JP2005175409A - Method and apparatus for terahertz electromagnetic-wave irradiation - Google Patents

Method and apparatus for terahertz electromagnetic-wave irradiation Download PDF

Info

Publication number
JP2005175409A
JP2005175409A JP2003436321A JP2003436321A JP2005175409A JP 2005175409 A JP2005175409 A JP 2005175409A JP 2003436321 A JP2003436321 A JP 2003436321A JP 2003436321 A JP2003436321 A JP 2003436321A JP 2005175409 A JP2005175409 A JP 2005175409A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
terahertz electromagnetic
terahertz
frequency
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003436321A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Ken Sudo
建 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP2003436321A priority Critical patent/JP2005175409A/en
Publication of JP2005175409A publication Critical patent/JP2005175409A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus having high resolution capable of measuring the transmitting or reflecting intensity of a terahertz electromagnetic wave for obtaining the image of metallic parts inside an electronic component or a card. <P>SOLUTION: A high-frequency terahertz electromagnetic wave is generated by irradiating a crystal for frequency mixing with a beam of a solid-state Raman laser which is oscillated by exciting with a pump laser and a beam of the pump laser. The generated terahertz electromagnetic wave is converged into a fine beam by a tapered metal waveguide. The converged beam is transmitted or reflected by an object to be tested placed on an xy moving stage to obtain the image. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はテラヘルツ電磁波発生装置及び方法に関する。  The present invention relates to a terahertz electromagnetic wave generating apparatus and method.

情報端末用カードや各種カード内にはICチップや金属配線が埋め込まれているが外部から目視することができない。また、実装された各種電子部品はケースやコート材料で覆われていて、内部の金属配線の断線等の不良チェックや工程検査、偽造変造されたかどうかなど、各種検体の内部状態を知ることは目視では困難である。これらの検体中の金属配線などの状況を検知するにはx線装置により透視する方法が一般的である。しかしx線装置は高価であり、かつ、x線が人体に有害なためどこでも使えるというわけには行かない。  An IC chip and metal wiring are embedded in the information terminal card and various cards, but cannot be seen from the outside. In addition, various mounted electronic components are covered with a case or coating material, and it is possible to visually check the internal state of various specimens, such as whether the internal metal wiring is broken, checked for defects, whether it has been forged, or forged. It is difficult. In order to detect the state of the metal wiring or the like in these specimens, a method of fluoroscopy with an x-ray apparatus is generally used. But x-ray equipment is expensive, and, x-ray is not going to mean that used anywhere because it is harmful to the human body.

テラヘルツ波電磁波は人体に比較的安全であり、カード材料などを透過するがカード中に埋め込まれた金属部分では強く反射するので上記目的に使える。しかし、テラヘルツ波の波長は1THzでは空気中で300μmである。一方、カード内の金属配線や磁気金属は15μm程度の幅を有しているので形状を知るには15μm程度あるいは大きくても30μm程度の解像度を要求される。また、カード内のアンテナ配線、電子部品の接続配線などは100μm程度の幅を有している。しかし電磁波ビームを絞ることのできる限界は波長の1/2程度が回折限界である。従って、従来の1THz程度のテラヘルツ波周波数ではこの様な微細な金属配線構造などを高い解像度の画像として検知することができない。また、従来の差周波法によるテラヘルツ波発生装置は2台のレーザ光源を必要としたので高価とならざるを得なかった。  Terahertz electromagnetic waves are relatively safe for the human body and pass through the card material, but are strongly reflected at the metal part embedded in the card and can be used for the above purpose. However, the wavelength of the terahertz wave is 300 μm in the air at 1 THz. On the other hand, since the metal wiring and magnetic metal in the card have a width of about 15 μm, a resolution of about 15 μm or at most about 30 μm is required to know the shape. Further, the antenna wiring in the card, the connection wiring of the electronic components, etc. have a width of about 100 μm. However, the diffraction limit is about ½ of the wavelength that can limit the electromagnetic wave beam. Therefore, such a fine metal wiring structure cannot be detected as a high-resolution image at a conventional terahertz wave frequency of about 1 THz. Further, since the conventional terahertz wave generator using the difference frequency method requires two laser light sources, it must be expensive.

本発明はこの様な欠点を除き、30μm以下、すくなくとも100μm以下、の高い解像度で金属配線部分などのイメージを得る高解像度テラヘルツ電磁波照射方法及び装置を提供する。本発明の、他の一つの特徴として、2台のレーザ光源を必要とせず1台のポンプレーザを使用する安価なテラヘルツ電磁波照射方法及び装置を提供する。  The present invention provides a high-resolution terahertz electromagnetic wave irradiation method and apparatus for obtaining an image of a metal wiring portion or the like with a high resolution of 30 μm or less, at least 100 μm or less, excluding such drawbacks. Another feature of the present invention is to provide an inexpensive terahertz electromagnetic wave irradiation method and apparatus that uses one pump laser without requiring two laser light sources.

YAGレーザなどの簡便な近赤外光レーザをポンプ光として、半導体や誘電体結晶のラマンレーザを構成し、ラマンレーザ共振器の内部又は外部において、周波数混合用結晶にポンプ光とラマン発振したストークス光を導入し、差周波混合により、二つの光の周波数差に等しいテラヘルツ電磁波を発生させる。発生したテラヘルツ電磁波を金属導波管などを用いてxyステージ上の検体へと導き、テラヘルツ電磁波を照射する。金属導波管の先端は波長の数倍以下まで絞られており、細いテラヘルツビームが検体を透過または反射する。これを一個又は複数個の検知器で検出する。xyステージを移動することにより、検体に埋め込まれた金属配線部分などのテラヘルツ画像を得ることができる。  A simple near-infrared laser such as a YAG laser is used as pump light to form a semiconductor or dielectric crystal Raman laser, and the pump light and Raman-oscillated Stokes light are applied to the frequency mixing crystal inside or outside the Raman laser resonator. When introduced, a terahertz electromagnetic wave equal to the frequency difference between the two lights is generated by difference frequency mixing. The generated terahertz electromagnetic wave is guided to the specimen on the xy stage using a metal waveguide or the like, and the terahertz electromagnetic wave is irradiated. The tip of the metal waveguide is narrowed down to several times the wavelength, and a thin terahertz beam transmits or reflects the specimen. This is detected by one or a plurality of detectors. By moving the xy stage, a terahertz image of a metal wiring portion embedded in the specimen can be obtained.

本発明によれば、電子部品、カード類などの検体にテラヘルツ電磁波を照射し、検体中の金属やテラヘルツ電磁波を透過しない材料の存在及び形状を検知するテラヘルツ電磁波照射方法及び装置を得ることができる。  ADVANTAGE OF THE INVENTION According to this invention, the terahertz electromagnetic wave irradiation method and apparatus which irradiate terahertz electromagnetic waves to test substances, such as an electronic component and cards, and detect the presence and shape of the metal in a test substance and the material which does not permeate | transmit terahertz electromagnetic waves can be obtained. .

ラマン発振を行う固体としてGaP半導体結晶を利用し、また、周波数混合用の固体としてはGaAsを用いる構成によるテラヘルツ波発生法については本発明者が1983年に論文(IEEE.QE−19,p.1251,1983))に発表した。YAGレーザをポンプ光源とし、光共振器内でGaP結晶の光学フォノンを励起するとラマン発振にいたる。GaPの縦型光学フォノン(LOフォノン)は特にラマン散乱効率が極めて高いため容易に低閾値で発振するので本発明のラマンレーザ用固体として最適である。  As for the terahertz wave generation method using a GaP semiconductor crystal as a solid for performing Raman oscillation and using GaAs as the solid for frequency mixing, the present inventor published a paper (IEEE.QE-19, p. 19) in 1983. 1251, 1983)). When a YAG laser is used as a pump light source and an optical phonon of a GaP crystal is excited in an optical resonator, Raman oscillation occurs. Since GaP vertical optical phonons (LO phonons) have particularly high Raman scattering efficiency and easily oscillate at a low threshold, they are optimal as solids for Raman lasers of the present invention.

GaPの場合、LOフォノンの周波数は12THzと、一定の値をもっている。ポンプ光波長1.064mmは282THzに相当する。従ってLOフォノンラマン散乱により270THzのストークス光が発振する。ポンプ光282THzとストークス光270THzは共振器内に配置されたGaAs、GaSe、CdSeなどの差周波混合用固体を透過するときに周波数混合され、差周波数12THzの電磁波を発生する。ラマンレーザ用GaP中のLOフォノン自体ではTHz電磁波を発生しないが、混合用結晶によってTHz電磁波発生が可能となる。本方法は1台のポンプレーザでテラヘルツ波を発生できるので安価である。  In the case of GaP, the LO phonon frequency has a constant value of 12 THz. A pump light wavelength of 1.064 mm corresponds to 282 THz. Accordingly, 270 THz Stokes light oscillates due to LO phonon Raman scattering. The pump light 282 THz and the Stokes light 270 THz are frequency-mixed when passing through a difference frequency mixing solid such as GaAs, GaSe, or CdSe disposed in the resonator, and generate an electromagnetic wave having a difference frequency of 12 THz. The LO phonon itself in the Raman laser GaP does not generate THz electromagnetic waves, but the mixing crystal enables generation of THz electromagnetic waves. This method is inexpensive because a terahertz wave can be generated by a single pump laser.

LOフォノンはTOフォノンやポラリトンモードのフォノンより高い周波数を有しているので、波長が短く従って高い解像度を可能にする。GaP結晶ではLOフォノンの周波数は12THzであるから波長は25μmであり、回折限界で決まる分解能は13μmと計算されるから本発明の目的に合致する。  Since LO phonons have a higher frequency than TO phonons and polariton mode phonons, they have shorter wavelengths and therefore allow higher resolution. In the GaP crystal, the LO phonon frequency is 12 THz, so the wavelength is 25 μm, and the resolution determined by the diffraction limit is calculated as 13 μm, which meets the object of the present invention.

発生するテラヘツ電磁波ビーム径は1mmから数mmであるからこれを数十μm以下に絞るためにテーパ状金属導波管やシリコンで作られたテーパ状導波路を利用する。テーパ状金属動波管の出力端を可動ステージ上のカードなどの検体に接近させカードの反対側に近接したテラヘルツ波検知器で透過を検知する。  Since the generated terahertz electromagnetic wave beam diameter is 1 mm to several mm, a tapered metal waveguide or a tapered waveguide made of silicon is used to reduce the diameter to several tens of μm or less. The output end of the tapered metal wave tube is brought close to a sample such as a card on a movable stage, and transmission is detected by a terahertz wave detector close to the opposite side of the card.

テーパ状金属導波管としてはマイクロ波領域では円形または矩形断面あるいは、矩形断面の一方向にのみテーパを形成したものが知られているが、本発明では、この様な構造で、テラヘルツ波出力断面が100μmから30μm程度まで極めて寸法を小さくしたものを用いる。ラマンレーザ内部又は外部に混合用結晶を配置してなるテラヘルツ波発生部から発生する高周波数テラヘルツ電磁波を可動xyステージ上に配置したカードなどの薄い平板上に接近して照射し、カード面の反対側に検知器または検知器用導波路を接近させて検知する。ステージを微小に移動させることにより高い解像度で検体中の金属配線などのテラヘルツイメージを得ることができる。  In the microwave region, a tapered metal waveguide having a circular or rectangular cross section or a taper formed only in one direction of the rectangular cross section is known. In the present invention, a terahertz wave output is provided with such a structure. A cross section having a very small size from 100 μm to about 30 μm is used. A high-frequency terahertz electromagnetic wave generated from a terahertz wave generating unit in which a mixing crystal is arranged inside or outside of a Raman laser is irradiated close to a thin flat plate such as a card arranged on a movable xy stage, and is opposite to the card surface. The detector or the detector waveguide is brought close to the detector. By moving the stage minutely, it is possible to obtain a terahertz image such as a metal wiring in the specimen with high resolution.

図1には本発明のテラヘルツ電磁波照射装置の代表的な構成を示す。テラヘルツ電磁波発生部のラマンレーザはGaP単結晶1によってLOフォノンラマン散乱を生じさせる。ミラ2,3はストークス光に対して共振器を構成している。偏光子4を通して導入されたYAGレーザからのポンプ光はGaP結晶をラマン励起する。共振器内部に配置された周波数混合用,GaAs,CdSe、あるいはGaSe結晶5により、ポンプ光とラマン発振したストークス光を差周波混合させ、発生する12THzのテラヘルツ波を集光ミラ6,7を介して、入射部直径1mmの円形断面を有する金属導波管8に入射させる。  FIG. 1 shows a typical configuration of a terahertz electromagnetic wave irradiation apparatus of the present invention. The Raman laser of the terahertz electromagnetic wave generating section causes LO phonon Raman scattering by the GaP single crystal 1. The mirrors 2 and 3 constitute a resonator for the Stokes light. The pump light from the YAG laser introduced through the polarizer 4 Raman-excites the GaP crystal. The pump light and the Raman-oscillated Stokes light are mixed with the frequency mixing by the frequency mixing GaAs, CdSe, or GaSe crystal 5 arranged inside the resonator, and the generated 12 THz terahertz wave is passed through the converging mirrors 6 and 7. Then, the light is incident on a metal waveguide 8 having a circular cross section with a diameter of 1 mm.

金属導波管は代表的には長さ20cmで一様な断面で検体9近くまで導かれ、検体近くのテーパ状部分で細いビームに絞られる。金属導波管はテーパ部は、長さ50mm,入射側径1mm,出口側径50μmに絞られる。検知器11は一個の焦電検知器をサンプルの裏側に配置する。サンプルを乗せたステージ10をx、y方向に移動させつつ検知器11で透過テラヘルツ強度を測定することによりサンプル内の金属部分のイメージを得ることができる。この場合、照射出口断面部でのテラヘルツ強度は一様ではなく中央ほど強度が大であるので、50μm径の開口部を有していても、15μm程度のピッチでサンプルステージをx、y方向に移動させることにより15μmの解像度をえることができる。つまり金属配線のエッジが15μmより鋭いため金属端に対して開口部が移動したとき径の右端、中央、左端ではそれぞれ異なった透過強度となり少なくとも開口部径の1/3程度の解像度は充分得られるのである。  The metal waveguide is typically 20 cm in length and guided to the vicinity of the specimen 9 with a uniform cross section, and is narrowed down to a thin beam by a tapered portion near the specimen. The tapered portion of the metal waveguide is limited to a length of 50 mm, an incident side diameter of 1 mm, and an outlet side diameter of 50 μm. The detector 11 has one pyroelectric detector arranged on the back side of the sample. An image of a metal part in the sample can be obtained by measuring the transmitted terahertz intensity with the detector 11 while moving the stage 10 on which the sample is placed in the x and y directions. In this case, the terahertz intensity at the irradiation exit cross-section is not uniform, and the intensity is greater at the center. By moving it, a resolution of 15 μm can be obtained. In other words, since the edge of the metal wiring is sharper than 15 μm, when the opening moves with respect to the metal edge, the right end, the center, and the left end of the diameter have different transmission intensities, and a resolution of at least about 1/3 of the opening diameter can be sufficiently obtained. It is.

必要な解像度が30μm程度である場合はテーパ導波管の出口側径を100μmに広げることができるので導波管内での多重反射損失が減り、テラヘルツ波の透過強度を高めることができる。GaP以外の固体をラマンレーザ用に用いることができるが、固体の光学フォノンの周波数は最小、5THzである。このときテラヘルツ波の空気中波長は60μmであるから得らる解像度の限界は30μmとなる。  When the required resolution is about 30 μm, the outlet side diameter of the tapered waveguide can be increased to 100 μm, so that the multiple reflection loss in the waveguide is reduced and the transmission intensity of the terahertz wave can be increased. Solids other than GaP can be used for the Raman laser, but the frequency of the solid optical phonon is a minimum of 5 THz. At this time, since the wavelength in the air of the terahertz wave is 60 μm, the limit of the resolution that can be obtained is 30 μm.

実施例1ではx方向、y方向にそれぞれ15μmのピッチでステージを移動させるので平面上をスキャンするにはスポットの数に比例した測定時間を要する。本実施例は実施例1の1/10以下の測定時間で同じ画像を得ることができる。テラヘルツ波発生部は実施例1と同じであるが、導波管は矩形であり、テーパ部分12が図5のように長さ50mm,入射側1mm×1mm,出力側500μm×50μmのスリット状に絞られる。検知器13は50μm×50μmの焦電検知器DTGSを10個アレー上に並べたものである。これによってx方向に一回のステージの移動によって幅500μmの帯状領域のテラヘルツイメージが得られる。  In the first embodiment, the stage is moved at a pitch of 15 μm in each of the x direction and the y direction. Therefore, scanning on the plane requires a measurement time proportional to the number of spots. In the present embodiment, the same image can be obtained with a measurement time of 1/10 or less that of the first embodiment. The terahertz wave generation unit is the same as that of the first embodiment, but the waveguide is rectangular, and the tapered portion 12 has a slit shape with a length of 50 mm, an incident side of 1 mm × 1 mm, and an output side of 500 μm × 50 μm as shown in FIG. Squeezed. The detector 13 has 10 50 μm × 50 μm pyroelectric detectors DTGS arranged on an array. Thus, a terahertz image of a band-like region having a width of 500 μm is obtained by moving the stage once in the x direction.

順次y方向に500μmずつ移動させてこれを繰り返すことにより全面にわたって50μm×50μm以下の解像度でテラヘルツイメージを得ることができる。ステージをx方向15μmピッチで移動すると、実施例1に述べたとおりx方向に15μmの解像度が得られる。y方向に15μmの解像度を得るには、DTGS検知器が断面50μm×50μm、10個からなるアレーで構成されているので、一回x方向にステージを掃引する代わりに15μmづつy方向移動して3回掃引すればy方向にも15μm程度の分解能を得ることができる。  A terahertz image can be obtained with a resolution of 50 μm × 50 μm or less over the entire surface by sequentially moving this by 500 μm in the y direction and repeating this. When the stage is moved at a pitch of 15 μm in the x direction, a resolution of 15 μm is obtained in the x direction as described in the first embodiment. In order to obtain a resolution of 15 μm in the y direction, the DTGS detector is composed of a 10 μm cross section 50 μm × 50 μm, so instead of sweeping the stage once in the x direction, move the y direction by 15 μm. If it is swept three times, a resolution of about 15 μm can be obtained in the y direction.

検体カードなどが12THz近傍の周波数において電磁波を強く吸収する材料で作られている場合は、透過測定は不可能である。この場合は反射法を使う。図3はその例であり、テラヘルツ波発生部は実施例1と同じであるから図示していない。テラヘルツ波導波管14の一部に反射波用ビームスプリッタ15としてシリコン薄板を45度の角度で配置する。検体カード16の金属部分ではサンプル表面で強く反射した反射テラヘルツ電磁波17がビームスプリッタ15によって反射され集光用シリコンレンズ18によりテラヘルツ波検知器19に導かれる。テーパ導波管の、入射側、出口側寸法については反射の場合も実施例1と同じ原理で設計すればよい。  When a specimen card or the like is made of a material that strongly absorbs electromagnetic waves at a frequency near 12 THz, transmission measurement is impossible. In this case, the reflection method is used. FIG. 3 shows an example thereof, and the terahertz wave generation unit is not shown because it is the same as that of the first embodiment. A silicon thin plate is disposed at a 45 degree angle as a reflected wave beam splitter 15 in a part of the terahertz wave waveguide 14. Reflected terahertz electromagnetic waves 17 strongly reflected on the sample surface at the metal portion of the sample card 16 are reflected by the beam splitter 15 and guided to the terahertz wave detector 19 by the condensing silicon lens 18. The dimensions of the tapered waveguide on the incident side and the outlet side may be designed based on the same principle as in the first embodiment even in the case of reflection.

実施例1のように周波数混合用結晶をラマンレーザ共振器の内部に配置する場合は共振器内部に配置する場合は吸収損失10%以下が望まれる。混合用結晶の差周波発生効率が高いにもかかわらず、近赤外光に対する透過度が充分高くない場合、すなわちGaSe、ZnGeP、CdSeあるいはDAST(4−dimethylamino−N−methyl−4−stilbazolium tosylate)などを用いる場合は、共振器内部に入れるとラマン発振のしきい値を高める場合がある。When the frequency mixing crystal is disposed inside the Raman laser resonator as in the first embodiment, an absorption loss of 10% or less is desired when it is disposed inside the resonator. Despite the high difference frequency generation efficiency of the crystal for mixing, the transmittance for near infrared light is not sufficiently high, that is, GaSe, ZnGeP 2 , CdSe, or DAST (4-dimethylamino-N-methyl-4-stilbazolium tosylate ) Or the like may increase the threshold of Raman oscillation when placed inside the resonator.

したがって、図4のように差周波数混合用結晶22はラマンレーザ共振器の外部に配置し、ラマンレーザの共振器出力光20を周波数混合用結晶これに導入する。一方、ポンプ光の光は一部ビームスプリッタで分割されてポンプ光21となり混合用結晶22に導入される。ラマンレーザ共振器内部に比べて、共振器外部に取り出されるストークス光の強度は低いが、混合用結晶の差周波発生効率が高いので高強度のテラヘルツ波出力を得ることができる。  Therefore, as shown in FIG. 4, the difference frequency mixing crystal 22 is arranged outside the Raman laser resonator, and the resonator output light 20 of the Raman laser is introduced into the frequency mixing crystal. On the other hand, part of the pump light is split by a beam splitter to become pump light 21 and is introduced into the mixing crystal 22. Although the intensity of Stokes light extracted outside the resonator is lower than that inside the Raman laser resonator, a high-frequency terahertz wave output can be obtained because the difference frequency generation efficiency of the mixing crystal is high.

実施例1の構成を示す図である。  1 is a diagram illustrating a configuration of Example 1. FIG. 実施例2における金属導波管のテーパ部と検知器を示す図である。  It is a figure which shows the taper part and detector of a metal waveguide in Example 2. FIG. 実施例3における金属導波管のテーパ部と検知器を示す図である。  It is a figure which shows the taper part and detector of a metal waveguide in Example 3. FIG. 実施例4の構成を示す図である。  FIG. 10 is a diagram showing a configuration of Example 4.

符号の説明Explanation of symbols

1…GaP結晶
2,3…共振器ミラー
4…偏光ビームスプリッタ
5…周波数混合用結晶
6,7…テラヘルツ電磁波集光ミラ
8…金属導波管
9…検体
10…ステージ
11…検知器
8…金属導波管テーパ部
9…アレー状検知器
14…金属導波管
15…反射波用ビームスプリッタ
16…検体
17…反射テラヘルツビーム
18…シリコンレンズ
19…検知器
20…ラマンレーザ出力光
21…分割されたポンプ光
22…差周波混合用結晶
23…テラヘルツ電磁波
DESCRIPTION OF SYMBOLS 1 ... GaP crystal 2, 3 ... Resonator mirror 4 ... Polarizing beam splitter 5 ... Crystal for frequency mixing 6, 7 ... Terahertz electromagnetic wave condensing mirror 8 ... Metal waveguide 9 ... Sample 10 ... Stage 11 ... Detector 8 ... Metal Waveguide taper portion 9 ... Array detector 14 ... Metal waveguide 15 ... Reflected wave beam splitter 16 ... Sample 17 ... Reflected terahertz beam 18 ... Silicon lens 19 ... Detector 20 ... Raman laser output light 21 ... Divided Pump light 22 ... Crystal for difference frequency mixing 23 ... Terahertz electromagnetic wave

Claims (4)

ポンプ光源によって励起されて固体のラマン効果によって発振するラマンレーザと前記ラマンレーザ内部、あるいは外部に配置された周波数混合用固体によってポンプ光源周波数とラマン発振周波数の差に等しい5THz以上の高い周波数を持つテラヘルツ電磁波を発生するテラヘルツ電磁波発生部と、前記テラヘルツ電磁波ビームをビーム断面の少なくとも一つの方向においてテラヘルツ波の波長の数倍程度またはそれ以下に絞るためのビーム形成部とにより、前記テラヘルツ電磁波を電子部品、カード類などの検体に照射し、前記検体中の金属やテラヘルツ電磁波を透過しない材料の存在及び形状を検知するテラヘルツ電磁波照射方法及び装置。  A terahertz electromagnetic wave having a high frequency equal to or higher than 5 THz equal to the difference between the pump light source frequency and the Raman oscillation frequency by a Raman laser excited by a pump light source and oscillated by a solid Raman effect and a frequency mixing solid disposed inside or outside the Raman laser A terahertz electromagnetic wave generating part for generating the terahertz electromagnetic wave, and a beam forming part for narrowing the terahertz electromagnetic wave beam to several times the wavelength of the terahertz wave in at least one direction of the beam cross section or less. A terahertz electromagnetic wave irradiation method and apparatus for irradiating a specimen such as a card and detecting the presence and shape of a metal or a material that does not transmit terahertz electromagnetic waves in the specimen. 前記ビーム形成部が、前記検体に近接して配置されるテーパ型金属導波管であることを特徴とする請求項1記載のテラヘルツ電磁波照射方法及び装置。  The terahertz electromagnetic wave irradiation method and apparatus according to claim 1, wherein the beam forming unit is a tapered metal waveguide disposed close to the specimen. 前記ラマンレーザ用の固体がGaP結晶であり、前記テラヘルツ波周波数が12THzであることを特徴とする請求項1記載のテラヘルツ電磁波照射方法及び装置。  2. The terahertz electromagnetic wave irradiation method and apparatus according to claim 1, wherein the Raman laser solid is a GaP crystal and the terahertz wave frequency is 12 THz. 前記周波数混合用固体がGaAs,GaSe,CdSe,ZnGeP,DASTのいずれかであることを特徴とする請求項1、乃至は2記載のテラヘルツ電磁波照射方法及び装置。3. The terahertz electromagnetic wave irradiation method and apparatus according to claim 1, wherein the frequency mixing solid is any one of GaAs, GaSe, CdSe, ZnGeP 2 , and DAST.
JP2003436321A 2003-12-05 2003-12-05 Method and apparatus for terahertz electromagnetic-wave irradiation Pending JP2005175409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003436321A JP2005175409A (en) 2003-12-05 2003-12-05 Method and apparatus for terahertz electromagnetic-wave irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003436321A JP2005175409A (en) 2003-12-05 2003-12-05 Method and apparatus for terahertz electromagnetic-wave irradiation

Publications (1)

Publication Number Publication Date
JP2005175409A true JP2005175409A (en) 2005-06-30

Family

ID=34736918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003436321A Pending JP2005175409A (en) 2003-12-05 2003-12-05 Method and apparatus for terahertz electromagnetic-wave irradiation

Country Status (1)

Country Link
JP (1) JP2005175409A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199273A (en) * 1981-06-01 1982-12-07 Semiconductor Res Found Light wave detector
JPH01214079A (en) * 1988-02-22 1989-08-28 Sony Corp Laser light source
JPH08321070A (en) * 1995-05-25 1996-12-03 Sanyo Electric Co Ltd Method for reproducing optical recording medium and device therefor
JPH10215018A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Laser amplification apparatus
JP2002341392A (en) * 2001-05-18 2002-11-27 Telecommunication Advancement Organization Of Japan Device and method for emitting teraheltz light
JP2003324226A (en) * 2002-04-27 2003-11-14 Semiconductor Res Found Terahertz wave oscillation amplifying mixer
JP2004318028A (en) * 2003-04-10 2004-11-11 Semiconductor Res Found Apparatus for generating terahertz wave

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199273A (en) * 1981-06-01 1982-12-07 Semiconductor Res Found Light wave detector
JPH01214079A (en) * 1988-02-22 1989-08-28 Sony Corp Laser light source
JPH08321070A (en) * 1995-05-25 1996-12-03 Sanyo Electric Co Ltd Method for reproducing optical recording medium and device therefor
JPH10215018A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Laser amplification apparatus
JP2002341392A (en) * 2001-05-18 2002-11-27 Telecommunication Advancement Organization Of Japan Device and method for emitting teraheltz light
JP2003324226A (en) * 2002-04-27 2003-11-14 Semiconductor Res Found Terahertz wave oscillation amplifying mixer
JP2004318028A (en) * 2003-04-10 2004-11-11 Semiconductor Res Found Apparatus for generating terahertz wave

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FRITZ KEILMANN: "FIR MICROSCOPY", INFRARED PHYSICS & TECHNOLOGY, vol. 36, no. 1, JPN6008052462, January 1995 (1995-01-01), pages 217 - 224, ISSN: 0001160790 *
K. SUTO AND J. NISHIZAWA: "Low-Threshold Semiconductor Raman Laser", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 19, no. 8, JPN6008052463, August 1983 (1983-08-01), pages 1251 - 1254, XP000705388, ISSN: 0001160791, DOI: 10.1109/JQE.1983.1072030 *
WEI SHI, ET AL: "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal", OPTICS LETTERS, vol. 27, no. 16, JPN6009013250, 15 August 2002 (2002-08-15), pages 1454 - 1456, XP001167864, ISSN: 0001280242 *

Similar Documents

Publication Publication Date Title
EP0012262B1 (en) Apparatus and method for acoustically examining a microscopic portion of an object
US4430897A (en) Acoustic microscope and method
KR102220081B1 (en) System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US7921693B2 (en) Photo-acoustic spectrometer apparatus
JP6692103B2 (en) System and method for high contrast / near real time acquisition of terahertz images
JP6220128B2 (en) Terahertz wave generator and terahertz wave measuring method
JP5341488B2 (en) Apparatus and method for measuring terahertz waves
US10048196B2 (en) Cavity enhanced spectroscopy using off-axis paths
US11644418B2 (en) Far-infrared light source and far-infrared spectrometer
JP6294696B2 (en) Far-infrared imaging device and far-infrared imaging method
US3565567A (en) Method of and apparatus for measuring the presence and/or concentration of an element in an atomic vapor
US5469255A (en) Method and apparatus for spectrometric measurement of particulate surfaces
JP2008304444A (en) Attenuated total reflection spectrometry and device at terahertz frequency
US6798502B2 (en) Microwave regime surface spectroscopy
JP2005175409A (en) Method and apparatus for terahertz electromagnetic-wave irradiation
JP4209765B2 (en) Terahertz wave imaging device
WO2021131014A1 (en) Far-infrared spectroscopy device and far-infrared spectroscopy method
US7091506B2 (en) Semiconductor surface-field emitter for T-ray generation
US10302561B2 (en) Light source apparatus, and information acquisition apparatus using the same
JP3311406B2 (en) Spectrometer
JP2007271288A (en) Laser excitation ultrasonic image device
JP4355593B2 (en) Terahertz electromagnetic wave generation irradiation detector
Chanda et al. Experimental Comparison of Terahertz Time-Domain and Frequency Domain Imaging Schemes at 1 THz
JP2008058918A (en) Terahertz electromagnetic wave generation method and spectroscopy/imaging measuring device
JP2002257629A (en) Detecting apparatus and method for electromagnetic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105