JP2005181006A - Measuring method of easily collapsible fine particles - Google Patents

Measuring method of easily collapsible fine particles Download PDF

Info

Publication number
JP2005181006A
JP2005181006A JP2003419663A JP2003419663A JP2005181006A JP 2005181006 A JP2005181006 A JP 2005181006A JP 2003419663 A JP2003419663 A JP 2003419663A JP 2003419663 A JP2003419663 A JP 2003419663A JP 2005181006 A JP2005181006 A JP 2005181006A
Authority
JP
Japan
Prior art keywords
particles
measurement
fine particle
fine particles
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003419663A
Other languages
Japanese (ja)
Inventor
Yuichi Nagahashi
雄一 長橋
Hidetoshi Nomoto
秀利 野元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003419663A priority Critical patent/JP2005181006A/en
Publication of JP2005181006A publication Critical patent/JP2005181006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of easily collapsible fine particles with a particle size of about 0.1-10 mm held in a wet state. <P>SOLUTION: A dispersing liquid 2 is added to a fine particle group 1 to disperse the fine particle group having coagulable properties in a wet state. Further, the fine particle group dispersed so that the fine particles 1a are arranged on a measuring plate 10 in a one-layer state to measure the respective particles of the fine particle group on the basis of imaging data. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微細粒子を測定する方法に関し、特に、直径0.1mm前後から10mm程度の大きさで濡れた状態にある寒天等にてなる易崩壊性粒子を測定する方法に関する。   The present invention relates to a method for measuring fine particles, and more particularly to a method for measuring easily disintegrating particles made of agar or the like in a wet state with a diameter of about 0.1 mm to about 10 mm.

濡れた状態の粒状体の寸法、形状、個数等を測定する方法として、多重ノズルの下方に光電センサ機構を配置し、上記多重ノズルから液中へ噴出され落下してくる、芯液及び皮膜液にて形成されたカプセルが遮光するのを上記光電センサ機構にて検出し、その遮光時間及び遮光回数から上記カプセルの寸法及び個数を測定する方法がある(例えば、特許文献1参照)。   As a method for measuring the size, shape, number, etc. of wet granular materials, a photoelectric sensor mechanism is arranged below the multiple nozzle, and the core liquid and coating liquid are ejected from the multiple nozzle into the liquid and dropped. There is a method of detecting the light shielding of the capsule formed by the above-mentioned photoelectric sensor mechanism and measuring the size and number of the capsules from the light shielding time and the number of times of light shielding (for example, see Patent Document 1).

また、乾いた状態の粒状体における粒度や形状等を求める方法としては、平坦面上に粒状体を分散させた後、該粒状体を撮像して得られる画像データを画像処理することで上記粒度を求める方法がある(例えば、特許文献2参照)。
特開平4−322740号公報 特開2003−130785号公報
Further, as a method for obtaining the particle size, shape, etc. in the dry granular material, the particle size is dispersed by dispersing the granular material on a flat surface, and then image processing is performed on image data obtained by imaging the granular material. (For example, refer to Patent Document 2).
JP-A-4-322740 JP 2003-130785 A

しかしながら、上記特許文献1に記載の測定方法では、正確なデータを得るためには、最低、約1000個の粒子について測定する必要がある。また、一測定につき1個の粒子しか測定できないことから、上記個数を測定するには長時間を要するという問題がある。
また、上記特許文献2に記載の方法では、上記平坦面上に粒状体が複数層状に重なり合って配置されているときには、各層における粒状体と、撮像を行うカメラとの距離が異なり合焦が困難であり正確な画像データが得られない。よって、上記粒状体を上記平坦面上に一層に分散させなければならないという問題がある。
However, in the measurement method described in Patent Document 1, it is necessary to measure at least about 1000 particles in order to obtain accurate data. Further, since only one particle can be measured per measurement, there is a problem that it takes a long time to measure the number.
In the method described in Patent Document 2, when the granular material is arranged in a plurality of layers on the flat surface, the distance between the granular material in each layer and the camera that performs imaging is different and focusing is difficult. Therefore, accurate image data cannot be obtained. Therefore, there is a problem that the granular material must be dispersed on the flat surface.

さらに、上記特許文献2の方法を濡れた粒子に適用しようとした場合、濡れた粒子は、液体の表面張力等で互いに凝集することから、平坦面上にて一層に分散させることはさらに困難となる。また、スキージ等を用いて粒状体を一層にならすことも考えられるが、易崩壊性の粒状体にあっては、スキージングにより粒子がつぶれてしまうことから、一層にならすことは非常に困難である。   Further, when the method of Patent Document 2 is applied to wet particles, the wet particles aggregate with each other due to the surface tension of the liquid, and thus it is more difficult to further disperse on the flat surface. Become. In addition, it is conceivable to use a squeegee or the like to make the granular material one layer, but in the case of an easily disintegrating granular material, the particles are crushed by squeezing, so it is very difficult to make it even further. is there.

さらに、一般に微細粒子の測定方法として、レーザー光線を用いて解析することにより粒子径を測定する方法がある。しかしながら、該測定方法は、極微細粒子の測定に限られており、特に粒子径が0.1mm以上の粒子を高精度で測定することはできない。   Furthermore, as a method for measuring fine particles, there is generally a method for measuring the particle size by analyzing using a laser beam. However, the measurement method is limited to the measurement of ultrafine particles, and in particular, particles having a particle diameter of 0.1 mm or more cannot be measured with high accuracy.

本発明は、上述したような問題点を解決するためになされたもので、濡れた状態にあり粒径が約0.1mmから10mm程度で易崩壊性の微細粒子を測定する微細粒子測定方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and provides a fine particle measurement method for measuring fine particles which are wet and have a particle size of about 0.1 mm to about 10 mm and are easily disintegratable. The purpose is to provide.

上記目的を達成するため、本発明は、以下のように構成する。
即ち、本発明の第1態様の易崩壊性微細粒子測定方法によれば、易崩壊性でかつ濡れた微細粒子群に分散用液を加えた被測定物を測定用板に載せ、
上記微細粒子群の各粒子が上記測定用板上で一層に配置されるように上記微細粒子群を上記分散用液に分散させ、
分散した上記微細粒子群を撮像し、該撮像データに基づいて上記粒子の測定を行うこと特徴とする。
In order to achieve the above object, the present invention is configured as follows.
That is, according to the easily disintegratable fine particle measuring method of the first aspect of the present invention, a measurement object obtained by adding a dispersion liquid to a disintegratable and wet fine particle group is placed on a measurement plate,
Dispersing the fine particle group in the dispersion liquid so that each particle of the fine particle group is arranged in a layer on the measurement plate,
The dispersed fine particle group is imaged, and the particles are measured based on the imaging data.

また、本発明の第2態様の易崩壊性微細粒子測定方法によれば、上記微細粒子群の重量に対して上記分散用液の重量が0.4倍以上となるように、上記分散用液を上記微細粒子群に加え、かつ上記測定用板に載せた上記被測定物の周縁部における上記測定用板と当該被測定物との接触角が40度以下となるように、上記分散用液における上記微細粒子群の分散を行う。   Further, according to the easily disintegratable fine particle measuring method of the second aspect of the present invention, the dispersion liquid is adjusted so that the weight of the dispersion liquid is 0.4 times or more with respect to the weight of the fine particle group. And the dispersion liquid so that the contact angle between the measurement plate and the measurement object at the peripheral edge of the measurement object placed on the measurement plate is 40 degrees or less. The above fine particle group is dispersed.

また、本発明の第3態様の易崩壊性微細粒子測定方法によれば、上記分散用液は、上記接触角を40度以下とする界面活性剤を含む。   Moreover, according to the easily disintegrating fine particle measuring method of the third aspect of the present invention, the dispersion liquid contains a surfactant having a contact angle of 40 degrees or less.

また、本発明の第4態様の易崩壊性微細粒子測定方法によれば、上記測定用板上にて上記各粒子を一層に配置するため、上記測定用板上に載せられた上記被測定物に対して振動又は揺動を与える。   In addition, according to the easily disintegratable fine particle measuring method of the fourth aspect of the present invention, the object to be measured placed on the measuring plate is disposed on the measuring plate in order to arrange the particles in a single layer. Vibration or rocking is given to.

また、本発明の第5態様の易崩壊性微細粒子測定方法によれば、上記粒子は、ハイドロゲルである。   Moreover, according to the easily disintegratable fine particle measuring method of the fifth aspect of the present invention, the particles are hydrogel.

また、本発明の第6態様の易崩壊性微細粒子測定方法によれば、上記粒子の粒径は、下限は0.1mm、上限は10mmである。   Moreover, according to the easily disintegratable fine particle measuring method of the sixth aspect of the present invention, the lower limit of the particle diameter of the particles is 0.1 mm, and the upper limit is 10 mm.

上述の測定方法によれば、微細粒子群に分散用液を加えることで、凝集性のある濡れた状態の微細粒子群を分散させることができ、さらに測定用板上で一層に配置されるように分散させることで、撮像データに基づいて上記微細粒子群の各粒子の測定を行うことができる。また、上記分散用液の付加により微細粒子群の分散を図ることから、スキージ等を用いて微細粒子群を一層化する必要はないことから、容易に潰れる易崩壊性の微細粒子に対しても測定が可能となる。   According to the measurement method described above, by adding the dispersion liquid to the fine particle group, the coherent wet fine particle group can be dispersed, and further arranged on the measurement plate in one layer. It is possible to measure each particle of the fine particle group based on the imaging data. In addition, since the dispersion of the fine particle group is achieved by adding the above-described dispersion liquid, it is not necessary to further divide the fine particle group using a squeegee or the like. Measurement is possible.

本発明の実施形態である微細粒子の測定方法について、図を参照しながら以下に説明する。尚、各図は本発明の微細粒子の測定方法の1つの例であり、各図において同じ構成部分については同じ符号を付している。   A method for measuring fine particles according to an embodiment of the present invention will be described below with reference to the drawings. Each figure is one example of the method for measuring fine particles of the present invention, and the same reference numerals are given to the same components in each figure.

本実施形態の測定方法は、崩れやすくかつ濡れた状態の粒状体であって濡れていることに起因して粒子同士が凝集し易い粒状体の測定、具体的には例えば粒子数の計数、粒径測定、粒度測定、粒子の大きさや寸法や形状の測定、粒子表面性状の測定等に適している。上記粒状体としては、圧縮破断強度が2〜500kPaのものをいい、具体的には寒天やゼラチン類等を使用して作製される直径が0.1mmから10mmまで、特には0.3mmから5mmのハイドロゲル粒子である。このようなハイドロゲル粒子は、例えば化粧品等における粘性液体内に混入される。   The measurement method of the present embodiment is a measurement of a granular material that is easily collapsed and wet and is likely to aggregate particles due to being wet. Specifically, for example, counting the number of particles, Suitable for diameter measurement, particle size measurement, particle size, size and shape measurement, particle surface property measurement and the like. The granular material has a compressive breaking strength of 2 to 500 kPa. Specifically, the diameter produced using agar or gelatin is 0.1 mm to 10 mm, particularly 0.3 mm to 5 mm. This is a hydrogel particle. Such hydrogel particles are mixed in a viscous liquid in, for example, cosmetics.

上述のように測定対象である粒状体は凝集性が高いことから、本実施形態の測定方法における特徴点は、易崩壊性で凝集性の高い微細粒子群を一層に分散させることであり、本実施形態では上記微細粒子群に分散用液を加えることで上記分散を図っている。上記分散用液としては、水よりも表面張力の低い液体を使用するのが好ましく、例えばエタノールや、界面活性剤を含む例えば洗浄溶液等が適している。微細粒子群に対する上記分散用液の添加割合は、微細粒子群の分散を容易にするという観点より、微細粒子群の重量に対する分散用液の重量が0.4倍以上であるのが好ましく、さらには0.5倍以上がより好ましい。   As described above, since the granular material to be measured has high cohesiveness, the feature point in the measurement method of the present embodiment is to further disperse fine particle groups that are easily disintegratable and highly cohesive. In the embodiment, the dispersion is achieved by adding a dispersion liquid to the fine particle group. As the dispersion liquid, a liquid having a surface tension lower than that of water is preferably used. For example, ethanol or a cleaning solution containing a surfactant is suitable. The addition ratio of the dispersion liquid to the fine particle group is preferably 0.4 times or more by weight of the dispersion liquid with respect to the weight of the fine particle group, from the viewpoint of facilitating the dispersion of the fine particle group. Is more preferably 0.5 times or more.

一方、図4に示すように、複数の微細粒子1aにてなる微細粒子群1に分散用液2を加えた被測定物3が測定用板10に載せられ、後述するように、該被測定物3を撮像することで微細粒子1aの測定が行われる。よって、該撮像動作を良好に行う観点から、上記重量比には上限がある。即ち、例えばシャーレのような有限領域に微細粒子群1を入れ分散用液2を加えて測定を行う場合、上記シャーレの底板の厚み方向において微細粒子群1の直径を過剰に超えて分散用液2が存在するとき、つまり分散用液2内に微細粒子群1が完全に浸漬しているときには、微細粒子の浮遊がおきる場合があり、上記撮像時において微細粒子1aへの合焦動作が難しくなり、適切な撮像情報が得られないことが懸念される。したがって、重量比が0.4倍以上であり、かつ、図5に示すように、測定用板10の厚み方向11において、微細粒子1aの直径D以下の深さとなるような量にて、分散用液2を加えるのが好ましい。   On the other hand, as shown in FIG. 4, a measurement object 3 in which a dispersion liquid 2 is added to a fine particle group 1 made up of a plurality of fine particles 1a is placed on a measurement plate 10 and, as will be described later, the measurement object. The fine particles 1a are measured by imaging the object 3. Therefore, the weight ratio has an upper limit from the viewpoint of performing the imaging operation satisfactorily. That is, for example, when the fine particle group 1 is placed in a finite region such as a petri dish and the dispersion liquid 2 is added for measurement, the dispersion liquid exceeds the diameter of the fine particle group 1 in the thickness direction of the bottom plate of the petri dish. When 2 is present, that is, when the fine particle group 1 is completely immersed in the dispersion liquid 2, fine particles may float, and it is difficult to focus on the fine particles 1a during the imaging. Therefore, there is a concern that appropriate imaging information cannot be obtained. Accordingly, the weight ratio is 0.4 times or more, and as shown in FIG. 5, the dispersion is performed in such an amount that the depth in the thickness direction 11 of the measurement plate 10 is not more than the diameter D of the fine particles 1a. It is preferable to add the working solution 2.

また、図4に示すように、被測定物3を測定用板10に載せたとき、該被測定物3の周縁部3aにおける被測定物3の液面3bに対する接線と、被測定物3に接触する測定用板10の表面10aとのなす接触角θが40度以下となるように、微細粒子群1に対して分散用液2を加えるのが良い。上記重量比を0.4倍とし、さらに上記接触角θを40度以下とすることで、微細粒子群1を分散させ、かつ被測定板10の厚み方向11において各微細粒子1aが重ならず一層に配置することが可能となる。尚、有限領域内に被測定物3を設ける場合には、さらに上述の「微細粒子1aの直径D以下の深さ」の条件が付加される。   As shown in FIG. 4, when the measurement object 3 is placed on the measurement plate 10, the tangent to the liquid surface 3 b of the measurement object 3 in the peripheral portion 3 a of the measurement object 3 and the measurement object 3 It is preferable to add the dispersion liquid 2 to the fine particle group 1 so that the contact angle θ formed with the surface 10a of the measurement plate 10 in contact is 40 degrees or less. By making the weight ratio 0.4 times and further making the contact angle θ 40 degrees or less, the fine particle group 1 is dispersed, and the fine particles 1a do not overlap in the thickness direction 11 of the plate 10 to be measured. It becomes possible to arrange in one layer. In the case where the DUT 3 is provided in a finite region, the above-mentioned condition “depth equal to or smaller than the diameter D of the fine particles 1a” is further added.

上記接触角θを40度以下とするためには、上述のように分散用液として、水よりも表面張力の低い液体を使用することで達成でき、例えば水に界面活性剤を添加することで達成可能である。   In order to set the contact angle θ to 40 degrees or less, it can be achieved by using a liquid having a surface tension lower than that of water as a dispersion liquid as described above. For example, by adding a surfactant to water. Achievable.

なお、後述するように測定用板10に載せられた被測定物3は、撮像カメラにて撮像されることから、測定用板10は、透光性の材料にてなるのが好ましく、例えばガラスが好ましい。さらにまた、微細粒子群1の分散を容易とし微細粒子1aを一層に配置するため、被測定物3を載せた測定用板10に振動や揺動を加えるのが好ましい。   As will be described later, the object to be measured 3 placed on the measurement plate 10 is imaged by an imaging camera. Therefore, the measurement plate 10 is preferably made of a translucent material, for example, glass. Is preferred. Furthermore, in order to facilitate the dispersion of the fine particle group 1 and arrange the fine particles 1a in a single layer, it is preferable to apply vibration or swing to the measurement plate 10 on which the object to be measured 3 is placed.

上述のように測定用板10に載せられた被測定物3に対して測定を行う測定装置について以下に説明する。尚、被測定物3は、予め上述した条件にて分散用液2が微細粒子群1に加えられ、微細粒子群1は各微細粒子1aが一層に分散された状態となっている。
図1に示すように、上記測定装置100は、上記被測定物3が載せられた平坦な測定用板10を載置する載置部110と、該載置部110に載置された測定用板10の上方に配置され被測定物3を撮像する撮像カメラ120と、該撮像カメラ120に接続され撮像カメラ120から送出される撮像データに基づいて微細粒子1aの測定を行う解析装置130とを備える。
A measurement apparatus that performs measurement on the DUT 3 placed on the measurement plate 10 as described above will be described below. In the measurement object 3, the dispersion liquid 2 is added to the fine particle group 1 in advance under the above-described conditions, and the fine particle group 1 is in a state where each fine particle 1a is further dispersed.
As shown in FIG. 1, the measurement apparatus 100 includes a placement unit 110 on which a flat measurement plate 10 on which the measurement object 3 is placed and a measurement unit placed on the placement unit 110. An imaging camera 120 that is disposed above the plate 10 and images the object to be measured 3, and an analysis device 130 that is connected to the imaging camera 120 and measures the fine particles 1 a based on imaging data transmitted from the imaging camera 120. Prepare.

上記載置部110には、上記測定用板10を載置する板状光源を有する照明装置111が備わる。該照明装置111は、測定用板10の上記表面10aに対向する裏面10b側から投光し、該撮影光を測定用板10及び被測定物3を通して撮像カメラ120へ供給する。このように、透過光により撮像することで、微細粒子1a自体の色の影響が少なく、微細粒子1aの陰影を際立たせた撮像データを得ることができ、画像処理時の粒子抽出精度が向上する。また、板状光源とすることで構成の簡素化が図れる。該板状光源としては、撮影領域を実用上均一に照射することが可能なものであれば特に限定されず、LED光源、コールドランプ用ユニット、上面に拡散板を使用した蛍光灯ボックスなどを使用できる。LED光源が均一照射、装置簡素化の面で好ましい。   The placement unit 110 includes an illumination device 111 having a plate-like light source on which the measurement plate 10 is placed. The illumination device 111 projects light from the back surface 10 b side facing the front surface 10 a of the measurement plate 10, and supplies the imaging light to the imaging camera 120 through the measurement plate 10 and the object to be measured 3. In this way, by imaging with transmitted light, the influence of the color of the fine particles 1a is small, and it is possible to obtain imaging data that highlights the shadow of the fine particles 1a, and the particle extraction accuracy during image processing is improved. . In addition, the configuration can be simplified by using a plate-like light source. The plate-shaped light source is not particularly limited as long as it can irradiate the photographing region uniformly in practice, and an LED light source, a unit for cold lamp, a fluorescent light box using a diffusion plate on the upper surface, etc. are used. it can. An LED light source is preferable in terms of uniform irradiation and device simplification.

上記撮像カメラ120は、CCDカメラが好ましいが、TVカメラ、顕微鏡等を用いることもできる。   The imaging camera 120 is preferably a CCD camera, but a TV camera, a microscope, or the like can also be used.

上記解析装置130は、例えばパーソナルコンピュータを用いることができ、汎用の画像解析ソフトウエア、及び粒度等を計算するための汎用の表計算ソフトウエアをインストールしている。よって、該解析装置130は、撮像カメラ120からの図2に示す撮像データ121を記憶し、該撮像データ121の2値化処理及びノイズ除去処理を行い、画像処理データ122を得る。そして、解析装置130は、該画像処理データ122に基づいて、例えば以下のような各測定処理を行う。即ち、微細粒子1aの形状識別及び計数を行い、各微細粒子1aの2次元平面への投影画像の面積、周囲長、粒径を求め、さらに求めた投影データを記憶する。さらに、上記投影データから微細粒子1aの粒度を表す評価情報を求める。例えば、解析装置130は、任意に定めた微細粒子1aの周囲長範囲毎に存在する微細粒子1aの数を集計することで粒度分布を求める。また、解析装置130は、上記投影データと、各微細粒子1aに共通の既知の寸法である形状パラメータとから、各微細粒子1aの形状特性を表す評価情報を求める。   For example, a personal computer can be used as the analysis device 130, and general-purpose image analysis software and general-purpose spreadsheet software for calculating the granularity and the like are installed. Therefore, the analysis device 130 stores the imaging data 121 shown in FIG. 2 from the imaging camera 120, performs binarization processing and noise removal processing on the imaging data 121, and obtains image processing data 122. Based on the image processing data 122, the analysis device 130 performs, for example, the following measurement processes. That is, the shape identification and counting of the fine particles 1a are performed, the area, perimeter length, and particle size of the projection image of each fine particle 1a on the two-dimensional plane are obtained, and the obtained projection data is stored. Further, evaluation information representing the particle size of the fine particles 1a is obtained from the projection data. For example, the analysis device 130 obtains the particle size distribution by counting the number of fine particles 1a present for each peripheral length range of the arbitrarily defined fine particles 1a. Moreover, the analysis apparatus 130 calculates | requires the evaluation information showing the shape characteristic of each fine particle 1a from the said projection data and the shape parameter which is a known dimension common to each fine particle 1a.

以上説明した測定装置100によれば、被測定物3について、微細粒子群1における各微細粒子1aは、上述したように予め分散用液2により、一層に分散された状態となっていることから、撮像カメラ120による合焦動作も容易に行うことができ、さらに撮像カメラ120へ供給される撮像データにおいて、測定用板10の厚み方向11に複数の微細粒子1aが重なり合った状態ではないので、個々の微細粒子1aを明瞭に認識することができる。したがって、微細粒子1aの個数、粒径、粒度分布、及び形状を正確に求めることができる。また、各微細粒子1aは、上述したように予め分散用液2により、一層に分散された状態となっていることから、スキージ等を用いて一層に配列させる必要もない。よって、容易に潰れ易い崩壊性の粒子、例えばハイドロゲル粒子の測定を行う場合でも、粒子を潰すことなく測定が可能であり、上述の個数及び粒度分布等を正確に求めることができる。   According to the measuring apparatus 100 described above, the fine particles 1a in the fine particle group 1 of the measurement object 3 are in a state of being further dispersed in advance by the dispersion liquid 2 as described above. In addition, since the focusing operation by the imaging camera 120 can be easily performed, and the imaging data supplied to the imaging camera 120 is not in a state in which the plurality of fine particles 1a overlap in the thickness direction 11 of the measurement plate 10, Individual fine particles 1a can be clearly recognized. Therefore, the number, particle size, particle size distribution, and shape of the fine particles 1a can be accurately obtained. In addition, since each fine particle 1a is in a state of being further dispersed by the dispersion liquid 2 in advance as described above, it is not necessary to arrange it further using a squeegee or the like. Therefore, even when measuring collapsible particles that are easily crushed, for example, hydrogel particles, measurement can be performed without crushing the particles, and the above-described number and particle size distribution can be accurately obtained.

また、上述のように微細粒子群1を分散し一層に配置した状態における撮像データが得られることから、該画像データに基づいて上述の粒子個数計測、粒径測定等の微細粒子1aの物性に関する測定の他にも、以下のような測定も可能となる。例えば、複数の微細粒子1aが結合した状態の有無を判断したり、上述のように微細粒子1aの大きさ、寸法、形状等が測定可能であることから、所望範囲内の大きさ等を有する微細粒子1aの全体に対する割合を求めたり、微細粒子1aの表面性状を測定したり、さらには微細粒子1aを作製する微細粒子作製装置に対して上述の測定結果をフィードバックし、微細粒子1aの作製条件をより適切化したりすることも可能である。尚、上記撮像データを参照して実行する測定動作は、画像解析を行うソフトウエアにより実行されることから、画像解析ソフトウエアを選択することで測定対象は変更可能である。よって、測定対象は、上述の項目に限定されるものではない。   Further, since the imaging data in a state where the fine particle group 1 is dispersed and arranged in one layer as described above can be obtained, the physical properties of the fine particles 1a such as the above-mentioned particle number measurement and particle size measurement based on the image data are obtained. In addition to the measurement, the following measurement is also possible. For example, it is possible to determine the presence / absence of a state in which a plurality of fine particles 1a are combined, or to measure the size, size, shape, etc. of the fine particles 1a as described above. The ratio of the fine particles 1a to the whole is obtained, the surface properties of the fine particles 1a are measured, and the above measurement results are fed back to the fine particle production apparatus for producing the fine particles 1a to produce the fine particles 1a. It is also possible to make the conditions more appropriate. The measurement operation executed with reference to the imaging data is executed by software that performs image analysis. Therefore, the measurement target can be changed by selecting the image analysis software. Therefore, the measurement object is not limited to the above items.

次に、図3を参照して、上述の測定装置100を備えた測定システム150について以下に説明する。   Next, with reference to FIG. 3, a measurement system 150 including the above-described measurement apparatus 100 will be described below.

該測定システム150は、測定装置100の他に、サンプルストッカ160、分散用液タンク170、分散装置180、及び制御装置190を備える。   The measurement system 150 includes a sample stocker 160, a dispersion liquid tank 170, a dispersion device 180, and a control device 190 in addition to the measurement device 100.

上記サンプルストッカ160は、上記微細粒子群1を貯留する部分であり、サンプルストッカ160には、他装置とは関係なく単独にて上記微細粒子群1が供給され、又は別設の微細粒子作製装置200から供給される。分散用液タンク170は、上述の分散用液2を貯留するタンクであり、ポンプ171を介して適正量の分散用液2がサンプルストッカ160へ供給される。分散用液2の供給量は、サンプルストッカ160に供給される微細粒子群1の重量に対して上述の比率に基づいて制御装置190にて求められ、求まった適正量の分散用液2が供給されるように、制御装置190はポンプ171を駆動する。尚、分散用液2の供給量は、上記重量比のみならず、上記「接触角θを40度以下」、さらには上記「微細粒子1aの直径D以下の深さ」の各条件を考慮して決定することもできる。   The sample stocker 160 is a part for storing the fine particle group 1, and the fine particle group 1 is supplied to the sample stocker 160 independently of other devices, or a separate fine particle production apparatus. 200. The dispersion liquid tank 170 is a tank that stores the dispersion liquid 2 described above, and an appropriate amount of the dispersion liquid 2 is supplied to the sample stocker 160 via the pump 171. The supply amount of the dispersion liquid 2 is obtained by the control device 190 based on the above-mentioned ratio with respect to the weight of the fine particle group 1 supplied to the sample stocker 160, and the appropriate amount of the dispersion liquid 2 obtained is supplied. As described above, the control device 190 drives the pump 171. Note that the supply amount of the dispersion liquid 2 is not limited to the above weight ratio, but also takes into consideration the above-mentioned conditions of “contact angle θ of 40 degrees or less” and further “depth of diameter D or less of fine particles 1a”. Can also be determined.

分散装置180は、微細粒子群1に適正量の分散用液2が加えられた被測定物3に対して微細粒子群1を分散させる装置であり、一端部近傍に上記サンプルストッカ160が配置され、他端部近傍には上述の測定装置100に備わる測定用板10が配置される。本実施形態では、分散装置180は、振動フィーダ又は揺動機能付のコンベアにて構成される。よって、サンプルストッカ160から上記一端部に供給された被測定物3は、微細粒子群1が振動等により分散されながら上記他端部へ移動され、測定用板10の表面10aへ供給される。測定用板10へ供給された被測定物3は、微細粒子群1が上記振動等により十分に分散されており、上記表面10aでは微細粒子1が一層の状態となっている。なお、分散装置180の動作も制御装置190にて制御される。   The dispersing device 180 is a device that disperses the fine particle group 1 in the measurement object 3 in which an appropriate amount of the dispersion liquid 2 is added to the fine particle group 1, and the sample stocker 160 is disposed in the vicinity of one end. In the vicinity of the other end, the measuring plate 10 provided in the measuring apparatus 100 is disposed. In the present embodiment, the dispersion device 180 is configured by a vibration feeder or a conveyor with a swing function. Therefore, the DUT 3 supplied from the sample stocker 160 to the one end is moved to the other end while the fine particle group 1 is dispersed by vibration or the like, and supplied to the surface 10 a of the measurement plate 10. In the object to be measured 3 supplied to the measurement plate 10, the fine particle group 1 is sufficiently dispersed by the vibration or the like, and the fine particle 1 is in a single layer state on the surface 10a. The operation of the distribution device 180 is also controlled by the control device 190.

測定用板10に被測定物3が供給された後、測定装置100は、上述したように、被測定物3の撮像、撮像データの保存、画像処理、微細粒子1aの測定、測定データの記録等を実行する。   After the measurement object 3 is supplied to the measurement plate 10, the measurement apparatus 100 captures the measurement object 3, stores the image data, performs image processing, measures the fine particles 1a, and records the measurement data, as described above. Etc.

上記測定用板10に供給された被測定物3は、サンプル受185へ自然に移動し排出されるように、測定用板10は、傾斜しているか、又は排出時に傾斜するように構成されているのが好ましい。尚、サンプル受185に供給された被測定物3は、微細粒子1を含有する製品の製造工程へ戻すことも可能である。   The measurement plate 10 is inclined or configured to be inclined at the time of discharge so that the DUT 3 supplied to the measurement plate 10 is naturally moved to the sample receiver 185 and discharged. It is preferable. Note that the DUT 3 supplied to the sample receiver 185 can be returned to the manufacturing process of the product containing the fine particles 1.

以上説明したように、本測定システム150によれば、被測定物3を自動的に作製し、さらに微細粒子群1の分散も自動的に行うことができることから、微細粒子1aの測定及びそのデータ取得を非常に容易に行うことが可能となる。   As described above, according to the present measurement system 150, the object to be measured 3 can be automatically produced, and further, the fine particle group 1 can be automatically dispersed. Acquisition can be performed very easily.

なお、上述の測定システム150では、分散用液タンク170を備え、サンプルストッカ160にて被測定物3を作製したが、該装置構成に限定されず、予め分散用液2を加えて作製した被測定物3を分散装置180へ供給するようにしてもよい。   Although the measurement system 150 includes the dispersion liquid tank 170 and the measurement object 3 is produced by the sample stocker 160, the measurement object 150 is not limited to the configuration of the apparatus, and the measurement object prepared by adding the dispersion liquid 2 in advance. The measurement object 3 may be supplied to the dispersion device 180.

(微細粒子の製造)
イオン交換水に0.5重量%の寒天(伊那食品工業株式会社製、商品名:T−1)、0.3重量%のパラオキシ安息香酸メチル、0.3重量%のポリオキシエチレンラウリルエーテルリン酸ナトリウム(花王株式会社製、商品名:SPE104NB)を加え、80℃に加熱し溶解した。該溶液を10ml/minの流量で口径1.2mmのノズルから10℃に冷却したオイル(メチルポリシロキサン:信越化学工業株式会社製、商品名:シリコーンKF−96A(20CS))中に吐出させ、固液分離後、粒子表面のオイルを水洗いにより除去し、ハイドロゲル粒子を得た。
(Manufacture of fine particles)
0.5% by weight agar (trade name: T-1 manufactured by Ina Food Industry Co., Ltd.), 0.3% by weight methyl paraoxybenzoate, 0.3% by weight polyoxyethylene lauryl ether phosphorus in ion-exchanged water Sodium acid (trade name: SPE104NB, manufactured by Kao Corporation) was added and dissolved by heating to 80 ° C. The solution was discharged at a flow rate of 10 ml / min into an oil (methylpolysiloxane: manufactured by Shin-Etsu Chemical Co., Ltd., trade name: Silicone KF-96A (20CS)) cooled to 10 ° C. from a nozzle having a diameter of 1.2 mm. After solid-liquid separation, the oil on the particle surface was removed by washing with water to obtain hydrogel particles.

(分散溶液)
以下の2種類の分散溶液を用いた。
A:イオン交換水
市販のイオン交換水(表面張力73mN/m)をそのまま用いた。
B:活性剤混合液
アルキルエーテル硫酸エステルナトリウム0.2重量%水溶液(花王株式会社製、商品名:ファミリーフレッシュ0.63gに水60.58gを加えたもの)を用いた。
(Dispersion solution)
The following two types of dispersion solutions were used.
A: Ion exchange water Commercial ion exchange water (surface tension 73 mN / m) was used as it was.
B: Activator mixed solution A 0.2% by weight aqueous solution of alkyl ether sulfate sodium (trade name: Family Fresh 0.63 g, water 60.58 g added) was used.

(測定用板)
測定用板としては、市販のアクリル板及びガラス板を用いた。
(Measurement plate)
A commercially available acrylic plate and glass plate were used as the measurement plate.

(実施例1)
上記方法により得られたハイドロゲル粒子を約0.65g採取し、測定板上に多層が重なるように配置し、分散溶液としてイオン交換水及び活性剤混合液(アルキルエーテル硫酸エステルナトリウム0.2重量%水溶液)を用い、ハイドロゲル粒子に対し0.1重量倍から1.0重量倍に相当する量の分散溶液を加えた。その後、測定用板を水平方向に20往復させ、分散状態を観察した。また、測定板と分散溶液との接触角を測定した。結果を表1に示す。表1において「×」は微細粒子が分散せず、一層配置にならなかったもの、「△」は微細粒子の一部が一層配置にならずに残ったもの、「○」はすべての微細粒子が一層配置になったことを表す。
(Example 1)
About 0.65 g of the hydrogel particles obtained by the above method were collected, arranged so that the multilayers overlapped on the measurement plate, and ion-exchanged water and an activator mixture (sodium alkyl ether sulfate 0.2 wt. % Aqueous solution) was added to the hydrogel particles in an amount corresponding to 0.1 to 1.0 times by weight. Thereafter, the measurement plate was reciprocated 20 times in the horizontal direction, and the dispersion state was observed. Further, the contact angle between the measurement plate and the dispersion solution was measured. The results are shown in Table 1. In Table 1, “x” indicates that fine particles are not dispersed and one layer is not arranged, “Δ” indicates that a part of fine particles remain without being arranged in one layer, and “◯” indicates all fine particles. Indicates that one layer is arranged.

Figure 2005181006
Figure 2005181006

分散用液としてイオン交換水を用い、測定用板としてアクリル板を用いたものは、液の接触角が72°であり、液量にかかわらず凝集し、多層配置のままであり、一層配置とすることができなかった。一方、分散用液としてイオン交換水を用い、測定用板としてガラス板を用いたものは、液の接触角が35°であり、50重量%以上の液量の場合に全ての微細粒子を一層配置とすることができた。分散用液として活性剤混合液を用い、測定用板としてアクリル板を用いたものは、液の接触角が12°であり、50重量%以上の液量の場合に全ての微細粒子が一層配置になった。分散用液として活性剤混合液を用い、測定用板としてガラス板を用いたものは、液の接触角が8°であり、50重量%以上の液量の場合に全ての微細粒子が一層配置になった。   In the case of using ion-exchanged water as a dispersion liquid and using an acrylic plate as a measurement plate, the contact angle of the liquid is 72 °, agglomerates regardless of the amount of the liquid, remains in a multi-layer arrangement, I couldn't. On the other hand, in the case of using ion-exchanged water as a dispersion liquid and a glass plate as a measurement plate, the contact angle of the liquid is 35 °, and all fine particles are further removed when the liquid amount is 50% by weight or more. Could be arranged. In the case of using an active agent mixture as a dispersion liquid and an acrylic plate as a measurement plate, the contact angle of the liquid is 12 °, and all fine particles are arranged in one layer when the liquid amount is 50% by weight or more. Became. In the case of using an active agent mixture as a dispersion liquid and a glass plate as a measurement plate, the contact angle of the liquid is 8 °, and all fine particles are arranged in a single layer when the liquid amount is 50% by weight or more. Became.

(実施例2)
測定用板上で一層配置されたハイドロゲル粒子を撮影し画像解析を試みた。先ず、上記実施例1で一層配置できる条件でハイドロゲル粒子を分散させた。すなわち、上記微細粒子の製造法にて得られたハイドロゲル粒子を1.67gとってアクリル板上に置き、微細粒子に対する分散用液の重量比を0.5倍となるよう0.84gの上記活性剤混合液を加えた。アクリル板と活性剤混合液のなす接触角は12°であった。その後、測定用板を水平方向に20往復揺動させ状態を観察した。揺動前の状態を図6に、揺動後の状態を図7に示す。微細粒子は20往復揺動後に単層配置されていた。この状態で画像解析用に撮像した写真を図8に示す。
(Example 2)
The hydrogel particles arranged in a single layer on the measurement plate were photographed and image analysis was attempted. First, hydrogel particles were dispersed under the conditions that can be arranged in one layer in Example 1 above. That is, 1.67 g of the hydrogel particles obtained by the method for producing fine particles is placed on an acrylic plate, and 0.84 g of the above is added so that the weight ratio of the dispersion liquid to the fine particles is 0.5 times. The activator mixture was added. The contact angle between the acrylic plate and the activator mixture was 12 °. Thereafter, the measurement plate was swung back and forth 20 times in the horizontal direction, and the state was observed. FIG. 6 shows a state before swinging, and FIG. 7 shows a state after swinging. The fine particles were arranged in a single layer after 20 reciprocating oscillations. A photograph taken for image analysis in this state is shown in FIG.

図8の写真を用いて画像解析ソフト「WinROOF」(商品名、三谷商事株式会社製)にて粒度分布の解析を行ったところ、視野中の粒子として1650個が独立した粒子として分離計測することが可能であった。   When the particle size distribution was analyzed with the image analysis software “WinROOF” (trade name, manufactured by Mitani Corporation) using the photograph of FIG. 8, 1650 particles in the field of view were separated and measured as independent particles. Was possible.

(比較例)
測定用板上で一層配置されていないハイドロゲル粒子を撮影し画像解析を試みた。先ず、上記実施例1で一層配置とならない条件でハイドロゲル粒子を分散させた。すなわち、上記「微細粒子の製造法」にて得られたハイドロゲル粒子を1.36gとってアクリル板上に置き、微細粒子に対する分散用液の重量比を0.5倍となるよう0.69gの10重量%エタノール水溶液を分散用液として加えた。アクリル板と10重量%エタノール水溶液のなす接触角は61°であった。その後、測定用板を水平方向に20往復揺動させ状態を観察した。揺動前の状態を図9に、揺動後の状態を図10に示す。微細粒子は凝集し、多層に配置されている部分があった。この状態で画像解析用に撮像した写真を図11に示す。
(Comparative example)
An image analysis was attempted by photographing hydrogel particles that were not arranged in a single layer on the measurement plate. First, the hydrogel particles were dispersed under the condition that the arrangement in Example 1 was not a single layer. That is, 1.36 g of the hydrogel particles obtained by the above-mentioned “fine particle production method” are placed on an acrylic plate, and 0.69 g so that the weight ratio of the dispersion liquid to the fine particles is 0.5 times. Was added as a dispersion liquid. The contact angle between the acrylic plate and the 10 wt% ethanol aqueous solution was 61 °. Thereafter, the measurement plate was swung back and forth 20 times in the horizontal direction, and the state was observed. FIG. 9 shows a state before swinging, and FIG. 10 shows a state after swinging. The fine particles were agglomerated and there were portions arranged in multiple layers. A photograph taken for image analysis in this state is shown in FIG.

撮像された写真は、微細粒子同士の重なりがある部分では粒子の輪郭がはっきりしなかった。撮像写真を画像解析ソフト「WinROOF」(商品名、三谷商事株式会社製)にて粒度分布の解析を行ったところ、視野中の粒子から272個しか独立した粒子として分離計測することができなかった。   In the photographed image, the outline of the particles was not clear in the part where the fine particles overlapped. When the photographed photograph was analyzed for particle size distribution with image analysis software “WinROOF” (trade name, manufactured by Mitani Corporation), only 272 particles could be separated and measured from the particles in the field of view. .

本発明の易崩壊性微細粒子測定方法は、例えば化粧品に含有されるGAP粒子の測定に使用することができる。   The easily disintegrating fine particle measuring method of the present invention can be used for measuring GAP particles contained in cosmetics, for example.

本発明の実施形態における微細粒子測定方法を使用して微細粒子の測定を行う測定装置の構成を示す斜視図である。It is a perspective view which shows the structure of the measuring apparatus which measures a fine particle using the fine particle measuring method in embodiment of this invention. 図1に示す測定装置において得られる撮像データ及び画像処理データを示す図である。It is a figure which shows the imaging data and image processing data which are obtained in the measuring apparatus shown in FIG. 図1に示す測定装置を備えた測定システムの構成を示す図である。It is a figure which shows the structure of the measurement system provided with the measuring apparatus shown in FIG. 図1に示す測定装置にて測定される被測定物を示す図である。It is a figure which shows the to-be-measured object measured with the measuring apparatus shown in FIG. 図1に示す測定装置にて測定される被測定物における微細粒子と、分散用液との関係を説明するための図である。It is a figure for demonstrating the relationship between the fine particle in the to-be-measured object measured with the measuring apparatus shown in FIG. 1, and the liquid for dispersion | distribution. ハイドロゲル粒子と活性剤混合液とを加えた後、揺動前の状態を示す写真である。It is a photograph which shows the state before adding a hydrogel particle and an activator liquid mixture, and before rocking | fluctuation. ハイドロゲル粒子と活性剤混合液とを加えた後、揺動後の状態を示す写真である。It is a photograph which shows the state after rocking | fluctuation after adding a hydrogel particle and an activator liquid mixture. 図7の状態を画像解析用に撮影した写真である。It is the photograph which image | photographed the state of FIG. 7 for image analysis. ハイドロゲル粒子とエタノール水溶液とを加えた後、揺動前の状態を示す写真である。It is a photograph which shows the state before a rocking | fluctuation after adding a hydrogel particle and ethanol aqueous solution. ハイドロゲル粒子とエタノール水溶液とを加えた後、揺動後の状態を示す写真である。It is a photograph which shows the state after rocking | fluctuation after adding a hydrogel particle and ethanol aqueous solution. 図10の状態を画像解析用に撮影した写真である。It is the photograph which image | photographed the state of FIG. 10 for image analysis.

符号の説明Explanation of symbols

1…微細粒子群、1a…微細粒子、2…分散用液、3…被測定物、3a…周縁部、
10…測定用板。
DESCRIPTION OF SYMBOLS 1 ... Fine particle group, 1a ... Fine particle, 2 ... Dispersion liquid, 3 ... To-be-measured object, 3a ... Peripheral part,
10: Measuring plate.

Claims (6)

易崩壊性でかつ濡れた微細粒子群(1)に分散用液(2)を加えた被測定物(3)を測定用板(10)に載せ、
上記微細粒子群の各粒子(1a)が上記測定用板上で一層に配置されるように上記微細粒子群を上記分散用液に分散させ、
分散した上記微細粒子群を撮像し、該撮像データに基づいて上記粒子の測定を行う、
ことを特徴とする易崩壊性微細粒子測定方法。
An object to be measured (3) obtained by adding the dispersion liquid (2) to the easily disintegrating and wet fine particle group (1) is placed on the measurement plate (10),
The fine particle group is dispersed in the dispersion liquid so that each particle (1a) of the fine particle group is arranged in a layer on the measurement plate,
The dispersed fine particle group is imaged, and the particles are measured based on the imaging data.
A method for measuring easily disintegrating fine particles.
上記微細粒子群の重量に対して上記分散用液の重量が0.4倍以上となるように、上記分散用液を上記微細粒子群に加え、かつ上記測定用板に載せた上記被測定物の周縁部(3a)における上記測定用板と当該被測定物との接触角(θ)が40度以下となるように、上記分散用液における上記微細粒子群の分散を行う、請求項1記載の易崩壊性微細粒子測定方法。   The object to be measured, which is added to the fine particle group and placed on the measurement plate so that the weight of the dispersion liquid is 0.4 times or more with respect to the weight of the fine particle group. The fine particles are dispersed in the dispersion liquid so that the contact angle (θ) between the measurement plate and the object to be measured at the peripheral edge (3a) of the dispersion is 40 degrees or less. Of easily disintegrating fine particles. 上記分散用液は、上記接触角を40度以下とする界面活性剤を含む、請求項2記載の易崩壊性微細粒子測定方法。   The method for measuring easily disintegrable fine particles according to claim 2, wherein the dispersion liquid contains a surfactant having a contact angle of 40 degrees or less. 上記測定用板上にて上記各粒子を一層に配置するため、上記測定用板上に載せられた上記被測定物に対して振動又は揺動を与える、請求項1から3のいずれかに記載の易崩壊性微細粒子測定方法。   4. The apparatus according to claim 1, wherein the particles to be measured placed on the measurement plate are vibrated or oscillated in order to arrange the particles on the measurement plate in a single layer. 5. Of easily disintegrating fine particles. 上記粒子は、ハイドロゲルにてなる、請求項1から4のいずれかに記載の易崩壊性微細粒子測定方法。   The method for measuring easily disintegrable fine particles according to claim 1, wherein the particles are made of hydrogel. 上記粒子の粒径は、下限は0.1mm、上限は10mmである、請求項1から5のいずれかに記載の易崩壊性微細粒子測定方法。
The particle size of the particles is a method for measuring easily disintegrable fine particles according to any one of claims 1 to 5, wherein the lower limit is 0.1 mm and the upper limit is 10 mm.
JP2003419663A 2003-12-17 2003-12-17 Measuring method of easily collapsible fine particles Pending JP2005181006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419663A JP2005181006A (en) 2003-12-17 2003-12-17 Measuring method of easily collapsible fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419663A JP2005181006A (en) 2003-12-17 2003-12-17 Measuring method of easily collapsible fine particles

Publications (1)

Publication Number Publication Date
JP2005181006A true JP2005181006A (en) 2005-07-07

Family

ID=34781493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419663A Pending JP2005181006A (en) 2003-12-17 2003-12-17 Measuring method of easily collapsible fine particles

Country Status (1)

Country Link
JP (1) JP2005181006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524194A (en) * 2010-04-02 2013-06-17 スネクマ Method for analyzing multiple ferromagnetic particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524194A (en) * 2010-04-02 2013-06-17 スネクマ Method for analyzing multiple ferromagnetic particles

Similar Documents

Publication Publication Date Title
JP6985289B2 (en) In-pen assay methods, systems and kits
US20200386976A1 (en) Sample carrier for optical measurements
JP2015520396A (en) Particle characterization
CN103411807B (en) Method for making sample for backscattered electron image Yu the inorganic non-metallic powder body material of power spectrum research
CN105247650A (en) Charged-particle-beam device and specimen observation method
JP2020054234A (en) Cell culture apparatus, imaging unit, and culture monitoring method
CN105289762A (en) Microarray based sample detection system
JP2018193586A (en) Powder bed evaluation method
Farkas et al. Image analysis: A versatile tool in the manufacturing and quality control of pharmaceutical dosage forms
JP2009198414A (en) Apparatus for measurement of residual attachment
JP4898828B2 (en) Aggregation judgment method
JP2005181006A (en) Measuring method of easily collapsible fine particles
US20190025206A1 (en) Powder dustiness evaluation method and powder dustiness evaluation device
US6697510B2 (en) Method for generating intra-particle crystallographic parameter maps and histograms of a chemically pure crystalline particulate substance
JP2009524018A5 (en)
TW201944060A (en) Glass plate, and glass plate manufacturing method and end surface inspection method
JP4046446B2 (en) Particle analyzer
CN202330252U (en) Special disposable computer scanning sperm counting board
Šašić Determining the coating thickness of tablets by chiseling and image analysis
JP6643710B2 (en) Photoresist component concentration measuring device and concentration measuring method
JP2013079833A (en) Nozzle device
Whitmore et al. The impact of stencil aperture design for next generation ultra-fine pitch printing
CN214539121U (en) Equipment for rapidly identifying particle shape state of powder for concrete
JP2001356130A (en) Liquid flow or jet flow visualizing device
JPS649328A (en) Measurement of temperature of fluid using fluorescence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212