JP2005178069A - Method and apparatus for transfer processing of fine shape - Google Patents

Method and apparatus for transfer processing of fine shape Download PDF

Info

Publication number
JP2005178069A
JP2005178069A JP2003419326A JP2003419326A JP2005178069A JP 2005178069 A JP2005178069 A JP 2005178069A JP 2003419326 A JP2003419326 A JP 2003419326A JP 2003419326 A JP2003419326 A JP 2003419326A JP 2005178069 A JP2005178069 A JP 2005178069A
Authority
JP
Japan
Prior art keywords
resin
fine pattern
fine
gas body
transfer processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003419326A
Other languages
Japanese (ja)
Other versions
JP4202901B2 (en
Inventor
Katsunori Sudo
克典 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003419326A priority Critical patent/JP4202901B2/en
Publication of JP2005178069A publication Critical patent/JP2005178069A/en
Application granted granted Critical
Publication of JP4202901B2 publication Critical patent/JP4202901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for transferring the fine shape of the surface of a die with high precision by preventing an increase in the surface viscosity of a thermoplastic resin in shaping the thermoplastic resin. <P>SOLUTION: After carbon dioxide being gas having a plasticizing effect is infiltrated in the surface layer of the molten resin 1, the fine pattern 2 of a die core 3 having the fine pattern 2 on its surface is pressed to the surface of the carbon dioxide-infiltrated molten resin 1 to be transferred to the surface of the carbon dioxide-infiltrated resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表面に微細形状パターンを転写する微細形状の転写加工方法及びその装置に関し、例えばマイクロリアクタなどマイクロファブリケーション用部品等の樹脂製被加工物の加工に応用が可能である。   The present invention relates to a fine shape transfer processing method and apparatus for transferring a fine shape pattern to a surface, and can be applied to processing of a resin workpiece such as a microfabrication part such as a microreactor.

熱可塑性樹脂の成形方法では、一般に射出成形法が用いられる。これは、成形品形状をなす金型内キャビティに溶融した樹脂を充填し、金型温度を樹脂の固化温度以下に保つことで冷却固化させるので成形品を容易に作製することが出来るためである。しかし、金型温度を樹脂の固化温度以下に保つため、樹脂の充填と冷却が同時に進行することとなり、流動先端で金型と接した樹脂は急速に冷却されるため粘土が高くなるとともに、低い圧力で金型に押しつけられるため金型表面の微細パターンを高精度に転写することは困難である。   In general, an injection molding method is used as a method for molding a thermoplastic resin. This is because a molded product can be easily manufactured because the molten resin is filled in the mold cavity forming the shape of the molded product, and the mold temperature is kept below the solidification temperature of the resin to cool and solidify. . However, in order to keep the mold temperature below the solidification temperature of the resin, the filling and cooling of the resin proceed simultaneously, and the resin in contact with the mold at the flow front is rapidly cooled, so the clay becomes higher and lower. Since it is pressed against the mold by pressure, it is difficult to transfer a fine pattern on the mold surface with high accuracy.

従来、金型表面の微細パターンを高精度に転写するために、
1.金型に熱媒と冷媒を交互に流して金型表面を加熱冷却する方法(Plastic Technology Vol.34,150(1988))
2.成形前に高周波誘導加熱で金型表面を加熱する方法(米国特許第4439492号)
3.金型表面に絶縁層と導電層を設け、導電層に通電加熱する方法(Plym.Eng.Sci.,vol34(11),894(1994))
4.金型表面を輻射加熱する方法(剛性樹脂、Vol42,(1)、48(1996)
5.金型表面に断熱層を設け樹脂の熱で金型表面を加温する方法(米国特許第5362226号)
などが知られている。
Conventionally, in order to transfer a fine pattern on the mold surface with high accuracy,
1. A method of heating and cooling the mold surface by alternately flowing a heat medium and a refrigerant through the mold (Plastic Technology Vol. 34, 150 (1988)).
2. Method of heating the mold surface by high frequency induction heating before molding (US Pat. No. 4,439,492)
3. A method in which an insulating layer and a conductive layer are provided on the surface of the mold and the conductive layer is energized and heated (Plym. Eng. Sci., Vol 34 (11), 894 (1994))
4). Method of radiant heating of mold surface (Rigid resin, Vol42, (1), 48 (1996)
5). A method of providing a heat insulating layer on the mold surface and heating the mold surface with the heat of the resin (US Pat. No. 5,362,226)
Etc. are known.

これらは、金型表面を加熱することで、樹脂表面の冷却を遅らせ、樹脂の粘度が低い状態にすることで転写精度を上げる方法である。しかし、金型表面温度を高くすることは、金型内に温度ムラが生じやすくなり成形品の反りを発生させたり、離型ムラによる歪みを発生させる。また、樹脂の冷却を遅らせ、成形サイクルが短縮出来なくなる不具合もある。   In these methods, the surface of the mold is heated to delay the cooling of the resin surface and the viscosity of the resin is lowered to increase the transfer accuracy. However, increasing the mold surface temperature tends to cause temperature unevenness in the mold, causing warping of the molded product, and distortion due to mold release unevenness. There is also a problem that the cooling of the resin is delayed and the molding cycle cannot be shortened.

これとは別に、特許第3096904号のように、金型キャビティ内にガス体を充填させおき、樹脂を射出充填する方法が知られている。この方法では、金型キャビティ内のガス圧をある圧力状態にするため金型を密閉構造にする必要がある。そのためパーティング面、各プレート間、突きだしピン回りにOリングやUパッキンを組み込む必要があり、金型構造に制約を与える。さらにキャビティ内に最大15MPa程度のガス圧が必要となり、高圧ガスを発生させる設備が必要となる。   Apart from this, a method is known in which a gas body is filled in a mold cavity and a resin is injected and filled, as in Japanese Patent No. 3096904. In this method, the mold needs to have a sealed structure in order to bring the gas pressure in the mold cavity to a certain pressure state. Therefore, it is necessary to incorporate an O-ring or U-packing around the parting surface, between each plate, and around the protruding pin, which restricts the mold structure. Furthermore, a gas pressure of up to about 15 MPa is required in the cavity, and equipment for generating high-pressure gas is required.

また、樹脂全体の溶融粘度を低下させて成形する方法が知られている。例えば、特許3218397号に開示されるように、溶融樹脂に0.2wt%以上の二酸化炭素を溶解させる方法、特開2001−9882号に開示されるように、超臨界状態の二酸化炭素を注入する方法などがある。しかし、これらの方法は何れも、上記のように高圧ガスを発生させる設備が必要となる。   In addition, a method is known in which molding is performed by reducing the melt viscosity of the entire resin. For example, as disclosed in Japanese Patent No. 3218397, a method of dissolving 0.2 wt% or more of carbon dioxide in a molten resin, or as disclosed in Japanese Patent Application Laid-Open No. 2001-9882, supercritical carbon dioxide is injected. There are methods. However, any of these methods requires equipment for generating high-pressure gas as described above.

さらに、微細パターンを高精度に転写するマイクロファブリケーションを必要とする成形品は、小型化、薄肉化が求められる。射出成形法では、量産性、コストを考慮すると多数個取りが必要となるが、各キャビティでの成形状態を同じくすることは成形品が小さい場合、非常に困難である。また、キャビティに樹脂を導くスプルが必要であり、小型成形品の場合、成形品よりスプルの樹脂量が多くなることがある。スプルが再利用出来る場合、再利用設備がさらに必要となり、また、成形品によりスプルの再利用が出来ない場合は廃棄となり樹脂の利用効率が下がる。   Furthermore, a molded product that requires microfabrication for transferring a fine pattern with high accuracy is required to be smaller and thinner. In the injection molding method, it is necessary to take a large number of molds in consideration of mass productivity and cost. However, it is very difficult to make the same molding state in each cavity when the molded product is small. Further, a sprue that guides the resin to the cavity is necessary, and in the case of a small molded product, the amount of the sprue resin may be larger than that of the molded product. When the sprue can be reused, further reuse facilities are required, and when the sprue cannot be reused due to the molded product, it is discarded and the use efficiency of the resin is lowered.

射出成形法では、充填中の樹脂冷却により樹脂粘度が高くなることで流動抵抗が発生する。成形品の厚みが薄くなるほど樹脂冷却が早くなるため流動抵抗が増加し高い充填圧力が必要となる。そのため成形品内部の圧力分布に偏りが生じ成形品の変形となる。AMOTEC(Asahi Molding Technology with Co2)やMucell(米、TREXEL社、登録商標)など可塑剤効果が出るガス体を含ませた樹脂を溶融充填させること低圧力で充填可能なことが知られている。しかし、ガス体が樹脂から揮発するため成形後の収縮率が通常の成形より大きくなり精度が劣る。また、ガスを含ませるために高圧力を発生するためのガス設備が必要となり、設備が大がかりなものとなる。
米国特許第4439492号 米国特許第5362226号 特許第3096904号 特許第3218397号 特開2001−9882号 Plastic Technology Vol.34,150(1988) Plym.Eng.Sci.,vol34(11),894(1994) 剛性樹脂、Vol42,(1)、48(1996)
In the injection molding method, flow resistance is generated by increasing the resin viscosity by cooling the resin during filling. As the thickness of the molded product decreases, the resin cooling becomes faster, so that the flow resistance increases and a high filling pressure is required. As a result, the pressure distribution inside the molded product becomes uneven, resulting in deformation of the molded product. It is known that a resin containing a gas body that produces a plasticizer effect such as AMOTEC (Asahi Molding Technology with Co2) or Mucell (US, TREXEL, registered trademark) can be filled at low pressure. However, since the gas body is volatilized from the resin, the shrinkage rate after molding becomes larger than that of normal molding, resulting in poor accuracy. Moreover, in order to contain gas, the gas equipment for generating a high pressure is needed, and an installation becomes large-scale.
U.S. Pat. No. 4,439,492 US Pat. No. 5,362,226 Patent No. 3096904 Japanese Patent No. 32189797 Japanese Patent Laid-Open No. 2001-9882 Plastic Technology Vol. 34, 150 (1988) Plym. Eng. Sci. , Vol 34 (11), 894 (1994) Rigid resin, Vol 42, (1), 48 (1996)

そこで、本発明は、熱可塑性樹脂の成形において、樹脂表面粘度の増加を防ぎ、金型表面の微細形状を高精度に転写する方法及びその装置を提供することをその目的とする。また、本発明の更なる目的は、従来のような大がかりな設備を用いないで、樹脂表面粘度の増加を防ぎ、金型表面の微細形状を高精度に転写する方法及びその装置を提供することをその目的とする。   Accordingly, an object of the present invention is to provide a method and an apparatus for transferring a fine shape on a mold surface with high accuracy by preventing an increase in resin surface viscosity in molding a thermoplastic resin. Further, another object of the present invention is to provide a method and an apparatus for transferring a fine shape of a mold surface with high accuracy by preventing an increase in resin surface viscosity without using a conventional large-scale equipment. Is the purpose.

上記課題を解決するために、請求項1に係る発明は、溶融された樹脂の表層に可塑化効果のあるガス体を含浸させた後、該ガス体が含浸した樹脂の表面に、表面に微細パターンを有する転写体の前記微細パターンを加圧して、前記ガス体が含浸した樹脂の表面に前記微細パターンを転写することを特徴とする微細形状の転写加工方法である。   In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that after the molten resin surface is impregnated with a gas body having a plasticizing effect, the surface of the resin impregnated with the gas body is finely formed on the surface. The fine pattern transfer processing method is characterized in that the fine pattern of the transfer body having a pattern is pressurized and the fine pattern is transferred onto the surface of the resin impregnated with the gas body.

請求項2に係る発明は、溶融された樹脂の表層に可塑化効果のあるガス体を含浸させた後、該ガス体が含浸した樹脂の表面に、表面に微細パターンを有する入れ子を加圧して、前記ガス体が含浸した樹脂の表面に微細パターンを転写することを特徴とする微細形状の転写加工方法である。   In the invention according to claim 2, after impregnating the melted resin surface layer with a gas body having a plasticizing effect, the surface of the resin impregnated with the gas body is pressurized with a nest having a fine pattern on the surface. A fine shape transfer processing method, wherein a fine pattern is transferred to the surface of the resin impregnated with the gas body.

また、請求項3に係る発明は、前記ガス体の含浸は、溶融された樹脂の表面と表面に微細パターンを有する入れ子とにより、可塑化効果のあるガス体を密閉し、入れ子を前記樹脂表面に向けて前進させることにより前記密閉されたガス体を加圧させて、前記樹脂の表層にガス体を含浸させることを特徴とする請求項2に記載の微細形状の転写加工方法である。   In the invention according to claim 3, in the impregnation of the gas body, the gas body having a plasticizing effect is sealed by the surface of the molten resin and the nesting having a fine pattern on the surface, and the nesting is performed on the surface of the resin. 3. The fine shape transfer processing method according to claim 2, wherein the sealed gas body is pressurized by being advanced toward the surface, and the surface layer of the resin is impregnated with the gas body.

また、請求項4に係る発明は、前記入れ子は、前記微細パターンの周囲を囲繞して微細パターン面より突出する突起を有することを特徴とする請求項2に記載の微細形状の転写加工方法である。   According to a fourth aspect of the present invention, in the fine shape transfer processing method according to the second aspect, the nesting has a protrusion that surrounds the periphery of the fine pattern and protrudes from the fine pattern surface. is there.

また、請求項5に係る発明は、前記入れ子の加圧により微細パターンを転写する動作とあわせて、溶融された樹脂を切断して所定の成形品形状に樹脂加工することを特徴とする請求項2に記載の微細形状の転写加工方法である。   The invention according to claim 5 is characterized in that the molten resin is cut and processed into a predetermined molded product shape together with the operation of transferring the fine pattern by pressurizing the insert. 2. The fine shape transfer processing method according to 2.

また、請求項6に係る発明は、入れ子と、該入れ子と嵌合状態になる凹部を有するとともに、該凹部の底面に微細パターンを有する型との間に溶融樹脂を挟み込み、前記型の凹部内に前記樹脂の可塑化効果のあるガス体を充填させた後、前記型を前記樹脂に向けて前進させ、該樹脂を切断した後、前記微細パターンを前記樹脂に加圧して該樹脂の表面に微細パターンを転写することを特徴とする微細形状の転写加工方法である。   According to a sixth aspect of the present invention, a molten resin is sandwiched between a mold and a mold having a fine pattern on the bottom surface of the mold. Is filled with a gas body having a plasticizing effect on the resin, the mold is advanced toward the resin, the resin is cut, and then the fine pattern is applied to the resin to press the fine pattern onto the surface of the resin. A fine shape transfer processing method is characterized in that a fine pattern is transferred.

また、請求項7に係る発明は、型と、該型と嵌合状態になる凹部を有するとともに、該凹部の底面に微細パターンを有する入れ子との間に溶融樹脂を挟み込み、前記入れ子の凹部内に前記樹脂の可塑化効果のあるガス体を充填させた後、前記入れ子を前記樹脂に向けて前進させ、該樹脂を切断した後、前記微細パターンを前記樹脂に加圧して該樹脂の表面に微細パターンを転写することを特徴とする微細形状の転写加工方法である。   According to a seventh aspect of the present invention, a molten resin is sandwiched between a mold and a recess that is fitted with the mold, and a fine pattern is formed on the bottom surface of the recess, and the inside of the recess of the insert Is filled with a gas body having a plasticizing effect on the resin, and then the nest is advanced toward the resin, and the resin is cut, and then the fine pattern is pressed onto the resin to be applied to the surface of the resin. A fine shape transfer processing method is characterized in that a fine pattern is transferred.

また、請求項8に係る発明は、請求項2に記載の微細形状の転写加工方法を1つの溶融樹脂表面に繰り返し行うことにより複数の微細パターンを転写することを特徴とする微細形状の転写加工方法である。   According to an eighth aspect of the present invention, there is provided a fine shape transfer process, wherein a plurality of fine patterns are transferred by repeatedly performing the fine shape transfer processing method according to claim 2 on one molten resin surface. Is the method.

また、請求項9に係る発明は、溶融樹脂を供給する押出し機と可塑化効果を有するガス体を含浸させて微細パターンを加圧転写する微細パターン加工装置とを連結し、樹脂の供給速度に連動して同速度で前記転写体を移動し、樹脂の供給速度と転写体の移動速度とが同速度のときに微細パターン転写加工を行うことを特徴とする請求項8に記載の微細形状の転写加工方法である。   The invention according to claim 9 connects an extruder for supplying a molten resin and a fine pattern processing apparatus for impregnating a gas body having a plasticizing effect and pressurizing and transferring a fine pattern, thereby increasing the resin supply speed. 9. The fine pattern transfer processing according to claim 8, wherein the transfer body is moved at the same speed in conjunction, and fine pattern transfer processing is performed when the resin supply speed and the transfer body movement speed are the same speed. This is a transfer processing method.

また、請求項10に係る発明は、ガラス転移温度以上の溶融樹脂を熱変形温度以下の温度調整機能を持った入れ子で微細パターンを加圧し、その状態で入れ子および樹脂を冷却し、樹脂と入れ子の離脱を行うことを特徴とする請求項8又は9に記載の微細形状の転写加工方法である。   The invention according to claim 10 pressurizes a fine pattern with a nest having a temperature adjustment function equal to or lower than the heat distortion temperature of a molten resin having a glass transition temperature or higher, and cooling the nest and the resin in that state, thereby 10. The fine shape transfer processing method according to claim 8 or 9, wherein the separation is performed.

また、請求項11に係る発明は、溶融された樹脂表面と表面に微細パターンを有する入れ子により、可塑化効果のあるガス体を密閉し、入れ子を前進させてガス体を加圧させて、樹脂表層にガス体を含浸させて樹脂表層の溶融粘度を低下させた後、減圧弁によりガス体の圧力を解放し、その後に溶融樹脂表面に微細パターンを転写することを特徴とする微細形状の転写加工方法である。   According to an eleventh aspect of the present invention, a gas body having a plasticizing effect is sealed with a molten resin surface and a nest having a fine pattern on the surface, and the gas body is pressurized by advancing the nest, After transferring the gas body to the surface layer to lower the melt viscosity of the resin surface layer, the pressure of the gas body is released by a pressure reducing valve, and then a fine pattern is transferred to the surface of the molten resin. It is a processing method.

また、請求項12に係る発明は、樹脂表面と表面に微細パターンを有する入れ子により形成された空間に、加熱装置により樹脂のガラス転移点以上に加熱された可塑化効果のあるガス体を供給し、入れ子を前進させてガス体を加圧し、樹脂表層にガス体を含浸させて樹脂表層の溶融粘度を低下させ、、その後に該ガス体が含浸した樹脂の表面に微細パターンを転写することを特徴とする微細形状の転写加工方法である。   Further, the invention according to claim 12 supplies a gas body having a plasticizing effect heated to a temperature higher than the glass transition point of the resin by a heating device in the space formed by the nesting having a fine pattern on the resin surface and the surface. The gas body is pressurized by advancing the nesting, the resin surface layer is impregnated with the gas body to reduce the melt viscosity of the resin surface layer, and then the fine pattern is transferred to the surface of the resin impregnated with the gas body. This is a transfer processing method having a fine shape.

また、請求項13に係る発明は、溶融された樹脂の表層に可塑化効果のあるガス体を含浸させる手段と、該ガス体が含浸した樹脂の表面に、表面に微細パターンを有する転写体の前記微細パターンを加圧する手段とを備えていることを特徴とする微細形状の転写加工装置である。   According to a thirteenth aspect of the present invention, there is provided a means for impregnating a melted resin surface layer with a gas body having a plasticizing effect, and a transfer body having a fine pattern on the surface of the resin impregnated with the gas body. And a means for pressurizing the fine pattern.

また、請求項14に係る発明は、前記溶融された樹脂の供給と前記転写体の移動とを同速度にしたことを特徴とする請求項13に記載の微細形状の転写加工装置である。   The invention according to claim 14 is the fine shape transfer processing apparatus according to claim 13, wherein the molten resin is supplied at the same speed as the transfer body.

請求項1に記載の発明によれば、可塑化効果のあるガス体含浸による可塑化効果で樹脂表面を選択的に固化温度の低下、溶融粘度の低下を発生させ転写体を加圧して微細形状パターンを転写するため、溶融樹脂に可塑化効果のあるガス体を含ませて成形する場合に生じる発泡現象などがなく精度の高い転写が得られる。   According to the first aspect of the present invention, the plastic surface is selectively plasticized by the plasticizing effect of the plastic body to cause a decrease in the solidification temperature and a decrease in the melt viscosity, and the transfer body is pressed to form a fine shape. Since the pattern is transferred, there is no foaming phenomenon that occurs when the molten resin is molded with a gas body having a plasticizing effect, and a highly accurate transfer can be obtained.

請求項2に記載の発明によれば、可塑化効果のあるガス体の含浸による可塑化効果で樹脂表面を選択的に固化温度の低下、溶融粘度の低下を発生させ入れ子を加圧して微細形状パターンを転写するため、溶融樹脂に可塑化効果のあるガス体を含ませて成形する場合に生じる発泡現象などがなく精度の高い転写が得られる。   According to the second aspect of the present invention, the plastic surface is selectively plasticized by the impregnation of the gas body having a plasticizing effect, and the resin surface is selectively reduced in solidification temperature and melt viscosity is reduced to press the nesting to form a fine shape. Since the pattern is transferred, there is no foaming phenomenon that occurs when the molten resin is molded with a gas body having a plasticizing effect, and a highly accurate transfer can be obtained.

請求項3に記載の発明によれば、可塑化効果のあるガス体を含浸させるための加圧と微細形状パターン転写のための加圧が同時にできるので、ガス体を加圧する従来のような大がかりな設備装置が不要である。   According to the third aspect of the present invention, the pressurization for impregnating the gas body having a plasticizing effect and the pressurization for the transfer of the fine shape pattern can be simultaneously performed. Equipment is not required.

請求項4に記載の発明によれば、突起により可塑化効果のあるガス体を密封することが出来るので、金型構造が簡易になる。   According to the invention described in claim 4, since the gas body having a plasticizing effect can be sealed by the projection, the mold structure is simplified.

請求項5に記載の発明によれば、樹脂を加工して成形品を作製する際、プレス方法で成形することが出来るため、射出成形法のようにスプルなど不要なものが生じない。   According to the fifth aspect of the present invention, when a molded product is manufactured by processing a resin, it can be molded by a pressing method, and therefore, unnecessary things such as a sprue are not generated unlike the injection molding method.

請求項6に記載の発明によれば、従来のような大がかりな設備を用いないで、転写のための加圧と成形品形状の形成を同時に行うことが可能となるため、成形サイクルの短縮が可能となる。   According to the sixth aspect of the present invention, it is possible to simultaneously perform pressurization for transfer and formation of a molded product shape without using a large-scale facility as in the prior art. It becomes possible.

請求項7に記載の発明によれば、従来のような大がかりな設備を用いないで、突起により可塑化効果のあるガス体を密封することが出来、また入れ子の前進加圧のみで成形品を作製できるので、装置構造が簡単になる。   According to the seventh aspect of the present invention, the gas body having a plasticizing effect can be sealed by the projection without using a large-scale facility as in the prior art, and the molded product can be formed only by the forward pressurization of the nest. Since it can be manufactured, the device structure is simplified.

請求項8に記載の発明によれば、少ない入れ子の数で多数の成形品を得ることが出来るため金型コストを少なくすることが出来る。   According to the invention described in claim 8, since a large number of molded products can be obtained with a small number of inserts, the die cost can be reduced.

請求項9に記載の発明によれば、入れ子を移動して成形するため成形タクトが長くても、少ない入れ子の数で成形品を得ることが出来るため金型コストを少なくすることが出来る。   According to the ninth aspect of the present invention, since the nest is moved and molded, even if the molding tact is long, a molded product can be obtained with a small number of nests, so that the mold cost can be reduced.

請求項10に記載の発明によれば、入れ子の温度が低いため成形サイクルの短縮が可能となる。   According to the invention described in claim 10, since the temperature of the nesting is low, the molding cycle can be shortened.

請求項11に記載の発明によれば、任意の圧力、または位置で可塑化効果のあるガス体を転写面から排出できるため転写精度を高くすることが出来る。   According to the eleventh aspect of the present invention, since the gas body having a plasticizing effect can be discharged from the transfer surface at an arbitrary pressure or position, the transfer accuracy can be increased.

請求項12に記載の発明によれば、加熱された可塑化効果のあるガス体の熱により樹脂を加熱することが出来るため、シートなどの固化状態の樹脂表面にも可塑化効果のあるガス体を含浸させることが可能となり、プレス成形などが可能となる。   According to the twelfth aspect of the invention, since the resin can be heated by the heat of the heated gas body having a plasticizing effect, the gas body also has a plasticizing effect on a solidified resin surface such as a sheet. Can be impregnated, and press molding or the like becomes possible.

請求項13に記載の発明によれば、従来のような大がかりな設備を用いないで、可塑化効果のあるガス体の含浸による可塑化効果で樹脂表面を選択的に固化温度の低下、溶融粘度の低下を発生させ転写体を加圧して微細形状パターンを転写するため、溶融樹脂に可塑化効果のあるガス体を含ませて成形する場合に生じる発泡現象などがなく精度の高い転写が得られる。   According to the invention described in claim 13, the resin surface is selectively lowered by the plasticizing effect by impregnation of the gas body having a plasticizing effect without using a large-scale facility as in the prior art, the melt viscosity Transfer is performed by pressurizing the transfer body and transferring a fine pattern, so that there is no foaming phenomenon that occurs when molding is performed by including a gas body having a plasticizing effect in the molten resin, so that a highly accurate transfer can be obtained. .

請求項14に記載の発明によれば、溶融された樹脂の供給と前記転写体の移動とを同速度にしたので、成形時の樹脂量が一定となり安定した可塑化効果のあるガス体の加圧および樹脂への金型入れ子3の加圧が可能である。   According to the fourteenth aspect of the present invention, since the supply of the molten resin and the movement of the transfer body are made at the same speed, the amount of the resin at the time of molding becomes constant, and the gas body having a stable plasticizing effect is added. Pressure and pressurization of the mold insert 3 into the resin are possible.

以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明に係る第1実施形態の転写加工装置の動作説明図、図2は図1の各工程における樹脂の温度を示す図である。図1に示すように、この転写加工装置は、押出し機20と、微細パターン加工装置21とを備えている。押出し機20は、そのノズル20aから溶融樹脂1を搬送手段22上にシート状に流出して、押出し機20に連結されている微細パターン加工装置21の加工位置に供給する(樹脂搬送工程の位置(1))。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram for explaining the operation of the transfer processing apparatus according to the first embodiment of the present invention, and FIG. 2 is a view showing the temperature of the resin in each step of FIG. As shown in FIG. 1, the transfer processing apparatus includes an extruder 20 and a fine pattern processing apparatus 21. The extruder 20 flows the molten resin 1 from the nozzle 20a onto the conveying means 22 in a sheet shape and supplies it to the processing position of the fine pattern processing apparatus 21 connected to the extruder 20 (position of the resin conveying step). (1)).

微細パターン加工装置21は、樹脂を可塑化する効果の有るガス体、本実施形態では二酸化炭素Gの雰囲気中に配置されている。そして、微細パターン加工装置21は、金型入れ子(転写体)3を搬送する手段(図示せず)、例えばロボットアーム等を備えている。この搬送手段(図示せず)は、金型入れ子3の両側面に進退動可能に取り付けられたカッターCとともに金型入れ子3を溶融樹脂1の供給速度と同速度で搬送する。この搬送は、少なくとも後述する転写空間密閉工程の位置(2)〜徐冷工程の位置(5)の間が同速度である。他の位置では同速度であっても、同速度でなくても良い。   The fine pattern processing device 21 is arranged in an atmosphere of a gas body having an effect of plasticizing a resin, in this embodiment, carbon dioxide G. The fine pattern processing apparatus 21 includes means (not shown) for conveying the mold insert (transfer body) 3 such as a robot arm. This conveying means (not shown) conveys the mold insert 3 at the same speed as the supply speed of the molten resin 1 together with the cutters C attached to both side surfaces of the mold insert 3 so as to be movable back and forth. This conveyance is at the same speed at least between the position (2) in the transfer space sealing step, which will be described later, and the position (5) in the slow cooling step. Other positions may have the same speed or may not have the same speed.

微細パターン加工装置21は、溶融樹脂1の搬送方向上流側から順に、転写空間密閉工程の位置(2)、切断工程の位置(3)、転写工程の位置(4)、徐冷工程の位置(5)、離脱工程の位置(6)、待機工程の位置(7)に金型入れ子3を循環させる。   The fine pattern processing device 21 is arranged in order from the upstream side in the transport direction of the molten resin 1, the position (2) of the transfer space sealing step, the position (3) of the cutting step, the position (4) of the transfer step, and the position of the slow cooling step ( 5) The mold insert 3 is circulated to the position (6) of the separation process and the position (7) of the standby process.

次に図1の樹脂搬送工程の位置(1)〜待機工程の位置(7)の順に動作を説明する。
樹脂搬送工程の位置(1)では、 押出し機のノズルから形状転写装置へと樹脂1が搬送される。2つの装置(押出し機20、微細パターン加工装置21)が連結されているため、樹脂温度の低下が少なく経済的である。溶融樹脂1として、ポリカーボネートを用い、搬送直後は約270℃、微細パターン加工装置21の直前で約200℃である。図2に示すように、溶融樹脂1として用いたポリカーボネートのガラス転移点GPは約140℃、熱変形温度(荷重たわみ温度)HDTは約120℃である。
Next, operation | movement is demonstrated in order of the position (1) of the resin conveyance process of FIG. 1-the position (7) of a standby process.
At the position (1) of the resin transport process, the resin 1 is transported from the nozzle of the extruder to the shape transfer device. Since two apparatuses (extruder 20 and fine pattern processing apparatus 21) are connected to each other, the resin temperature is hardly lowered and it is economical. Polycarbonate is used as the molten resin 1 and is about 270 ° C. immediately after the conveyance, and about 200 ° C. just before the fine pattern processing apparatus 21. As shown in FIG. 2, the glass transition point GP of the polycarbonate used as the molten resin 1 is about 140 ° C., and the heat distortion temperature (deflection temperature under load) HDT is about 120 ° C.

転写空間密閉工程の位置(2)〜徐冷工程の位置(5)では、搬送された溶融樹脂1の温度はガラス転移温度以上で十分塑性加工が出来る温度である。その時の金型入れ子3の温度は熱変形温度(荷重たわみ温度)以上である。次に、支持体4を金型入れ子3より前進させ、樹脂1と接することで空間Sを形成する。この空間Sが開いている時に二酸化炭素Gを供給し、二酸化炭素Gを空間Sの間で密閉したのち、溶融樹脂1に支持体4を前進させ、溶融樹脂1を切断する。次に金型入れ子3表面の微細形状パターン2が樹脂に接するまで徐々に前進させる。金型入れ子3と樹脂1との間で密閉した二酸化炭素Gは金型入れ子3の前進により加圧され、樹脂表層に含浸する。二酸化炭素Gが含浸して溶融粘度が低下した樹脂表層に微細形状パターン2を加圧し、転写する。金型入れ子3の温度を徐々に下げ、徐冷工程の位置(5)に到達するまでに溶融樹脂1を熱変形温度(荷重たわみ温度)以下まで冷却する。例えば、加圧直前の溶融樹脂1の温度は200℃、金型入れ子3が離脱する直前の溶融樹脂1の温度は130℃である。   In the position (2) of the transfer space sealing step to the position (5) of the slow cooling step, the temperature of the conveyed molten resin 1 is a temperature at which the plastic processing can be sufficiently performed at the glass transition temperature or higher. The temperature of the mold insert 3 at that time is equal to or higher than the heat deformation temperature (deflection temperature under load). Next, the support body 4 is advanced from the mold insert 3 and is in contact with the resin 1 to form the space S. When this space S is open, carbon dioxide G is supplied, and after the carbon dioxide G is sealed between the spaces S, the support 4 is advanced to the molten resin 1 and the molten resin 1 is cut. Next, the mold is gradually advanced until the fine pattern 2 on the surface of the mold insert 3 comes into contact with the resin. The carbon dioxide G sealed between the mold insert 3 and the resin 1 is pressurized by the advance of the mold insert 3 and impregnates the resin surface layer. The fine shape pattern 2 is pressed and transferred to the resin surface layer impregnated with carbon dioxide G and the melt viscosity is lowered. The temperature of the mold insert 3 is gradually lowered, and the molten resin 1 is cooled to the heat deformation temperature (deflection temperature under load) or less before reaching the position (5) of the slow cooling step. For example, the temperature of the molten resin 1 immediately before pressurization is 200 ° C., and the temperature of the molten resin 1 immediately before the mold insert 3 is detached is 130 ° C.

その時、樹脂の供給速度と金型入れ子3の転写空間密閉工程の位置(2)から徐冷工程の位置(5)への移動速度とは同じである。そのことにより、成形時の樹脂量が一定となり安定した二酸化炭素の加圧および樹脂への金型入れ子3の加圧が可能となっている。例えば、金型入れ子3の移動速度の方が樹脂の供給速度より遅いと、金型入れ子3により樹脂を切断する際に樹脂の渋滞を引き起こし、次の切断時には渋滞した部分を切断することになり、成形時の樹脂量が一定ではなくなる。また、金型入れ子3の移動速度の方が樹脂の供給速度より早いと、金型入れ子3により樹脂を切断する際に樹脂と切断部分との間に空間が発生し、次の切断時には空間部分を含んで切断することになり、成形時の樹脂量が一定ではなくなる。   At that time, the resin supply speed and the moving speed of the mold insert 3 from the position (2) in the transfer space sealing step to the position (5) in the slow cooling step are the same. As a result, the amount of resin during molding becomes constant, and stable pressurization of carbon dioxide and pressurization of the mold insert 3 to the resin are possible. For example, if the moving speed of the mold insert 3 is slower than the resin supply speed, the resin will be jammed when the resin is cut by the mold insert 3 and the jammed portion will be cut at the next cutting. The amount of resin during molding is not constant. Further, if the moving speed of the mold insert 3 is faster than the resin supply speed, a space is generated between the resin and the cut portion when the resin is cut by the mold insert 3, and a space portion is formed at the next cutting. The amount of resin at the time of molding is not constant.

離脱工程の位置(6)では、金型入れ子3が成形品1bから離脱する。その時、樹脂温度は熱変形温度(荷重たわみ温度)以下であるため、微細形状パターン2の変形は無く、良質な成形品が得られる。待機工程の位置(7)では、成形品1bから離脱した金型入れ子3は転写空間密閉工程の位置(2)へと移動し、次の転写加工を行う。その移動の間に、金型入れ子3の温度は所定の温度まで加熱される。   At the position (6) in the separation step, the mold insert 3 is detached from the molded product 1b. At that time, since the resin temperature is equal to or lower than the thermal deformation temperature (deflection temperature under load), the fine shape pattern 2 is not deformed, and a high-quality molded product is obtained. At the position (7) in the standby process, the mold insert 3 released from the molded product 1b moves to the position (2) in the transfer space sealing process and performs the next transfer process. During the movement, the temperature of the mold insert 3 is heated to a predetermined temperature.

また、熱変形温度(荷重たわみ温度)以下に設定された金型入れ子3により加圧する場合、溶融樹脂1の冷却が促進され成形サイクルが短縮される。転写される面も冷却固化するが空間Sに密封された二酸化炭素Gの可塑化効果により微細形状パターン2の転写精度が低くなることはない。また、樹脂の冷却固化による収縮で金型入れ子3との間に隙間が出来、空間Sに密封された二酸化炭素Gが外部に排出され転写面に二酸化炭素Gが介在することが無くなるため微細形状パターン2の転写精度が高くなる。この場合には微細パターン加工装置21内を二酸化炭素Gの雰囲気にせずに、図4又は図5に示すように、金型入れ子3に二酸化炭素Gの供給孔を設けて空間S内に二酸化炭素Gを供給する。   Further, when pressurization is performed by the mold insert 3 set to be equal to or lower than the heat distortion temperature (deflection temperature under load), the cooling of the molten resin 1 is promoted and the molding cycle is shortened. The surface to be transferred is also cooled and solidified, but the transfer accuracy of the fine pattern 2 is not lowered by the plasticizing effect of the carbon dioxide G sealed in the space S. Further, since the resin shrinks due to cooling and solidification, a gap is formed between the mold insert 3 and the carbon dioxide G sealed in the space S is discharged to the outside and the carbon dioxide G does not intervene on the transfer surface. The transfer accuracy of the pattern 2 is increased. In this case, the inside of the fine pattern processing apparatus 21 is not made the atmosphere of carbon dioxide G, but a carbon dioxide G supply hole is provided in the mold insert 3 as shown in FIG. G is supplied.

次に、図1の転写加工装置を用いる成形品への転写加工方法を説明する。図3は図1の転写加工装置を用いた微細形状パターンの転写加工方法の第1の例を示し、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。なお、この転写加工方法では、図1の転写加工装置を用いているが、切断工程を省略して、転写空間密閉工程、転写工程、離脱工程を行う場合について説明する。   Next, a transfer processing method to a molded product using the transfer processing apparatus of FIG. 1 will be described. FIG. 3 shows a first example of a fine pattern transfer method using the transfer processing apparatus of FIG. 1, wherein (A) shows before transfer, (B) shows during transfer, and (C) shows after transfer. . In this transfer processing method, the transfer processing apparatus of FIG. 1 is used, but the case where the cutting step is omitted and the transfer space sealing step, the transfer step, and the separation step are performed will be described.

図3に示すように、この転写加工方法では、微細パターン2の回りに突起5を設けた金型入れ子3を用いた微細形状パターン転写の方法を示す。図3(A)ではノズル20a(可塑化シリンダ)から押し出された溶融樹脂1と、微細形状パターン2を表面に有し、その回りに突起5を設けた金型入れ子3とにより形成される空間Sは、溶融樹脂1と突起5が接することで密閉状態となる。空間Sには樹脂に含浸すると可塑化効果が得られるガス体、本実施形態では二酸化炭素Gが充填されている。   As shown in FIG. 3, this transfer processing method shows a method for transferring a fine pattern using a mold insert 3 in which protrusions 5 are provided around the fine pattern 2. In FIG. 3 (A), a space formed by the molten resin 1 extruded from the nozzle 20a (plasticizing cylinder) and a mold insert 3 having a fine pattern 2 on its surface and provided with a protrusion 5 around it. S is in a sealed state when the molten resin 1 and the protrusion 5 are in contact with each other. The space S is filled with a gas body capable of obtaining a plasticizing effect when impregnated with resin, in the present embodiment, carbon dioxide G.

熱可塑性樹脂に溶解しやすく可塑化効果が得やすいガス体として、二酸化炭素以外にも、炭化水素、炭化水素の一部水素をフッ素に置換したガスなどがあるが、熱可塑性樹脂に溶解しやすく、扱いが容易である二酸化炭素を用いるのが特によい。   In addition to carbon dioxide, gas bodies that are easily dissolved in thermoplastic resins and easily obtain a plasticizing effect include hydrocarbons, gases in which part of the hydrocarbons are substituted with fluorine, etc., but they are easily dissolved in thermoplastic resins. It is particularly good to use carbon dioxide, which is easy to handle.

図3(B)では、金型入れ子3を加圧前進させ二酸化炭素Gを圧縮し高圧状態にする。密閉された二酸化炭素Gの圧力は、金型入れ子3の加圧力により任意の圧力に調整が可能であるが、二酸化炭素Gの圧力が73MPa以上の場合、溶融樹脂1の温度が30℃以上であるため、二酸化炭素Gは超臨界状態となり樹脂表層への含浸がより加速される。樹脂表層に含浸した二酸化炭素Gは可塑剤の作用をするため、樹脂表層だけを選択的に固化温度を低下させる、または樹脂の溶融粘度を低下させる効果が得られる。その状態で金型入れ子3を溶融樹脂表層に密着加圧することで金型入れ子3表面の微細形状パターン2を精度良く樹脂に転写することが出来る。図3(C)では、微細形状パターン2が転写され樹脂が冷却固化したのち金型入れ子を後退させる。このようにして樹脂表層には、微細形状パターンが高精度で転写される。   In FIG. 3B, the mold insert 3 is pressurized and advanced to compress the carbon dioxide G to a high pressure state. The pressure of the sealed carbon dioxide G can be adjusted to an arbitrary pressure by the pressing force of the mold insert 3, but when the pressure of the carbon dioxide G is 73 MPa or higher, the temperature of the molten resin 1 is 30 ° C. or higher. Therefore, the carbon dioxide G becomes a supercritical state, and the impregnation of the resin surface layer is further accelerated. Since the carbon dioxide G impregnated in the resin surface layer acts as a plasticizer, an effect of selectively lowering the solidification temperature of only the resin surface layer or lowering the melt viscosity of the resin is obtained. In this state, the fine insert pattern 3 on the surface of the mold insert 3 can be accurately transferred to the resin by tightly pressing the mold insert 3 on the surface of the molten resin. In FIG. 3C, after the fine pattern 2 is transferred and the resin is cooled and solidified, the mold insert is moved backward. In this way, the fine pattern is transferred to the resin surface layer with high accuracy.

次に図4(A)〜(C)の順に二酸化炭素の加減圧の動作を説明する。図4は減圧弁を備えた金型入れ子を用いて二酸化炭素の加減圧の動作を説明するための図であり、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。なお、この転写加工方法においても、図3に示した転写加工方法と同様に、切断工程を省略した場合について説明する。   Next, the operation of increasing / decreasing carbon dioxide will be described in the order of FIGS. 4A and 4B are diagrams for explaining the operation of increasing / decreasing carbon dioxide using a mold insert provided with a pressure reducing valve. FIG. 4A is before transfer, FIG. 4B is during transfer, and FIG. 4C is after transfer. Respectively. In this transfer processing method as well, as in the transfer processing method shown in FIG. 3, a case where the cutting step is omitted will be described.

図4(A)ではノズル20aから押し出された溶融樹脂1と微細形状パターン2を表面に有する金型入れ子3とにより形成される空間Sは、溶融樹脂1と金型入れ子3が接することで密閉状態となる。空間Sには二酸化炭素Gが充填されている。   In FIG. 4A, the space S formed by the molten resin 1 extruded from the nozzle 20a and the mold insert 3 having the fine pattern 2 on the surface is sealed by the molten resin 1 and the mold insert 3 being in contact with each other. It becomes a state. The space S is filled with carbon dioxide G.

図4(B)では、金型入れ子3を加圧前進させ二酸化炭素Gを圧縮し高圧状態にする。密閉された二酸化炭素Gの圧力は、金型入れ子3の加圧力により任意の圧力に調整が可能である。任意の圧力以上で圧力開放弁9が開くように設定する、または、微細形状パターン2が樹脂に接するストローク位置に来たときに圧力開放弁9が開くように設定することで、微細パターン2を樹脂に転写する際に樹脂と金型入れ子3との間に二酸化炭素が介在して微細形状パターン2の転写を阻害することがなくなる。   In FIG. 4B, the mold insert 3 is pressurized and advanced to compress the carbon dioxide G to a high pressure state. The pressure of the sealed carbon dioxide G can be adjusted to an arbitrary pressure by the pressing force of the mold insert 3. By setting the pressure release valve 9 to open at an arbitrary pressure or higher, or by setting the pressure release valve 9 to open when the fine pattern 2 comes to the stroke position in contact with the resin, the fine pattern 2 When transferring to the resin, carbon dioxide does not intervene between the resin and the mold insert 3 to prevent the transfer of the fine pattern 2.

圧力開放弁9が開くまでは二酸化炭素Gが加圧され、樹脂表層に含浸するため、樹脂表層だけを選択的に固化温度を低下させる、または樹脂の溶融粘度を低下させる効果が得られる。   Until the pressure release valve 9 is opened, the carbon dioxide G is pressurized and impregnated into the resin surface layer, so that an effect of selectively lowering the solidification temperature of only the resin surface layer or lowering the melt viscosity of the resin is obtained.

図4(C)では、微細形状パターンが転写され樹脂が冷却固化したのち金型入れ子3を後退させる。樹脂表層には、微細形状パターン2が高精度で転写される。このとき樹脂1と金型入れ子3表面の微細形状パターン2との間に清浄空気を吹き込むことで溶融樹脂1と金型入れ子3との離型が精度良く行われることを促進することが出来る。   In FIG. 4C, after the fine pattern is transferred and the resin is cooled and solidified, the mold insert 3 is moved backward. The fine pattern 2 is transferred to the resin surface layer with high accuracy. At this time, by blowing clean air between the resin 1 and the fine pattern 2 on the surface of the mold insert 3, it is possible to accelerate the release of the molten resin 1 and the mold insert 3 with high accuracy.

図5は空間Sに外部で加温された二酸化炭素を供給するための回路図の一例を示す図である。図5には、金型入れ子3の前進加圧による二酸化炭素Gの加圧、溶融樹脂1の温度を利用しての加温ではなく、空間Sに外部で加温された二酸化炭素Gを供給するための回路図の一例を示す。   FIG. 5 is a diagram showing an example of a circuit diagram for supplying carbon dioxide heated outside to the space S. FIG. In FIG. 5, not the pressurization of the carbon dioxide G by the forward pressurization of the mold insert 3 and the heating using the temperature of the molten resin 1 but the carbon dioxide G heated outside is supplied to the space S. An example of a circuit diagram for doing this is shown.

外部で加温された二酸化炭素Gを供給することでシートなどの固体状態で供給される固体状樹脂1aに対しても二酸化炭素Gを含浸させることが出来る。また、図5に示すように、空間Sにガスを供給する途中にヒータなどの簡易な加熱装置10を追加するだけでよく、加圧装置のように大がかりになることはない。本実施形態では、ガス供給源13とガス溜まり11との間に加熱装置10が配置されている。なお、図8中、符号12はバルブである。   By supplying carbon dioxide G heated externally, carbon dioxide G can be impregnated into the solid resin 1a supplied in a solid state such as a sheet. Further, as shown in FIG. 5, it is only necessary to add a simple heating device 10 such as a heater in the middle of supplying the gas to the space S, and it does not become large like a pressurizing device. In the present embodiment, the heating device 10 is disposed between the gas supply source 13 and the gas reservoir 11. In FIG. 8, reference numeral 12 denotes a valve.

図6は図1の転写加工装置を用いた微細形状パターンの転写加工方法の第2の例を示し、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。この場合も図3で説明した転写加工方法と同様に、切断工程を省略している。   FIG. 6 shows a second example of a fine pattern transfer method using the transfer processing apparatus of FIG. 1, wherein (A) shows before transfer, (B) shows during transfer, and (C) shows after transfer. . Also in this case, the cutting step is omitted as in the transfer processing method described with reference to FIG.

図6(A)では可塑化シリンダから押し出された溶融樹脂1と、微細形状パターン2を表面に有する金型入れ子3と、金型入れ子3の支持体4とにより形成される空間Sは、溶融樹脂1と支持体4とが接することで密閉状態となる。空間Sには樹脂に含浸すると可塑化効果が得られるガス体が充填されている。熱可塑性樹脂に溶解しやすく可塑化効果が得やすいガス体として、図3の転写加工方法と同様に、熱可塑性樹脂に溶解しやすく、扱いが容易である二酸化炭素を用いるのが特によい。   In FIG. 6A, the space S formed by the molten resin 1 extruded from the plasticizing cylinder, the mold insert 3 having the fine pattern 2 on the surface, and the support 4 of the mold insert 3 is melted. The resin 1 and the support 4 are brought into contact with each other to be in a sealed state. The space S is filled with a gas body that provides a plasticizing effect when impregnated with resin. As the gas body that is easily dissolved in the thermoplastic resin and easily obtains a plasticizing effect, it is particularly preferable to use carbon dioxide that is easily dissolved in the thermoplastic resin and easy to handle, as in the transfer processing method of FIG.

図6(B)では、金型入れ子3を加圧前進させ二酸化炭素Gを圧縮し高圧状態にする。密閉された二酸化炭素Gの圧力は、金型入れ子3の加圧力により任意の圧力に調整が可能であるが、二酸化炭素Gの圧力が73MPa以上の場合、溶融樹脂1の温度が30℃以上であるため、二酸化炭素Gは超臨界状態となり樹脂表層への含浸がより加速される。樹脂表層に含浸した二酸化炭素Gは可塑剤の作用をするため、樹脂表層だけを選択的に固化温度を低下させる、または樹脂の溶融粘度を低下させる効果が得られる。その状態で金型入れ子3を溶融樹脂表層に密着加圧することで金型入れ子3表面の微細形状パターン2を精度良く樹脂に転写することが出来る。図6(C)では、微細形状パターン2が転写され樹脂が冷却固化したのち金型入れ子を後退させる。樹脂表層には、微細形状パターン2が高精度で転写される。   In FIG. 6B, the mold insert 3 is pressurized and advanced to compress the carbon dioxide G to a high pressure state. The pressure of the sealed carbon dioxide G can be adjusted to an arbitrary pressure by the pressing force of the mold insert 3, but when the pressure of the carbon dioxide G is 73 MPa or higher, the temperature of the molten resin 1 is 30 ° C. or higher. Therefore, the carbon dioxide G becomes a supercritical state, and the impregnation of the resin surface layer is further accelerated. Since the carbon dioxide G impregnated in the resin surface layer acts as a plasticizer, an effect of selectively lowering the solidification temperature of only the resin surface layer or lowering the melt viscosity of the resin is obtained. In this state, the fine insert pattern 3 on the surface of the mold insert 3 can be accurately transferred to the resin by tightly pressing the mold insert 3 on the surface of the molten resin. In FIG. 6C, after the fine pattern 2 is transferred and the resin is cooled and solidified, the mold insert is retracted. The fine pattern 2 is transferred to the resin surface layer with high accuracy.

以上のように、本発明に係る実施形態の転写加工方法又は転写加工装置によれば、押出し機20から供給された溶融樹脂1と微細形状パターン2を表面に有する金型入れ子3とで、溶融樹脂1に含浸させると可塑化効果が得られるガス体である二酸化炭素Gを密閉し、金型入れ子3を前進することで二酸化炭素Gを高圧に圧縮し、これにより樹脂表層に二酸化炭素Gを含浸させ、樹脂表層の粘度を低下させる。その後、樹脂表層を微細形状パターン2を表面に有する金型入れ子3で加圧し、樹脂表層に微細形状パターン2を転写することで、微細形状パターン2が高精度に転写された成形品1bを得ることができる。   As described above, according to the transfer processing method or transfer processing apparatus of the embodiment of the present invention, the molten resin 1 supplied from the extruder 20 and the mold insert 3 having the fine pattern 2 on the surface are melted. When the resin 1 is impregnated, the carbon dioxide G, which is a gas body that can obtain a plasticizing effect, is sealed, and the carbon dioxide G is compressed to a high pressure by advancing the mold insert 3, whereby the carbon dioxide G is applied to the resin surface layer. Impregnation to reduce the viscosity of the resin surface layer. Thereafter, the resin surface layer is pressed with a mold insert 3 having the fine shape pattern 2 on the surface, and the fine shape pattern 2 is transferred to the resin surface layer, thereby obtaining a molded product 1b on which the fine shape pattern 2 is transferred with high accuracy. be able to.

図7は本発明に係る第2実施形態の転写加工装置の動作説明図である。次に他の実施形態として図7の樹脂搬送工程の位置(1)〜待機工程の位置(7)の順に動作を説明する。   FIG. 7 is a diagram for explaining the operation of the transfer processing apparatus according to the second embodiment of the present invention. Next, as another embodiment, the operation will be described in the order of the position (1) of the resin transport process to the position (7) of the standby process in FIG.

樹脂搬送工程の位置(1)では、押出し機20から微細パターン加工装置21へと溶融樹脂1が搬送される。2つの装置が連結されているため、樹脂温度の低下が少なく経済的である。例えば、溶融樹脂1はポリカーボネート、搬送直後は約270℃、微細パターン加工装置21の直前で約200℃である。   At the position (1) of the resin transport process, the molten resin 1 is transported from the extruder 20 to the fine pattern processing device 21. Since the two devices are connected, there is little decrease in the resin temperature and it is economical. For example, the molten resin 1 is polycarbonate, about 270 ° C. immediately after conveyance, and about 200 ° C. just before the fine pattern processing apparatus 21.

転写空間密閉工程の位置(2)〜徐冷工程の位置(5)では、搬送された溶融樹脂1の温度はガラス転移温度以上で十分塑性加工が出来る温度である。その時の金型入れ子3の温度は熱変形温度(荷重たわみ温度)以上である。次に、溶融樹脂1と金型入れ子3との間に二酸化炭素Gを供給し、二酸化炭素Gを空間Sの間で密閉したのち、溶融樹脂1に金型入れ子3表面の微細形状パターン2が樹脂に接するまで徐々に前進させる。それと同時に金型入れ子3の側部にある突起5が樹脂を貫通し成形品外形を切り出し形作る。金型入れ子3と溶融樹脂1との間で密閉した二酸化炭素Gは金型入れ子3の前進により加圧され、樹脂表層に含浸する。二酸化炭素Gが含浸して溶融粘度が低下した樹脂表層に微細形状パターン2を加圧し、転写する。溶融樹脂1を挟んで金型入れ子3と反対側に突起5と印籠合わせとなる凹溝8(図8参照)をもつ型(溶融樹脂1に対して金型入れ子3と対称に移動する)7とで切り出した成形品1bを挟み加圧する構造になっているため、空間Sに密封される二酸化炭素G、および溶融樹脂1に微細形状パターン2をより高圧力で加圧することが出来、転写精度がより高くなる効果が得られる。金型入れ子3の温度を徐々に下げ、徐冷工程の位置(5)に到達するまでに樹脂を熱変形温度(荷重たわみ温度)以下まで冷却する。例えば、加圧直前が200℃、金型入れ子3の離脱直前が130℃である。   In the position (2) of the transfer space sealing step to the position (5) of the slow cooling step, the temperature of the conveyed molten resin 1 is a temperature at which the plastic processing can be sufficiently performed at the glass transition temperature or higher. The temperature of the mold insert 3 at that time is equal to or higher than the heat deformation temperature (deflection temperature under load). Next, after supplying carbon dioxide G between the molten resin 1 and the mold insert 3 and sealing the carbon dioxide G between the spaces S, the fine shape pattern 2 on the surface of the mold insert 3 is formed on the molten resin 1. Slowly advance until it comes in contact with the resin. At the same time, the projection 5 on the side of the mold insert 3 penetrates the resin and cuts out the outer shape of the molded product. The carbon dioxide G sealed between the mold insert 3 and the molten resin 1 is pressurized by the advancement of the mold insert 3 and impregnates the resin surface layer. The fine shape pattern 2 is pressed and transferred to the resin surface layer impregnated with carbon dioxide G and the melt viscosity is lowered. A mold (moving symmetrically with the mold insert 3 with respect to the molten resin 1) 7 having a concave groove 8 (see FIG. 8) that is aligned with the protrusion 5 on the opposite side of the mold insert 3 with the molten resin 1 interposed therebetween Since the molded product 1b cut out is pressed and pressed, the carbon dioxide G sealed in the space S and the fine pattern 2 can be pressed to the molten resin 1 with higher pressure, and the transfer accuracy Is obtained. The temperature of the mold insert 3 is gradually lowered, and the resin is cooled to the heat deformation temperature (deflection temperature under load) or less before reaching the position (5) of the slow cooling step. For example, the temperature immediately before pressurization is 200 ° C., and the temperature immediately before the mold insert 3 is detached is 130 ° C.

その時、樹脂の供給速度と金型入れ子3の転写空間密閉工程の位置(2)の位置から徐冷工程の位置(5)への移動速度は同じである。そのことにより、成形時の樹脂量が一定となり安定した二酸化炭素Gの加圧および樹脂への金型入れ子3の加圧が可能となっている。   At that time, the resin supply speed and the moving speed of the mold insert 3 from the position (2) in the transfer space sealing step to the position (5) in the slow cooling step are the same. As a result, the amount of resin during molding becomes constant, and stable pressurization of carbon dioxide G and pressurization of the mold insert 3 into the resin are possible.

離脱工程の位置(6)では、金型入れ子3が成形品1bから離脱する。その時、樹脂温度は熱変形温度(荷重たわみ温度)以下であるため、微細形状パターン2の変形は無く、良質な成形品が得られる。待機工程の位置(7)では、成形品1bから離脱した金型入れ子3は転写空間密閉工程の位置(2)へと移動し、次の転写加工を行う。その移動の間に、金型入れ子3の温度は所定の温度まで加熱される。   At the position (6) in the separation step, the mold insert 3 is detached from the molded product 1b. At that time, since the resin temperature is equal to or lower than the thermal deformation temperature (deflection temperature under load), the fine shape pattern 2 is not deformed, and a high-quality molded product is obtained. At the position (7) in the standby process, the mold insert 3 released from the molded product 1b moves to the position (2) in the transfer space sealing process and performs the next transfer process. During the movement, the temperature of the mold insert 3 is heated to a predetermined temperature.

図8は図5の転写加工装置を用いた微細形状パターンの転写加工方法の第1の例を示し、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。図8は微細パターン2の周囲に微細パターン2面より高い突起5を有する金型入れ子3と、突起5に対応する位置に溝8を有する型7を用いた微細形状パターン転写の方法を示す。   FIG. 8 shows a first example of a fine pattern transfer method using the transfer processing apparatus of FIG. 5, where (A) shows before transfer, (B) shows during transfer, and (C) shows after transfer. . FIG. 8 shows a fine shape pattern transfer method using a mold insert 3 having a protrusion 5 higher than the surface of the fine pattern 2 around the fine pattern 2 and a mold 7 having a groove 8 at a position corresponding to the protrusion 5.

図8(A)では可塑化シリンダから押し出された溶融樹脂1と微細形状パターン2を表面に有し、その回りに突起5を設けた金型入れ子3により形成される空間Sは、溶融樹脂1と突起5とが接することで密閉状態となる。空間Sには樹脂に含浸すると可塑化効果が得られるガス体が充填されている。熱可塑性樹脂に溶解しやすく可塑化効果が得やすいガス体として、図3の転写加工方法と同様に、二酸化炭素を用いるのが特によい。   In FIG. 8 (A), the space S formed by the mold insert 3 having the molten resin 1 extruded from the plasticizing cylinder and the finely shaped pattern 2 on the surface and provided with protrusions 5 around the molten resin 1 is the molten resin 1. And the projection 5 come into contact with each other to form a sealed state. The space S is filled with a gas body that provides a plasticizing effect when impregnated with resin. As the gas body that is easily dissolved in the thermoplastic resin and easily obtains the plasticizing effect, it is particularly preferable to use carbon dioxide as in the transfer processing method of FIG.

図8(B)では、金型入れ子3を前進させることで突起5により溶融樹脂1をせん断し、せん断された溶融樹脂1と金型入れ子3との間に密封された二酸化炭素は圧縮され高圧状態になる。密閉された二酸化炭素の圧力は、金型入れ子3の加圧力により任意の圧力に調整が可能であるが、二酸化炭素の圧力が73MPa以上の場合、溶融樹脂1の温度が30℃以上であるため、二酸化炭素は超臨界状態となり樹脂表層への含浸がより加速される。樹脂表層に含浸した二酸化炭素は可塑剤の作用をするため、樹脂表層だけを選択的に固化温度を低下させる、または樹脂の溶融粘度を低下させる効果が得られる。この状態で金型入れ子3を前進させ溶融樹脂1を貫通した突起5は、突起5に対応する位置にある凹溝8と印籠合わせとなることで溶融樹脂1を切断し、溶融樹脂表層に微細パターン2に密着加圧することで微細形状パターン2を精度良く樹脂に転写することが出来る。   In FIG. 8 (B), the mold insert 3 is advanced to shear the molten resin 1 by the protrusions 5, and the carbon dioxide sealed between the sheared molten resin 1 and the mold insert 3 is compressed and pressurized. It becomes a state. The pressure of the sealed carbon dioxide can be adjusted to an arbitrary pressure by the pressurizing force of the mold insert 3, but when the pressure of the carbon dioxide is 73 MPa or higher, the temperature of the molten resin 1 is 30 ° C. or higher. Carbon dioxide becomes a supercritical state, and the impregnation of the resin surface layer is further accelerated. Since carbon dioxide impregnated in the resin surface layer acts as a plasticizer, an effect of selectively lowering the solidification temperature of only the resin surface layer or lowering the melt viscosity of the resin is obtained. In this state, the mold insert 3 is advanced and the protrusion 5 penetrating through the molten resin 1 is aligned with the concave groove 8 at a position corresponding to the protrusion 5 to cut the molten resin 1 and finely form the surface of the molten resin. The finely shaped pattern 2 can be accurately transferred to the resin by tightly pressing the pattern 2.

図8(C)では、微細形状パターン2が転写され樹脂が冷却固化したのち金型入れ子3を後退させる。樹脂表層には、微細形状パターンが高精度で転写されるとともに突起5により所定の成形品形状も形成される。   In FIG. 8C, after the fine pattern 2 is transferred and the resin is cooled and solidified, the mold insert 3 is moved backward. A fine shape pattern is transferred with high accuracy on the resin surface layer, and a predetermined molded product shape is also formed by the protrusions 5.

図9は図7の転写加工装置を用いた微細形状パターンの転写加工方法の第1の例を示し、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。図9は入れ子6と、入れ子6と嵌合状態になる凹形を有し、前記凹形状の底面に微細パターン2を有する型7とを用いた微細形状パターン転写の方法を示す。図9(A)では可ノズル20aから押し出された溶融樹脂1に微細形状パターン2を凹形状の底面に有する型7を前進させることにより溶融樹脂1と型7とが接し、形成される空間Sは密閉状態となる。   FIG. 9 shows a first example of a fine pattern transfer method using the transfer processing apparatus of FIG. 7, where (A) shows before transfer, (B) shows during transfer, and (C) shows after transfer. . FIG. 9 shows a method of fine shape pattern transfer using a nest 6 and a mold 7 having a concave shape that fits into the nest 6 and having a fine pattern 2 on the bottom surface of the concave shape. In FIG. 9A, the molten resin 1 pushed out from the nozzle 20a is moved forward by moving the mold 7 having the fine pattern 2 on the bottom surface of the concave shape, so that the molten resin 1 and the mold 7 are brought into contact with each other to form the space S formed. Is hermetically sealed.

空間Sには樹脂に含浸すると可塑化効果が得られるガス体として、図3の転写加工方法と同様に、二酸化炭素が充填されている。図9(B)では、入れ子6を加圧前進させることで溶融樹脂1をせん断し、せん断された溶融樹脂1と型7との間に密封された二酸化炭素Gは圧縮され高圧状態になる。密閉された二酸化炭素Gの圧力は、入れ子6の加圧力により任意の圧力に調整が可能であるが、二酸化炭素Gの圧力が73MPa以上の場合、溶融樹脂の温度が30℃以上であるため、二酸化炭素Gは超臨界状態となり樹脂表層への含浸がより加速される。樹脂表層に含浸した二酸化炭素Gは可塑剤の作用をするため、樹脂表層だけを選択的に固化温度を低下させる、または樹脂の溶融粘度を低下させる効果が得られる。この状態で入れ子6を前進させ溶融樹脂表層を型7の凹形状底面にある微細パターン2に密着加圧することで微細形状パターン2を精度良く樹脂に転写することが出来る。図9(C)では、微細形状パターン2が転写され樹脂が冷却固化したのち入れ子6を後退させる。樹脂表層には、微細形状パターン2が高精度で転写されるとともに型7の凹形状により所定の成形品形状も形成される。   The space S is filled with carbon dioxide as a gas body that provides a plasticizing effect when impregnated with resin, as in the transfer processing method of FIG. In FIG. 9B, the molten resin 1 is sheared by advancing the nest 6 under pressure, and the carbon dioxide G sealed between the sheared molten resin 1 and the mold 7 is compressed into a high pressure state. The pressure of the sealed carbon dioxide G can be adjusted to an arbitrary pressure by the pressurizing force of the nesting 6, but when the pressure of the carbon dioxide G is 73 MPa or higher, the temperature of the molten resin is 30 ° C. or higher. Carbon dioxide G enters a supercritical state, and the impregnation of the resin surface layer is further accelerated. Since the carbon dioxide G impregnated in the resin surface layer acts as a plasticizer, an effect of selectively lowering the solidification temperature of only the resin surface layer or lowering the melt viscosity of the resin is obtained. In this state, the insert 6 is moved forward so that the molten resin surface layer is brought into close contact with the fine pattern 2 on the concave bottom surface of the mold 7 so that the fine pattern 2 can be accurately transferred to the resin. In FIG. 9C, after the fine shape pattern 2 is transferred and the resin is cooled and solidified, the insert 6 is moved backward. On the resin surface layer, the fine pattern 2 is transferred with high accuracy, and a predetermined molded product shape is also formed by the concave shape of the mold 7.

図10は入れ子に備える温度調整手段の第1具体例を示す図であり、(A)は概略構成図、(B)は(A)図中のA−A線断面図である。図10(A)に示すように、金型入れ子3には、熱交換器15からフレキシブルチューブ14を介して冷却媒体を通すための流路3bが形成されている。   10A and 10B are diagrams showing a first specific example of the temperature adjusting means provided in the nesting, in which FIG. 10A is a schematic configuration diagram, and FIG. As shown in FIG. 10A, the mold insert 3 is formed with a flow path 3 b for passing a cooling medium from the heat exchanger 15 through the flexible tube 14.

フレキシブルチューブ14は、ナイロン、ポリアミド、ポリオレフィンなどの可撓性を有する耐熱性樹脂から構成され、移動する金型入れ子3に追従できるようになっている。熱交換器15の冷却媒体としては水を用いる水冷式が好ましい。その理由は、取り扱いに優れ、熱交換効率も高いためである。冷却媒体は金型入れ子3内を常に流通させて金型入れ子3を常に一定温度に保持するようにしても良い。また、加圧完了までは金型入れ子3内の冷却媒体を抜き取るか、または、循環を停止し、加圧完了後、冷却媒体を金型入れ子3内に循環させて冷却するようにしてもよい。さらに、冷却媒体の温度を樹脂の熱変形温度(荷重たわみ温度)から、所定温度または室温まで徐々に下げて、徐冷するようにしても良い。   The flexible tube 14 is made of a heat-resistant resin having flexibility such as nylon, polyamide, and polyolefin, and can follow the moving mold insert 3. As the cooling medium of the heat exchanger 15, a water cooling type using water is preferable. The reason is that it is excellent in handling and has high heat exchange efficiency. The cooling medium may be always circulated in the mold insert 3 so that the mold insert 3 is always kept at a constant temperature. Further, the cooling medium in the mold insert 3 may be extracted until the pressurization is completed, or the circulation may be stopped, and after the pressurization is completed, the cooling medium may be circulated in the mold insert 3 to be cooled. . Furthermore, the temperature of the cooling medium may be gradually lowered from the thermal deformation temperature (the deflection temperature under load) of the resin to a predetermined temperature or room temperature, and gradually cooled.

図11は金型入れ子に備える温度調整手段の第2具体例を示す図である。図11に示すように、金型入れ子3に微細形状パターン2に対して垂直に穿設した穴3aの中にバッフル板18及び/又はパイプ(図示せず)を配置して、冷却媒体が循環するようにしても良い。   FIG. 11 is a view showing a second specific example of the temperature adjusting means provided in the mold insert. As shown in FIG. 11, a baffle plate 18 and / or a pipe (not shown) is arranged in a hole 3a drilled perpendicularly to the fine pattern 2 in the mold insert 3 to circulate the cooling medium. You may make it do.

図12は転写パターン面に対向する温度調整用媒体の流路を示す図であり、(A)は平行に配置された流路を示し、(B)は螺旋状に配置された流路を示す。図12(A)に示すように、微細形状パターン2面の温度ばらつきを小さくするために、一部が平行になるように往復させて冷却媒体の流路を屈曲形成するようにしても良い。また、図12(B)に示すように、冷却媒体の流通を螺旋状に往復させるように屈曲形成しても良い。これらの例では、1本の流路を屈曲形成した例について示したが、1つの金型入れ子3内に複数の流路を形成するようにしても良い。   12A and 12B are diagrams showing the flow path of the temperature adjusting medium facing the transfer pattern surface, where FIG. 12A shows the flow paths arranged in parallel, and FIG. 12B shows the flow paths arranged in a spiral. . As shown in FIG. 12A, in order to reduce the temperature variation on the surface of the fine shape pattern 2, the flow path of the cooling medium may be bent by reciprocating partly in parallel. Further, as shown in FIG. 12B, the cooling medium may be bent so as to reciprocate in a spiral manner. In these examples, an example in which one flow path is bent is shown, but a plurality of flow paths may be formed in one mold insert 3.

図13は入れ子に備える温度調整手段の第3具体例を示す図である。図13に示すように、上述した冷却媒体を循環させる方法の他に、ヒートパイプ16を金型入れ子3に設けたヒートパイプ16の取付穴に差込み冷却する方法もある。この方法では、ヒートパイプ16を金型入れ子3に差し込み続ける他に、加圧完了までヒートパイプ16を外しておき、この状態で熱変形温度()以上の保温状態にしておき、加圧完了後にヒートパイプ16を取付穴に挿入して冷却を行うようにしても良い。このようにヒートパイプ16を用いることで、冷却媒体を循環させるためのチューブ等が不要となり、構造が簡単になる。これにより、メンテナンスが容易になり、低コスト化を測ることもできる。なお、本発明は上記実施形態に限定されるものではない。例えば、上記図1、図5の実施形態では金型入れ子が5つの場合について説明したが、1つ以上5つ未満でも良く、また、6個以上でも良い。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   FIG. 13 is a diagram showing a third specific example of the temperature adjusting means provided for the nesting. As shown in FIG. 13, in addition to the method of circulating the cooling medium described above, there is also a method of cooling by inserting the heat pipe 16 into the mounting hole of the heat pipe 16 provided in the mold insert 3. In this method, in addition to continuing to insert the heat pipe 16 into the mold insert 3, the heat pipe 16 is removed until the pressurization is completed, and in this state, the temperature is kept at a temperature higher than the heat deformation temperature (). The heat pipe 16 may be inserted into the mounting hole for cooling. By using the heat pipe 16 in this way, a tube or the like for circulating the cooling medium becomes unnecessary, and the structure becomes simple. Thereby, maintenance becomes easy and cost reduction can also be measured. The present invention is not limited to the above embodiment. For example, in the above-described embodiments of FIGS. 1 and 5, the case where there are five mold nestings has been described. However, the number may be one or more and less than five, or may be six or more. That is, various modifications can be made without departing from the scope of the present invention.

本発明に係る第1実施形態の転写加工装置の動作説明図である。It is operation | movement explanatory drawing of the transfer processing apparatus of 1st Embodiment which concerns on this invention. 図1の各工程における樹脂の温度を示す図である。It is a figure which shows the temperature of the resin in each process of FIG. 図1の転写加工装置を用いた微細形状パターンの転写加工方法の第1の例を示し、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。1A and 1B show a first example of a fine shape pattern transfer processing method using the transfer processing apparatus of FIG. 1, (A) shows before transfer, (B) shows during transfer, and (C) shows after transfer. 減圧弁を備えた入れ子を用いて二酸化炭素の加減圧の動作を説明するための図であり、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。It is a figure for demonstrating the operation | movement of the pressure increase / decrease of a carbon dioxide using the nest | insert provided with the pressure-reduction valve, (A) shows before transfer, (B) is during transfer, (C) shows after transfer. 空間Sに外部で加温された二酸化炭素を供給するための回路図の一例を示す図である。It is a figure which shows an example of the circuit diagram for supplying the carbon dioxide heated outside to the space S. FIG. 図1の転写加工装置を用いた微細形状パターンの転写加工方法の第2の例を示し、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。2A and 2B show a second example of a fine shape pattern transfer processing method using the transfer processing apparatus of FIG. 1, (A) shows before transfer, (B) shows during transfer, and (C) shows after transfer. 本発明に係る第2実施形態の転写加工装置の動作説明図である。It is operation | movement explanatory drawing of the transfer processing apparatus of 2nd Embodiment which concerns on this invention. 図7の転写加工装置を用いた微細形状パターンの転写加工方法の第1の例を示し、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。7 shows a first example of a fine shape pattern transfer processing method using the transfer processing apparatus of FIG. 7, wherein (A) shows before transfer, (B) shows during transfer, and (C) shows after transfer. 図7の転写加工装置を用いた微細形状パターンの転写加工方法の第1の例を示し、(A)は転写前、(B)は転写中、(C)は転写後をそれぞれ示す。7 shows a first example of a fine shape pattern transfer processing method using the transfer processing apparatus of FIG. 7, wherein (A) shows before transfer, (B) shows during transfer, and (C) shows after transfer. 入れ子に備える温度調整手段の第1具体例を示す図であり、(A)は概略構成図、(B)は(A)図中のA−A線断面図である。It is a figure which shows the 1st specific example of the temperature adjustment means with which a nesting is equipped, (A) is a schematic block diagram, (B) is the sectional view on the AA line in (A) figure. 入れ子に備える温度調整手段の第2具体例を示す図である。It is a figure which shows the 2nd specific example of the temperature control means with which a nesting is equipped. 転写パターン面に対向する温度調整用媒体の流路を示す図であり、(A)は平行に配置された流路を示し、(B)は螺旋状に配置された流路を示す。It is a figure which shows the flow path of the medium for temperature adjustment facing a transfer pattern surface, (A) shows the flow path arrange | positioned in parallel, (B) shows the flow path arrange | positioned spirally. 入れ子に備える温度調整手段の第3具体例を示す図である。It is a figure which shows the 3rd specific example of the temperature control means with which a nesting is equipped.

符号の説明Explanation of symbols

1 溶融樹脂
1a 固体状樹脂
1b 成形品
2 微細形状パターン
3 金型入れ子(転写体)
3a 穴
3b 流路
4 支持体
5 突起
6 入れ子
7 型(転写体)
8 凹溝
9 圧力開放弁
10 加熱装置
11 ガス溜まり
12 バルブ
13 ガス供給源
14 フレキシブルチューブ
15 熱交換器
16 ヒートパイプ
17 放熱板
18 バッフル板
20 押出し機
20a ノズル
21 微細パターン加工装置
22 搬送手段
C カッター
G 二酸化炭素(可塑化効果のあるガス体)
GP ガラス転移点
HDT 熱変形温度(荷重たわみ温度)
DESCRIPTION OF SYMBOLS 1 Molten resin 1a Solid resin 1b Molded product 2 Fine shape pattern 3 Mold insert (transfer body)
3a hole 3b flow path 4 support 5 protrusion 6 nesting 7 type (transfer body)
8 Groove 9 Pressure release valve 10 Heating device 11 Gas reservoir 12 Valve 13 Gas supply source 14 Flexible tube 15 Heat exchanger 16 Heat pipe 17 Heat sink 18 Baffle plate 20 Extruder 20a Nozzle 21 Fine pattern processing device 22 Conveying means C Cutter G Carbon dioxide (gas body with plasticizing effect)
GP Glass transition point HDT Thermal deformation temperature (deflection temperature under load)

Claims (14)

溶融された樹脂の表層に可塑化効果のあるガス体を含浸させた後、該ガス体が含浸した樹脂の表面に、表面に微細パターンを有する転写体の前記微細パターンを加圧して、前記ガス体が含浸した樹脂の表面に前記微細パターンを転写することを特徴とする微細形状の転写加工方法。   After impregnating the surface layer of the melted resin with a gas body having a plasticizing effect, the surface of the resin impregnated with the gas body is pressurized with the fine pattern of the transfer body having a fine pattern on the surface, and the gas A fine shape transfer processing method, wherein the fine pattern is transferred onto the surface of a resin impregnated with a body. 溶融された樹脂の表層に可塑化効果のあるガス体を含浸させた後、該ガス体が含浸した樹脂の表面に、表面に微細パターンを有する入れ子を加圧して、前記ガス体が含浸した樹脂の表面に微細パターンを転写することを特徴とする微細形状の転写加工方法。   A resin body impregnated with a gas body by impregnating the surface layer of the molten resin with a gas body having a plasticizing effect and then pressing a nest having a fine pattern on the surface of the resin impregnated with the gas body A fine pattern transfer processing method, wherein a fine pattern is transferred to the surface of the substrate. 前記ガス体の含浸は、溶融された樹脂の表面と表面に微細パターンを有する入れ子とにより、可塑化効果のあるガス体を密閉し、入れ子を前記樹脂表面に向けて前進させることにより前記密閉されたガス体を加圧させて、前記樹脂の表層にガス体を含浸させることを特徴とする請求項2に記載の微細形状の転写加工方法。   The impregnation of the gas body is performed by sealing the gas body having a plasticizing effect by the surface of the molten resin and the nesting having a fine pattern on the surface, and by moving the nesting forward toward the resin surface. 3. The fine shape transfer processing method according to claim 2, wherein the gas body is pressurized to impregnate the surface layer of the resin with the gas body. 前記入れ子は、前記微細パターンの周囲を囲繞して微細パターン面より突出する突起を有することを特徴とする請求項2に記載の微細形状の転写加工方法。   3. The fine shape transfer processing method according to claim 2, wherein the nesting has a protrusion that surrounds the periphery of the fine pattern and protrudes from a fine pattern surface. 前記入れ子の加圧により微細パターンを転写する動作とあわせて、溶融された樹脂を切断して所定の成形品形状に樹脂加工することを特徴とする請求項2に記載の微細形状の転写加工方法。   3. The fine shape transfer processing method according to claim 2, wherein the molten resin is cut and processed into a predetermined molded product shape together with an operation of transferring the fine pattern by pressing the insert. . 入れ子と、該入れ子と嵌合状態になる凹部を有するとともに、該凹部の底面に微細パターンを有する型との間に溶融樹脂を挟み込み、前記型の凹部内に前記樹脂の可塑化効果のあるガス体を充填させた後、前記型を前記樹脂に向けて前進させ、該樹脂を切断した後、前記微細パターンを前記樹脂に加圧して該樹脂の表面に微細パターンを転写することを特徴とする微細形状の転写加工方法。   A gas having a plasticizing effect of the resin in the concave portion of the mold, the molten resin being sandwiched between the mold and a mold having a recess that is fitted with the insert and a bottom surface of the recess. After filling the body, the mold is advanced toward the resin, the resin is cut, and then the fine pattern is pressed onto the resin to transfer the fine pattern onto the surface of the resin. Fine shape transfer processing method. 型と、該型と嵌合状態になる凹部を有するとともに、該凹部の底面に微細パターンを有する入れ子との間に溶融樹脂を挟み込み、前記入れ子の凹部内に前記樹脂の可塑化効果のあるガス体を充填させた後、前記入れ子を前記樹脂に向けて前進させ、該樹脂を切断した後、前記微細パターンを前記樹脂に加圧して該樹脂の表面に微細パターンを転写することを特徴とする微細形状の転写加工方法。   Gas having a plasticizing effect of the resin in the recessed portion of the insert, having a mold and a recessed portion fitted with the mold, and sandwiching a molten resin between the bottom of the recessed portion and having a fine pattern After filling the body, the insert is advanced toward the resin, the resin is cut, the fine pattern is pressed against the resin, and the fine pattern is transferred to the surface of the resin. Fine shape transfer processing method. 請求項2に記載の微細形状の転写加工方法を1つの溶融樹脂表面に繰り返し行うことにより複数の微細パターンを転写することを特徴とする微細形状の転写加工方法。   A fine shape transfer processing method, wherein a plurality of fine patterns are transferred by repeatedly performing the fine shape transfer processing method according to claim 2 on one molten resin surface. 溶融樹脂を供給する押出し機と可塑化効果を有するガス体を含浸させて微細パターンを加圧転写する微細パターン加工装置とを連結し、樹脂の供給速度に連動して同速度で前記転写体を移動し、樹脂の供給速度と転写体の移動速度とが同速度のときに微細パターン転写加工を行うことを特徴とする請求項8に記載の微細形状の転写加工方法。   An extruder for supplying a molten resin and a fine pattern processing apparatus for pressurizing and transferring a fine pattern by impregnating a gas body having a plasticizing effect are connected to each other, and the transfer body is connected at the same speed in conjunction with a resin supply speed. 9. The fine shape transfer processing method according to claim 8, wherein the fine pattern transfer processing is performed when the resin supply speed and the transfer body movement speed are the same. ガラス転移温度以上の溶融樹脂を熱変形温度以下の温度調整機能を持った入れ子で微細パターンを加圧し、その状態で入れ子および樹脂を冷却し、樹脂と入れ子の離脱を行うことを特徴とする請求項8又は9に記載の微細形状の転写加工方法。   Claims characterized in that a molten resin having a glass transition temperature or higher is pressed with a fine pattern with a nesting having a temperature adjusting function not higher than a thermal deformation temperature, and the nesting and the resin are cooled in this state, and the resin and the nesting are separated. Item 10. The fine shape transfer processing method according to Item 8 or 9. 溶融された樹脂表面と表面に微細パターンを有する入れ子により、可塑化効果のあるガス体を密閉し、入れ子を前進させてガス体を加圧させて、樹脂表層にガス体を含浸させて樹脂表層の溶融粘度を低下させた後、減圧弁によりガス体の圧力を解放し、その後に溶融樹脂表面に微細パターンを転写することを特徴とする微細形状の転写加工方法。   By sealing the melted resin surface and a gas body having a plastic pattern with a nest having a fine pattern on the surface, the nest is advanced to pressurize the gas body, and the resin surface layer is impregnated with the gas body. After the melt viscosity is reduced, the pressure of the gas body is released by a pressure reducing valve, and then the fine pattern is transferred to the surface of the molten resin. 樹脂表面と表面に微細パターンを有する入れ子により形成された空間に、加熱装置により樹脂のガラス転移点以上に加熱された可塑化効果のあるガス体を供給し、入れ子を前進させてガス体を加圧し、樹脂表層にガス体を含浸させて樹脂表層の溶融粘度を低下させ、、その後に該ガス体が含浸した樹脂の表面に微細パターンを転写することを特徴とする微細形状の転写加工方法。   A gas body having a plasticizing effect heated to a temperature higher than the glass transition point of the resin by a heating device is supplied to the resin surface and the space formed by the nest having a fine pattern on the surface, and the gas body is added by advancing the nest. A fine shape transfer processing method, wherein the resin surface layer is impregnated with a gas body to reduce the melt viscosity of the resin surface layer, and then the fine pattern is transferred to the surface of the resin impregnated with the gas body. 溶融された樹脂の表層に可塑化効果のあるガス体を含浸させる手段と、該ガス体が含浸した樹脂の表面に、表面に微細パターンを有する転写体の前記微細パターンを加圧する手段とを備えていることを特徴とする微細形状の転写加工装置。   Means for impregnating a melted resin surface layer with a gas body having a plasticizing effect, and means for pressing the fine pattern of the transfer body having a fine pattern on the surface of the resin impregnated with the gas body. A transfer device with a fine shape, characterized in that 前記溶融された樹脂の供給と前記転写体の移動とを同速度にしたことを特徴とする請求項13に記載の微細形状の転写加工装置。   14. The fine shape transfer processing apparatus according to claim 13, wherein the molten resin is supplied at the same speed as the transfer body.
JP2003419326A 2003-12-17 2003-12-17 Fine shape transfer processing method and apparatus Expired - Fee Related JP4202901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419326A JP4202901B2 (en) 2003-12-17 2003-12-17 Fine shape transfer processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419326A JP4202901B2 (en) 2003-12-17 2003-12-17 Fine shape transfer processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2005178069A true JP2005178069A (en) 2005-07-07
JP4202901B2 JP4202901B2 (en) 2008-12-24

Family

ID=34781257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419326A Expired - Fee Related JP4202901B2 (en) 2003-12-17 2003-12-17 Fine shape transfer processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4202901B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130957A (en) * 2005-11-14 2007-05-31 Ricoh Co Ltd Plastic molded article, its manufacturing device, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130957A (en) * 2005-11-14 2007-05-31 Ricoh Co Ltd Plastic molded article, its manufacturing device, and its manufacturing method

Also Published As

Publication number Publication date
JP4202901B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
CN110789062B (en) Block mould
EP1497093B1 (en) Rapid prototype injection molding
KR20180021185A (en) METHOD FOR MANUFACTURING 3-D DIMENSIONAL SCRAP
JP6211503B2 (en) Molded article manufacturing method, molded article, and molded article manufacturing apparatus
JP2015221511A (en) Method and system for molding composite molding and composite molding
WO2017217153A1 (en) Production method and production device for thermoplastic resin composite material
JP4202901B2 (en) Fine shape transfer processing method and apparatus
JP2016028862A (en) Injection molding die and injection molding method
JP6607557B2 (en) Additive molding mold and injection molding method using the mold
WO2012172669A1 (en) Molding device for injection molding and injection molding machine
SE517483C2 (en) Method and apparatus for producing an injection molded part
KR20180111953A (en) Sprue bushing
JP2009255464A (en) Laminate molding device laminate molding method
JP2008137275A (en) Mold apparatus and method for manufacturing molded article
JP2007307840A (en) Mold assembly and method for producing plastic molded object using this mold assembly
US11667068B2 (en) Device and method for continuously blow molding fiber-reinforced thermoplastic hollow profiles having a constant or changing cross-section
CN109414845B (en) Sprue bush and method for producing same
KR102429304B1 (en) A vacuum injection molding apparatus and method for Teflon mold
US20220126491A1 (en) Method for manufacturing an optical lens
JP2008221671A (en) Mold for injection molding and injection molding method using the same
WO2018043191A1 (en) Minute shape transfer molding method and minute shape transfer molding mold
JP6794429B2 (en) FRP sheet press molding method and equipment, and FRP molded products
JP2014240183A (en) Molded-article production apparatus and molded-article production method
JP2002172628A (en) Manufacturing method and device for rubber product
EP0884156A1 (en) Process for producing thermoplastic resin hollow molded articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees