JP2005177887A - Vitrified silicon carbide grinding wheel and its manufacturing method - Google Patents
Vitrified silicon carbide grinding wheel and its manufacturing method Download PDFInfo
- Publication number
- JP2005177887A JP2005177887A JP2003419138A JP2003419138A JP2005177887A JP 2005177887 A JP2005177887 A JP 2005177887A JP 2003419138 A JP2003419138 A JP 2003419138A JP 2003419138 A JP2003419138 A JP 2003419138A JP 2005177887 A JP2005177887 A JP 2005177887A
- Authority
- JP
- Japan
- Prior art keywords
- vitrified
- silicon carbide
- grindstone
- binder
- grinding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
本発明はビトリファイド結合剤で結合されたF150又はF150より細目で#1500までの粒度範囲の炭化珪素を使用したビトリファイド炭化珪素砥石に関する。 The present invention relates to a vitrified silicon carbide grindstone using silicon carbide having a particle size range of up to # 1500 and finer than F150 or F150 bonded with a vitrified binder.
研削及び研磨用砥石の主な種類として結合剤別に列挙するとビトリファイド砥石、レジノイド砥石、メタル砥石及び電着砥石が挙げられる。
その中で切れ味がよく、耐久性高くかつドレス性のよいビトリファイド砥石が主に使用されている。ビトリファイド砥石に使用する砥材としては、CBN砥粒及びダイヤモンド砥粒に代表される超砥粒、アルミナ系砥粒及び炭化珪素系砥粒などが使用されており、使用する粒度範囲は粗研削領域であるF120より粗め、仕上研削(又は研磨)領域であるF150またはF150より細目など、幅広く使用されている。
The main types of grinding and polishing wheels include vitrified wheels, resinoid wheels, metal wheels, and electrodeposition wheels when enumerated by binder.
Among them, vitrified grindstones with good sharpness, high durability and good dressing are mainly used. As abrasives used for vitrified grinding wheels, super abrasive grains such as CBN abrasive grains and diamond abrasive grains, alumina abrasive grains, and silicon carbide abrasive grains are used. Rougher than F120 and finer than F150 or F150 which is a finish grinding (or polishing) region.
使用される砥粒の中で、炭化珪素系砥粒は非金属、非鉄金属、鋳鉄、高硬度脆性鋼材、超合金などの研削、研磨に使用されており、その中でビトリファイド炭化珪素系砥石のF150またはF150より細目で#1500までの粒度範囲では前記の仕上研磨用砥石として、さらに他砥石のドレッサーとして使用されている。 Among the abrasive grains used, silicon carbide abrasive grains are used for grinding and polishing non-metals, non-ferrous metals, cast iron, high-hardness brittle steel materials, superalloys, etc., among which vitrified silicon carbide-based abrasives In the particle size range of finer than F150 or F150 and up to # 1500, it is used as the above-mentioned finishing polishing grindstone and as a dresser for other grindstones.
一般的な炭化珪素系ビトリファイド砥石の製造方法としてファインセラミックスのP643及び644に記載されているように長石−陶石−粘土を原材料としたビトリファイド結合剤を1300℃で焼成して製造することが記載されている。 As a general method for producing a silicon carbide vitrified grindstone, it is described that a vitrified binder made of feldspar-ceramic stone-clay is fired at 1300 ° C. as described in P643 and 644 of fine ceramics. Has been.
しかしながら、非特許文献1に記載されている炭化珪素系ビトリファイド砥石の製造方法をF150またはF150より細目の炭化珪素系ビトリファイド砥石に適用すると、焼成後砥石にクラックが発生する場合が多い。クラックの形態としては非特許文献1のP650に記載されているクラックの形態1)が主でまたその他形態のクラックも発生する。非特許文献1P649に記載されているクラックの原因として焼成前の砥石乾燥に着目して対策したが良好な結果が得られていない。
However, when the method for producing a silicon carbide vitrified grindstone described in Non-Patent
前記クラックの原因として、炭化珪素系砥粒の焼成温度域での砥粒の酸化が考えられた。炭化珪素は高温で加熱するとSiとCとの結合が分解しSiO2とCO2に化学変化することが知られている。これを砥粒粒度との関係で見ると、砥粒粒度が細目になるに従って砥粒の比表面積が増加し砥粒表面が酸化されSiO2が形成される割合が多くなる。その時の重量増分、それに伴う砥粒体積の増加により砥石体積の増加し焼成後のクラックが発生するものと考えた。その対策として一般的にビトリファイドダイヤモンド砥石の製造法で採用されている不活性雰囲気下での焼成が考えられるが製造コストが増大し、採算が取れなくなるので、F150またはF150より細目炭化珪素系ビトリファイド砥石には採用されていない。 As a cause of the crack, oxidation of the abrasive grains in the firing temperature range of the silicon carbide-based abrasive grains was considered. It is known that when silicon carbide is heated at a high temperature, the bond between Si and C is decomposed and chemically changed to SiO2 and CO2. Looking at this in relation to the abrasive grain size, as the abrasive grain size becomes finer, the specific surface area of the abrasive grain increases, and the proportion of the abrasive grain surface oxidized and SiO2 formed increases. It was considered that the increase in weight at that time and the increase in the abrasive grain volume accompanying this increase in the volume of the grindstone and the occurrence of cracks after firing. As a countermeasure, firing under an inert atmosphere generally used in a method for producing a vitrified diamond grindstone is conceivable. However, since the production cost increases and it becomes unprofitable, finer silicon carbide vitrified grindstone than F150 or F150. Has not been adopted.
従って本発明の課題として、F150またはF150より細目で#1500までの粒度範囲の炭化珪素砥粒を使用したビトリファイド砥石において、経済性を考慮して製造上の不具合を解消し、安定して市場に供給できることである。 Therefore, as a subject of the present invention, in vitrified grindstones using silicon carbide abrasive grains finer than F150 or F150 and having a particle size range of up to # 1500, manufacturing defects are eliminated in consideration of economic efficiency, and the market is stably obtained. It can be supplied.
前記課題を解決すべき鋭意検討した結果、ビトリファイド炭化珪素砥石の焼成温度を800〜1000℃とし、該砥石の軟化屈伏点は前記焼成温度よりマイナス0〜200℃で、具体的な軟化屈伏点の温度は600〜800℃であり、そのためのビトリファイド結合剤の化学成分として40.0〜55wt%のSiO2、15.0〜30wt%のAl2O3、1.0〜3.0wt%のCaO、4.0〜10.0wt%のNa2O、1.0〜2.0wt%のK2O、10.0〜25.0wt%のB2O3であることを特徴とする。
As a result of intensive studies to solve the above-mentioned problems, the firing temperature of the vitrified silicon carbide grindstone is set to 800 to 1000 ° C., and the softening yield point of the grindstone is minus 0 to 200 ° C. from the firing temperature. The temperature is 600 to 800 ° C., and 40.0 to 55 wt%
本発明の効果として、従来の製造法で製造したF150またはF150より細目で#1500までの粒度範囲のビトリファイド炭化珪素砥石と比べ、焼成後のクラック発生の不具合は解消し、該砥石を市場に安定して供給できるようになり、さらに従来砥石より同等以上の研削性能が発揮される。本発明の研削加工業界への貢献は大である。 As an effect of the present invention, compared to F150 manufactured by the conventional manufacturing method or vitrified silicon carbide grinding stones with a finer particle size range up to # 1500 than F150, the problem of cracking after firing is eliminated, and the grinding stones are stable on the market. In addition, the grinding performance equivalent to or higher than that of the conventional grindstone is exhibited. The contribution of the present invention to the grinding industry is significant.
本発明で使用されるF150またはF150より細目で#1500までの粒度範囲の炭化珪素系ビトリファイド砥石は非金属、非鉄金属、鋳鉄、高硬度脆性鋼材、超合金などの仕上研磨に使用され、さらに他砥石のドレッサーとして使用されている。 F150 or silicon carbide vitrified grinding wheel with a finer particle size range up to # 1500 than F150 used in the present invention is used for finish polishing of non-metal, non-ferrous metal, cast iron, high-hardness brittle steel, superalloy, etc. Used as a grindstone dresser.
本発明の課題を解決すべき鋭意検討した結果、焼成温度を800〜1000℃とすれば炭化珪素砥粒のSiO2生成の酸化反応を最小限に抑えることができ、これにより砥石の体積膨張を最小限に抑え製造上の不具合、焼成後のクラックの発生が解消し安定した砥石製造ができることを見出した。焼成温度は850〜950℃が望ましく、870℃〜930℃がさらに望ましい。 As a result of intensive investigations that should solve the problems of the present invention, it is possible to minimize the oxidation reaction of SiO2 generation of silicon carbide abrasive grains when the firing temperature is set to 800 to 1000 ° C., thereby minimizing the volume expansion of the grindstone. It has been found that production defects and cracks after firing are eliminated, and stable whetstone production can be achieved. The firing temperature is desirably 850 to 950 ° C, and more desirably 870 to 930 ° C.
本発明で定義する軟化屈伏点とは、焼成後の砥石の小片を切り出し一定荷重の下、TMAで熱膨張を測定し、あるポイントでビトリファイド炭化珪素砥石中のビトリファイド結合剤が加熱により粘度が下がりビトリファイド炭化珪素砥石の膨張がマイナス方向に下がる点である。この特性は砥粒自体の熱膨張及び砥粒酸化による歪を緩衝する役目を果たすビトリファイド結合剤の粘度低下が起こり加えて従来の焼成温度より低い焼成温度であるため砥粒自体の体積膨張も従来製造法より少なくなることにより焼成中のクラック発生の不具合が解消され、さらに所定の焼成温度でビトリファイド結合剤が軟化溶融し炭化珪素砥粒を良好に保持し、良好な研削性能を得ることを示すものである。
本発明ではセイコ−インスツルメンツ(株)(SII)製TMA/SS6300を用い、断面積1mm2の直方体の試験片に荷重20gを加えて20℃/min.で昇温したものである。軟化屈伏点は所定の焼成温度からマイナス0〜200℃が望ましくマイナス50〜200℃がさらに望ましい。具体的な軟化屈伏点の温度は600〜800℃であり、650〜800℃が望ましく、700〜800℃がさらに望ましい。尚本結果の軟化屈伏点の測定は本発明で実施した条件を大きく逸脱しなければ他の機種で測定した結果を用いてもよい。
The softening yield point defined in the present invention refers to a piece of a grindstone that has been fired, and a thermal expansion measured by TMA under a certain load. At a certain point, the vitrified binder in the vitrified silicon carbide grindstone decreases in viscosity due to heating. The expansion of the vitrified silicon carbide grindstone decreases in the negative direction. This characteristic is due to the thermal expansion of the abrasive grains themselves and the viscosity reduction of the vitrified binder that serves to buffer the distortion caused by the oxidation of the abrasive grains. It shows that the problem of crack generation during firing is eliminated by being less than the manufacturing method, and the vitrified binder is softened and melted at a predetermined firing temperature to hold silicon carbide abrasive grains well and to obtain good grinding performance Is.
In the present invention, a TMA / SS6300 manufactured by Seiko Instruments Inc. (SII) was used, a load of 20 g was applied to a rectangular parallelepiped test piece having a cross-sectional area of 1 mm2, and 20 ° C./min. The temperature was raised at The softening yield point is preferably minus 0 to 200 ° C., more preferably minus 50 to 200 ° C., from a predetermined firing temperature. Specifically, the temperature of the softening yield point is 600 to 800 ° C, preferably 650 to 800 ° C, and more preferably 700 to 800 ° C. In addition, the measurement of the softening yield point of this result may use the result measured by another model unless it greatly deviates from the conditions implemented in the present invention.
本発明を実施するためのビトリファイド結合剤の化学成分は、SiO2は40.0〜55wt%の範囲で、40wt%より少ないとビトリファイド結合剤の主骨格成分が不足するので砥粒保持力が低下し更にビトリファイド結合剤の軟化点が下がりすぎ焼成時ガス発生などの不具合の原因となり、55wt%より多いとビトリファイド結合剤の軟化点が高くなり炭化珪素系砥粒の保持力が低下する。のAl2O3は15.0〜30wt%の範囲で、15wt%より少ないと主骨格成分が不足するので砥粒保持力が低下し更に軟化点が下がりすぎ焼成時ガス発生などの不具合の原因となり、30wt%より多いとビトリファイド結合剤の軟化点が高くなり炭化珪素系砥粒の保持力が低下する。CaOは1.0〜3.0wt%の範囲で1wt%より少ないとビトリファイド結合剤の軟化点が高くなり炭化珪素系砥粒の保持力が低下する。3wt%より多いとビトリファイド結合剤の軟化点が下がりすぎ焼成時ガス発生などの不具合の原因となる。のNa2Oは4.0〜10.0wt%の範囲で4wt%より少ないとビトリファイド結合剤の軟化点が高くなり炭化珪素系砥粒の保持力が低下し、10wt%より多いとビトリファイド結合剤の軟化点が下がりすぎ焼成時ガス発生などの不具合の原因となり、ビトリファイド結合剤の軟化点が下がりすぎ焼成時ガス発生などの不具合の原因となる。1.0〜2.0wt%のK2Oは1.0〜2.0wt%の範囲で1.0wt%より少ないとビトリファイド結合剤の軟化点が高くなり炭化珪素系砥粒の保持力が低下し、4.0wt%より多いとビトリファイド結合剤の軟化点が下がりすぎ焼成時ガス発生などの不具合の原因となる。B2O3は10.0〜25.0wt%の範囲で10wt%より少ないとビトリファイド結合剤の軟化点が高くなり炭化珪素系砥粒の保持力が低下し、25wt%より多いとビトリファイド結合剤の軟化点が下がりすぎ焼成時ガス発生などの不具合の原因となる。
ビトリファイド結合剤の調整は市販の材料での組合せが可能で、例えば粘土、長石、陶石及びフリット等の組合せで調製できる。本発明の趣旨を逸脱しない範囲で適宜調整が可能である。
The chemical component of the vitrified binder for carrying out the present invention is SiO2 in the range of 40.0 to 55 wt%, and if it is less than 40 wt%, the main skeletal component of the vitrified binder is insufficient, so that the abrasive retention force decreases. Furthermore, the softening point of the vitrified binder is too low, causing problems such as gas generation during firing. If it exceeds 55 wt%, the softening point of the vitrified binder is increased and the holding power of the silicon carbide-based abrasive grains is reduced. Al2O3 in the range of 15.0 to 30 wt%, if less than 15 wt%, the main skeleton components are insufficient, so the abrasive grain holding power is lowered, the softening point is lowered too much, causing problems such as gas generation during firing, 30 wt% If it is more than%, the softening point of the vitrified binder will be high and the holding power of the silicon carbide abrasive grains will be reduced. When CaO is less than 1 wt% in the range of 1.0 to 3.0 wt%, the softening point of the vitrified binder increases and the holding power of the silicon carbide abrasive grains decreases. If it exceeds 3 wt%, the softening point of the vitrified binder will be too low, causing problems such as gas generation during firing. When the Na2O content is less than 4 wt% within the range of 4.0 to 10.0 wt%, the softening point of the vitrified binder increases and the holding power of the silicon carbide abrasive grains decreases, and when it exceeds 10 wt%, the vitrified binder softens. The point lowers too much, causing problems such as gas generation during firing, and the softening point of the vitrified binder is too low, causing problems such as gas generation during firing. When 1.0 to 2.0 wt% of K2O is less than 1.0 wt% in the range of 1.0 to 2.0 wt%, the softening point of the vitrified binder increases and the holding power of the silicon carbide abrasive grains decreases, If it exceeds 4.0 wt%, the softening point of the vitrified binder will be too low, causing problems such as gas generation during firing. When B2O3 is in the range of 10.0 to 25.0 wt% and less than 10 wt%, the softening point of the vitrified binder increases and the holding power of the silicon carbide abrasive grains decreases, and when it exceeds 25 wt%, the softening point of the vitrified binder This will cause problems such as gas generation during firing.
The adjustment of the vitrified binder can be made with a combination of commercially available materials, for example, a combination of clay, feldspar, porcelain stone and frit. Adjustments can be made as appropriate without departing from the spirit of the present invention.
本発明で使用する炭化珪素系砥粒は、黒色炭化珪素砥粒(以下C砥粒と呼ぶ)と緑色炭化珪素砥粒(以下GC砥粒と呼ぶ)である。
本発明に適用される炭化珪素系砥粒粒度の適用範囲はF150又はF150より細目砥粒に適用される。
砥粒粒度の細目下限範囲は#1500までが良好に適用でき、#1000が望ましく、F500がさらに望ましい。
Silicon carbide-based abrasive grains used in the present invention are black silicon carbide abrasive grains (hereinafter referred to as C abrasive grains) and green silicon carbide abrasive grains (hereinafter referred to as GC abrasive grains).
The application range of the silicon carbide-based abrasive grain size applied to the present invention is applied to finer abrasive grains than F150 or F150.
The fine grain lower limit range of the abrasive grain size can be satisfactorily applied up to # 1500, preferably # 1000, and more preferably F500.
本発明に適用される砥粒体積率は38〜53vol%である。また本発明に適用される結合剤体積率は3〜35vol%である。気孔体積率は100から砥粒体積率と結合剤体積率を引いた値である。これらは研削条件等で適宜決定される。
以下、本発明の実施例を比較例とともに説明するが、これらは本発明の実施可能性及び有用性を例証するものであり、本発明の構成を何ら限定する意図はない。
The abrasive volume ratio applied to the present invention is 38 to 53 vol%. Moreover, the binder volume ratio applied to this invention is 3-35 vol%. The pore volume ratio is a value obtained by subtracting the abrasive volume ratio and the binder volume ratio from 100. These are appropriately determined depending on grinding conditions and the like.
Examples of the present invention will be described below together with comparative examples. However, these examples illustrate the feasibility and usefulness of the present invention, and are not intended to limit the configuration of the present invention.
炭化珪素砥粒、加熱による重量変化の確認
使用砥粒:GC砥粒
テストする粒度:F60、F100、F220、F400、#800
テスト手順:セイコ−インスツルメンツ(株)(SII)製TG/DTA6300を用い、直径5.2mm、高さ2.5mmのカップ形状を有する白金皿にテスト砥粒0.05gを投入し20℃/min.で昇温して、その重量変化を測定した。
Silicon carbide abrasive grains, confirmation of weight change by heating Abrasive grains used: GC abrasive grains Particle sizes to be tested: F60, F100, F220, F400, # 800
Test procedure: Using a TG / DTA6300 manufactured by Seiko Instruments Inc. (SII), 0.05 g of test abrasive grains were put into a platinum dish having a cup shape with a diameter of 5.2 mm and a height of 2.5 mm, and 20 ° C./min. . The temperature was then increased and the weight change was measured.
テスト結果(増量%)
以上の結果を見るように砥粒粒度が細目になるに従って重量増加が大きく、特にF220及びF220より細目の砥粒で加熱温度1250℃又は1300℃など、従来の焼成条件での重量増量が顕著に大きい。
この重量増加により従来の焼成条件では焼成中の砥石体積が増加して、焼成後のクラック発生の原因になっていると考えられる。
As can be seen from the above results, the increase in weight increases as the grain size becomes finer. In particular, the weight increase under conventional firing conditions such as heating temperature of 1250 ° C or 1300 ° C with F220 and F220 finer is remarkable. large.
This increase in weight is considered to increase the volume of the grindstone during firing under conventional firing conditions, causing cracks after firing.
TMA測定
ビトリファイド結合剤化学成分
実施例 :SiO2:48wt%、Al2O3:26wt%、CaO:1.0wt%
K2O:1.0wt%、Na2O:7.0wt%、B2O3:17.0wt%
比較例 :SiO2:70wt%、Al2O3:20wt%、K2O:8.0wt%、
Na2O:2.0wt%
実施例は、粘土、長石、低温軟化フリットの原材料を使用して上記の化学成分になるよう調整した。
比較例は粘土、長石、陶石を使用して、非特許文献1P643の表−3.235のNo3結合剤化学成分を参考にして上記の化学成分に調製した。
TMA measurement Vitrified binder chemical component Examples: SiO2: 48 wt%, Al2O3: 26 wt%, CaO: 1.0 wt%
K2O: 1.0 wt%, Na2O: 7.0 wt%, B2O3: 17.0 wt%
Comparative example: SiO2: 70 wt%, Al2O3: 20 wt%, K2O: 8.0 wt%,
Na2O: 2.0 wt%
The examples were adjusted to the above chemical components using clay, feldspar, and low temperature softening frit raw materials.
In the comparative example, clay, feldspar, and ceramic stone were used, and the above chemical components were prepared with reference to the No3 binder chemical components in Table-3.235 of Non-Patent Document 1P643.
試験片作成
砥石混合比
GC砥粒 F320 100重量部
結合剤 25重量部
一次結合剤 6重量部
Test piece preparation whetstone mixing ratio GC
以上の材料を均一に混合後、42×5×10の直方体の角砥石を作成し、投入重量は
砥粒体積率=45%、結合剤体積率=15%、気孔体積率=40wt%となるよう調整し成型後、60℃12時間で乾燥し実施例の結合剤を使用した実施例1の砥石は最高焼成温度900℃、比較例の結合剤を使用した比較例1の砥石は最高焼成温度1250℃で焼成した。
After the above materials are uniformly mixed, a 42 × 5 × 10 rectangular parallelepiped square grindstone is prepared, and the input weights are abrasive volume fraction = 45%, binder volume fraction = 15%, pore volume fraction = 40 wt%. After adjustment and molding, the grinding wheel of Example 1 using the binder of the example dried at 60 ° C. for 12 hours was the maximum firing temperature of 900 ° C. The grinding stone of Comparative Example 1 using the binder of the comparative example was the maximum firing temperature. Firing was performed at 1250 ° C.
各試験片軟化屈伏点の測定は、セイコ−インスツルメンツ(株)(SII)製TMA/SS6300を用い、断面積1mm2、試験片長さ17.0mmの直方体の試験片を20gの荷重を加えて20℃/min.で昇温し、熱膨張の変化を観察した。 The test piece softening yield point was measured by using a TMA / SS6300 manufactured by Seiko Instruments Inc. (SII), applying a 20 g load to a rectangular parallelepiped test piece having a cross-sectional area of 1 mm2 and a test piece length of 17.0 mm. / Min. And the change in thermal expansion was observed.
測定結果
図1の結果を見るように実施例1の結合剤を使用した砥石は755℃をピークに膨張から収縮に転じた。これは実際に砥石が収縮したのではなく結合剤が軟化し粘度が下がったため、砥石に加えた荷重により膨張しなくなったためであり、所定焼成温度以下で結合剤が軟化したと言える。対して比較例1を使用した砥石は1467℃の温度にて膨張から収縮に転じた。これは所定焼成温度以上の温度であった。
Measurement Result As shown in the results of FIG. 1, the grindstone using the binder of Example 1 turned from expansion to contraction at a peak at 755 ° C. This is because the grindstone was not actually shrunk, but the binder softened and the viscosity decreased, so that it did not expand due to the load applied to the grindstone, and it can be said that the binder softened below the predetermined firing temperature. In contrast, the grindstone using Comparative Example 1 turned from expansion to contraction at a temperature of 1467 ° C. This was a temperature above the predetermined firing temperature.
砥石製造テスト
1Aタイプの砥石を製造し焼成後のクラック発生の有無を確認した。テストするビトリファイド結合剤は実施例1に記載した結合剤を用い、実施例の結合剤を用いた砥石は実施例2砥石、比較例の結合剤を用いた砥石は比較例2砥石とする。
Grinding wheel production test A 1A type grinding wheel was produced, and the presence or absence of cracks after firing was confirmed. As the vitrified binder to be tested, the binder described in Example 1 is used, the grindstone using the binder of the example is the grindstone of Example 2, and the grindstone using the binder of the comparative example is grindstone of Comparative Example 2.
テスト砥石寸法:φ205mm×t15mm×h31.75mm 1Aタイプ砥石
砥石混合比(実施例2、比較例2共)
C砥粒 F220 100重量部
ビトリファイド結合剤 10重量部
一次結合剤 3重量部
以上の材料を均一に混合後、投入重量は砥粒体積率=47%、結合剤体積率=6%、気孔体積率=47wt%となるよう調整し前記に記載した寸法の砥石を20枚作成し成型後、60℃12時間で乾燥し、実施例の結合剤を使用した実施例2の砥石は最高焼成温度900℃、比較例の結合剤を使用した比較例2の砥石は最高焼成温度1250℃で焼成した。
Test whetstone dimensions: φ205 mm × t15 mm × h 31.75 mm 1A type whetstone whetstone mixing ratio (both Example 2 and Comparative Example 2)
C
テスト結果
以上のように実施例2砥石では焼成後砥石にクラックは発生しなかった。対して比較例2砥石では20枚中6枚、図2のようなクラックが発生した。
先ず比較例2砥石は実施例2砥石と比べて焼成温度が高い。このことは炭化珪素砥粒の酸化が実施例2砥石と比べて多いことにより比較例2砥石は体積膨張が大きくなりその歪によりクラックが発生したと考えられ、さらに実施例2で確認したように軟化屈伏点が所定焼成温度よりも高い温度にあり、このことは砥粒自体の熱膨張及び砥粒酸化による体積膨張などの歪を緩衝する役目を果たすビトリファイド結合剤の粘度低下が少なかった為とも考えられる。
As described above, in the grindstone of Example 2, no cracks occurred in the grindstone after firing. On the other hand, in Comparative Example 2 grindstone, 6 out of 20 cracks as shown in FIG.
First, the firing temperature of Comparative Example 2 is higher than that of Example 2. This is because silicon carbide abrasive grains are oxidized more than the grinding wheel of Example 2, and it is considered that the grinding stone of Comparative Example 2 has a large volume expansion, and cracks are generated due to the distortion, and as confirmed in Example 2. The softening yield point is higher than the predetermined firing temperature, which is because the viscosity reduction of the vitrified binder that plays a role in buffering distortion such as thermal expansion of the abrasive grains and volume expansion due to abrasive oxidation is small. Conceivable.
以上のことより比較例2砥石と比べて砥粒の酸化が少ないこと、さら実施例2にて確認したように軟化屈伏点が所定焼成温度よりも低い温度にあり、このことは砥粒自体の熱膨張及び砥粒酸化による砥粒体積膨張などの歪を緩衝する役目を果たすビトリファイド結合剤の粘度低下が十分に起こり、比較例2砥石と比べて焼成温度が低いので砥粒自体の熱膨張が比較例2砥石と比べて少なかったという要因もプラスして良好な製造結果になったと考えられる。 From the above, the oxidation of the abrasive grains is less than that of Comparative Example 2 and the softening yield point is lower than the predetermined firing temperature as confirmed in Example 2, and this is because of the abrasive grains themselves. The viscosity of the vitrified binder that serves to buffer strain such as thermal expansion and abrasive volume expansion due to abrasive oxidation occurs sufficiently, and since the firing temperature is lower than that of the comparative example 2, the thermal expansion of the abrasive itself Comparative Example 2 It is considered that a good production result was obtained by adding a factor that it was less than that of the grindstone.
研削テスト
本発明のビトリファイド炭化珪素砥石の研削性能確認の為、従来品との比較を行う。
テストするビトリファイド結合剤は実施例1に記載した結合剤を用い、実施例の結合剤を用いた砥石は実施例3、比較例の結合剤を用いた砥石は比較例3とする。
Grinding test In order to confirm the grinding performance of the vitrified silicon carbide grinding wheel of the present invention, a comparison with a conventional product is performed.
The binder described in Example 1 is used as the vitrified binder to be tested, and the grindstone using the binder of the example is Example 3, and the grindstone using the comparative binder is Comparative Example 3.
テストする砥石寸法:φ205mm×t15mm×h50.8mm 1Aタイプ砥石 Grinding wheel dimensions to be tested : φ205mm × t15mm × h50.8mm 1A type grinding wheel
砥石混合比(実施例3、比較例3共)
GC F150 100重量部
ビトリファイド結合剤 13重量部
一次結合剤 4重量部
Grinding wheel mixing ratio (both Example 3 and Comparative Example 3)
以上の材料を均一に混合後、投入重量は砥粒体積率=47%、結合剤体積率=8%、気孔体積率=45wt%となるよう調整し前記に記載した寸法の砥石を20枚作成し成型後、60℃12時間で乾燥し、実施例の結合剤を使用した実施例3の砥石は最高焼成温度900℃、比較例の結合剤を使用した比較例3の砥石は最高焼成温度1250℃で焼成した。 After uniformly mixing the above materials, the input weight was adjusted so that the abrasive grain volume ratio = 47%, the binder volume ratio = 8%, and the pore volume ratio = 45 wt%, and 20 grinding wheels having the dimensions described above were prepared. After grinding and drying at 60 ° C. for 12 hours, the grinding wheel of Example 3 using the binder of the example has a maximum firing temperature of 900 ° C., and the grinding wheel of Comparative Example 3 using the binder of the comparative example has a maximum firing temperature of 1250. Baked at ℃.
研削条件
被削材 材質:SKD11(62HRc)
寸法:5×100×t mm
研削盤 機種:岡本工作横軸研削盤
型式:CNC−52B
研削液 品名:クレカット NET−500B(ソリュブルタイプ)
濃度:2%
流量:27リットル/min
ドレス条件 ドレッサ:3本角柱ドレッサ
砥石周速度:33.3m/s
ドレス切込み:10Rμm/pass×10pass
ドレスリード:0.1mm/rev
研削条件 研削種類:平面研削
研削条件:湿式プランジ研削
砥石周速度:33.3m/s
テーブル速度:0.155m/s
研削切込み:5μm/pass
取り代:1.25mm
評価する特性 砥石硬さ(HRL)
研削比(GR)
研削動力(Ft)
仕上面粗さ(Rz)
Grinding conditions Work material Material: SKD11 (62HRc)
Dimensions: 5 x 100 x t mm
Grinding machine Type: Okamoto horizontal axis grinding machine
Model: CNC-52B
Grinding fluid Product name: Crekat NET-500B (Soluble type)
Concentration: 2%
Flow rate: 27 liters / min
Dress condition Dresser: 3 prismatic dresser
Wheel peripheral speed: 33.3 m / s
Dress cutting: 10Rμm / pass × 10pass
Dress lead: 0.1mm / rev
Grinding conditions Grinding type: Surface grinding Grinding conditions: Wet plunge grinding
Wheel peripheral speed: 33.3 m / s
Table speed: 0.155 m / s
Grinding depth: 5μm / pass
Stock allowance: 1.25mm
Characteristic to evaluate Grinding wheel hardness (HRL)
Grinding ratio (GR)
Grinding power (Ft)
Finished surface roughness (Rz)
特性値評価手順
砥石硬さ(HRL)
ロックウエル硬度はJIS規格(ロックウエル硬さ試験B7726、1998)に従い、基準荷重10kgfを加え、次に一定の試験荷重を加えて再び戻したとき、前後2回の基準荷重における圧子の侵入深さhから求められる。本実施例では1/4インチ鋼球(直径6.35mm)を用い、試験荷重60kgfとし130−500hの算出式で求めた。
Characteristic value evaluation procedure
Wheel hardness (HRL)
The Rockwell hardness is in accordance with JIS standard (Rockwell hardness test B7726, 1998). When a reference load of 10 kgf is applied, and then a constant test load is applied and then returned again, the intrusion depth h of the indenter at two reference loads before and after Desired. In this example, a 1/4 inch steel ball (diameter 6.35 mm) was used, and the test load was 60 kgf, and the calculation formula of 130-500 h was used.
研削比(GR)
被削材除去体積/砥石消耗体積 で求める。
Grinding ratio (GR)
Calculated by the material removal volume / grinding wheel consumption volume.
研削動力(Ft)
砥石軸モーターの消費電力をWとし、612×W /周速(60/100)として求められる。なお、周速として前記砥石周速度を使用した。
Grinding power (Ft)
It is calculated | required as 612 * W / peripheral speed (60/100) where W is the power consumption of the grinding wheel shaft motor. In addition, the said grindstone peripheral speed was used as a peripheral speed.
仕上面粗さ(Rz)
面粗度Rzは、十点平均粗さとして測定される。
十点平均粗さRzは、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から縦倍率方向に測定し、最も高い山頂から5番目までの山頂の標高Ypの絶対値の平均値と、最も低い谷底から5番目までの谷底の標高Yvの絶対値の平均値との和として求められる。本実施例では、評価長さ25mmで測定した。
Finished surface roughness (Rz)
The surface roughness Rz is measured as a ten-point average roughness.
The ten-point average roughness Rz is extracted from the roughness curve by the reference length in the direction of the average line, measured in the vertical magnification direction from the average line of the extracted portion, and the altitude Yp of the highest peak from the highest peak to the fifth. And the average value of the absolute values of the altitudes Yv of the lowest valley floor to the fifth valley floor. In this example, the measurement was performed at an evaluation length of 25 mm.
砥石の硬さは実施例3、比較例3共にほぼ同等の値であった。
研削比は実施例3の方が優れていた。対して研削動力は比較例3の方が低かった。仕上面粗さは実施例3の方が小さい値であった。本結果より、発明品は従来品と同等以上の研削性能を示すものであると言える。
The hardness of the grindstone was almost the same in both Example 3 and Comparative Example 3.
The grinding ratio of Example 3 was superior. On the other hand, the grinding power of Comparative Example 3 was lower. The finished surface roughness was smaller in Example 3. From this result, it can be said that the invention product exhibits a grinding performance equivalent to or higher than that of the conventional product.
本発明品は内面研削、平面研削及び円筒研削などの各種研削に適用でき、被削材も非金属、非鉄金属、鋳鉄、高硬度脆性鋼材、超合金などの研削、研磨、特に仕上研磨に好適に使用できる。 The product of the present invention can be applied to various types of grinding such as internal grinding, surface grinding and cylindrical grinding, and the work material is also suitable for grinding, polishing, especially finish polishing of non-metal, non-ferrous metal, cast iron, high hardness brittle steel, superalloy etc. Can be used for
1:焼成後の砥石
2:クラック
1: Grinding wheel after firing 2: Crack
Claims (4)
The vitrified binder is 40.0 to 55 wt% SiO2, 15.0 to 30 wt% Al2O3, 1.0 to 3.0 wt% CaO, 4.0 to 10.0 wt% Na2O, 1.0 to The vitrified silicon carbide grindstone according to claim 1, which is 2.0 wt% K 2 O, 10.0-25.0 wt% B 2 O 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003419138A JP2005177887A (en) | 2003-12-17 | 2003-12-17 | Vitrified silicon carbide grinding wheel and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003419138A JP2005177887A (en) | 2003-12-17 | 2003-12-17 | Vitrified silicon carbide grinding wheel and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005177887A true JP2005177887A (en) | 2005-07-07 |
Family
ID=34781111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003419138A Pending JP2005177887A (en) | 2003-12-17 | 2003-12-17 | Vitrified silicon carbide grinding wheel and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005177887A (en) |
-
2003
- 2003-12-17 JP JP2003419138A patent/JP2005177887A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101143437B1 (en) | Method for producing vitrified diamond whetstone | |
JP4865426B2 (en) | Polishing tool and manufacturing method thereof | |
JP5539339B2 (en) | High porosity vitrified superabrasive product and manufacturing method | |
JPH01316174A (en) | Vitrified super grain grindstone | |
JP2006346857A (en) | Polishing tool | |
JP6758780B2 (en) | Bonded polished article and manufacturing method | |
JP2001246566A (en) | Cutting grinding wheel, its manufacturing method and grinding method using it | |
KR20000048975A (en) | Silicon carbide abrasive wheel | |
JP2017185575A (en) | Vitrified superabrasive grain wheel | |
US20180257199A1 (en) | Sintered vitrified superfinishing grindstone | |
JP6200462B2 (en) | Abrasive articles for high-speed grinding operations | |
JP5697794B2 (en) | Abrasive articles for high-speed grinding operations | |
JPS63256364A (en) | Porous grindstone of super abrasive grain | |
JP4869695B2 (en) | Vitrified grinding wheel manufacturing method | |
JP5921772B2 (en) | Abrasive articles for slower grinding operations | |
JPH08257920A (en) | Porous vitrified super abrasive grinding wheel and manufacture therefor | |
JP2003136410A (en) | Super-abrasive grains vitrified bond grinding wheel | |
JP2005177887A (en) | Vitrified silicon carbide grinding wheel and its manufacturing method | |
JPH11188626A (en) | Ceramics dress substrate | |
KR20180134025A (en) | Vitrified super abrasive grain wheel | |
JPS62251077A (en) | Vitrifide grinding element | |
JP3615084B2 (en) | Vitrified grinding wheel manufacturing method | |
JPH10138148A (en) | Vitrified extra-abrasive grain grinding wheel | |
JP2008030157A (en) | Porous abrasive wheel and manufacturing method thereof | |
JP7420603B2 (en) | Low porosity vitrified grinding wheel containing diamond abrasive grains |