は、LEDを点灯すべき期間の間にも信号がオフにされる期間(T1〜T2、T3〜T4)があり、この期間の間、LEDの温度は下がる。そのため、LEDの点灯期間中(T0〜T5)にも、LEDの温度は上昇と下降を繰り返し、結果として熱の蓄積は、DC駆動の場合に比べて少なくて済む。
特開2003−101836号公報
Patent Document 1 discloses an LED illumination device that performs LED light emission by pulse driving of a rectangular wave and enables continuous shooting of light-emission shooting of a still image. When pulse driving is used as compared with DC driving, an energization off period is provided, so that it is possible to suppress an increase in LED temperature due to heat generated by light emission. FIG. 2 shows time on the horizontal axis, LED temperature rise in the case of DC drive (line (1) in FIG. 2), and LED temperature rise in the case of rectangular wave pulse drive ((2) in FIG. 2). It is a figure which shows the difference of a line. In any case, when the signal is in the on state, the illumination LED is lit. In the case of DC driving, since the steady current flows during the period in which the LED is to be lit (T0 to T5), the temperature of the LED continues to rise. The temperature decreases from the time point of turning off (T5). On the other hand, in the case of pulse driving, there is a period (T1-T2, T3-T4) in which the signal is turned off during the period in which the LED is to be turned on, and the temperature of the LED decreases during this period. Therefore, the LED temperature repeatedly rises and falls during the LED lighting period (T0 to T5), and as a result, heat accumulation is less than that in the case of DC driving.
JP 2003-101836 A

しかし、特許文献1の装置の矩形波のパルス駆動では、急激なオン/オフ信号変化による電源ラインのノイズや、矩形波に含まれる高周波成分による周辺回路へのノイズの影響、及び突入電流の影響が生じる。   However, in the rectangular wave pulse drive of the apparatus of Patent Document 1, the influence of the power line noise due to a sudden on / off signal change, the noise on the peripheral circuit due to the high frequency component contained in the rectangular wave, and the influence of the inrush current Occurs.

したがって本発明の目的は、照明装置を使って撮像が行われる場合に、各種ノイズの影響を低減させる矩形波信号の高周波成分を取り除いた波形の信号で照明装置を駆動する照明制御装置を提供することである。   Therefore, an object of the present invention is to provide an illumination control device that drives an illumination device with a signal having a waveform obtained by removing high-frequency components of a rectangular wave signal that reduces the influence of various noises when imaging is performed using the illumination device. That is.

本発明に係る撮像装置の照明制御装置は、露光時間内に立ち下がり時と次の波形の立ち上がり時の間に一定時間のオフ期間を有するノコギリ波信号または立ち下がりの後瞬時に次の波形の立ち上がりが始まる三角波信号の供給を受けることで被写体に向けた点灯を行う照明手段と、ノコギリ波信号または三角波信号を照明手段に供給する信号供給手段とを備える。これにより、矩形波信号と同様に通電オフ期間を有するので露光装置の照明手段の温度上昇を抑制することができ、かつ矩形波信号で駆動する際に比べて高周波成分によるノイズの影響が少ない波形のノコギリ波信号または三角波信号によって照明手段を点灯させることが可能になる。   The illumination control device of the imaging device according to the present invention has a sawtooth wave signal having an off period of a certain time between the falling edge within the exposure time and the rising edge of the next waveform, or the rising edge of the next waveform instantly after the falling edge. Illuminating means for lighting the subject by receiving supply of a starting triangular wave signal, and signal supplying means for supplying a sawtooth wave signal or a triangular wave signal to the illuminating means. As a result, the waveform has an energization-off period like the rectangular wave signal, so that the temperature rise of the illumination means of the exposure apparatus can be suppressed, and the waveform is less affected by high-frequency components than when driven by the rectangular wave signal. The illumination means can be turned on by a sawtooth wave signal or a triangular wave signal.

好ましくは、信号供給手段は、一定のパルス振幅及び一定のパルス周期で矩形波信号を出力する矩形波信号出力手段と、矩形波信号をノコギリ波信号または三角波信号に変換して出力する波形変換手段と、増幅部を介してノコギリ波信号または三角波信号を前記照明手段に供給する点灯手段とを有する。これにより、矩形波信号を変換してノコギリ波信号または三角波信号を照明手段に供給することが可能になる。   Preferably, the signal supply means includes a rectangular wave signal output means for outputting a rectangular wave signal with a constant pulse amplitude and a constant pulse period, and a waveform converting means for converting the rectangular wave signal into a sawtooth wave signal or a triangular wave signal and outputting the same. And a lighting means for supplying a sawtooth wave signal or a triangular wave signal to the lighting means via an amplifier. This makes it possible to convert the rectangular wave signal and supply a sawtooth wave signal or a triangular wave signal to the illumination means.

さらに好ましくは、ノコギリ波信号及び三角波信号の振幅、周期は、矩形波信号のパルス振幅、パルス周期と同じである。   More preferably, the amplitude and period of the sawtooth wave signal and the triangular wave signal are the same as the pulse amplitude and pulse period of the rectangular wave signal.

また、好ましくは、ノコギリ波信号及び三角波信号の波形は、矩形波信号の波形の立ち下がり時にピークを示す。   Preferably, the waveforms of the sawtooth wave signal and the triangular wave signal show a peak when the waveform of the rectangular wave signal falls.

また、さらに好ましくは、波形変換手段は、矩形波信号を逆位相に変換する反転増幅回路と、逆位相の矩形波信号をノコギリ波信号または三角波信号に変換する積分回路とを有する。これにより、矩形波信号のオン状態のタイミングに合わせたピークタイミングを有するノコギリ波信号または三角波信号を照明手段に供給することが可能になる。   More preferably, the waveform converting means includes an inverting amplifier circuit that converts a rectangular wave signal into an antiphase, and an integrating circuit that converts the antiphase rectangular wave signal into a sawtooth wave signal or a triangular wave signal. Thereby, it becomes possible to supply a sawtooth wave signal or a triangular wave signal having a peak timing in accordance with the ON state timing of the rectangular wave signal to the illumination means.

さらに好ましくは、反転増幅回路の有する第1オペアンプの出力端子は積分回路の有する第2オペアンプの反転入力端子と接続され、反転増幅回路の有する第1オペアンプの非反転入力端子は、積分回路の有する第2オペアンプの非反転入力端子と接続されることを特徴とする。   More preferably, the output terminal of the first operational amplifier included in the inverting amplifier circuit is connected to the inverting input terminal of the second operational amplifier included in the integrating circuit, and the non-inverting input terminal of the first operational amplifier included in the inverting amplifier circuit includes the integrating circuit. It is connected to the non-inverting input terminal of the second operational amplifier.

また、好ましくは、ノコギリ波信号及び三角波信号の周期は1/50秒以下である。これにより、照明手段のちらつきを抑えることが可能になる。   Preferably, the period of the sawtooth wave signal and the triangular wave signal is 1/50 second or less. Thereby, it becomes possible to suppress flickering of the illumination means.

また、好ましくは、照明手段は光源としてLEDを備える。   Preferably, the illumination unit includes an LED as a light source.

また、好ましくは、増幅部はトランジスタを備える。   Preferably, the amplifying unit includes a transistor.

以上のように本発明によれば、照明装置を使って撮像が行われる場合に、各種ノイズの影響を低減させる矩形波信号の高周波成分を取り除いた波形の信号で照明装置を駆動する照明制御装置を提供するこができる。   As described above, according to the present invention, when imaging is performed using a lighting device, the lighting control device drives the lighting device with a signal having a waveform obtained by removing high-frequency components of a rectangular wave signal that reduces the influence of various noises. Can be provided.

以下、本発明の第1の実施形態について、図を用いて説明する。図3は、第1の実施形態の照明制御装置を備える撮像装置1の背面からの斜視図である。図4は、撮像装置1の正面図である。図5は、撮像装置1の回路構成図である。図6は、図5の波形変換回路の回路構成図を示す。図7は、波形変換回路の各部における波形の変化を示す。撮像装置1はデジタルカメラであるとして説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a perspective view from the back of the imaging apparatus 1 including the illumination control apparatus according to the first embodiment. FIG. 4 is a front view of the imaging apparatus 1. FIG. 5 is a circuit configuration diagram of the imaging apparatus 1. 6 shows a circuit configuration diagram of the waveform conversion circuit of FIG. FIG. 7 shows a change in waveform in each part of the waveform conversion circuit. The imaging device 1 will be described as a digital camera.

本実施形態では、パルス振幅及び振幅の定義について、矩形波、ノコギリ波、三角波信号のいずれにおいても、最大値と最小値の差すなわち振動の幅をいうものとして説明する。また、パルス振幅、パルス周期は矩形波信号に用い、振幅、周期はそれ以外の信号に用いる。   In the present embodiment, the definition of the pulse amplitude and the amplitude will be described by referring to the difference between the maximum value and the minimum value, that is, the width of vibration in any of a rectangular wave, a sawtooth wave, and a triangular wave signal. The pulse amplitude and pulse period are used for a rectangular wave signal, and the amplitude and period are used for other signals.

撮像装置1の撮像に関する部分は、光学ファインダ11、LEDオンボタン12、レリーズボタン14、連写ボタン15、動画ボタン16、LCDモニタ17、及び照明用LED31から構成される。光学ファインダ11は、被写体像を光学的に観察可能な装置である。被写体像は、LCDモニタ17によってもCCD(不図示)などの撮像素子から構成される撮像ブロック22によって撮像された画像を表示させることができる。   The part related to imaging of the imaging apparatus 1 includes an optical viewfinder 11, an LED on button 12, a release button 14, a continuous shooting button 15, a moving image button 16, an LCD monitor 17, and an illumination LED 31. The optical viewfinder 11 is a device that can optically observe a subject image. The subject image can also be displayed on the LCD monitor 17 as an image picked up by the image pickup block 22 composed of an image pickup device such as a CCD (not shown).

LEDオンボタン12は、押下することによってLEDオンスイッチ12aがオン状態にされ露光時などに照明用LED31を点灯させる。レリーズボタン14は、半押しすることにより測光スイッチ13aがオン状態にされ測光や測距及び合焦動作が行われ、全押しすることによりレリーズスイッチ14aがオン状態にされ撮像が行われる。連写ボタン15は、押下することにより連写スイッチ15aがオン状態にされ、レリーズスイッチ14aがオン状態にされている間、1秒間に3コマなど時間的に連続して複数の被写体が撮像される。動画ボタン16は、レリーズスイッチ14aがオン状態にされている間、記録するフレーム間隔で被写体が撮像される。   When the LED on button 12 is pressed, the LED on switch 12a is turned on, and the illumination LED 31 is turned on at the time of exposure or the like. When the release button 14 is half-pressed, the photometry switch 13a is turned on to perform photometry, distance measurement, and focusing operation. When the release button 14 is fully pressed, the release switch 14a is turned on to perform imaging. When the continuous shooting button 15 is pressed, the continuous shooting switch 15a is turned on, and while the release switch 14a is turned on, a plurality of subjects such as three frames per second are imaged in succession. The The moving image button 16 captures an image of a subject at a recording frame interval while the release switch 14a is on.

照明用LED31は、周囲が暗い場合などに露光タイミングに合わせて露光時間内の間点灯して被写体に適当な光量を供給する照明装置である。照明用LED31は、ノコギリ波信号または三角波信号により駆動する。ノコギリ波信号は、振幅Vcc及び周期C1で、立ち下がり時と次の波形の立ち上がり時の間にオフ期間a1が設けられている。三角波信号は、振幅Vcc及び周期C1で、立ち下がり時と次の波形の立ち上がり時の間にオフ期間が設けられず立ち下がりにより電圧がオフになった瞬時に次の波形の立ち上がりが始まる。ノコギリ波信号及び三角波信号の周期C1は照明用LED31がちらつきを生じない1/50秒以下であるのが望ましい。   The illumination LED 31 is an illumination device that is lit during an exposure time in accordance with the exposure timing and supplies an appropriate amount of light to the subject when the surroundings are dark. The illumination LED 31 is driven by a sawtooth wave signal or a triangular wave signal. The sawtooth signal has an amplitude Vcc and a period C1, and an off period a1 is provided between the falling edge and the rising edge of the next waveform. The triangular wave signal has an amplitude Vcc and a period C1, and an off period is not provided between the falling time and the rising time of the next waveform, and the rising of the next waveform starts at the moment when the voltage is turned off due to the falling. The period C1 of the sawtooth wave signal and the triangular wave signal is preferably 1/50 second or less at which the lighting LED 31 does not flicker.

照明用LED31に供給されるノコギリ波信号または三角波信号は、後述するCPU21のポートP20から出力される矩形波信号が波形変換回路34によって変換されて得られる。矩形波信号の1周期の中でオン状態の時間的長さの割合をデューティ比Dで表す。照明用LED31が使用される場合、撮像動作が行われる露光時間内は、CPU21は、ノコギリ波信号などの振幅Vccと同じパルス振幅Vcc、ノコギリ波信号などの周期C1と同じパルス周期C1、デューティ比D(0%<D<100%)で矩形波信号を出力し、露光時間外は矩形波信号を出力しない。ここで、矩形波信号のパルス周期C1の逆数をデューティ周波数fとする。このデューティ周波数fは、CPU21に予めセットされているが、使用者により変更できるようにしてもよい。デューティ比Dは、被写体に照射する所望の光量に応じて、CPU21内にあるPWMタイマ機能にセットされる。従って、CPU21は矩形波信号発生機能を有する。   The sawtooth wave signal or the triangular wave signal supplied to the illumination LED 31 is obtained by converting the rectangular wave signal output from the port P20 of the CPU 21 described later by the waveform conversion circuit 34. The ratio of the time length of the on state in one cycle of the rectangular wave signal is represented by a duty ratio D. When the illumination LED 31 is used, during the exposure time in which the imaging operation is performed, the CPU 21 has the same pulse amplitude Vcc as the amplitude Vcc of the sawtooth wave signal, the same pulse cycle C1 as the cycle C1 of the sawtooth wave signal, and the duty ratio. A rectangular wave signal is output at D (0% <D <100%), and no rectangular wave signal is output outside the exposure time. Here, the reciprocal number of the pulse period C1 of the rectangular wave signal is defined as a duty frequency f. The duty frequency f is set in the CPU 21 in advance, but may be changed by the user. The duty ratio D is set in a PWM timer function in the CPU 21 in accordance with a desired light amount to be irradiated on the subject. Therefore, the CPU 21 has a rectangular wave signal generation function.

本実施形態では、使用者がLEDオンスイッチ12aをオン状態にさせた時に強制的に照明用LED31を点灯させる形態を説明するが、測光によって得られた露光値の大小から自動的に照明用LED31を点灯させる形態であってもよい。   In the present embodiment, a mode in which the illumination LED 31 is forcibly turned on when the user turns on the LED on switch 12a will be described. However, the illumination LED 31 is automatically selected based on the magnitude of the exposure value obtained by photometry. It may be a form of lighting up.

これらのスイッチの入力信号に対応する各種の出力はCPU21によって制御される。CPU21の入出力信号を図5の回路構成図で説明する。LEDオンスイッチ12a、測光スイッチ13a、レリーズスイッチ14a、連写スイッチ15a、動画スイッチ16aのオン/オフ情報は、それぞれ1ビットのデジタル信号としてCPU21のポートP12、P13、P14、P15、P16に入力される。撮像ブロック22、被写体の測光動作を実行して露光値を演算し、この露光値に基づき撮影に必要となる絞り値及び露光時間を演算するAE部23、及び測距を行い測距結果に基づき撮影に必要となる合焦動作を行うAF部24は、それぞれポートP3、P4、P5で信号の入出力が行われる。   Various outputs corresponding to the input signals of these switches are controlled by the CPU 21. The input / output signals of the CPU 21 will be described with reference to the circuit configuration diagram of FIG. On / off information of the LED on switch 12a, photometry switch 13a, release switch 14a, continuous shooting switch 15a, and moving image switch 16a is input to the ports P12, P13, P14, P15, and P16 of the CPU 21 as 1-bit digital signals, respectively. The The imaging block 22, the subject photometric operation is performed to calculate the exposure value, the AE unit 23 that calculates the aperture value and the exposure time necessary for photographing based on the exposure value, and the distance measurement is performed based on the distance measurement result. The AF unit 24 that performs a focusing operation necessary for photographing inputs and outputs signals at ports P3, P4, and P5, respectively.

ポートP20では、照明用LED31を点灯させるノコギリ波信号または三角波信号を供給する波形変換回路34が接続される。CPU21は、ポートP20を介してデューティ比Dの矩形波信号を波形変換回路34へ入力する。   At the port P20, a waveform conversion circuit 34 that supplies a sawtooth wave signal or a triangular wave signal for turning on the illumination LED 31 is connected. The CPU 21 inputs a rectangular wave signal having a duty ratio D to the waveform conversion circuit 34 via the port P20.

波形変換回路34は、反転増幅回路341と積分回路342から構成される。反転増幅回路341は、パルス振幅Vcc、パルス周期C1の矩形波信号(図7のin時の波形)を逆位相の矩形波信号に変換する(図7の(a)の波形)。積分回路342は、逆位相になった矩形波信号を振幅Vcc、周期C1のノコギリ波信号または三角波信号に変換する(図7のout時の波形)。   The waveform conversion circuit 34 includes an inverting amplification circuit 341 and an integration circuit 342. The inverting amplifier circuit 341 converts a rectangular wave signal (waveform at the time of in in FIG. 7) having a pulse amplitude Vcc and a pulse period C1 into a rectangular wave signal having an opposite phase (a waveform in FIG. 7A). The integration circuit 342 converts the rectangular wave signal having an opposite phase into a sawtooth wave signal or a triangular wave signal having an amplitude Vcc and a period C1 (waveform at the time of out in FIG. 7).

反転増幅回路341は、抵抗R11、R12と第1オペアンプ3410とを有し、入力される矩形波信号のパルス振幅Vcc、パルス周期C1に対して、出力される矩形波信号がパルス振幅Vcc、パルス周期C1でかつ逆位相になるように構成される。第1オペアンプ3410には電源電圧Vccが印加される。第1オペアンプ3410の反転入力端子には抵抗R11を介して入力信号である矩形波信号が入力される。第1オペアンプ3410の非反転入力端子は1/2Vccの電源に接続される。また、後述する積分回路342の第2オペアンプ3420の非反転入力端子に接続される。第1オペアンプ3410の出力端子からは、入力時の矩形波信号と同振幅、同周期、逆位相の矩形波信号が出力される。また、第1オペアンプ3410の出力端子は、抵抗R12を介して第1オペアンプ3410の反転入力端子に接続される。   The inverting amplifier circuit 341 includes resistors R11 and R12 and a first operational amplifier 3410, and the output rectangular wave signal has a pulse amplitude Vcc and a pulse with respect to the pulse amplitude Vcc and pulse period C1 of the input rectangular wave signal. It is comprised so that it may become a period C1 and an antiphase. A power supply voltage Vcc is applied to the first operational amplifier 3410. A rectangular wave signal as an input signal is input to the inverting input terminal of the first operational amplifier 3410 via the resistor R11. The non-inverting input terminal of the first operational amplifier 3410 is connected to a 1/2 Vcc power source. Further, it is connected to a non-inverting input terminal of a second operational amplifier 3420 of an integration circuit 342 described later. From the output terminal of the first operational amplifier 3410, a rectangular wave signal having the same amplitude, the same period, and an opposite phase as the rectangular wave signal at the time of input is output. The output terminal of the first operational amplifier 3410 is connected to the inverting input terminal of the first operational amplifier 3410 via the resistor R12.

積分回路342は、抵抗R2、R3とコンデンサCとダイオードD1と第2オペアンプ3420とを有し、入力される逆位相の矩形波信号のパルス振幅Vcc、パルス周期C1に対して、出力されるノコギリ波信号または三角波信号が振幅Vcc、周期C1になるように構成される。第2オペアンプ3420には電源電圧にVccが印加される。第2オペアンプ3420の反転入力端子には、抵抗R3を介して入力信号である逆位相の矩形波信号が入力され、さらに抵抗R3と並列に抵抗R2とダイオードD1が直列に接続される。第2オペアンプ3420の非反転入力端子は、反転増幅回路341の第1オペアンプ3410の非反転入力端子に接続される。第2オペアンプ3420の出力端子からは、ノコギリ波信号または三角波信号が出力される。また、第2オペアンプ3420の出力端子は、コンデンサCを介して第2オペアンプ3420の反転入力端子に接続される。   The integrating circuit 342 includes resistors R2 and R3, a capacitor C, a diode D1, and a second operational amplifier 3420, and is output with respect to a pulse amplitude Vcc and a pulse period C1 of an input anti-phase rectangular wave signal. The wave signal or the triangular wave signal is configured to have an amplitude Vcc and a period C1. Vcc is applied to the second operational amplifier 3420 as a power supply voltage. An inverted input rectangular wave signal, which is an input signal, is input to the inverting input terminal of the second operational amplifier 3420 via the resistor R3, and a resistor R2 and a diode D1 are connected in parallel with the resistor R3. The non-inverting input terminal of the second operational amplifier 3420 is connected to the non-inverting input terminal of the first operational amplifier 3410 of the inverting amplifier circuit 341. A sawtooth wave signal or a triangular wave signal is output from the output terminal of the second operational amplifier 3420. The output terminal of the second operational amplifier 3420 is connected to the inverting input terminal of the second operational amplifier 3420 through the capacitor C.

なお、第1オペアンプ3410の出力端子と、第2オペアンプの反転入力端子の間の抵抗R3に、直列に接続された抵抗R2とダイオードD1が並列に接続される場合は、第2オペアンプ3420からの出力波形はノコギリ波となり、ダイオードD1がなく抵抗R2だけが抵抗R3と並列に接続される場合は、第2オペアンプ3420からの出力波形は三角波となる。   When the resistor R2 connected in series and the diode D1 are connected in parallel to the resistor R3 between the output terminal of the first operational amplifier 3410 and the inverting input terminal of the second operational amplifier 3410, The output waveform is a sawtooth wave, and when there is no diode D1 and only the resistor R2 is connected in parallel with the resistor R3, the output waveform from the second operational amplifier 3420 is a triangular wave.

ノコギリ波信号または三角波信号は、点灯手段に相当する電流制限抵抗33、トランジスタTr1、制限抵抗32を介して照明用LED31に供給される。トランジスタTr1は、照明用LED31に供給されるノコギリ波信号または三角波信号を増幅するように接続されたNPNトランジスタで、ベースが電流制限抵抗33,波形変換回路34を介してCPU21に接続される。トランジスタTr1のエミッタは接地され、コレクタは制限抵抗32を介して照明用LED31のカソードに接続される。また、照明用LED31のアノードは、電源Vccに接続される。従って、CPU21と波形変換回路34と電流制限抵抗33とトランジスタTr1と制限抵抗32は、ノコギリ波信号または三角波信号を照明用LED31に供給する信号供給機能を有する。   The sawtooth wave signal or the triangular wave signal is supplied to the illumination LED 31 via the current limiting resistor 33, the transistor Tr1, and the limiting resistor 32 corresponding to the lighting means. The transistor Tr1 is an NPN transistor connected to amplify a sawtooth wave signal or a triangular wave signal supplied to the lighting LED 31, and has a base connected to the CPU 21 via the current limiting resistor 33 and the waveform conversion circuit 34. The emitter of the transistor Tr1 is grounded, and the collector is connected to the cathode of the illumination LED 31 via the limiting resistor 32. Moreover, the anode of the LED 31 for illumination is connected to the power supply Vcc. Therefore, the CPU 21, the waveform conversion circuit 34, the current limiting resistor 33, the transistor Tr1, and the limiting resistor 32 have a signal supply function of supplying a sawtooth wave signal or a triangular wave signal to the illumination LED 31.

測光スイッチ13aをオン状態にすることにより(レリーズボタン14を半押し)、ポートP13にオン信号が入力されると、CPU21は、AE部23のAEセンサ(不図示)を駆動し、被写体光の測光動作を実行して露光値を演算し、この露光値に基づき撮影に必要となる絞り値及び露光時間を演算する。また、CPU21は、AF部24のAFセンサ(不図示)を駆動し、測距を行う。この測距結果に基づきAF部24のレンズ制御回路(不図示)を駆動しレンズ位置を光軸方向に変位させ焦点距離調節を行う。   When the ON signal is input to the port P13 by turning on the photometric switch 13a (pressing the release button 14 halfway), the CPU 21 drives an AE sensor (not shown) of the AE unit 23 to A photometric operation is performed to calculate an exposure value, and based on this exposure value, an aperture value and an exposure time necessary for photographing are calculated. Further, the CPU 21 drives an AF sensor (not shown) of the AF unit 24 to perform distance measurement. Based on the distance measurement result, a lens control circuit (not shown) of the AF unit 24 is driven to displace the lens position in the optical axis direction and adjust the focal length.

レリーズスイッチ14aをオン状態にすることにより(レリーズボタン14を全押し)、ポートP14にオン信号が入力されると、CPU21は、撮像動作を行う。すなわち上述した絞り値に応じて絞り機構(不図示)を駆動し、シャッタ機構(不図示)を所定のシャッタ速度でレリーズ駆動し、CCDなどの撮像ブロック22を駆動し露光を行う。   When the release switch 14a is turned on (the release button 14 is fully pressed) and an on signal is input to the port P14, the CPU 21 performs an imaging operation. That is, an aperture mechanism (not shown) is driven according to the above-described aperture value, a shutter mechanism (not shown) is released at a predetermined shutter speed, and an imaging block 22 such as a CCD is driven to perform exposure.

レリーズスイッチ14aがオン状態にあり、かつLEDオンスイッチ12aがオン状態にされ、ポートP12、P14にオン信号が入力されていると、CPU21は、撮像ブロック22の露光タイミングに合わせて矩形波信号を出力し、波形変換回路34によって変換されたノコギリ波信号または三角波信号が照明用LED31を点灯させる。   When the release switch 14a is in the on state, the LED on switch 12a is in the on state, and an on signal is input to the ports P12 and P14, the CPU 21 outputs a rectangular wave signal in accordance with the exposure timing of the imaging block 22. The sawtooth wave signal or the triangular wave signal that is output and converted by the waveform conversion circuit 34 lights the LED 31 for illumination.

レリーズスイッチ14aがオン状態にあり、かつ連写スイッチ15aがオン状態にされ、ポートP14、P15にオン信号が入力されていると、CPU21は、レリーズスイッチ14aのオン状態が継続されている間、一定間隔で撮像すなわちシャッタ機構のレリーズ駆動、撮像ブロック22の駆動、及び露光が行われる。従って、CPU21は、被写体の撮像を時間的に連続して2回以上行わせる連写制御機能を有する。連写スイッチ15aではなく、動画スイッチ16aがオン状態にされ、ポートP14、P16にオン信号が入力されていると、CPU21は、レリーズスイッチ14aのオン状態が継続されている間、記録するフレーム間隔で撮像ブロック22の駆動、及び露光が行われる。   When the release switch 14a is in an on state, the continuous shooting switch 15a is in an on state, and an on signal is input to the ports P14 and P15, the CPU 21 continues while the release switch 14a is on. Imaging is performed at regular intervals, that is, the shutter mechanism is released, the imaging block 22 is driven, and exposure is performed. Therefore, the CPU 21 has a continuous shooting control function for performing imaging of a subject twice or more continuously in time. When the moving image switch 16a, not the continuous shooting switch 15a, is turned on and an on signal is input to the ports P14 and P16, the CPU 21 records the frame interval for recording while the release switch 14a is kept on. Thus, the imaging block 22 is driven and exposed.

レリーズスイッチ14aがオン状態にあり、かつLEDオンスイッチ12a、及び連写スイッチ15aがともにオン状態にされている場合は、露光時間ごとにCPU21から矩形波信号が出力される。   When the release switch 14a is on and the LED on switch 12a and the continuous shooting switch 15a are both on, a rectangular wave signal is output from the CPU 21 for each exposure time.

露光時間に合わせて、CPU21はパルス周期C1、デューティ比D、パルス振幅Vccの矩形波信号を出力する。波形変換回路34は矩形波信号を周期C1、振幅Vccのノコギリ波信号または三角波信号に変換及び出力する。ノコギリ波信号または三角波信号は電流制限抵抗33、トランジスタTr1、制限抵抗32を介して照明用LED31に供給される。   In accordance with the exposure time, the CPU 21 outputs a rectangular wave signal having a pulse period C1, a duty ratio D, and a pulse amplitude Vcc. The waveform conversion circuit 34 converts and outputs a rectangular wave signal into a sawtooth wave signal or a triangular wave signal having a period C1 and an amplitude Vcc. The sawtooth wave signal or the triangular wave signal is supplied to the illumination LED 31 through the current limiting resistor 33, the transistor Tr1, and the limiting resistor 32.

ノコギリ波信号又は三角波信号は、矩形波信号から高周波成分が取り除かれた信号である。従って、高周波成分が取り除かれたノコギリ波信号または三角波信号によって照明用LED31が点灯される間、矩形波信号によって照明用LED31が点灯される場合に比べて、電源ラインのノイズ、高周波成分による周辺回路へのノイズ影響、及び突入電流を低減させることが可能になる。   A sawtooth wave signal or a triangular wave signal is a signal obtained by removing a high frequency component from a rectangular wave signal. Accordingly, while the illumination LED 31 is turned on by the sawtooth wave signal or the triangular wave signal from which the high frequency component has been removed, the peripheral circuit due to the noise and the high frequency component of the power supply line is compared with the case where the illumination LED 31 is turned on by the rectangular wave signal. It becomes possible to reduce the influence of noise on and the inrush current.

また、露光時間内の間、ノコギリ波信号または三角波信号によって連続的な点滅動作が繰り返されることにより、矩形波信号による照明用LED31の駆動と同様に照明用LED31の温度上昇抑制の効果が得られる。更に、露光時間の間供給されるノコギリ波信号または三角波信号は、その振幅Vccが一定であるので発光量の安定、瞬時の光量供給、回路の単純化など、露光時間の間に振幅を時間とともに変化させて三角波信号などを供給する場合に比べてメリットがある。   Further, by repeating the continuous blinking operation with the sawtooth wave signal or the triangular wave signal during the exposure time, the effect of suppressing the temperature rise of the illumination LED 31 can be obtained in the same manner as the driving of the illumination LED 31 by the rectangular wave signal. . Furthermore, the sawtooth wave signal or triangular wave signal supplied during the exposure time has a constant amplitude Vcc, so that the amplitude is increased with time during the exposure time, such as stable light emission, instantaneous light quantity supply, and circuit simplification. There is a merit compared to the case of supplying a triangular wave signal or the like by changing.

次に、連写時(連写スイッチ15aがオン状態)における照明用LED31の点灯制御を図8のフローチャートで説明する。   Next, the lighting control of the LED 31 for illumination during continuous shooting (when the continuous shooting switch 15a is on) will be described with reference to the flowchart of FIG.

ステップS11で、撮像装置1の電源がオンにされると、ステップS12で、CPU21に矩形波信号のデューティ周波数fがセットされる。但し、予めデューティ周波数fをセットしておいてもよい。   When the power of the imaging device 1 is turned on in step S11, the duty frequency f of the rectangular wave signal is set in the CPU 21 in step S12. However, the duty frequency f may be set in advance.

ステップS13で、測光スイッチ13がオン状態にされたか否かを判断する。測光スイッチ13aがオン状態にされていない場合にはステップS13を繰り返す。測光スイッチ13aがオン状態にされている場合は、ステップS14で、AE部23のAEセンサ駆動により測光が行われ、絞り値や露光時間が演算される。次に、ステップS15で、AF部24のAFセンサが駆動され測距が行われ、AF部24のレンズ制御回路駆動により合焦動作が行われる。   In step S13, it is determined whether or not the photometric switch 13 is turned on. If the photometric switch 13a is not turned on, step S13 is repeated. If the photometric switch 13a is on, photometry is performed by driving the AE sensor of the AE unit 23 in step S14, and the aperture value and exposure time are calculated. Next, in step S15, the AF sensor of the AF unit 24 is driven to perform distance measurement, and the focusing operation is performed by driving the lens control circuit of the AF unit 24.

ステップS16で、レリーズスイッチ14aがオン状態にされたか否かを判断する。レリーズスイッチ14aがオン状態にされていない場合には、ステップS17で測光スイッチ13aがオン状態にされたか否かを判断する。ステップS17の判断で測光スイッチ13aがオン状態にされている場合はステップS16に戻る。ステップS17の判断で測光スイッチ13aがオン状態にされていない場合は、ステップS13に戻る。ステップS16の判断で、レリーズスイッチ14aがオン状態にされている場合は、ステップS18で、LEDオンスイッチ12aがオン状態にされているか否かを判断する。   In step S16, it is determined whether or not the release switch 14a is turned on. If the release switch 14a has not been turned on, it is determined in step S17 whether or not the photometry switch 13a has been turned on. If it is determined in step S17 that the photometric switch 13a is on, the process returns to step S16. If it is determined in step S17 that the photometric switch 13a has not been turned on, the process returns to step S13. If it is determined in step S16 that the release switch 14a is turned on, it is determined in step S18 whether the LED on switch 12a is turned on.

ステップS18の判断で、LEDオンスイッチ12aがオン状態にされていない場合は、レリーズスイッチ14aに対応した露光時間の間、照明用LED31は駆動されず、ステップS20で照明用LED31が消灯した状態でCCDの電荷蓄積すなわち露光が行われる。オン状態にされている場合は、ステップS19で、ステップS16のレリーズスイッチ14aに対応した露光時間内の間、設定されたデューティ比D(0%<D<100%)で矩形波信号が出力され、矩形波信号は波形変換回路34によってノコギリ波信号または三角波信号に変換され、ノコギリ波信号または三角波信号は電流制限抵抗33、トランジスタTr1、制限抵抗32を介して、照明用LED31に供給され、ステップS20で、照明用LED31が点灯した状態でCCDの電荷蓄積すなわち露光が行われる。   If it is determined in step S18 that the LED on switch 12a is not turned on, the illumination LED 31 is not driven during the exposure time corresponding to the release switch 14a, and the illumination LED 31 is turned off in step S20. CCD charge accumulation, that is, exposure is performed. If it is in the ON state, a rectangular wave signal is output at the set duty ratio D (0% <D <100%) during the exposure time corresponding to the release switch 14a of step S16 in step S19. The rectangular wave signal is converted into a sawtooth wave signal or a triangular wave signal by the waveform conversion circuit 34, and the sawtooth wave signal or the triangular wave signal is supplied to the illumination LED 31 via the current limiting resistor 33, the transistor Tr1, and the limiting resistor 32, and the step. In S20, charge accumulation of the CCD, that is, exposure, is performed with the illumination LED 31 turned on.

露光時間終了後、ステップS21で、ステップS19で点灯された照明用LED31を消灯させる。すなわち、CPU21から出力される矩形波信号のデューティ比Dが0%にされる。ステップS22で、CCD入力、すなわち露光時間内の間CCDに蓄積された電荷が移動せしめられ、ステップS23で、移動された電荷が撮像ブロック22によって撮像された画像信号として撮像装置1内の映像メモリに記憶される。ステップS24で、記憶された画像信号は、LCDモニタ17によって表示される。   After the exposure time ends, in step S21, the illumination LED 31 lit in step S19 is turned off. That is, the duty ratio D of the rectangular wave signal output from the CPU 21 is set to 0%. In step S22, the CCD input, that is, the charge accumulated in the CCD within the exposure time is moved, and in step S23, the moved charge is used as an image signal captured by the imaging block 22 as a video memory in the imaging apparatus 1. Is remembered. In step S24, the stored image signal is displayed on the LCD monitor 17.

ステップS25で、連写スイッチ15aがオン状態にされているか否かを判断する。連写スイッチ15aがオン状態にされている場合は、ステップS16に戻り、次の露光が行われる。連写スイッチ15aがオン状態にされていない場合は、ステップS26で、一連の連写時における照明用LED31の点灯制御は終了する。   In step S25, it is determined whether or not the continuous shooting switch 15a is turned on. If the continuous shooting switch 15a is on, the process returns to step S16, and the next exposure is performed. If the continuous shooting switch 15a is not turned on, in step S26, the lighting control of the LED 31 for illumination during a series of continuous shooting ends.

図8のフローチャートは、連写時だけでなく動画撮像時(動画スイッチ16aがオン状態)における照明用LED31の点灯制御にも置き換えることが可能である。   The flowchart of FIG. 8 can be replaced not only with continuous shooting but also with lighting control of the illumination LED 31 at the time of moving image capturing (the moving image switch 16a is in an on state).

本実施形態では、矩形波信号のパルス振幅、パルス周期が、ノコギリ波信号及び三角波信号の振幅、周期と同じである形態を説明したが、異なる形態であってもよい。所望するノコギリ波信号及び三角波信号の振幅、周期に合わせて、矩形波信号のパルス振幅、パルス周期と回路構成を行えば同様の効果が得られるからである。   In the present embodiment, the form in which the pulse amplitude and the pulse period of the rectangular wave signal are the same as the amplitude and period of the sawtooth wave signal and the triangular wave signal has been described, but a different form may be used. This is because the same effect can be obtained by performing the circuit configuration with the pulse amplitude and pulse period of the rectangular wave signal in accordance with the amplitude and period of the desired sawtooth wave signal and triangular wave signal.

また、照明装置はLEDの発光によるものとして説明したが、トランジスタ回路を介した矩形波駆動で、露光時間内に照明させ、連続使用により発光部材の温度が上昇し、温度上昇により光量が低下するような他の発光部材であってもよい。   In addition, the illumination device has been described as being based on the light emission of the LED, but it is illuminated within the exposure time by rectangular wave drive through a transistor circuit, and the temperature of the light emitting member rises by continuous use, and the light quantity decreases by the temperature rise. Such other light emitting members may be used.

本発明の実施形態として、撮像装置1は、撮像素子により被写体を撮像するデジタルカメラの形態を説明したが、銀塩カメラであっても同様の効果が得られる。   As an embodiment of the present invention, the image pickup apparatus 1 has been described as a digital camera that picks up a subject with an image pickup device. However, the same effect can be obtained even with a silver salt camera.

LEDの温度上昇と光量減少の関係を示す図である。It is a figure which shows the relationship between the temperature rise of LED, and light quantity reduction | decrease. DC駆動と矩形波駆動の場合の、時間変化によるLEDの温度変化を示す図である。It is a figure which shows the temperature change of LED by a time change in the case of DC drive and a rectangular wave drive. 本実施形態の撮像装置の外観を示す背面からみた斜視図である。It is the perspective view seen from the back which shows the appearance of the imaging device of this embodiment. 撮像装置の正面図である。It is a front view of an imaging device. 実施形態の撮像装置の回路構成図である。It is a circuit block diagram of the imaging device of embodiment. 波形変換回路の回路構成図である。It is a circuit block diagram of a waveform conversion circuit. 波形変換回路の各部における信号の波形の変化を示す。The change of the waveform of the signal in each part of a waveform conversion circuit is shown. 連写時における露光時間内に照明用LEDを点灯制御するフローチャートである。It is a flowchart which performs lighting control of LED for illumination within the exposure time at the time of continuous shooting.

符号の説明Explanation of symbols

1 撮像装置
11 光学ファインダ
12 LEDオンボタン
14 レリーズボタン
15 連写ボタン
16 動画ボタン
17 LCDモニタ
22 撮像ブロック
23 AE部
24 AF部
31 照明用LED
34 波形変換回路

DESCRIPTION OF SYMBOLS 1 Imaging device 11 Optical finder 12 LED on button 14 Release button 15 Continuous shooting button 16 Movie button 17 LCD monitor 22 Imaging block 23 AE part 24 AF part 31 LED for illumination
34 Waveform conversion circuit

Claims (9)

露光時間内に立ち下がり時と次の波形の立ち上がり時の間に一定時間のオフ期間を有するノコギリ波信号または前記立ち下がりの後瞬時に次の波形の立ち上がりが始まる三角波信号の供給を受けることで被写体に向けた点灯を行う照明手段と、
前記ノコギリ波信号または三角波信号を前記照明手段に供給する信号供給手段とを備える撮像装置の照明制御装置。
The subject is supplied with a sawtooth wave signal having a fixed off period between the falling edge and the rising edge of the next waveform within the exposure time, or a triangular wave signal that immediately starts rising of the next waveform after the falling edge. Lighting means for turning on,
An illumination control apparatus for an imaging apparatus, comprising: a signal supply unit that supplies the sawtooth wave signal or the triangular wave signal to the illumination unit.
前記信号供給手段は、一定のパルス振幅及び一定のパルス周期で矩形波信号を出力する矩形波信号出力手段と、前記矩形波信号を前記ノコギリ波信号または前記三角波信号に変換して出力する波形変換手段と、増幅部を介して前記ノコギリ波信号または三角波信号を前記照明手段に供給する点灯手段とを有することを特徴とする請求項1に記載の照明制御装置。   The signal supply means includes a rectangular wave signal output means for outputting a rectangular wave signal with a constant pulse amplitude and a constant pulse period, and a waveform conversion for converting the rectangular wave signal into the sawtooth wave signal or the triangular wave signal and outputting it. The lighting control apparatus according to claim 1, further comprising: a lighting unit that supplies the sawtooth wave signal or the triangular wave signal to the lighting unit via an amplification unit. 前記ノコギリ波信号及び前記三角波信号の振幅、周期は、前記矩形波信号のパルス振幅、パルス周期と同じであることを特徴とする請求項2に記載の照明制御装置。   The illumination control device according to claim 2, wherein the sawtooth wave signal and the triangular wave signal have the same amplitude and cycle as the pulse amplitude and pulse cycle of the rectangular wave signal. 前記ノコギリ波信号及び前記三角波信号の波形は、前記矩形波信号の波形の立ち下がり時にピークを示すことを特徴とする請求項2に記載の照明制御装置。   The lighting control device according to claim 2, wherein the waveforms of the sawtooth wave signal and the triangular wave signal show a peak when the waveform of the rectangular wave signal falls. 前記波形変換手段は、前記矩形波信号を逆位相に変換する反転増幅回路と、前記逆位相の矩形波信号を前記ノコギリ波信号または三角波信号に変換する積分回路とを有することを特徴とする請求項2に記載の照明制御装置。   The waveform converting means includes an inverting amplifier circuit for converting the rectangular wave signal into an antiphase, and an integrating circuit for converting the antiphase rectangular wave signal into the sawtooth wave signal or the triangular wave signal. Item 3. The lighting control device according to Item 2. 前記反転増幅回路の有する第1オペアンプの出力端子は前記積分回路の有する第2オペアンプの反転入力端子と接続され、前記反転増幅回路の有する第1オペアンプの非反転入力端子は、前記積分回路の有する第2オペアンプの非反転入力端子と接続されることを特徴とする請求項5に記載の照明制御装置。   The output terminal of the first operational amplifier included in the inverting amplifier circuit is connected to the inverting input terminal of the second operational amplifier included in the integrating circuit, and the non-inverting input terminal of the first operational amplifier included in the inverting amplifier circuit includes the integrating circuit. The lighting control device according to claim 5, wherein the lighting control device is connected to a non-inverting input terminal of the second operational amplifier. 前記ノコギリ波信号及び前記三角波信号の周期は1/50秒以下であることを特徴とする請求項1に記載の照明制御装置。   The lighting control device according to claim 1, wherein a period of the sawtooth wave signal and the triangular wave signal is 1/50 second or less. 前記照明手段は光源としてLEDを備えることを特徴とする請求項1に記載の照明制御装置。   The illumination control apparatus according to claim 1, wherein the illumination unit includes an LED as a light source. 前記増幅部は、トランジスタを備えることを特徴とする請求項2に記載の照明制御装置。
The lighting control device according to claim 2, wherein the amplification unit includes a transistor.
JP2003424494A 2003-12-22 2003-12-22 Lighting control device Expired - Fee Related JP4542774B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003424494A JP4542774B2 (en) 2003-12-22 2003-12-22 Lighting control device
US11/016,906 US7643084B2 (en) 2003-12-22 2004-12-21 Lighting control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424494A JP4542774B2 (en) 2003-12-22 2003-12-22 Lighting control device

Publications (2)

Publication Number Publication Date
JP2005181810A true JP2005181810A (en) 2005-07-07
JP4542774B2 JP4542774B2 (en) 2010-09-15

Family

ID=34784666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424494A Expired - Fee Related JP4542774B2 (en) 2003-12-22 2003-12-22 Lighting control device

Country Status (1)

Country Link
JP (1) JP4542774B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968742A (en) * 1995-08-31 1997-03-11 Nissin Electric Co Ltd Photographing device
JPH0974224A (en) * 1995-09-05 1997-03-18 Canon Inc Lighting circuit
JPH1093856A (en) * 1996-08-07 1998-04-10 Hewlett Packard Co <Hp> Solid-state image pickup device
JP2000027507A (en) * 1998-07-15 2000-01-25 Bunka Shutter Co Ltd Shutter locking device
JP2001119063A (en) * 1999-10-20 2001-04-27 Nitto Kogaku Kk Light emitting/receiving circuit and camera and optical device
JP2001210122A (en) * 2000-01-28 2001-08-03 Matsushita Electric Ind Co Ltd Luminaire, video display device, method of driving video display device, liquid crystal display panel, method of manufacturing liquid crystal display panel, method of driving liquid crystal display panel, array substrate, display device, viewfinder and video camera
JP2002357859A (en) * 2001-05-31 2002-12-13 Casio Comput Co Ltd Flashing device and electronic still camera using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968742A (en) * 1995-08-31 1997-03-11 Nissin Electric Co Ltd Photographing device
JPH0974224A (en) * 1995-09-05 1997-03-18 Canon Inc Lighting circuit
JPH1093856A (en) * 1996-08-07 1998-04-10 Hewlett Packard Co <Hp> Solid-state image pickup device
JP2000027507A (en) * 1998-07-15 2000-01-25 Bunka Shutter Co Ltd Shutter locking device
JP2001119063A (en) * 1999-10-20 2001-04-27 Nitto Kogaku Kk Light emitting/receiving circuit and camera and optical device
JP2001210122A (en) * 2000-01-28 2001-08-03 Matsushita Electric Ind Co Ltd Luminaire, video display device, method of driving video display device, liquid crystal display panel, method of manufacturing liquid crystal display panel, method of driving liquid crystal display panel, array substrate, display device, viewfinder and video camera
JP2002357859A (en) * 2001-05-31 2002-12-13 Casio Comput Co Ltd Flashing device and electronic still camera using the same

Also Published As

Publication number Publication date
JP4542774B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP2005128413A (en) Illumination controller
US7746405B2 (en) Illumination apparatus, imaging apparatus and irradiation method for an imaging apparatus comprising light emitting diodes which are duty-driven during an imaging period of a frame period
US8115860B2 (en) LED flash control
JP2005354155A (en) Animation imaging device
JP4576107B2 (en) Lighting control device
JP4495449B2 (en) Lighting control device
JP2008193195A (en) Digital camera
JP2009265269A (en) Illuminator for photography and photographic device
JP4542774B2 (en) Lighting control device
JP4542773B2 (en) Lighting control device
US7643084B2 (en) Lighting control apparatus
JP4495448B2 (en) Lighting control device
JP2009139553A (en) Imaging device and imaging method
JP2002357859A (en) Flashing device and electronic still camera using the same
JP2005128403A (en) Illumination controller
JP2005128420A (en) Illumination controller
JP5047465B2 (en) Digital camera for mobile devices
JP4962132B2 (en) Imaging device
JP2009260714A (en) Imaging apparatus
JP2007133313A (en) Imaging apparatus
JP2010141459A (en) Photographing apparatus, dimming device and program
JP2005348014A (en) Photographing apparatus
JP2009071651A (en) Camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4542774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees