JP2005175146A - Aligner - Google Patents

Aligner Download PDF

Info

Publication number
JP2005175146A
JP2005175146A JP2003412013A JP2003412013A JP2005175146A JP 2005175146 A JP2005175146 A JP 2005175146A JP 2003412013 A JP2003412013 A JP 2003412013A JP 2003412013 A JP2003412013 A JP 2003412013A JP 2005175146 A JP2005175146 A JP 2005175146A
Authority
JP
Japan
Prior art keywords
optical element
lens
support member
points
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003412013A
Other languages
Japanese (ja)
Inventor
Toshiya Inoue
俊哉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003412013A priority Critical patent/JP2005175146A/en
Publication of JP2005175146A publication Critical patent/JP2005175146A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical system, capable of reducing astigmatism on the whole surface by bending a lens to a specific direction to control it, when the lens is deformed due to exposure load (heat) in the optical system, and astigmatism is generated on the whole surface, as a result of the deformation. <P>SOLUTION: Holding structure, having a groove formed on the outer peripheral part of an optical element, a 1st support member, engaged with the groove part and capable of fixing a place slightly separated from either one of two fixing points which are of 180° pitch points in the gravity direction, and a 2nd support member for supporting the 1st support member is provided with a driving mechanism, capable of generating 2θ deformation on a face, causing self-weight deformation of the lens and controlling force in the antigravity direction on one or two points to control the astigmatism of the optical element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学部材などを支持する方法に関し、たとえば半導体露光装置に使用される投影レンズのレンズ支持装置、さらに投影露光装置に関するものである。   The present invention relates to a method for supporting an optical member or the like, for example, a lens support device for a projection lens used in a semiconductor exposure apparatus, and further relates to a projection exposure apparatus.

半導体露光装置は回路パターンを有する原板(レチクル)を基板(シリコンウエハ)に転写する装置である。転写する際にはレチクルのパターンをウエハ上に結像させるために投影レンズが用いられるが、高集積な回路を作成するために、投影レンズには高い解像力が要求されそのためには、半導体露光装置用の投影レンズは、収差が小さく抑えられていなくてはならない。しかし投影レンズにおいて露光時、露光負荷(熱)により、レンズ変形が生じその結果として光軸上で像のずれ、例えば全面アスが発生する場合がある。アス(非点収差)とは軸外の1点から出た光が、レンズを通過後1点に集まらず、前後にずれた互いに直行する2本の線になってしまう収差であり、非点収差がある場合、ホールの形状がデフォーカスにより変化してしまう。そこでこの非点収差を補正するためにレンズの面形状を変形させることによって波面収差を補正させる方法がある。   The semiconductor exposure apparatus is an apparatus for transferring an original plate (reticle) having a circuit pattern onto a substrate (silicon wafer). When transferring, a projection lens is used to form an image of the reticle pattern on the wafer. In order to create a highly integrated circuit, the projection lens is required to have a high resolving power. The projection lens for use must have low aberrations. However, during exposure in the projection lens, lens deformation may occur due to exposure load (heat), and as a result, image displacement on the optical axis, for example, astigmatism may occur. Astigmatism (astigmatism) is an aberration in which light from one off-axis point does not converge on one point after passing through the lens, but becomes two perpendicular lines that are shifted back and forth. When there is aberration, the shape of the hole changes due to defocusing. In order to correct this astigmatism, there is a method of correcting the wavefront aberration by changing the surface shape of the lens.

レンズの面形状を変形させることで波面収差を補正させる公知例として特開平11-149029のようにレンズ円周方向に3ヶ所等間隔に指示部を設けたレンズ指示部材において、支持部間に反重力方向に押し上げつつ指示する第2の支持部材を設けた構造や、特開2002-519843のようにマウント部に配置されたレンズに少なくとも光軸に対しほぼ垂直に作用する作動部材とを有し、作動部材はほぼ厚さの変化を伴わずに生じる曲がりを発生される為に回転対称形でなく、且つ半径方向から外れた力またはモーメントを光学要素に対し作用するように発生する構造等がある。
特開平11−149029号公報 特開2002−519843号公報
As a well-known example of correcting wavefront aberration by deforming the lens surface shape, a lens indicating member provided with indicating portions at three equal intervals in the lens circumferential direction as disclosed in Japanese Patent Laid-Open No. 11-149029 It has a structure provided with a second support member that gives instructions while pushing up in the direction of gravity, and an operating member that acts at least substantially perpendicular to the optical axis on the lens arranged in the mount as in JP-A-2002-519843 The actuating member is not rotationally symmetric because the actuating member generates a bend that does not substantially change in thickness, and has a structure that generates a force or moment that deviates from the radial direction on the optical element. is there.
JP-A-11-149029 JP 2002-519843 A

しかしながら、高精度な光学性能が求められる半導体露光装置に使用する投影レンズなどにおいて、上記従来例、特開平11-149029は3ヶ所等間隔の支持方法であり、3θ面変形を低減させることを目的とした支持方法であることから、2θ面変形コントロール方法ではなく、また特開2002-519843はレンズとレンズを支持する支持部材1における支持方法について明確には記載されておらず、実施例よりこのような構造は全周接着、または多点でのメカニカルなクランプなどをして、支持部材と一体化でねばならない。しかし、接着剤を全周均一に塗布することは非常に困難な為、接着剤の厚さむらなどによりレンズ変形を発生してしまう。また接着剤のアウトガスによるコンタミの影響も懸念される。また多点でのメカニカルなクランプにおいてもレンズに加わる荷重が大きくなりレンズ変形が発生する。   However, in the projection lens used in a semiconductor exposure apparatus that requires high-precision optical performance, the above-mentioned conventional example, Japanese Patent Application Laid-Open No. 11-149029 is a three-spaced support method and aims to reduce 3θ plane deformation. Therefore, it is not a 2θ-plane deformation control method, and Japanese Patent Laid-Open No. 2002-519843 does not clearly describe the support method for the lens and the support member 1 that supports the lens. Such a structure must be integrated with the support member by bonding around the circumference or mechanical clamping at multiple points. However, since it is very difficult to apply the adhesive uniformly over the entire circumference, lens deformation occurs due to uneven thickness of the adhesive. There is also concern about the influence of contamination due to adhesive outgassing. In addition, even in a multi-point mechanical clamp, a load applied to the lens is increased and lens deformation occurs.

上記目的を達成するため、本発明の光学素子支持方法は、光学素子を所定の場所に保持する方法において、光学素子外周部に形成された溝と、該溝部に係合し、(1)180°ピッチの固定点2点に加え、どちらか一方の固定点から重力方向に少し離れた場所を固定。(2)固定点3点のうち、固定点1点の180°ピッチ方向に2点間の距離が120°以上180°未満にした2点を固定。(3)90°ピッチ4点のうち、3点を固定。のいずれか3つの方法で配置された第1の支持部材と該支持部材を支持する第2の支持部材とから構成される保持構造で、さらに、支持部の間に少なくとも1ヶ所ないし2ヶ所、該光学素子に力を作用させる駆動機構を設けることを特徴とし、それぞれの駆動機構は、内圧によって体積が可変できる気密室と、気密室内の圧力を制御する制御部と、気密室の内圧変化による力を受けて、レンズに力を与えることが可能な梃子部材からなることを特徴とする。以上の構成によると、光学素子を自重変形に起因する面の2θ変形を発生させることができ、自重変形した個所に1ヶ所ないし2ヶ所で反重力方向に力を調整できる駆動機構を設けることでアクティブにアス調整を行うことが可能になる。   In order to achieve the above object, an optical element supporting method according to the present invention is a method of holding an optical element in a predetermined place, engaging with a groove formed on an outer peripheral part of the optical element, and the groove part, (1) 180 ° In addition to the two fixed points on the pitch, a place slightly away from either fixed point in the direction of gravity is fixed. (2) Out of the three fixed points, two fixed points with a distance of 120 ° or more and less than 180 ° in the 180 ° pitch direction of one fixed point are fixed. (3) Fix 3 points out of 4 90 ° pitches. A holding structure comprising a first support member and a second support member that supports the support member arranged by any one of the three methods, and at least one or two locations between the support portions, A drive mechanism for applying a force to the optical element is provided, and each drive mechanism includes an airtight chamber whose volume can be changed by an internal pressure, a control unit for controlling the pressure in the airtight chamber, and a change in the internal pressure of the airtight chamber. It is characterized by comprising a lever member capable of receiving a force and applying a force to the lens. According to the above configuration, the optical element can generate 2θ deformation of the surface due to its own weight deformation, and by providing a drive mechanism that can adjust the force in the antigravity direction at one place or two places at the place where its own weight is deformed. It is possible to adjust asphalt actively.

以上説明したように、本出願の発明によれば、レンズ姿勢を保った状態でレンズ部材を保持することができ、且つレンズ自重変形に対して駆動機構を用いることでアクティブにアスを制御することが可能となる。よってレンズ面形状をコントロールすることで、高精度な光学性能を提供することができる。   As described above, according to the invention of the present application, the lens member can be held in a state in which the lens posture is maintained, and asphalt is actively controlled by using the drive mechanism against the lens weight change. Is possible. Therefore, high-precision optical performance can be provided by controlling the lens surface shape.

(第1の実施例)
本発明の実施例を以下第1〜4図を用いて説明する。
(First embodiment)
An embodiment of the present invention will be described below with reference to FIGS.

図1は本発明を適用した半導体露光装置の投影光学系ユニットの一部である。図1において、1は本実施例の半導体露光装置における投影光学系を含む鏡筒、2は鏡筒を支える本体定盤、3は転写基盤であるウエハ、4はウエハを支持し、所望位置へ駆動せしめるウエハステージ、5は照明系光学系のユニットの一部である。6はウエハに転写するパターンが描写されているレチクル、7はレチクルを支持するレチクルステージである。照明光学系のユニットによりレチクル6を露光し、投影光学系を含む鏡筒1を介してウエハ3にレチクル6のパターンを転写する。   FIG. 1 is a part of a projection optical system unit of a semiconductor exposure apparatus to which the present invention is applied. In FIG. 1, 1 is a lens barrel including a projection optical system in the semiconductor exposure apparatus of the present embodiment, 2 is a main body platen that supports the lens barrel, 3 is a wafer that is a transfer substrate, and 4 is a wafer that supports the wafer and moves to a desired position. The wafer stage 5 to be driven is a part of the unit of the illumination system optical system. Reference numeral 6 denotes a reticle on which a pattern to be transferred to a wafer is depicted, and reference numeral 7 denotes a reticle stage that supports the reticle. The reticle 6 is exposed by the unit of the illumination optical system, and the pattern of the reticle 6 is transferred to the wafer 3 through the lens barrel 1 including the projection optical system.

図2は鏡筒内に属する光学素子支持機構の一実施例を適用した投影光学系図であり、図3は光学部材21を除いて第2の保持部材23の光学部材21との接触部分が分かるように示した図である。重力方向は光軸と一致し、図中の−Z方向とする。図2、3において21は光学部材(レンズ)、22は光学部材を支持する第1の支持部材であり、第1の支持部材外周部には、先端が球状部材である第2の支持部材23が180°ピッチの固定点2点に加え、どちらか一方の固定点から重力方向に少し離れた場所で配列されており光学部材21を固定している。重力方向に少し離れた場所で配列される球状部材はレンズの回転拘束を行う為であり、この拘束配列は上部の球状部材に対して、より離れている方がレンズ傾き量は小さいことが計算より明らかになっている。そして第2の支持部材23の90°ピッチにはレンズ外周部の180度ピッチの2箇所、光軸方向にレンズを変形させる駆動機構24が設けてある。駆動機構24の詳細は後述する。光学部材21のコバ部には断面がV字形状した溝(以下V溝と記す)、もしくはコーン形状の溝(以下コーン溝と記す)が加工されている。第2の支持部材23は前記V溝もしくはコーン溝の上下2面とに当接し、且つ光学部材21の半径方向に圧力をかけないように位置調整されている。   FIG. 2 is a projection optical system diagram to which an embodiment of the optical element support mechanism belonging to the lens barrel is applied. FIG. 3 shows the contact portion of the second holding member 23 with the optical member 21 except for the optical member 21. It is the figure shown as follows. The direction of gravity coincides with the optical axis and is the −Z direction in the figure. 2 and 3, 21 is an optical member (lens), 22 is a first support member that supports the optical member, and a second support member 23 whose tip is a spherical member is provided on the outer periphery of the first support member. Are arranged at locations slightly apart from one of the fixed points in the direction of gravity in addition to the two fixed points at a 180 ° pitch, and the optical member 21 is fixed. The spherical members arranged at a position slightly separated in the direction of gravity are for restricting the rotation of the lens, and it is calculated that this constrained arrangement is smaller than the upper spherical member and the lens inclination amount is smaller. It has become clearer. The 90 ° pitch of the second support member 23 is provided with a drive mechanism 24 that deforms the lens in the direction of the optical axis at two positions with a 180 ° pitch on the outer periphery of the lens. Details of the drive mechanism 24 will be described later. A groove having a V-shaped cross section (hereinafter referred to as “V groove”) or a cone-shaped groove (hereinafter referred to as “cone groove”) is processed in the edge portion of the optical member 21. The second support member 23 is in contact with the upper and lower surfaces of the V-groove or cone groove, and is positioned so as not to apply pressure in the radial direction of the optical member 21.

次に図4を用いて、駆動機構24の詳細部の説明を行う。駆動機構24は連通した2ヶ所の気密室25であって、各々の気密室はベローズなどのように内圧により体積を可変させることが可能であり、また気密室内の圧力を制御する制御部と気密室の内圧変化による力を受けて、レンズに力を与えることが可能な梃子部材26から構成されている。かかる構成により、気密室内の圧力を制御することによってレンズ外周部に所望の荷重を反重力方向に与える。この時、レンズに伝わる力は、気密室内の圧力と、有効面積、および梃子部材の、作用点、支点、力点の梃子比によって決まる。例えば、本実施例ではレンズ荷重18.1Nに対して、気密室の圧力調整量0.08MPa、有効面積1.54cm2、梃子比0.39とした場合、レンズに与える力を4.53Nに調整することができレンズの自重変形量による2θ面変形をほぼ0に制御することが可能である。反重力方向の力がレンズの自重撓みによる変形を矯正することで、レンズの波面収差を変形させることができ、露光収差を補正することが可能である。梃子部材は作用点(レンズ接触点)と力点(ベローズ接触部)とを結ぶ直線、もしくは前記直線と平行な直線上にない、2つの支持点を備えており、気密室からの力の方向が、厳密に反重力方向でない場合にも、梃子部材が回転することはない。本構成では、気密室は連通しており、ひとつの圧力制御で、2つの駆動部に等しく力を発生させることが可能であるが、それぞれの気密室内圧を個別に制御することも可能で、その場合は、レンズの変形量だけでなく、傾き量の制御することが可能となる。本実施例においては、レンズの最大変形調整量は、自重撓みによる変形量であるが、梃子の作用点の、重力方向対向側より、一定の圧力をかけることで、自重変形を超えた変形量制御を行うことが可能である。すなわち、与圧機構による力を-F、梃子部材からの力をf(p)とすれば、レンズの形状を変化させる力NはN=-F+f(p)となり、最小(0)の時もレンズ変形は自重変形より大きな値となる。与圧部材は、例えば片もち梁状のバネ部材や、コイルバネを内蔵したボールプランジャなどが望ましいが、レンズの重力方向に一定の圧力をかけることができるものであれば良い。これらの構成によれば光学部材21は3ヶ所の支持点において、外力としてのモーメントをほとんど受けることがない。また、第2の支持部材23を前記支持位置に配置することで光学部材1は主に2θの自重変形をおこし、変形したレンズ面を駆動機構24で持ち上げることによってアクティブにアスを調整することができる。さらに接着剤を使用していないため、アウトガスによるコンタミの影響も受けない。   Next, a detailed portion of the drive mechanism 24 will be described with reference to FIG. The drive mechanism 24 has two airtight chambers 25 which communicate with each other. Each of the airtight chambers can be changed in volume by an internal pressure, such as a bellows, and a control unit for controlling the pressure in the airtight chamber and an airtight chamber. The lever member 26 is configured to receive a force due to a change in the internal pressure of the closed chamber and apply a force to the lens. With this configuration, a desired load is applied to the lens outer peripheral portion in the antigravity direction by controlling the pressure in the hermetic chamber. At this time, the force transmitted to the lens is determined by the pressure in the hermetic chamber, the effective area, and the lever point of the action point, fulcrum, and force point of the lever member. For example, in this example, when the pressure adjustment amount of the hermetic chamber is 0.08 MPa, the effective area is 1.54 cm2, and the lever ratio is 0.39 with respect to the lens load of 18.1 N, the force applied to the lens can be adjusted to 4.53 N. It is possible to control the 2θ plane deformation by the self-weight deformation amount to almost zero. The force in the antigravity direction corrects the deformation caused by the lens's own weight deflection, whereby the wavefront aberration of the lens can be deformed, and the exposure aberration can be corrected. The insulator member has two support points that are not on the straight line connecting the point of action (lens contact point) and the force point (bellows contact part) or parallel to the straight line, and the direction of the force from the hermetic chamber is Even if the direction is not strictly anti-gravity, the lever member does not rotate. In this configuration, the hermetic chamber is in communication, and it is possible to generate force equally to the two drive units with one pressure control, but it is also possible to individually control the respective hermetic chamber pressure, In that case, it is possible to control not only the deformation amount of the lens but also the tilt amount. In this embodiment, the maximum deformation adjustment amount of the lens is the deformation amount due to its own weight deflection, but by applying a certain pressure from the opposite side of the gravity point of the action point of the lever, the deformation amount exceeding its own weight deformation amount. Control can be performed. That is, if the force by the pressurizing mechanism is -F and the force from the lever member is f (p), the force N for changing the lens shape is N = -F + f (p), which is the minimum (0) Even at this time, the lens deformation is larger than the self-weight deformation. The pressurizing member is preferably, for example, a one-sided beam-like spring member or a ball plunger with a built-in coil spring, but may be any member that can apply a constant pressure in the direction of gravity of the lens. According to these configurations, the optical member 21 hardly receives a moment as an external force at three support points. In addition, by arranging the second support member 23 at the support position, the optical member 1 mainly undergoes its own weight deformation of 2θ, and the adjusted lens surface can be actively adjusted by lifting the deformed lens surface with the drive mechanism 24. it can. Furthermore, since no adhesive is used, it is not affected by outgassing contamination.

(第2の実施例)
本発明の第2実施例を図5を用いて説明する。
(Second embodiment)
A second embodiment of the present invention will be described with reference to FIG.

図5は、図2と同様に鏡筒内に属する光学素子支持機構の一実施例を適用した投影光学系図であり、図6は光学部材21を除いて第2の保持部材23の光学部材21との接触部分が分かるように示した図である。重力方向は光軸と一致し、図中の−Z方向とする。本実施例の記号の説明は、第1の実施例と同じ部材なので省略する。本実施例において、第2の支持部材23は固定点3点のうち、固定点1点の180°ピッチ方向に2点間の距離が120°以上180°未満にした2点を固定するよう配置されている。そして固定点1点の90°ピッチにはレンズ外周部の180度ピッチに2箇所、光軸方向にレンズを変形させる駆動機構24が設けてある。この配置方法にすることで、レンズの姿勢位置は保たれ、且つ主に2θを主とする面変形を発生させることができる。尚、2θ以外の他成分量は、固定点1点の180°ピッチ方向の2点間距離を近づけることで減少するため、2点間距離はレンズ姿勢固定力が保たれる程度まで狭めることが望ましい。   FIG. 5 is a projection optical system diagram to which an embodiment of the optical element support mechanism belonging to the lens barrel is applied as in FIG. 2, and FIG. 6 is an optical member 21 of the second holding member 23 except for the optical member 21. It is the figure shown so that a contact part might be understood. The direction of gravity coincides with the optical axis and is the −Z direction in the figure. The explanation of the symbols in this embodiment is omitted because it is the same member as in the first embodiment. In the present embodiment, the second support member 23 is arranged so as to fix two fixed points of which the distance between the two points is 120 ° or more and less than 180 ° in the 180 ° pitch direction of one fixed point. Has been. A driving mechanism 24 for deforming the lens in the direction of the optical axis is provided at two positions at a 180 ° pitch on the outer periphery of the lens at a 90 ° pitch of one fixed point. By adopting this arrangement method, the posture position of the lens can be maintained, and surface deformation mainly having 2θ can be generated. Note that the amount of components other than 2θ decreases by bringing the distance between two points in the 180 ° pitch direction of one fixed point closer, so the distance between the two points can be narrowed to such an extent that the lens posture fixing force is maintained. desirable.

本実施例のように、第2の支持部材23を前記支持位置に配置することで第1の実施例同様、光学部材21は主に2θの自重変形をおこし、変形したレンズ面を駆動機構24で持ち上げることによってアクティブにアスを調整することができる。さらに接着剤を使用していないため、アウトガスによるコンタミの影響も受けない。   As in the present embodiment, the second support member 23 is disposed at the support position, so that the optical member 21 mainly undergoes its own weight deformation of 2θ, and the deformed lens surface is driven by the drive mechanism 24, as in the first embodiment. You can actively adjust the asses by lifting in. Furthermore, since no adhesive is used, it is not affected by outgassing contamination.

(第3の実施例)
本発明の第3実施例を図6を用いて説明する。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIG.

図6は、図2と同様に鏡筒内に属する光学素子支持機構の一実施例を適用した投影光学系図であり、図6は光学部材21を除いて第2の保持部材23の光学部材21との接触部分が分かるように示した図である。重力方向は光軸と一致し、図中の−Z方向とする。本実施例の記号の説明は、第1の実施例と同じ部材なので省略する。本実施例において、第2の支持部材23は90°ピッチ4点のうち、3点を固定するよう配置されており、90°ピッチ残り1ヶ所に駆動機構24が配置されている。この配置方法にすることで、レンズの姿勢位置は保たれ、且つ主に2θを主とする面変形を発生させることができる。   6 is a projection optical system diagram to which an embodiment of the optical element support mechanism belonging to the lens barrel is applied as in FIG. 2. FIG. 6 is an optical member 21 of the second holding member 23 except for the optical member 21. It is the figure shown so that a contact part might be understood. The direction of gravity coincides with the optical axis and is the −Z direction in the figure. The explanation of the symbols in this embodiment is omitted because it is the same member as in the first embodiment. In the present embodiment, the second support member 23 is arranged to fix three of the four 90 ° pitch points, and the drive mechanism 24 is arranged at the remaining one 90 ° pitch. By adopting this arrangement method, the posture position of the lens can be maintained, and surface deformation mainly having 2θ can be generated.

本実施例のように、第2の支持部材23を前記支持位置に配置することで第1の実施例同様、光学部材21は主に2θの自重変形をおこし、変形したレンズ面を駆動機構24で持ち上げることによってアクティブにアスを調整することができる。さらに接着剤を使用していないため、アウトガスによるコンタミの影響も受けない。   As in the present embodiment, the second support member 23 is disposed at the support position, so that the optical member 21 mainly undergoes its own weight deformation of 2θ, and the deformed lens surface is driven by the drive mechanism 24, as in the first embodiment. You can actively adjust the asses by lifting in. Furthermore, since no adhesive is used, it is not affected by outgassing contamination.

本発明の第1の実施例に係る半導体露光装置の投影光学系ユニットを説明する図。FIG. 3 is a view for explaining a projection optical system unit of the semiconductor exposure apparatus according to the first embodiment of the present invention. 本発明の第1の実施例を示すレンズ保持装置。1 is a lens holding device showing a first embodiment of the present invention. 本発明の第1の実施例を示すレンズ保持装置。1 is a lens holding device showing a first embodiment of the present invention. 本発明の第1の実施例を示す駆動機構装置。1 is a drive mechanism device showing a first embodiment of the present invention; 本発明の第2の実施例を示すレンズ保持装置。6 is a lens holding device showing a second embodiment of the present invention. 本発明の第2の実施例を示すレンズ保持装置。6 is a lens holding device showing a second embodiment of the present invention. 本発明の第3の実施例を示すレンズ保持装置。4 is a lens holding device showing a third embodiment of the present invention. 本発明の第3の実施例を示すレンズ保持装置。4 is a lens holding device showing a third embodiment of the present invention.

符号の説明Explanation of symbols

1 鏡筒
2 本体定盤
3 ウエハ
4 ウエハステージ
5 照明光学のユニットの一部
6 レチクル
7 レチクルステージ
21 光学素子(レンズ)
22 第1支持部材(セル)
23 第2支持部材
24 駆動機構
25 気密室
26 梃子部材
1 Lens tube
2 Main body surface plate
3 Wafer
4 Wafer stage
5 Part of the illumination optics unit
6 Reticle
7 Reticle stage
21 Optical elements (lenses)
22 First support member (cell)
23 Second support member
24 Drive mechanism
25 Airtight room
26 Insulator material

Claims (5)

光学素子を所定の場所に保持する方法において、光学素子外周部に形成された溝と、該溝部に係合し、かつ180°ピッチの支持点2点に加え、どちらか一方の支持点から重力方向に少し離れた場所に配置された第1の支持部材と該支持部材を支持する第2の支持部材とから構成される保持構造であることを特徴とする、光学素子保持方法。   In the method of holding the optical element in place, in addition to the groove formed on the outer periphery of the optical element and the two support points with a pitch of 180 °, gravity is applied from either one of the support points. An optical element holding method comprising: a holding structure including a first support member disposed at a position slightly apart in a direction and a second support member supporting the support member. 光学素子を所定の場所に保持する方法において、光学素子外周部に形成された溝と、該溝部に係合し、かつ支持点3点のうち、支持点1点の180ピッチ方向に2点間の距離が120°以上180°未満にした2点に配置された第1の支持部材と該支持部材を支持する第2の支持部材とから構成される保持構造であることを特徴とする、光学素子保持方法。   In the method of holding the optical element in a predetermined place, a groove formed on the outer periphery of the optical element, and the two engaging points between two points in the 180 pitch direction of the supporting point among the three supporting points. A holding structure comprising a first support member disposed at two points with a distance of 120 ° or more and less than 180 ° and a second support member that supports the support member. Element holding method. 光学素子を所定の場所に保持する方法において、光学素子外周部に形成された溝と、該溝部に係合し、かつ90°ピッチ4点のうち、3点に配置された第1の支持部材と該支持部材を支持する第2の支持部材とから構成される保持構造であることを特徴とする、光学素子保持方法。   In a method of holding an optical element in a predetermined place, a groove formed on the outer periphery of the optical element, and a first support member that engages with the groove and is disposed at three of four 90 ° pitches. And a second support member that supports the support member. 請求項1乃至3に挙げた光学素子保持方法において、該光学素子に反重力方向に力を作用させる駆動機構を、請求項1乃至2ではレンズ外周部の180度ピッチの2箇所に設けられ、請求項3では90°ピッチ残りの1ヶ所に設けることを特徴とする光学素子保持方法。   In the optical element holding method recited in any one of claims 1 to 3, a driving mechanism that applies a force to the optical element in the antigravity direction is provided in two locations at a pitch of 180 degrees on the outer periphery of the lens in claims 1 and 2. The optical element holding method according to claim 3, wherein the optical element holding method is provided at one remaining portion of the 90 ° pitch. 請求項1乃至3に挙げた光学素子保持方法において、該光学素子に力を作用させる駆動機構は、内圧によって体積が可変できる気密室と、気密室内の圧力を制御する制御部と、気密室の内圧変化による力を受けて、レンズに力を与えることが可能な梃子部材からなることを特徴とする光学素子保持方法。
The optical element holding method according to any one of claims 1 to 3, wherein the driving mechanism that applies force to the optical element includes an airtight chamber whose volume can be changed by an internal pressure, a control unit that controls the pressure in the airtight chamber, An optical element holding method comprising: a lever member capable of receiving a force due to a change in internal pressure and applying a force to a lens.
JP2003412013A 2003-12-10 2003-12-10 Aligner Withdrawn JP2005175146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003412013A JP2005175146A (en) 2003-12-10 2003-12-10 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003412013A JP2005175146A (en) 2003-12-10 2003-12-10 Aligner

Publications (1)

Publication Number Publication Date
JP2005175146A true JP2005175146A (en) 2005-06-30

Family

ID=34732589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412013A Withdrawn JP2005175146A (en) 2003-12-10 2003-12-10 Aligner

Country Status (1)

Country Link
JP (1) JP2005175146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106158A (en) * 2012-11-28 2014-06-09 Canon Inc Measuring device and manufacturing method for article
CN109581175A (en) * 2018-12-04 2019-04-05 德淮半导体有限公司 Semiconductor testing apparatus and its working method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106158A (en) * 2012-11-28 2014-06-09 Canon Inc Measuring device and manufacturing method for article
CN109581175A (en) * 2018-12-04 2019-04-05 德淮半导体有限公司 Semiconductor testing apparatus and its working method

Similar Documents

Publication Publication Date Title
JP4653160B2 (en) Optical element
US7457059B2 (en) Adjustment arrangement of an optical element
JP4565261B2 (en) Optical element holding mechanism, optical system barrel, and exposure apparatus
JP4809987B2 (en) Support structure for optical element, exposure apparatus using the same, and method for manufacturing semiconductor device
US8416386B2 (en) Conforming seats for clamps used in mounting an optical element, and optical systems comprising same
JP2009545152A (en) Support for optical element
JP2006113414A (en) Optical element holding apparatus, lens barrel, exposure apparatus, and method for manufacturing micro device
KR20140124325A (en) Mirror unit and exposure apparatus
US7090362B2 (en) Facet mirror having a number of mirror facets
JPH0578930B2 (en)
WO2008122313A1 (en) Optical element module with imaging error and position correction
JP5168507B2 (en) Optical element holding mechanism, optical system barrel, and exposure apparatus
US8279398B2 (en) Deforming mechanism, exposure apparatus, and device manufacturing method
JP6808381B2 (en) Holding device, projection optical system, exposure device, and article manufacturing method
JP2005175146A (en) Aligner
JP2013106017A (en) Optical element holding device, optical device, and exposure device
US11415894B2 (en) Projection exposure system for semiconductor lithography having an optical arrangement
US8456614B2 (en) Optical element supporting device, exposure apparatus using same, and device manufacturing method
JP4956680B2 (en) Support structure for optical element, exposure apparatus using the same, and method for manufacturing semiconductor device
JP2010271457A (en) Mechanism for adjusting position of optical element, exposure apparatus with mechanism for adjusting position of optical element and method for adjusting position of optical element
JP4174262B2 (en) Optical element support structure, optical system, optical system adjustment method, exposure apparatus, exposure method, and semiconductor device manufacturing method
JP2003241051A (en) Support means for optical element, optical system relying on the support means for the optical element, exposure device, and device manufacturing method
JP2023032241A (en) Drive unit, exposure device and article manufacturing method
KR20190120068A (en) Exposure apparatus, and article manufacturing method
JP2005173363A (en) Optical element holding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306