JP2005181120A - Concentration measuring apparatus - Google Patents

Concentration measuring apparatus Download PDF

Info

Publication number
JP2005181120A
JP2005181120A JP2003422817A JP2003422817A JP2005181120A JP 2005181120 A JP2005181120 A JP 2005181120A JP 2003422817 A JP2003422817 A JP 2003422817A JP 2003422817 A JP2003422817 A JP 2003422817A JP 2005181120 A JP2005181120 A JP 2005181120A
Authority
JP
Japan
Prior art keywords
measured
concentration
liquid
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003422817A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hayashi
知幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2003422817A priority Critical patent/JP2005181120A/en
Publication of JP2005181120A publication Critical patent/JP2005181120A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concentration measuring apparatus, capable of easily, precisely, and exactly measuring concentrations by enabling the selection of an arithmetic expression most appropriate for measuring the concentration of suspended solid components, in a liquid to be measured. <P>SOLUTION: The concentration of the suspended solid components, in the liquid to be measured, is measured by receiving the diffused and reflected light of light emitted into the liquid to be measured at lease at two light-receiving parts and performing computations through the use of an arithmetic expression using both light reception signals, one as a concentration detection main signal and the other as a correction signal. A plurality of types of arithmetic expressions are previously stored, and an arithmetic expression to be used is selected from among the plurality of types of arithmetic expressions, according to the liquid to be measured which is to be the object of the measurement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、上水、下水、し尿、排水処理などの施設から発生する汚泥の濃度や、処理過程における懸濁物質の濃度などを測定する装置に関し、特に光を使用して拡散反射方式で濁質成分の濃度を測定するようにした濃度測定装置に関する。   The present invention relates to an apparatus for measuring the concentration of sludge generated from facilities such as clean water, sewage, human waste, and wastewater treatment, and the concentration of suspended solids in the treatment process, and in particular, it is turbid by diffuse reflection using light. The present invention relates to a concentration measuring apparatus configured to measure the concentration of a quality component.

従来、被測定液中の濁質成分の濃度を測定する装置として、超音波方式、赤外線方式、マイクロ波方式、乾燥重量方式などが知られている。これらの測定方式においては、測定対象となる濁質成分の性状が変化する、あるいは、その濃度変動などがある場合、乾燥重量方式を除いて出力値が不安定になるという問題がある。不安定な濃度情報を周辺の設備あるいは制御機器へ伝達、入力すると監視システムや処理システムに誤動作を招く恐れがある。そこで、特許文献1や特許文献2には、光、とくにレーザー光を被測定液中に向けて発光し、その拡散反射光を受光することにより、被測定液中の濁質成分の濃度を測定する濃度測定装置が提案されている。これらの濃度測定装置においては、濃度出力値は、現実には、基本的に、濃度出力値=(濃度計測値×補正係数)−補償信号値(例えば、温度補償信号値)として求められている。しかし、これらの特許文献には、濃度測定値及び補正係数の算出の具体的な方法が詳細には記載されておらず、実際の測定においては、一定の演算式で、性状や濃度がまちまちの被測定液中の濁質成分を精度良く算出することは困難である。また、演算式の精度を担保するため、定期的に、あるいは被測定液の種類が大きく変化する場合等には、装置出力の0点調整を行っており、測定の便利さに欠けるという問題も残されている。
特開2002−98637号公報 特開2002−243640号公報
Conventionally, an ultrasonic method, an infrared method, a microwave method, a dry weight method, and the like are known as devices for measuring the concentration of turbid components in a liquid to be measured. In these measurement methods, there is a problem that the output value becomes unstable except for the dry weight method when the properties of the turbid component to be measured are changed or there are fluctuations in the concentration. If unstable concentration information is transmitted to and input to peripheral equipment or control equipment, it may cause malfunction in the monitoring system or processing system. Therefore, Patent Document 1 and Patent Document 2 measure the concentration of turbid components in the liquid to be measured by emitting light, particularly laser light, toward the liquid to be measured and receiving the diffuse reflection light. A concentration measuring apparatus has been proposed. In these concentration measuring apparatuses, the concentration output value is actually obtained basically as concentration output value = (concentration measurement value × correction coefficient) −compensation signal value (for example, temperature compensation signal value). . However, these patent documents do not describe the specific method of calculating the concentration measurement value and the correction coefficient in detail, and in actual measurement, properties and concentrations vary with a fixed arithmetic expression. It is difficult to accurately calculate the turbid component in the liquid to be measured. In addition, in order to ensure the accuracy of the arithmetic expression, the zero point adjustment of the device output is performed periodically or when the type of the liquid to be measured changes greatly, and there is a problem that the measurement is not convenient. It is left.
JP 2002-98637 A JP 2002-243640 A

そこで本発明の課題は、上記のような光学系の拡散反射光方式の濃度測定において、濃度測定信号と補正信号の少なくとも2系統の受光信号が得られるように構成された濃度測定装置とするとともに、両受光信号を用いて濃度を演算するに際し、被測定液の濁質成分の濃度測定に最も適した演算式を選択できるようにして、容易にかつ的確に精度良く濃度を測定できるようにした濃度測定装置を提供することにある。   Accordingly, an object of the present invention is to provide a concentration measuring apparatus configured to obtain at least two systems of received light signals of a density measurement signal and a correction signal in the density measurement of the diffuse reflection light system of the optical system as described above. When calculating the concentration using both received light signals, the calculation formula that is most suitable for measuring the concentration of turbid components in the liquid to be measured can be selected so that the concentration can be measured easily and accurately with high accuracy. The object is to provide a concentration measuring device.

上記課題を解決するために、本発明に係る濃度測定装置は、被測定液の濁質成分の濃度を、被測定液中に向けて発光された光の拡散反射光を少なくとも2つの受光部で受光し、一方の受光信号を濃度検知主信号、他方の受光信号をその補正信号として、両受光信号を用いた演算式で演算することにより測定し、かつ、複数種の演算式を予め記憶しておき、該複数種の演算式の中から測定対象となる被測定液に応じて使用する演算式を選択することを特徴とするものからなる。   In order to solve the above-described problem, the concentration measuring apparatus according to the present invention is configured so that the concentration of the turbid component of the liquid to be measured is diffused and reflected by the light emitted toward the liquid to be measured by at least two light receiving units. Received light, measured by calculating with one light-receiving signal as the density detection main signal and the other light-receiving signal as its correction signal, using the two light-receiving signals, and previously stored multiple types of equations The calculation formula to be used is selected from the plural types of calculation formulas according to the measured liquid to be measured.

この濃度測定装置においては、上記複数種の演算式について、各々、被測定液に対して別途行われたJIS等に規定の方法(例えば、JISあるいは下水試験法に定められた方法)による測定結果との相関(例えば、相関係数)が求められていることが好ましい。すなわち、上記演算式は、以下のようなデータベースを構築しておくことで、実際の使用に供することのできる形態として確立される。   In this concentration measuring apparatus, the measurement results of the above-described plural types of arithmetic expressions are each obtained by a method specified in JIS or the like separately performed on the liquid to be measured (for example, a method defined in JIS or a sewage test method). It is preferable that a correlation (for example, a correlation coefficient) is obtained. That is, the arithmetic expression is established as a form that can be used for actual use by constructing the following database.

上記濃度測定のために、例えば、ある被測定液の濃度において、上記の如く少なくとも2種類の受光信号を受信し、この信号値と、さらに濃度が異なる複数の被測定液における同様の少なくとも2種類の信号を受信し、その値を記録する(好ましくは、全体として5種類以上の濃度における信号値群があることが好ましい)。それぞれの被測定液の濁質成分濃度を、別途、JISあるいは下水試験法に定められた方法で測定する。先に記録した少なくとも2種類の信号の組合せと、別途求めた濁質成分濃度を1組としたデータベースができ、濃度や被測定液が異なる同様の組合せが完成し、1式のデータベースができる。このデータベースを基本に、以下のような重回帰演算式、光学系理論式、あるいは経験あるいは実験で得られた経験式に当てはめて、被測定液の濃度を現すにふさわしい演算式を選択するようにする。   For the concentration measurement, for example, at least two types of received light signals are received as described above at a certain concentration of the liquid to be measured, and at least two types of the signal values and the same at least in a plurality of liquids to be measured having different concentrations. The signal is received and the value is recorded (preferably, there are preferably signal value groups at five or more concentrations as a whole). The turbid component concentration of each liquid to be measured is separately measured by a method defined in JIS or the sewage test method. A database in which a combination of at least two kinds of signals recorded in advance and a separately determined turbidity component concentration is set as one set can be created, and similar combinations with different concentrations and liquids to be measured are completed, and a set of databases is created. Based on this database, apply the following multiple regression formulas, optical system theoretical formulas, or empirical formulas obtained from experience or experiments, and select the appropriate formula to express the concentration of the solution to be measured. To do.

上記複数種の演算式としては、少なくとも、前記両受光信号を重回帰演算法によって演算処理する重回帰式を含むことが好ましい。重回帰式とすることにより、後述の如く、広い濃度範囲にわたって高い直線性をもった演算式となり、望ましい形態で精度良く測定すべき濃度を演算できるようになる。   It is preferable that the plurality of types of arithmetic expressions include at least a multiple regression expression that performs arithmetic processing on the both received light signals by a multiple regression calculation method. By using the multiple regression equation, as will be described later, the calculation equation has high linearity over a wide concentration range, and the concentration to be measured can be calculated with high accuracy in a desirable form.

また、上記複数種の演算式として、少なくとも、光学系の理論式またはその補正式を含むこともできる。さらに、少なくとも、実験によって求められた経験式を含むこともできる。   The plurality of types of arithmetic expressions may include at least a theoretical expression of the optical system or a correction expression thereof. Furthermore, at least an empirical formula obtained by experiment can be included.

本発明はまた、被測定液の濁質成分の濃度を、被測定液中に向けて発光された光の拡散反射光を少なくとも2つの受光部で受光し、一方の受光信号を濃度検知主信号、他方の受光信号をその補正信号として、両受光信号を用いた重回帰式により演算することにより測定することを特徴とする濃度測定装置を提供する。重回帰式としては複数準備することもできる。   In the present invention, the concentration of the turbid component of the liquid to be measured is received by at least two light receiving portions of diffusely reflected light emitted toward the liquid to be measured, and one of the received light signals is a concentration detection main signal. A concentration measuring apparatus is provided that performs measurement by using the other received light signal as a correction signal and calculating by a multiple regression equation using both received light signals. A plurality of multiple regression equations can be prepared.

この濃度測定装置においても、上記重回帰式による演算結果と、被測定液に対して別途行われたJIS等に規定の方法による測定結果との相関が求められていることが好ましい。   Also in this concentration measuring apparatus, it is preferable that the correlation between the calculation result by the multiple regression equation and the measurement result by a method prescribed in JIS or the like separately performed on the solution to be measured is obtained.

また、本発明は、被測定液の濁質成分の濃度を、被測定液中に向けて発光された光の拡散反射光を少なくとも2つの受光部で受光し、一方の受光信号を濃度検知主信号、他方の受光信号をその補正信号として、両受光信号を用いて光学系の理論式またはその補正式により演算することにより測定することを特徴とする濃度測定装置を提供する。光学系の理論式またはその補正式としては複数準備することもできる。   In the present invention, the concentration of the turbid component in the liquid to be measured is received by at least two light receiving portions of the diffuse reflected light of the light emitted toward the liquid to be measured, and one of the light reception signals is detected as a concentration detection main component. Provided is a concentration measuring apparatus characterized in that a signal and the other received light signal are used as correction signals and measurement is performed by using both received light signals and calculating according to a theoretical equation of the optical system or a correction equation thereof. A plurality of theoretical formulas or correction formulas for the optical system can be prepared.

この濃度測定装置においても、上記光学系の理論式またはその補正式による演算結果と、被測定液に対して別途行われたJIS等に規定の方法による測定結果との相関が求められていることが好ましい。   Also in this concentration measuring apparatus, the correlation between the calculation result by the theoretical formula of the optical system or its correction formula and the measurement result by the method prescribed in JIS or the like separately performed on the liquid to be measured is required. Is preferred.

さらに、本発明は、被測定液の濁質成分の濃度を、被測定液中に向けて発光された光の拡散反射光を少なくとも2つの受光部で受光し、一方の受光信号を濃度検知主信号、他方の受光信号をその補正信号として、両受光信号を用いて、実験によって求められた経験式により演算することにより測定することを特徴とする濃度測定装置を提供する。実験によって求められた経験式としては複数準備することもできる。   Further, according to the present invention, the concentration of the turbid component of the liquid to be measured is received by at least two light receiving portions of the diffuse reflected light of the light emitted toward the liquid to be measured, and one of the light reception signals is detected as a concentration detection main component. There is provided a concentration measuring apparatus characterized in that a signal and the other received light signal are used as correction signals, and the both received light signals are used for calculation by an empirical formula obtained through experiments. A plurality of empirical formulas obtained by experiments can be prepared.

この濃度測定装置においても、上記経験式による演算結果と被測定液に対して別途行われたJIS等に規定の方法による測定結果との相関が求められていることが好ましい。   Also in this concentration measuring apparatus, it is preferable that the correlation between the calculation result by the above empirical formula and the measurement result by a method prescribed in JIS or the like separately performed on the liquid to be measured is obtained.

本発明に係る濃度測定装置によれば、光学式拡散反射方式を用いて、少なくとも2種類の受光信号を得るようにした装置において、低濃度から高濃度まで広い測定範囲にわたって高精度の濃度測定が可能になる。また、0点あるいはその近傍を通る、高い直線性の演算式を確立し、その演算式により濃度を的確に高精度で演算できるようになる。これによって、装置の測定精度が飛躍的に向上すると共に、0点校正即ち、機器を取り外し、清水に浸漬させダイアル調節で0点を合わせるといった面倒な作業から解放されることもできる。さらに、本発明に係る濃度測定装置を用いると、PC(パーソナルコンピュータ)に過去のデータを蓄積することができるため、季節変動や例えば下水道での使用例で、新しい管路が敷設された場合や、処理方式が異なるなどの濁質成分濃度や性状が変化した場合であっても、過去のデータに新しいデータを追加し、再演算することで過去を学習し確立していた演算式を逐次更新させることも可能であり、常時最適な演算式を用いて濃度測定を行うことができるようになる。   According to the concentration measuring apparatus of the present invention, in an apparatus that obtains at least two types of received light signals using an optical diffuse reflection method, highly accurate concentration measurement can be performed over a wide measurement range from low concentration to high concentration. It becomes possible. In addition, an arithmetic expression with high linearity that passes through the zero point or the vicinity thereof is established, and the density can be accurately and accurately calculated by the arithmetic expression. As a result, the measurement accuracy of the apparatus can be dramatically improved, and zero-point calibration, that is, it can be freed from troublesome work such as removing the device, immersing in fresh water, and adjusting the zero point by dial adjustment. Furthermore, when the concentration measuring apparatus according to the present invention is used, past data can be stored in a PC (personal computer). Even when the concentration and properties of turbid components change, such as when the processing method is different, new data is added to the past data and recalculated to learn the past and update the formulas that were established sequentially It is also possible to perform concentration measurement using an optimal arithmetic expression at all times.

以下に、本発明の望ましい実施の形態について、図面を参照して説明する。
まず、本発明に係る濃度測定装置の機械的な基本構成について説明する。図1に示すように、受光素子を有する濃度計1を、例えば濁質成分としての汚泥粒子2を含有する、被測定液としての汚泥3が流れている配管4に接続し、濃度計1からレーザー光等の照射光5を配管4内の汚泥3中に向けて発光し、散乱反射した反射光6を受光し、受光信号を専用ケーブル7等を介して変換器8に送る。変換器8からの信号は、例えば図2に示すように、通信ケーブル9を介してコンピュータ10(例えば、パーソナルコンピュータPC)に送り、コンピュータ10で後述するような各種の演算式により濃度を演算し、測定データを出力する。演算式は、例えば、CDソフト11として組み込んでおき、必要に応じて適宜更新できるようにしておくことが好ましい。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
First, the basic mechanical configuration of the concentration measuring apparatus according to the present invention will be described. As shown in FIG. 1, a densitometer 1 having a light receiving element is connected to a pipe 4 containing, for example, sludge particles 2 as a turbid component and flowing a sludge 3 as a liquid to be measured. Irradiation light 5 such as laser light is emitted toward the sludge 3 in the pipe 4, and the reflected reflected light 6 is received, and the received light signal is sent to the converter 8 via the dedicated cable 7 or the like. For example, as shown in FIG. 2, the signal from the converter 8 is sent to a computer 10 (for example, a personal computer PC) via a communication cable 9, and the computer 10 calculates the concentration using various arithmetic expressions as described later. , Output measurement data. The arithmetic expression is preferably incorporated as, for example, the CD software 11 so that it can be updated as necessary.

濃度計1は、例えば図3に示すようなレーザー光を用いた濃度計1に構成できる。この濃度計1は、レーザーダイオード駆動回路12、レーザーダイオード13、レーザーダイオード13で発光された照射光14を導光する照射光側光ファイバ15、測定面(センサー面)を形成する接液ガラス16、前記のような被測定汚泥粒子2からの拡散反射光17を受光し導光する反射光側光ファイバ18、導光されてきた反射光を電気信号からなる受光信号に変換するフォトダイオード19、その受光信号を信号処理に適切な信号に増幅する増幅回路20、前記レーザーダイオード駆動回路12に必要なパルス状電力を供給するとともに増幅回路20からの信号を出力する電源/出力部21、および、コネクタ部22を備えている。   The densitometer 1 can be configured as a densitometer 1 using a laser beam as shown in FIG. 3, for example. The densitometer 1 includes a laser diode driving circuit 12, a laser diode 13, an irradiation light side optical fiber 15 that guides the irradiation light 14 emitted from the laser diode 13, and a liquid contact glass 16 that forms a measurement surface (sensor surface). A reflected light side optical fiber 18 that receives and guides the diffuse reflected light 17 from the measured sludge particles 2 as described above, a photodiode 19 that converts the reflected light that has been guided into a received light signal that is an electrical signal, An amplification circuit 20 that amplifies the received light signal to a signal suitable for signal processing, a power supply / output unit 21 that supplies the pulsed power necessary for the laser diode driving circuit 12 and outputs a signal from the amplification circuit 20, and A connector portion 22 is provided.

このような基本構成を有する濃度計1の、上記接液ガラス16におけるセンサー面においては、例えば図4に示すように、中央部に、発光用光ファイバ端面23と受光用光ファイバ端面24(受光用光ファイバNo.1の端面)とがランダムに配置されており、ランダム部25を形成している。このランダム部25における受光用光ファイバ端面24で受光された拡散反射光の受光信号が濃度検知主信号として用いられる。センサー面におけるランダム部25の周囲には、別の受光用光ファイバ端面26(受光用光ファイバNo.2の端面)が環状に配置されており、補正部27を形成している。この補正部27の受光用光ファイバ端面26で受光された拡散反射光の受光信号が、検知濃度の補正用受光信号として用いられる。これら2種類の受光信号が、後述の演算式による濃度演算に用いられる。   On the sensor surface of the liquid contact glass 16 of the densitometer 1 having such a basic configuration, for example, as shown in FIG. 4, a light emitting optical fiber end surface 23 and a light receiving optical fiber end surface 24 (light receiving) are provided at the center. And the optical fiber No. 1 end face) are randomly arranged to form the random portion 25. A light reception signal of diffuse reflected light received by the light receiving optical fiber end face 24 in the random portion 25 is used as a density detection main signal. Around the random portion 25 on the sensor surface, another light receiving optical fiber end surface 26 (end surface of the light receiving optical fiber No. 2) is annularly arranged to form a correcting portion 27. A light reception signal of diffusely reflected light received by the light receiving optical fiber end face 26 of the correction unit 27 is used as a light reception signal for correction of detection density. These two types of received light signals are used for density calculation by an arithmetic expression described later.

次に、本発明における演算式を用いた濃度演算、その演算による濃度測定について説明する。表1は、上記のような汚泥の濃度測定において、異なる濃度における受光信号(上記ランダム部25における受光信号〔「ランダム信号」と表記〕と上記補正部27における受光信号〔「補正信号」と表記〕)と、別途行ったJISあるいは下水試験法に定められた方法で測定した分析濃度〔「分析値」と表記)を表したものである。表1では、信号の値を電圧値(ボルト(V))で示しているが、濃度計の形態によっては、電流値や抵抗値であってもよい。   Next, concentration calculation using the calculation formula in the present invention and concentration measurement by the calculation will be described. Table 1 shows light reception signals (light reception signals in the random section 25 [denoted as “random signals”) and light reception signals in the correction section 27 [denoted as “correction signals” in the concentration measurement of sludge as described above. ]) And the analytical concentration (expressed as “analyzed value”) measured by the method defined in JIS or the sewage test method separately conducted. In Table 1, the value of the signal is shown as a voltage value (volt (V)), but it may be a current value or a resistance value depending on the form of the densitometer.

Figure 2005181120
Figure 2005181120

まず、表1に示した分析値を従属変数、ランダム信号および補正信号の2種類の信号を従属変数として重回帰演算方法を用いて濃度推定値を求める。演算式および演算結果を図示するためのPCソフトによる関係図を図5に示す。   First, the concentration estimation value is obtained using the multiple regression calculation method with the analysis value shown in Table 1 as a dependent variable and the two types of signals of a random signal and a correction signal as dependent variables. FIG. 5 shows a relationship diagram by the PC software for illustrating the calculation formula and the calculation result.

ここで得られた、汚泥濃度推定演算式は、
Y=1.4721(M)−1.7455(S)−0.975 (相関係数r:0.9951)・・・(1)
となる。ここで得られた濃度推定演算式を濃度測定装置のROMに書き込むことによって濃度測定装置による濃度測定が可能になる。ここで、
Y:演算濃度
M:ランダム信号
S:補正信号
r:分析値との相関度合を表す相関係数
である。
The sludge concentration estimation formula obtained here is
Y = 1.4721 (M) −1.7455 (S) −0.975 (correlation coefficient r: 0.9951) (1)
It becomes. By writing the concentration estimation formula obtained here in the ROM of the concentration measuring device, the concentration measurement by the concentration measuring device becomes possible. here,
Y: Calculated density M: Random signal S: Correction signal r: Correlation coefficient representing the degree of correlation with the analysis value.

図5に示したように、重回帰演算式による濃度推定演算式では、略原点を通る式が得られ、低濃度から高濃度まで幅広い範囲で直線関係が得られ、相関係数も高いことから、信頼性の高い高精度の測定データが得られることがわかる。このように、重回帰演算式による濃度推定演算式を用いると、実質的に原点を通るため、従来の濃度計で一定頻度にて行っていた「0点校正」作業が不要になり、それによって、装置のメンテナンスが楽になるという効果が生じる。   As shown in FIG. 5, in the concentration estimation calculation formula based on the multiple regression calculation formula, an expression that passes substantially through the origin is obtained, a linear relationship is obtained in a wide range from low concentration to high concentration, and the correlation coefficient is also high. It can be seen that highly reliable and highly accurate measurement data can be obtained. In this way, when using the concentration estimation calculation formula based on the multiple regression calculation formula, since it substantially passes through the origin, the “zero-point calibration” operation that has been performed at a constant frequency with a conventional densitometer becomes unnecessary. As a result, there is an effect that the maintenance of the apparatus becomes easy.

また、本発明では、光学系の理論式またはその補正式により濃度演算することもできる。光学系の理論式による演算方法は以下のように行われる。
I=α・I0 ・S・exp(−β・L・S)
2=αR 0 2・S2・exp (−β・2LR ・S)
S=αC ・I0 ・S ・exp (−β・LC ・S)
ここで2LR =LC とすると、
(2αR ・I0 2・S2)/( αC ・I0 ・S)=a・I0 ・S
となる。ここで、
I:散乱光量
0 :照射光量
S:汚泥濃度
α:光学系定数
β:汚泥色などの性状でことなる定数
L:光照射部から受光部までの光路長
添字R:ランダム部25
添字C:補正部27
をそれぞれ示している。即ち、光学系の理論式では、M2 /Sが濃度と比例関係があるといわれている。
In the present invention, the density can also be calculated by a theoretical formula of the optical system or its correction formula. The calculation method based on the theoretical formula of the optical system is performed as follows.
I = α · I 0 · S · exp (−β · L · S)
M 2 = α R I 0 2 · S 2 · exp (−β · 2L R · S)
S = α C · I 0 · S • exp (−β · L C · S)
Here, if 2L R = L C ,
(2α R · I 0 2 · S 2 ) / (α C · I 0 · S) = a · I 0 · S
It becomes. here,
I: scattered light quantity I 0 : irradiation light quantity S: sludge concentration α: optical system constant β: constant depending on properties such as sludge color L: optical path length subscript R from light irradiation part to light receiving part R: random part 25
Subscript C: Correction unit 27
Respectively. That is, in the theoretical formula of the optical system, it is said that M 2 / S is proportional to the concentration.

この光学系理論式を当てはめて、表1のデータを用いて演算すると図6に示すようになる。ここで得られた濃度推定演算式は、
Y=0.1968(M2 /S)−0.5560(相関係数r:0.9748)・・・(2)
である。これを先の(1)式と比較すると、相関係数は0.9 以上で、比較的相関があるようにみられるが、実用上不都合が2点存在する。第1は、濃度推定演算式が原点「0点」を通っていないことである。即ち「0」点を通らないと希薄な懸濁物質濃度を測定しようとする場合はその近辺の濃度範囲の濃度推定演算式を別途用意して、濃度範囲によって使い分けしなければならないことである。第2点目は、図6の関係式が見た目は直線関係にあるようにみえるが、図6に示したように、実際は湾曲した関係式になっている。即ち実際は2次曲線式で表されるものを、無理に1次式で表していることになる。これは、高濃度範囲あるいは低濃度範囲で実際の濃度からかけ離れた推定値を表示する、即ち測定誤差を生じることになる。
When this optical system theoretical formula is applied and calculation is performed using the data in Table 1, the result is as shown in FIG. The concentration estimation formula obtained here is
Y = 0.1968 (M 2 /S)−0.5560 (correlation coefficient r: 0.9748) (2)
It is. When this is compared with the previous equation (1), the correlation coefficient is 0.9 or more, which seems to be relatively correlated, but there are two practical disadvantages. First, the concentration estimation calculation formula does not pass through the origin “0 point”. In other words, if it is desired to measure the concentration of a suspended solid that does not pass through the “0” point, it is necessary to separately prepare a concentration estimation calculation formula in the vicinity of the concentration range and use it separately depending on the concentration range. The second point looks like the relational expression of FIG. 6 looks linear, but as shown in FIG. 6, it is actually a curved relational expression. That is, what is actually expressed by a quadratic curve equation is forcibly expressed by a linear equation. This displays an estimated value far from the actual density in the high density range or the low density range, that is, causes a measurement error.

そこで、このような高濃度範囲あるいは低濃度範囲での測定も求められる場合に対し、図6に光学系理論式の演算式の補正方法を提供することができる。例えば、(M2 /S)で示される式の分母に(S+c)といった、cという演算補正項を加えることによって、直線性を改善することができる。この演算補正項を考慮した関係式の例を図7に示す。 Therefore, in the case where measurement in such a high density range or low density range is also required, FIG. 6 can provide a correction method for the arithmetic expression of the optical system theoretical formula. For example, the linearity can be improved by adding a calculation correction term of c such as (S + c) to the denominator of the equation represented by (M 2 / S). FIG. 7 shows an example of a relational expression considering this calculation correction term.

ここで得られた濃度推定演算式は、
Y=0.4414(M2 /(S+1.0))−0.0961(相関係数r:0.9995)・・・(3)
演算補正項c=1.0 とすると、相関係数は重回帰演算式と実質的に同じ値になり、関係式の直線性も改善された。しかし、関係式は原点を通るものとはならず、0点校正の不必要とまでは改善されていない。さらに、演算補正項を試行錯誤で求めなければならず、PCの使用に精通したものでなければ、最もふさわしい演算補正項に到達することは困難であるという問題は残される。
The concentration estimation formula obtained here is
Y = 0.4414 (M 2 /(S+1.0))−0.0961 (correlation coefficient r: 0.9995) (3)
When the calculation correction term c = 1.0, the correlation coefficient is substantially the same as the multiple regression calculation formula, and the linearity of the relational formula is also improved. However, the relational expression does not pass through the origin, and it has not been improved until the zero point calibration is unnecessary. Furthermore, the calculation correction term must be obtained by trial and error, and it is difficult to reach the most appropriate calculation correction term unless it is familiar with the use of the PC.

したがって、以上の各演算式を総合的に勘案すると、取扱いの便利性、測定精度、0点校正の不要化の点から、重回帰式による演算、測定が最も好ましいと言える。   Therefore, considering the above arithmetic expressions comprehensively, it can be said that the calculation and measurement by the multiple regression equation are most preferable from the viewpoint of convenience of handling, measurement accuracy, and elimination of zero point calibration.

また、上述の演算式以外に、実験等によって求められた経験式を組み込むことも可能である。例えば、被測定液の種類や性状に応じて複数の経験式を組み込んでおけば、被測定液の種類や性状と採用する経験式との対応が適切に採られると、極めて高い精度の濃度測定が可能になる。   In addition to the above-described arithmetic expressions, it is also possible to incorporate empirical expressions obtained by experiments or the like. For example, if multiple empirical formulas are incorporated according to the type and properties of the liquid to be measured, concentration measurement with extremely high accuracy can be achieved if the correspondence between the type and characteristics of the liquid to be measured and the empirical formula to be used is taken appropriately. Is possible.

実際の測定に際しては、上記のような各演算式を複数組み込み、あるいは複数種の演算式を複数組み込んでおき、複数種の演算式の中から、測定対象となる被測定液の種類や性状に応じて使用する演算式を選択すればよい。このようにすれば、そのときの状況に応じた最適な濃度測定を、高精度をもって行うことが可能になる。   In actual measurement, incorporate multiple arithmetic expressions as described above, or multiple multiple types of arithmetic expressions, and select the type and properties of the liquid to be measured from the multiple types of arithmetic expressions. An arithmetic expression to be used may be selected accordingly. In this way, it is possible to perform optimum concentration measurement according to the situation at that time with high accuracy.

例えば、表2に示すような各種演算式を記憶しておき、これらの中から最適な式を選択し、前述の変換器に係数を書き込むようにすることができる。また、被測定液の種類や性状が狭い範囲に限定されており、最適な演算式が予め判明している場合には、重回帰演算式、光学系理論式に基づく演算式、経験式の中から最適な1種の演算式のみを使用して濃度測定を行うこともできる。   For example, various arithmetic expressions as shown in Table 2 can be stored, an optimal expression can be selected from these, and the coefficient can be written in the converter. In addition, the type and properties of the liquid to be measured are limited to a narrow range, and when the optimal calculation formula is known in advance, multiple regression calculation formulas, calculation formulas based on optical system theoretical formulas, and empirical formulas Thus, the concentration measurement can be performed using only one optimal arithmetic expression.

Figure 2005181120
Figure 2005181120

本発明に係る濃度測定装置は、あらゆる被測定液中の濁質成分の濃度測定に適用でき、とくに広い濃度範囲にわたって高精度な測定が求められ、かつメンテナンスの容易性が求められる場合に好適である。   The concentration measuring device according to the present invention can be applied to the concentration measurement of turbid components in any liquid to be measured, and is particularly suitable when highly accurate measurement is required over a wide concentration range and ease of maintenance is required. is there.

本発明に係る濃度測定装置の機械的な基本構成の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the mechanical basic composition of the density | concentration measuring apparatus which concerns on this invention. 図1の濃度測定装置の概略機器系統図である。FIG. 2 is a schematic device system diagram of the concentration measuring apparatus of FIG. 1. 図1の濃度測定装置の濃度計部分の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the concentration meter part of the concentration measuring apparatus of FIG. 図3の濃度計のセンサー面における光ファイバの配置例を示す概略正面図である。It is a schematic front view which shows the example of arrangement | positioning of the optical fiber in the sensor surface of the densitometer of FIG. 本発明に係る濃度測定装置において演算式として重回帰式を用いた場合の濃度特性線を示すグラフであり、横軸に演算濃度、縦軸に分析濃度を示す。It is a graph which shows a density | concentration characteristic line at the time of using a multiple regression equation as a computing equation in the density | concentration measuring apparatus which concerns on this invention, a computed concentration is shown on a horizontal axis | shaft and an analytical concentration is shown on a vertical axis | shaft. 本発明に係る濃度測定装置において演算式として光学系理論式を用いた場合の濃度特性線を示すグラフであり、横軸に演算濃度、縦軸に分析濃度を示す。It is a graph which shows a density | concentration characteristic line at the time of using an optical system theoretical formula as a computing equation in the density | concentration measuring apparatus which concerns on this invention, a computed density | concentration is shown on a horizontal axis and an analytical density | concentration is shown on a vertical axis | shaft. 本発明に係る濃度測定装置において演算式として光学系理論式の補正式を用いた場合の濃度特性線を示すグラフであり、横軸に演算濃度、縦軸に分析濃度を示す。FIG. 4 is a graph showing density characteristic lines when a correction formula of an optical system theoretical formula is used as an arithmetic expression in the concentration measuring apparatus according to the present invention, where the horizontal axis indicates the calculated density and the vertical axis indicates the analytical concentration.

符号の説明Explanation of symbols

1 濃度計
2 濁質成分としての汚泥粒子
3 被測定液としての汚泥
4 配管
5 照射光
6 反射光
7 専用ケーブル
8 変換器
9 通信ケーブル
10 コンピュータ(パーソナルコンピュータPC)
11 CDソフト
12 レーザーダイオード駆動回路
13 レーザーダイオード
14 照射光
15 照射光側光ファイバ
16 測定面(センサー面)を形成する接液ガラス
17 反射光
18 反射光側光ファイバ
19 フォトダイオード
20 増幅回路
21 電源/出力部
22 コネクタ部
23 発光用光ファイバ端面
24 受光用光ファイバ端面(濃度検知主信号用)
25 ランダム部
26 受光用光ファイバ端面(補正信号用)
27 補正部
DESCRIPTION OF SYMBOLS 1 Densitometer 2 Sludge particle | grains as turbid component 3 Sludge as liquid to be measured 4 Piping 5 Irradiation light 6 Reflected light 7 Dedicated cable 8 Converter 9 Communication cable 10 Computer (personal computer PC)
DESCRIPTION OF SYMBOLS 11 CD software 12 Laser diode drive circuit 13 Laser diode 14 Irradiation light 15 Irradiation light side optical fiber 16 Liquid contact glass 17 which forms a measurement surface (sensor surface) Reflected light 18 Reflected light side optical fiber 19 Photodiode 20 Amplifying circuit 21 Power supply / Output unit 22 Connector unit 23 Light-emitting optical fiber end surface 24 Light-receiving optical fiber end surface (for concentration detection main signal)
25 Random part 26 Receiving optical fiber end face (for correction signal)
27 Correction part

Claims (11)

被測定液の濁質成分の濃度を、被測定液中に向けて発光された光の拡散反射光を少なくとも2つの受光部で受光し、一方の受光信号を濃度検知主信号、他方の受光信号をその補正信号として、両受光信号を用いた演算式で演算することにより測定し、かつ、複数種の演算式を予め記憶しておき、該複数種の演算式の中から測定対象となる被測定液に応じて使用する演算式を選択することを特徴とする濃度測定装置。   The concentration of the turbid component of the liquid to be measured is measured by at least two light-receiving units that receive diffusely reflected light emitted toward the liquid to be measured. One light reception signal is the concentration detection main signal and the other light reception signal. As a correction signal, and a plurality of types of arithmetic expressions are stored in advance, and a target to be measured is selected from the plurality of types of arithmetic expressions. A concentration measuring device, wherein an arithmetic expression to be used is selected according to a measuring solution. 前記複数種の演算式について、各々、前記被測定液に対して別途行われたJIS等に規定の方法による測定結果との相関が求められている、請求項1の濃度測定装置。   The concentration measuring apparatus according to claim 1, wherein each of the plurality of arithmetic expressions is correlated with a measurement result obtained by a method prescribed in JIS or the like separately performed on the liquid to be measured. 前記複数種の演算式が、少なくとも、前記両受光信号を重回帰演算法によって演算処理する重回帰式を含む、請求項1または2の濃度測定装置。   The concentration measuring apparatus according to claim 1 or 2, wherein the plurality of types of arithmetic expressions include at least a multiple regression expression for performing arithmetic processing on the both received light signals by a multiple regression calculation method. 前記複数種の演算式が、少なくとも、光学系の理論式またはその補正式を含む、請求項1または2の濃度測定装置。   The concentration measuring apparatus according to claim 1, wherein the plurality of types of arithmetic expressions include at least a theoretical expression of the optical system or a correction expression thereof. 前記複数種の演算式が、少なくとも、実験によって求められた経験式を含む、請求項1または2の濃度測定装置。   The concentration measuring apparatus according to claim 1, wherein the plurality of types of arithmetic expressions include at least an empirical expression obtained by an experiment. 被測定液の濁質成分の濃度を、被測定液中に向けて発光された光の拡散反射光を少なくとも2つの受光部で受光し、一方の受光信号を濃度検知主信号、他方の受光信号をその補正信号として、両受光信号を用いた重回帰式により演算することにより測定することを特徴とする濃度測定装置。   The concentration of the turbid component of the liquid to be measured is measured by at least two light-receiving units that receive diffusely reflected light emitted toward the liquid to be measured. One light reception signal is the concentration detection main signal and the other light reception signal. A concentration measuring apparatus characterized in that measurement is carried out by calculating a multiple regression equation using both received light signals as a correction signal. 前記重回帰式による演算結果と、前記被測定液に対して別途行われたJIS等に規定の方法による測定結果との相関が求められている、請求項6の濃度測定装置。   The concentration measurement apparatus according to claim 6, wherein a correlation between a calculation result obtained by the multiple regression equation and a measurement result obtained by a method prescribed in JIS or the like separately performed on the solution to be measured is obtained. 被測定液の濁質成分の濃度を、被測定液中に向けて発光された光の拡散反射光を少なくとも2つの受光部で受光し、一方の受光信号を濃度検知主信号、他方の受光信号をその補正信号として、両受光信号を用いて光学系の理論式またはその補正式により演算することにより測定することを特徴とする濃度測定装置。   The concentration of the turbid component of the liquid to be measured is measured by at least two light-receiving units that receive diffusely reflected light emitted toward the liquid to be measured. One light reception signal is the concentration detection main signal and the other light reception signal. As a correction signal, and using both received light signals, the density is measured by calculating according to a theoretical formula of the optical system or a correction formula thereof. 前記光学系の理論式またはその補正式による演算結果と、前記被測定液に対して別途行われたJIS等に規定の方法による測定結果との相関が求められている、請求項8の濃度測定装置。   9. The concentration measurement according to claim 8, wherein a correlation between a calculation result based on a theoretical formula of the optical system or a correction formula thereof and a measurement result according to a method prescribed in JIS or the like separately performed on the liquid to be measured is obtained. apparatus. 被測定液の濁質成分の濃度を、被測定液中に向けて発光された光の拡散反射光を少なくとも2つの受光部で受光し、一方の受光信号を濃度検知主信号、他方の受光信号をその補正信号として、両受光信号を用いて、実験によって求められた経験式により演算することにより測定することを特徴とする濃度測定装置。   The concentration of the turbid component of the liquid to be measured is measured by at least two light-receiving units that receive diffusely reflected light emitted toward the liquid to be measured. One light reception signal is the concentration detection main signal and the other light reception signal. A concentration measuring apparatus characterized in that, by using both received light signals as a correction signal, measurement is performed by an empirical formula obtained through experiments. 前記経験式による演算結果と、前記被測定液に対して別途行われたJIS等に規定の方法による測定結果との相関が求められている、請求項10の濃度測定装置。   The concentration measuring apparatus according to claim 10, wherein a correlation between a calculation result based on the empirical formula and a measurement result according to a method prescribed in JIS or the like separately performed on the liquid to be measured is obtained.
JP2003422817A 2003-12-19 2003-12-19 Concentration measuring apparatus Pending JP2005181120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422817A JP2005181120A (en) 2003-12-19 2003-12-19 Concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422817A JP2005181120A (en) 2003-12-19 2003-12-19 Concentration measuring apparatus

Publications (1)

Publication Number Publication Date
JP2005181120A true JP2005181120A (en) 2005-07-07

Family

ID=34783567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422817A Pending JP2005181120A (en) 2003-12-19 2003-12-19 Concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JP2005181120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531458A (en) * 2007-06-28 2010-09-24 ペリー・イクイップメント・コーポレイション System and method for remotely monitoring contaminants in a fluid
US8342003B2 (en) 2006-12-28 2013-01-01 Perry Equipment Corporation Systems and methods for measurement and analysis of pipeline contaminants
US8684028B2 (en) 2008-07-31 2014-04-01 Pecofacet (Us), Inc. Fuel quality traceable and remote system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8342003B2 (en) 2006-12-28 2013-01-01 Perry Equipment Corporation Systems and methods for measurement and analysis of pipeline contaminants
JP2010531458A (en) * 2007-06-28 2010-09-24 ペリー・イクイップメント・コーポレイション System and method for remotely monitoring contaminants in a fluid
US8684028B2 (en) 2008-07-31 2014-04-01 Pecofacet (Us), Inc. Fuel quality traceable and remote system

Similar Documents

Publication Publication Date Title
JPS61108948A (en) Method and device for detecting oil
JP2003194714A (en) Measuring apparatus for blood amount in living-body tissue
JP3192364B2 (en) Method and apparatus for recording the state of a moving suspension
EP0167272B1 (en) Particle size measuring apparatus
NO20004944D0 (en) Method and arrangement for measuring physico-chemical properties in liquids
US20140234984A1 (en) Optical measurement
JP2005181120A (en) Concentration measuring apparatus
Qipchaqova Basic errors of optical moisture meters
US8811569B2 (en) Method and apparatus for estimating the dry mass flow rate of a biological material
JP2004279339A (en) Concentration measuring instrument
JP6490918B2 (en) Protein amount measuring apparatus and measuring method
JPS6038654B2 (en) Suspended solids concentration and organic matter index measurement method in water and detection part of the measuring device
JP4709430B2 (en) Concentration measuring device
JP3021406B2 (en) Water quality measurement sensor and water quality measurement device
JPH01165936A (en) Detecting apparatus of concentration of suspended substance
JP3359743B2 (en) Biological measurement device
JP3101776B2 (en) Turbidity measuring device
JPH08327535A (en) Optical concentration measurement device
JPH05164679A (en) Calibration method of sludge densitometer
EP3690425B1 (en) Measurement device and measurement method for hematoctrit
Olsson et al. Improvements of an Embedded System for Measuring Supended Particles
JP2021124470A (en) Suspension concentration measuring device and suspension concentration measuring method
JP2821201B2 (en) Particle measurement method and device
LI et al. Measurement of Fat Concentration in Milk Using a Laser Sensor.
JPH0738841Y2 (en) Floating matter concentration measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060901

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Effective date: 20090217

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630