JP2005178118A - Laminated sheet - Google Patents

Laminated sheet Download PDF

Info

Publication number
JP2005178118A
JP2005178118A JP2003420890A JP2003420890A JP2005178118A JP 2005178118 A JP2005178118 A JP 2005178118A JP 2003420890 A JP2003420890 A JP 2003420890A JP 2003420890 A JP2003420890 A JP 2003420890A JP 2005178118 A JP2005178118 A JP 2005178118A
Authority
JP
Japan
Prior art keywords
prepreg
resin
temperature
laminated sheet
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003420890A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Narabe
嘉行 奈良部
Kazunaga Sakai
和永 坂井
Yoshinori Sato
美紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003420890A priority Critical patent/JP2005178118A/en
Publication of JP2005178118A publication Critical patent/JP2005178118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper clad laminated sheet which enhances the heat resistance level of a printed wiring board using the copper clad laminated sheet and causes no trouble such as a blister or the like at the time of a reflow process. <P>SOLUTION: In the copper clad laminated sheet constituted by superposing a prepreg. which is impregnated with a thermosetting resin and dried, and a base material one upon another to heat and press them, the prepreg before heated and pressed is subjected to dehumidification treatment for 15-120 min at 0-45°C under an atmospheric pressure of 7×10<SP>4</SP>-10×10<SP>4</SP>Pa. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,積層板に関する。   The present invention relates to a laminated board.

近年の電子機器の小型化,多機能化に伴い,プリント配線板も高密度化,小型化が進んでいる中,紙基材フェノール樹脂銅張積層板は,打抜加工性,ドリル加工性にすぐれ,かつ安価であるため民生用電子機器のプリント配線板用基板として広く用いられている。紙基材フェノール樹脂積層板は,フェノール類とアルデヒド類とをアルカリ触媒の存在下に反応させてフェノール樹脂を得,フェノール樹脂を溶剤で調整し,紙基材に含浸乾燥して得られるプリプレグを所定枚数重ね合わせて加熱加圧して製造される。通常は,プリプレグと銅はくとを組合せて銅張積層板とし,銅はくをエッチングすることにより,回路を形成してプリント配線板とされる。   As electronic devices have become smaller and more multifunctional in recent years, printed circuit boards have become denser and smaller, and paper-based phenolic resin copper-clad laminates have improved punchability and drillability. Because it is excellent and inexpensive, it is widely used as a printed wiring board substrate for consumer electronic devices. A paper base phenolic resin laminate is a prepreg obtained by reacting phenols and aldehydes in the presence of an alkali catalyst to obtain a phenol resin, adjusting the phenol resin with a solvent, and impregnating and drying the paper base material. It is manufactured by heating and pressing a predetermined number of sheets. Usually, a prepreg and copper foil are combined to form a copper-clad laminate, and the copper foil is etched to form a circuit to be a printed wiring board.

また,セットメーカーでは,環境保護の意識の高まりから,有害物質である鉛を使用しないはんだ(鉛フリーはんだ)を検討または採用している。しかし,鉛フリーはんだは,従来の鉛含有はんだ(Sn−Pb)と比較して溶融温度が高く,そのために,リフロー工程時の設定温度が高くなる傾向にあり,プリント配線板の耐熱性向上,特にリフロー工程での耐熱性向上が要求されている。   In addition, set manufacturers are considering or adopting solder that does not use lead, which is a hazardous substance (lead-free solder), due to increased awareness of environmental protection. However, lead-free solder has a higher melting temperature than conventional lead-containing solder (Sn-Pb), and therefore the set temperature during the reflow process tends to be higher, improving the heat resistance of the printed wiring board, In particular, improvement in heat resistance in the reflow process is required.

そして、例えば特開2002−145975号公報などに、フェノール化合物と尿素の混合物とキシレン樹脂とを、酸触媒の存在下で反応させて得られる反応物と、ホルムアルデヒドとを反応させて得られる樹脂組成物を用い、耐熱性,耐湿性,打抜加工性,難燃性に優れた紙基材銅張積層板を得る方法が開示されている。
特開2002−145975号公報
A resin composition obtained by reacting a reaction product obtained by reacting a mixture of a phenol compound and urea with a xylene resin in the presence of an acid catalyst with formaldehyde, for example, in JP-A-2002-145975 and the like. A method for obtaining a paper-based copper clad laminate excellent in heat resistance, moisture resistance, punching workability and flame retardancy is disclosed.
JP 2002-145975 A

紙基材フェノール樹脂銅張積層板は,安価であることから,広く用いられているが,ガラス基材エポキシ樹脂銅張積層板と比較して,耐熱性レベルが低いため,リフロー工程時の温度設定も低く設定されており,温度設定が高くなるとふくれ等の不具合が発生する。このリフロー工程時のふくれ発生の主な要因は,基材から発生するガス(水分)である。   Paper-based phenolic resin copper-clad laminates are widely used because they are inexpensive, but they have a lower heat resistance level than glass-based epoxy resin copper-clad laminates, so the temperature during the reflow process The setting is also set low, and problems such as blistering occur when the temperature setting is high. The main cause of blistering during the reflow process is gas (moisture) generated from the base material.

紙基材フェノール樹脂銅張積層板は,紙基材にフェノール樹脂を含浸乾燥したプリプレグをある一定期間(0〜14日)保存した後に加熱加圧し、製造されるのが一般的である。このプリプレグ保存期間中に,基材が水分を吸湿し,またその後の加熱加圧工程でも,吸湿した水分が完全に除去されず,残留してしまうために,リフロー工程等の高温にさらされた時に,水分が急激に膨張,揮発しようとして,基材ふくれ等の不具合が発生する。   In general, a paper base phenolic resin copper clad laminate is manufactured by storing a prepreg impregnated and dried with a phenolic resin on a paper base and heating and pressurizing it for a certain period (0 to 14 days). During this prepreg storage period, the base material absorbs moisture, and even in the subsequent heating and pressurizing process, the absorbed moisture is not completely removed and remains, so that it was exposed to a high temperature such as a reflow process. Occasionally, problems such as blistering occur due to the rapid expansion and volatilization of moisture.

プリプレグ製造後,ある一定期間(0〜14日)の保存は,製造工程の稼動の定常化と品質均一化のために欠かせないものである。また,最近,リフロー工程に使用するはんだは,環境問題から,従来のSn−Pbはんだから鉛フリーはんだへの変更が進んでおり,鉛フリーはんだは,Sn−Pbはんだと比較して,溶融温度がより高いため,鉛フリーはんだ採用時は,リフロー工程の温度設定も高く設定するため,紙基材フェノール樹脂銅張積層板を用いたプリント配線板は,ふくれ等の不具合が発生しやすい。本発明は,銅張積層板を用いたプリント配線板の耐熱性レベルを向上し,リフロー工程時にふくれ等の不具合を発生しない銅張積層板を提供することを目的とする。   Storage for a certain period of time (0 to 14 days) after prepreg manufacture is indispensable for steady operation of the manufacturing process and uniform quality. Recently, solder used in the reflow process has been changed from conventional Sn-Pb solder to lead-free solder due to environmental problems. Lead-free solder has a melting temperature higher than that of Sn-Pb solder. Therefore, when using lead-free solder, the temperature setting in the reflow process is also set high, so printed wiring boards using paper-based phenolic resin copper-clad laminates are prone to problems such as blistering. An object of the present invention is to provide a copper-clad laminate that improves the heat resistance level of a printed wiring board using the copper-clad laminate and does not cause problems such as blistering during the reflow process.

本発明は,次のものに関する。
(1)基材に熱硬化性樹脂を含浸乾燥したプリプレグを重ね合わせ,加熱加圧してなる積層板において,加熱加圧前のプリプレグを7×10Pa以上、10×10Pa以下の気圧下、0〜45℃の温度で、15〜120分間脱湿処理することを特徴とする積層板。
(2)熱硬化性樹脂が、フェノール樹脂である(1)に記載の積層板。
The present invention relates to the following.
(1) In a laminated plate obtained by laminating a prepreg impregnated and dried with a thermosetting resin on a base material and heating and pressing, the prepreg before heating and pressurizing is 7 × 10 4 Pa or more and 10 × 10 4 Pa or less. A laminated board, which is dehumidified at a temperature of 0 to 45 ° C. for 15 to 120 minutes.
(2) The laminate according to (1), wherein the thermosetting resin is a phenol resin.

本発明によれば,基材にフェノール樹脂を含浸乾燥したプリプレグを重ね合わせ,加熱加圧してなる積層板において,加熱加圧前のプリプレグを7×10Pa以上、10×10Pa以下の気圧下、0〜45℃の温度で15〜120分間脱湿処理することにより,リフロー耐熱性に優れる積層板を得ることができる。 According to the present invention, in a laminate obtained by laminating and drying a prepreg impregnated and dried with a phenol resin on a base material, the prepreg before heating and pressurization is 7 × 10 4 Pa or more and 10 × 10 4 Pa or less. By performing dehumidification treatment for 15 to 120 minutes at a temperature of 0 to 45 ° C. under atmospheric pressure, a laminate having excellent reflow heat resistance can be obtained.

本発明では,基材に熱硬化性樹脂を含浸乾燥してプリプレグを製造し,製造後,数日後のプリプレグを減圧槽等を用いて,7×10Pa以上10×10Pa以下の気圧下おいて、0〜45℃の温度で15〜120分間脱湿処理する。処理終了後,プリプレグを所定枚数に重ね合せ,加熱加圧して積層板を製造する。なお本発明に使用される基材は、紙基材、ガラスクロス、ガラス不織布、アラミド繊維など一般的にプリプレグに用いられている基材であれば可能であるが、打抜加工性の点から,紙基材が好ましい。紙基材としては,クラフト紙,コットンリンター紙,リンターとクラフトパルプの混抄紙,ガラス繊維と紙繊維の混抄紙等も使用できる。 In the present invention, a base material is impregnated with a thermosetting resin and dried to produce a prepreg, and after the production, the prepreg several days later is used at a pressure of 7 × 10 4 Pa or more and 10 × 10 4 Pa or less using a vacuum tank or the like. Below, dehumidify at a temperature of 0 to 45 ° C. for 15 to 120 minutes. After the treatment is completed, a predetermined number of prepregs are stacked and heated and pressed to produce a laminate. The base material used in the present invention can be any base material generally used for prepreg, such as paper base material, glass cloth, glass nonwoven fabric, and aramid fiber. Paper substrates are preferred. As the paper substrate, kraft paper, cotton linter paper, mixed paper of linter and kraft pulp, mixed paper of glass fiber and paper fiber, etc. can be used.

プリプレグを脱湿処理する方法は,上記では,減圧槽を用いているが,7×10Pa以上9.5×10Pa以下の気圧状態が可能であれば,例えば,プリプレグをアルミ袋,ビニール袋等に入れ,ポンプ等を用い吸引し、減圧してもよい。なお脱湿処理時の減圧度は,7×10Pa以上にて行う。7×10Pa未満では,プリプレグの脱湿効果が少なく,効果が得られないためである。また、大気圧(10.13×10Pa)より減圧することにより、脱湿効果が得られるため,10×10Pa以下で行う。 The method for dehumidifying the prepreg uses a vacuum tank in the above. However, if a pressure state of 7 × 10 4 Pa or more and 9.5 × 10 4 Pa or less is possible, for example, the prepreg is made of an aluminum bag, It may be put in a plastic bag, sucked using a pump or the like, and decompressed. Note that the degree of pressure reduction during the dehumidification process is 7 × 10 4 Pa or more. This is because if it is less than 7 × 10 4 Pa, the prepreg has little dehumidifying effect and the effect cannot be obtained. Moreover, since the dehumidifying effect is obtained by reducing the pressure from atmospheric pressure (10.13 × 10 4 Pa), it is performed at 10 × 10 4 Pa or less.

脱湿処理時間は,15〜120分間行うが,好ましくは,20〜60分間がよい。15分間未満では,時間が短く,プリプレグの脱湿が不完全である。120分間を超える処理を行うと,プリプレグの揮発成分が少なくなりすぎ,樹脂の流動性が低下し,加熱加圧後,積層板にカスレ等の不具合が発生する。脱湿処理温度は,0〜45℃で行うが,好ましくは,15〜35℃がよい。0℃未満では,温度が低すぎて,プリプレグが凍ってしまい,脱湿効果が得られない。45℃を超えると,半硬化状態のプリプレグの樹脂の硬化が進んでしまい,加熱加圧後,積層板にカスレ等の不具合が発生する。   The dehumidification treatment time is 15 to 120 minutes, preferably 20 to 60 minutes. If it is less than 15 minutes, the time is short and the prepreg dehumidification is incomplete. If the treatment is performed for more than 120 minutes, the volatile components of the prepreg become too small, the fluidity of the resin is lowered, and after heating and pressurization, defects such as scraping occur on the laminate. The dehumidifying temperature is 0 to 45 ° C., preferably 15 to 35 ° C. If it is less than 0 ° C., the temperature is too low, the prepreg freezes, and the dehumidifying effect cannot be obtained. If the temperature exceeds 45 ° C., the resin of the semi-cured prepreg is cured, and after heating and pressurization, defects such as scraping occur in the laminate.

本発明に使用される熱硬化性樹脂は,エポキシ樹脂,メラミン樹脂,不飽和ポリエステル樹脂,ポリイミド樹脂等が挙げられるが,好ましくは,安価であることから,植物油変性フェノール樹脂がよい。植物油変性フェノール樹脂は,フェノール類と植物油とを酸触媒の存在下に反応させ,ついで,アルデヒド類をアルカリ触媒の存在下に反応させることにより,植物油変性フェノール樹脂が得られる。酸触媒としてはパラトルエンスルフォン酸などが挙げられる。アルカリ触媒としては,アンモニア,トリメチルアミン,トリエチルアミンなどのアミン系触媒が挙げられる。   Examples of the thermosetting resin used in the present invention include an epoxy resin, a melamine resin, an unsaturated polyester resin, a polyimide resin, and the like, but a vegetable oil-modified phenol resin is preferable because it is inexpensive. The vegetable oil-modified phenol resin is obtained by reacting phenols and vegetable oil in the presence of an acid catalyst, and then reacting aldehydes in the presence of an alkali catalyst. Examples of the acid catalyst include p-toluenesulfonic acid. Examples of the alkali catalyst include amine catalysts such as ammonia, trimethylamine, and triethylamine.

用いる植物油としては,乾性油を用いることが好ましく,これらの例として,桐油,アマニ油,脱水ヒマシ油,オイチシカ油等がある。フェノール類としては,フェノール,メタクレゾール,パラクレゾール,オルソクレゾール,イソプロピルフェノール,ノニルフェノール等が使用される。アルデヒド類としては,ホルムアルデヒド,パラホルムアルデヒド,アセトアルデヒド,パラアセトアルデヒド,ブチルアルデヒド,オクチルアルデヒド,ベンズアルデヒド等が上げられ,特に制限されるものではない。一般にはホルムアルデヒドまたはパラホルムアルデヒドが使用される。   As the vegetable oil to be used, it is preferable to use dry oil, and examples thereof include paulownia oil, linseed oil, dehydrated castor oil, and deer oil. As phenols, phenol, metacresol, paracresol, orthocresol, isopropylphenol, nonylphenol and the like are used. Examples of aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, paraacetaldehyde, butyraldehyde, octylaldehyde, benzaldehyde and the like, and are not particularly limited. In general, formaldehyde or paraformaldehyde is used.

熱硬化性樹脂として好ましいフェノール樹脂を用いたフェノール樹脂組成物は,溶剤にて調整し,溶解ないし分散させワニスとして基材に含浸される。フェノール樹脂を含浸させる前段階に,水溶性フェノール樹脂や水溶性メラミン樹脂で処理してもよい。ワニスには,フェノール樹脂積層板に可塑性,難燃性を付与するために各種の可塑剤,難燃剤を添加してもよい。前記のワニスを紙基材に含浸乾燥してプリプレグとし,得られたプリプレグを脱湿処理後,所定枚数重ね,その上に銅はくを重ね,温度150〜180℃,圧力9〜20MPaで加熱加圧して紙基材フェノール樹脂銅張積層板とする。   A phenol resin composition using a phenol resin preferable as a thermosetting resin is adjusted with a solvent, dissolved or dispersed, and impregnated into a base material as a varnish. You may process with a water-soluble phenol resin or water-soluble melamine resin in the step before impregnating a phenol resin. Various plasticizers and flame retardants may be added to the varnish in order to impart plasticity and flame retardancy to the phenol resin laminate. The above varnish is impregnated and dried into a paper base material to obtain a prepreg. After the obtained prepreg is dehumidified, a predetermined number of layers are stacked, and copper foil is stacked thereon, and heated at a temperature of 150 to 180 ° C. and a pressure of 9 to 20 MPa. Pressurize to make a paper base phenolic resin copper clad laminate.

次に実施例により本発明を具体的に説明するが,本発明は,これらに限定されるものではない。
(上塗り用フェノール樹脂の合成)
桐油150重量部とフェノール280重量部,p−トルエンスルホン酸0.2重量を反応釜に仕込み,90℃、1時間反応させ,次いでパラホルムアルデヒド200重量部,28重量%アンモニア水30重量部を加えて75℃で2時間反応させて桐油変性率35重量%の桐油変性レゾール樹脂を得た。桐油変性レゾール樹脂100重量部に表1に示すメラミン変性フェノール樹脂15重量部,トリフェニルホスフェイト35重量部を溶剤で溶解して,樹脂分50重量%のワニスとした。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these.
(Synthesis of phenolic resin for top coating)
150 parts by weight of paulownia oil, 280 parts by weight of phenol, and 0.2 parts by weight of p-toluenesulfonic acid are charged in a reaction kettle, reacted at 90 ° C. for 1 hour, and then 200 parts by weight of paraformaldehyde and 30 parts by weight of 28% by weight ammonia water are added. And reacted at 75 ° C. for 2 hours to obtain a tung oil-modified resole resin having a tung oil modification rate of 35% by weight. To 100 parts by weight of tung oil-modified resole resin, 15 parts by weight of melamine-modified phenol resin and 35 parts by weight of triphenyl phosphate shown in Table 1 were dissolved with a solvent to obtain a varnish having a resin content of 50% by weight.

(水溶性フェノール樹脂の合成)
フェノール1モル,37重量%ホルマリンをホルムアルデヒド換算で1.2モルおよびトリエチルアミン換算で0.4モル量のトリエチルアミン水溶液(濃度:30重量%)を70℃6時間反応させて水溶性フェノール樹脂を得た。得られた水溶性フェノール樹脂を重量比で,水1対メタノール1の混合溶媒で希釈し,固形分12重量%の水溶性フェノール樹脂とした。
(Synthesis of water-soluble phenol resin)
1 mol of phenol and 37 wt% formalin were reacted with 1.2 mol of formaldehyde and 0.4 mol of triethylamine aqueous solution (concentration: 30 wt%) at 70 ° C for 6 hours to obtain a water-soluble phenol resin. . The obtained water-soluble phenol resin was diluted with a mixed solvent of water 1 to methanol 1 in a weight ratio to obtain a water-soluble phenol resin having a solid content of 12% by weight.

始めに,水溶性フェノール樹脂を厚さ0.2mm,坪量125g/mのクラフト紙に,付着量が18重量%となるように付着させ,次に,上塗り用フェノール樹脂ワニスを,乾燥後の全樹脂付着量が,50重量%になるように含浸,乾燥してプリプレグを得た。 First, water-soluble phenolic resin was attached to kraft paper having a thickness of 0.2 mm and a basis weight of 125 g / m 2 so that the amount of adhesion was 18% by weight, and then the phenolic resin varnish for top coating was dried. A prepreg was obtained by impregnation and drying so that the total resin adhesion amount was 50% by weight.

表1に示したように、得られたプリプレグ10枚をアルミ袋に入れ、数日間保管した。銅張積層板の製造直前、プリプレグを、7×10Paの気圧下おいて、30℃の温度で一定時間(15〜120分間)、脱湿処理し,処理したプリプレグ8枚を重ね,その両側に銅箔の厚さが35μmの接着剤付銅箔を、接着剤層がプリプレグ側となるようにして重ね,温度170℃,圧力15MPaで90分加熱加圧して得た厚さ1.6mmの片面銅張積層板を、実施例1〜4とした。 As shown in Table 1, 10 obtained prepregs were put in an aluminum bag and stored for several days. Immediately before the manufacture of the copper-clad laminate, the prepreg was dehumidified at a temperature of 30 ° C. for a certain period of time (15 to 120 minutes) under an air pressure of 7 × 10 4 Pa, and the treated prepregs were stacked, A thickness of 1.6 mm obtained by stacking copper foil with an adhesive having a thickness of 35 μm on both sides so that the adhesive layer is on the prepreg side and heating and pressing at a temperature of 170 ° C. and a pressure of 15 MPa for 90 minutes. These single-sided copper clad laminates were designated as Examples 1 to 4.

(比較例)
プリプレグの脱湿処理をしない以外は,実施例と同様にして得た厚さ1.6mmの両面銅張積層板を、比較例1〜2とした。
(Comparative example)
Comparative Examples 1 and 2 were double-sided copper clad laminates having a thickness of 1.6 mm obtained in the same manner as in the Examples except that the prepreg was not subjected to dehumidification.

以上で得られた片面銅張積層板について,耐熱性,打抜加工性を評価した。その結果を、表1に示した。なお,試験方法は,以下の通りとした。
(1)耐熱性評価は,JIS C 6481に準拠し,試験し、260℃30秒の条件でのはんだ耐熱性、及び200℃40分の条件での恒温槽中での耐熱性を評価した。基材ふくれ,銅箔ふくれ等の不具合を目視により観察した。
○:ふくれ発生なし、×:ふくれ発生
(2)打抜加工性は,試験片の表面温度(60℃、70℃、80℃)を変えて,ポンチ径1.0〜1.2mm,穴間ピッチ2.54mm,24穴の試験用金型を用いて打抜加工した。打抜加工した試験片の穴周辺を目視観察し,その状態を記号で示した。
○:はくり目白なし、△:はくり目白若干あり、×:はくり目白あり
(3)リフロー耐熱性は,残銅率70%の回路をエッチングにより形成し,リフローピーク温度250℃(基材表面温度),230℃以上の温度領域45秒に設定したリフロー炉を1回〜2回通し,基材ふくれ,銅箔ふくれ等の不具合を目視により観察した。
○:ふくれ発生なし、×:ふくれ発生
The single-sided copper-clad laminate obtained above was evaluated for heat resistance and punchability. The results are shown in Table 1. The test method was as follows.
(1) The heat resistance evaluation was performed in accordance with JIS C 6481, and the solder heat resistance at 260 ° C. for 30 seconds and the heat resistance in a constant temperature bath at 200 ° C. for 40 minutes were evaluated. Problems such as base blistering and copper foil blistering were observed visually.
○: No blistering occurred, ×: Blistering occurred (2) Punching workability changes the surface temperature (60 ° C, 70 ° C, 80 ° C) of the test piece, punch diameter 1.0 to 1.2 mm, between holes Punching was performed using a test mold with a pitch of 2.54 mm and 24 holes. The area around the hole in the punched specimen was visually observed, and the state was indicated by symbols.
○: No peeling white, Δ: Some peeling white, ×: White peeling (3) Reflow heat resistance is formed by etching a circuit with a residual copper ratio of 70% and a reflow peak temperature of 250 ° C. (base material) Surface temperature), a reflow furnace set at a temperature range of 230 ° C. or higher for 45 seconds was passed once to twice, and defects such as base blistering and copper foil blistering were observed visually.
○: No blistering occurred, ×: Blistering occurred

Figure 2005178118
Figure 2005178118

表1に示したように、実施例において、基材ふくれ,銅箔ふくれ等の不具合は、まったく発生せず、プリプレグの脱湿処理を行っていない比較例と比べ、耐熱性およびリフロー耐熱性が優れている。よって、本発明により、リフロー耐熱性等に優れるプリント配線板を得ることができる。



As shown in Table 1, in the examples, problems such as base blistering and copper foil blistering did not occur at all, and the heat resistance and reflow heat resistance were higher than in the comparative example in which the prepreg was not dehumidified. Are better. Therefore, according to the present invention, a printed wiring board having excellent reflow heat resistance and the like can be obtained.



Claims (2)

基材に熱硬化性樹脂を含浸乾燥したプリプレグを重ね合わせ,加熱加圧してなる積層板において,加熱加圧前のプリプレグを7×10Pa以上、10×10Pa以下の気圧下、0〜45℃の温度で、15〜120分間脱湿処理することを特徴とする積層板。 In a laminate obtained by laminating and drying a prepreg impregnated and dried with a thermosetting resin on a base material, the prepreg before heating and pressurization is set to 0 under an atmospheric pressure of 7 × 10 4 Pa or more and 10 × 10 4 Pa or less. A laminate comprising a dehumidifying treatment at a temperature of ˜45 ° C. for 15 to 120 minutes. 熱硬化性樹脂が、フェノール樹脂である請求項1に記載の積層板。


The laminated board according to claim 1, wherein the thermosetting resin is a phenol resin.


JP2003420890A 2003-12-18 2003-12-18 Laminated sheet Pending JP2005178118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420890A JP2005178118A (en) 2003-12-18 2003-12-18 Laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420890A JP2005178118A (en) 2003-12-18 2003-12-18 Laminated sheet

Publications (1)

Publication Number Publication Date
JP2005178118A true JP2005178118A (en) 2005-07-07

Family

ID=34782281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420890A Pending JP2005178118A (en) 2003-12-18 2003-12-18 Laminated sheet

Country Status (1)

Country Link
JP (1) JP2005178118A (en)

Similar Documents

Publication Publication Date Title
KR100815673B1 (en) Backup board for machining process
JP2007009169A (en) Prepreg, and laminate board and print circuit board by using the same
JP2005178118A (en) Laminated sheet
WO1980002010A1 (en) Method of and device for continuously fabricating laminate
JP2005029674A (en) Phenolic resin composition and copper-clad phenolic resin laminated board
JP2005290144A (en) Resin composition, prepreg and phenolic resin laminated plate
JPS6128691B2 (en)
JPH0126374B2 (en)
JPH03195744A (en) Production of paper substrate phenolic resin prepreg
JPH10157011A (en) Copper-clad laminate
JP3302176B2 (en) Resin composition for laminated board and laminated board using the same
KR100625157B1 (en) Laminates
JP2004224999A (en) Phenol resin-laminated board and copper-clad phenolic resin-laminated board
JPH11279508A (en) Production of adhesive-coated copper foil and production of copper-clad laminate
JPH03195743A (en) Production of paper substrate phenolic resin prepreg
JPH0680859A (en) Phenolic resin composition
JPH08230106A (en) Manufacture of copper foil-clad laminate
JP2007009170A (en) Resin composition, and prepreg, laminate board and printed wiring board using the same
JP2002194102A (en) Laminated plate for making printed wiring board and method for making laminated plate
JP2000191809A (en) Prepreg, laminated plate and metallic foil-coated laminated plate
JPH11172071A (en) Phenol resin composition and phenol resin laminated sheet using same
JP2004316056A (en) Electrical insulating nonwoven fabric, method for producing the same, prepreg, laminated sheet and printed-wiring board
JPH09111216A (en) Adhesive composition, copper foil with adhesive and copper-clad laminates using this copper foil with adhesive
JPH09164630A (en) Production of phenol resin laminated sheet
JP2001181418A (en) Prepreg using organic fiber base material including amide group, laminate and printed-circuit board