JP2005174857A - Welding method for wound electrode for secondary battery, and welding head of resistance welder used therefor - Google Patents

Welding method for wound electrode for secondary battery, and welding head of resistance welder used therefor Download PDF

Info

Publication number
JP2005174857A
JP2005174857A JP2003416460A JP2003416460A JP2005174857A JP 2005174857 A JP2005174857 A JP 2005174857A JP 2003416460 A JP2003416460 A JP 2003416460A JP 2003416460 A JP2003416460 A JP 2003416460A JP 2005174857 A JP2005174857 A JP 2005174857A
Authority
JP
Japan
Prior art keywords
welding
electrode
resistance
secondary battery
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003416460A
Other languages
Japanese (ja)
Other versions
JP4545427B2 (en
Inventor
Kazuo Kojima
島 一 夫 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanoh Industrial Co Ltd
Original Assignee
Sanoh Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanoh Industrial Co Ltd filed Critical Sanoh Industrial Co Ltd
Priority to JP2003416460A priority Critical patent/JP4545427B2/en
Publication of JP2005174857A publication Critical patent/JP2005174857A/en
Application granted granted Critical
Publication of JP4545427B2 publication Critical patent/JP4545427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the rate of occurrence of defectives by eliminating current variations at the time of welding independently of positions on a collector to prevent the occurrence of spatters. <P>SOLUTION: A welding region is divided into the inside welding region 24 and the outside welding region 26 along the slit 14 of the collector 12, and then, by using a welding electrode 22 having a welding end surface limiting a welding range to each of the divided welding regions 24, 26, the divided welding regions 24, 26 are respectively welded along the slit 14, while changing the position of the welding electrode 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車、自動二輪車などの電源に用いられる二次電池用捲回電極に係り、特に、捲回電極に集電体を電気抵抗溶接により溶接する技術に関する。   The present invention relates to a wound electrode for a secondary battery used for a power source of an automobile, a motorcycle or the like, and more particularly to a technique for welding a current collector to the wound electrode by electric resistance welding.

この種の二次電池としては、例えば、ニッケル水素化物電池が広く利用されている。このニッケル水素化物電池では、図8に示すような捲回電極10が用いられている。図9は、捲回電極10を渦巻き状に加工する前の捲回電極10の構成要素を示している。この捲回電極10は、それぞれ帯状の正極板2と負極板4とを幅方向にずらして重ね合わせるとともに、両者の間には絶縁体として帯状のセパレータ6を介在させたものを渦巻き状に曲げ加工してなる電極である。正極板2の外側端縁が正極になり、この外側端縁に沿って正極の集電タブ8が固着されている。同じように負極板4の外側端縁には負極の集電タブ9が固着されている。   As this type of secondary battery, for example, a nickel hydride battery is widely used. In this nickel hydride battery, a wound electrode 10 as shown in FIG. 8 is used. FIG. 9 shows components of the wound electrode 10 before the wound electrode 10 is processed into a spiral shape. The wound electrode 10 includes a belt-like positive electrode plate 2 and a negative electrode plate 4 which are shifted and overlapped in the width direction, and a belt-like separator 6 interposed therebetween is bent in a spiral shape. This is a processed electrode. The outer edge of the positive electrode plate 2 becomes a positive electrode, and a positive current collecting tab 8 is fixed along the outer edge. Similarly, a negative electrode current collecting tab 9 is fixed to the outer edge of the negative electrode plate 4.

捲回電極10の正極側、負極側には、それぞれ円盤状の集電体12がそれぞれ溶接されている。集電体12は、図10に示されるように、捲回電極10の外径よりも若干な直径のもつ円盤状の集電体であり、多数の溶接ポイントにて溶接できるように、集電体12には、半径方向に延びるスリット14が複数形成されている。   Disc-shaped current collectors 12 are respectively welded to the positive electrode side and the negative electrode side of the wound electrode 10. As shown in FIG. 10, the current collector 12 is a disk-shaped current collector having a diameter slightly larger than the outer diameter of the wound electrode 10, and the current collector 12 can be welded at many welding points. A plurality of slits 14 extending in the radial direction are formed in the body 12.

集電体12の中央部には、円形の穴13が形成され、この穴13の外側から放射状にスリット14が外周まで延びている。スリット14は、60°ずつ集電体12の中心に関して対称である。なお、集電体12の各スリット14では、両側長辺の縁部は直角に折れ曲げられた曲折部15が形成されている。   A circular hole 13 is formed at the center of the current collector 12, and slits 14 extend radially from the outside of the hole 13 to the outer periphery. The slit 14 is symmetrical about the center of the current collector 12 by 60 °. In addition, in each slit 14 of the collector 12, the edge part of both long sides is formed the bending part 15 bent at right angle.

捲回電極10に集電体12を溶接するには、従来は、図11に示すような電極16a、16bをもった抵抗溶接機の溶接ヘッドをスリット14に押し当てながら電流を流して溶接している。   In order to weld the current collector 12 to the wound electrode 10, conventionally, welding is performed by passing an electric current while pressing a welding head of a resistance welding machine having electrodes 16 a and 16 b as shown in FIG. 11 against the slit 14. ing.

抵抗溶接により集電体12を捲回電極10に溶接する場合、電極間に流れる電流が溶接に関与する有効電流と、関与しない無効電流とに分かれるという大きな問題がある。   When the current collector 12 is welded to the wound electrode 10 by resistance welding, there is a big problem that the current flowing between the electrodes is divided into an effective current related to the welding and a reactive current not related to the welding.

集電体12上の溶接ポイントの位置によって無効電流の電流値の大きさは変わってくる。一般的な傾向としては、集電体12の中心部に近い溶接ポイントほど無効電流は大きくなり、その反面、実際に溶接に使われる有効電流は小さくなる。これは、中心部に近くなると、スリット14を迂回して流れる電流が増えるのに対して、外周側ではスリット14により分断されて無効電流の流れる余地はなくなるからである。   The magnitude of the reactive current varies depending on the position of the welding point on the current collector 12. As a general tendency, the reactive current increases toward the welding point closer to the center of the current collector 12, while the effective current actually used for welding decreases. This is because near the center, the current flowing around the slit 14 increases, whereas on the outer peripheral side, there is no room for reactive current to be divided by the slit 14.

集電体12上の各溶接ポイントは、いずれも必要十分な強度をもつように溶接される必要があるので、集電体12の中心部に近い溶接ポイントに最低限必要な電流が流れるように、全体として溶接電流を大きくしている。   Since each welding point on the current collector 12 needs to be welded so as to have a necessary and sufficient strength, a minimum necessary current flows through a welding point near the center of the current collector 12. As a whole, the welding current is increased.

このような大きな電流を流すと、外側の溶接ポイントでは、無効電流が小さい分だけ必要以上の有効電流が流れるため、溶融した金属がスパッタとなって飛び散るという現象が起こる。このスパッタはスリット14から捲回電極10の中に入り込み、セパレータに付着して穴をあけ、電池短絡の原因となる。   When such a large current flows, an effective current more than necessary flows by an amount corresponding to a small reactive current at the outer welding point, so that a phenomenon occurs in which molten metal is spattered and scattered. This spatter enters the wound electrode 10 from the slit 14 and adheres to the separator to form a hole, causing a battery short circuit.

そこで、本発明の目的は、前記従来技術の有する問題点を解消し、集電体上の位置によらずに溶接時の電流のばらつきをなくし、スパッタの発生を防止し、不良品を発生率を大幅に低減できるようにした二次電池用捲回電極の溶接方法を提供することにある。   Accordingly, an object of the present invention is to eliminate the problems of the prior art, to eliminate variations in current during welding regardless of the position on the current collector, to prevent the occurrence of spatter, and to generate defective products It is an object of the present invention to provide a method of welding a wound electrode for a secondary battery that can significantly reduce the battery.

また、本発明の他の目的は、スパッタの発生を防止し、不良品を発生率を大幅に低減できるように、上記捲回電極の溶接方法を実施するための抵抗溶接機の溶接ヘッドを提供することにある。   Another object of the present invention is to provide a welding head of a resistance welding machine for carrying out the above-described wound electrode welding method so as to prevent spattering and to greatly reduce the incidence of defective products. There is to do.

前記の目的を達成するために、請求項1に係る発明は、帯状の正極板と負極板とをセパレータを間に介在させて渦巻き状に捲いてなる二次電池用の捲回電極に、放射状に延びる複数のスリットを有する集電体を抵抗溶接により溶接する方法であって、前記スリットに沿って溶接領域を略等分割し、抵抗溶接機の溶接電極に、分割した各溶接領域に溶接範囲を限定する溶接端面を持つ溶接電極を用い、スリット沿って前記溶接電極の位置を変えながら分割した溶接領域ごとに溶接することを特徴とするものである。   In order to achieve the above object, the invention according to claim 1 is directed to a wound electrode for a secondary battery in which a strip-like positive electrode plate and a negative electrode plate are wound in a spiral shape with a separator interposed therebetween, A current collector having a plurality of slits extending in a direction is welded by resistance welding, and the welding region is substantially equally divided along the slits and welded to each welding region divided into welding electrodes of a resistance welder. A welding electrode having a welding end face that limits the above is used, and welding is performed for each of the divided welding regions while changing the position of the welding electrode along the slit.

また、請求項3に係る発明は、帯状の正極板と負極板とをセパレータを間に介在させて渦巻き状に捲いてなる二次電池用の捲回電極に、放射状に延びる複数のスリットを有する集電体を抵抗溶接により溶接する方法であって、異なる電気抵抗の金属を組み合わせてなる溶接電極を用い、内側の溶接領域に電気抵抗の高い方の金属を、外側の溶接領域に電気抵抗の低い方の金属を押し付け、前記両方の溶接領域を同時に抵抗溶接することを特徴とするものである。   The invention according to claim 3 has a plurality of radially extending slits in a wound electrode for a secondary battery in which a strip-like positive electrode plate and a negative electrode plate are wound in a spiral manner with a separator interposed therebetween. A method of welding current collectors by resistance welding, wherein a welding electrode comprising a combination of metals having different electric resistances is used, and a metal having a higher electric resistance is applied to the inner welding region and an electric resistance is applied to the outer welding region. The lower metal is pressed, and both the welding regions are simultaneously resistance-welded.

さらに、請求項4に係る発明は、帯状の正極板と負極板とをセパレータを間に介在させて渦巻き状に捲いてなる二次電池用の捲回電極に、放射状に延びる複数のスリットを有する集電体を抵抗溶接により溶接する方法であって、抵抗溶接の溶接電極に熱容量の十分に大きな溶接電極を用い、前記スリットに沿って溶接電極を押し付け、電圧を印加した後少なくとも500(msec)の間、前記溶接電極を押さえ込むことを特徴とするものである。   Further, the invention according to claim 4 has a plurality of radially extending slits in a wound electrode for a secondary battery in which a strip-like positive electrode plate and a negative electrode plate are wound in a spiral shape with a separator interposed therebetween. A method of welding a current collector by resistance welding, using a welding electrode having a sufficiently large heat capacity as a resistance welding welding electrode, pressing the welding electrode along the slit, and applying a voltage at least 500 (msec) During this period, the welding electrode is pressed down.

本発明によれば、集電体上の位置によらずに溶接電流のばらつきをなくすことができ、また、溶接電極で溶接部に発生した熱を吸収することにより、スパッタの発生を抑制できるので、スパッタのセパレータへの付着による穴あき等の不良品の発生率を大幅に低減できる。   According to the present invention, variation in welding current can be eliminated regardless of the position on the current collector, and generation of spatter can be suppressed by absorbing heat generated in the welded portion by the welding electrode. The occurrence rate of defective products such as holes due to adhesion of the sputter to the separator can be greatly reduced.

以下、本発明による二次電池用捲回電極の溶接方法の一実施形態について、添付の図面を参照しながら説明する。
第1実施形態
図1は、本実施形態の溶接方法に用いる抵抗溶接機の溶接ヘッドを示す。図2は、捲回電極10に溶接される集電体12を示す。 図1において、参照番号20は、溶接ヘッドのヘッド本体を示す。捲回電極10、集電体12は、図8乃至図10に示した従来の捲回電極、集電体と変わるところはないので、同一の構成要素には同一の参照符号を付して説明は省略する。
Hereinafter, an embodiment of a method for welding a wound electrode for a secondary battery according to the present invention will be described with reference to the accompanying drawings.
1st Embodiment FIG. 1: shows the welding head of the resistance welding machine used for the welding method of this embodiment. FIG. 2 shows the current collector 12 welded to the wound electrode 10. In FIG. 1, reference numeral 20 indicates the head body of the welding head. Since the wound electrode 10 and the current collector 12 are not different from the conventional wound electrode and current collector shown in FIGS. 8 to 10, the same components are denoted by the same reference numerals and described. Is omitted.

このヘッド本体20の下端には、電極ホルダ21a、21bを介して一対の溶接電極22、22が取り付けられている。各溶接電極22、22は、それぞれ正極、負極の一組の電極から構成されている。   A pair of welding electrodes 22 and 22 are attached to the lower end of the head body 20 via electrode holders 21a and 21b. Each welding electrode 22 and 22 is comprised from the one set of electrode of the positive electrode and the negative electrode, respectively.

図2に示すように、本実施の形態では、各スリット14に沿った溶接領域を内側溶接領域24と外側溶接領域26とに分割しているので、この分割した溶接領域に溶接範囲を限定するように、溶接電極22の寸法を設定している。特に、溶接電極22の縦横の幅、高さのうち、縦の幅はスリット14の長さの略半分である。   As shown in FIG. 2, in the present embodiment, the welding region along each slit 14 is divided into an inner welding region 24 and an outer welding region 26, and thus the welding range is limited to this divided welding region. Thus, the dimension of the welding electrode 22 is set. In particular, of the vertical and horizontal widths and heights of the welding electrode 22, the vertical width is substantially half of the length of the slit 14.

また、電極ホルダ21a、21bは、ヘッド本体20の端面に形成された案内溝に沿ってスライド可能に取り付けられるとともに、ネジ止め等により固定できるようになっており、これにより、一対の溶接電極22、22の間隔を調整できるように構成されている。   The electrode holders 21a and 21b are slidably mounted along guide grooves formed on the end face of the head body 20, and can be fixed by screws or the like. , 22 can be adjusted.

次に、以上のように構成される溶接ヘッドを用いて実施する溶接方法について説明する。
本実施形態では、図2に示すように、集電体12について、各スリット14に沿った溶接領域を内側溶接領域24と外側溶接領域26に略二等分している。そして、内側溶接領域24を先に溶接する。
Next, the welding method implemented using the welding head comprised as mentioned above is demonstrated.
In the present embodiment, as shown in FIG. 2, with respect to the current collector 12, the welding region along each slit 14 is divided into approximately two equal parts into an inner welding region 24 and an outer welding region 26. Then, the inner welding region 24 is welded first.

すなわち、溶接電極22、22の間隔を、集電体12の直径上にあるスリット14の内側溶接領域24同士の間隔に合わせておき、溶接ヘッド20を降下させて溶接電極22、22を集電体12の内側溶接領域24、24に押し付け電圧を印加し溶接を行う。   That is, the interval between the welding electrodes 22 and 22 is matched with the interval between the inner welding regions 24 of the slit 14 on the diameter of the current collector 12, and the welding head 20 is lowered to collect the welding electrodes 22 and 22. Welding is performed by applying a pressing voltage to the inner welding regions 24 and 24 of the body 12.

次に、外側溶接領域26に溶接を行う場合には、溶接ヘッド20を上昇させてから、溶接電極22、22の間隔を外側溶接領域26同士の間隔に合わせてから、同じようにして外側溶接領域26の溶接を行えばよい。外側溶接領域26を溶接する場合には、電流は内側溶接領域24を溶接するときに較べて弱くすることが好ましい。   Next, when welding is performed on the outer welding region 26, the welding head 20 is raised, the interval between the welding electrodes 22, 22 is adjusted to the interval between the outer welding regions 26, and then the outer welding is performed in the same manner. The region 26 may be welded. When welding the outer weld region 26, the current is preferably weaker than when the inner weld region 24 is welded.

そして、隣のスリット14を溶接するには、捲回電極10ごと集電体12を60°回して、同様に溶接することができる。   And in order to weld the adjacent slit 14, the collector 12 with the winding electrode 10 can be rotated 60 degrees, and it can weld similarly.

このように、内側溶接領域24と外側溶接領域26とに二回に分けて溶接することにより、一回あたり溶接電極22により溶接される範囲には、スリット14の折り返し部15と、捲回電極10とが交差するところ、すなわち溶接ポイントの数が少なくなるので、一度に溶接する場合に較べて低電流で溶接できるとともに、各溶接ポイントの電流値のバラツキを小さくすることができる。   As described above, by welding the inner welding region 24 and the outer welding region 26 in two portions, the folded portion 15 of the slit 14 and the wound electrode are included in the range welded by the welding electrode 22 at a time. Since the number of welding points is reduced, that is, the number of welding points is reduced, welding can be performed at a lower current than in the case of welding at a time, and the variation in current value at each welding point can be reduced.

さらに、内側溶接領域24を先に溶接する場合には、図3(a)に矢印で示すように、無効電流が流れる。その後、外側溶接領域26を溶接する場合にも、図3(b)に矢印で示すように、最初の内側溶接領域24で既に溶接された部分を通って同じような無効電流が流れることになる。つまり、外側溶接領域26の溶接では電流の流れる経路がスリット14で分断されず、内側溶接領域24を溶接するときと同じ程度に無効電流が流れるようになる。したがって、従来のようにスリット14を一度で溶接する場合と異なり、無効電流の大きな内側部分に合わせて溶接電流を大きくする必要がない。   Further, when the inner welding region 24 is welded first, a reactive current flows as indicated by an arrow in FIG. Thereafter, when the outer welding region 26 is welded, a similar reactive current flows through a portion already welded in the first inner welding region 24 as shown by an arrow in FIG. . That is, in the welding of the outer welding region 26, the current flowing path is not divided by the slit 14, and the reactive current flows to the same extent as when the inner welding region 24 is welded. Therefore, unlike the conventional case where the slit 14 is welded at one time, it is not necessary to increase the welding current in accordance with the inner portion where the reactive current is large.

したがって、一回当たりの溶接を低電流で行えるので、過剰な溶接電流が流れることなくスパッタの発生を抑制し、スパッタがセパレータに付着して穴があき不良品となることを防止できる。実際、一度に溶接する場合には、7割程度の確率でセパレータに穴があく不良品となったが、2度に分けて溶接することにより、ほとんどセパレータに穴があく不良品は発生しなかった。   Therefore, since welding can be performed at a low current per time, the generation of spatter can be suppressed without flowing an excessive welding current, and spatter can be prevented from adhering to the separator and causing a defective product. In fact, when welding at one time, it was a defective product with a hole in the separator with a probability of about 70%, but by welding twice, there was almost no defective product with a hole in the separator. It was.

第2実施形態
図4は、第2実施形態による捲回電極の溶接方法に用いる抵抗溶接機の溶接ヘッドを示す。
溶接電極30は、それぞれ正極、負極の一組の電極からなり、一対の溶接電極30は電極ホルダ21a、21bを介してヘッド本体20に取り付けられている。
Second Embodiment FIG. 4 shows a welding head of a resistance welder used for a wound electrode welding method according to a second embodiment.
The welding electrodes 30 are each composed of a pair of positive and negative electrodes, and the pair of welding electrodes 30 are attached to the head body 20 via electrode holders 21a and 21b.

この実施形態では、溶接電極30は、アルミナ分散銅を材料とする電極本体31aと、タングステン鋼を材料とするタングステン片31bとからなる。タングステン片31bは、電極本体31aにロウ付けにより接合されている。これにより、溶接電極の端面は、電極本体31aの端面とタングステン片31bの端面により2分されている。また、左右の溶接電極30は、タングステン片31b、31bが外側に向くようにヘッド本体20に取り付けられている。   In this embodiment, the welding electrode 30 includes an electrode body 31a made of alumina-dispersed copper and a tungsten piece 31b made of tungsten steel. The tungsten piece 31b is joined to the electrode body 31a by brazing. Thereby, the end surface of the welding electrode is divided into two by the end surface of the electrode body 31a and the end surface of the tungsten piece 31b. The left and right welding electrodes 30 are attached to the head main body 20 so that the tungsten pieces 31b and 31b face outward.

次に、以上のように構成される溶接ヘッドを用いて実施する溶接方法について説明する。
本実施形態では、図5に示すように、集電体12について、各スリット14に沿った溶接領域を分割せずに一度に溶接する。すなわち、左右の溶接電極30、30の間隔を、スリット14同士の間隔に合わせておき、溶接ヘッド20を降下させて溶接電極30、30を集電体12のスリットの両側縁部に押し付け電圧を印加し溶接を行う。
Next, the welding method implemented using the welding head comprised as mentioned above is demonstrated.
In the present embodiment, as shown in FIG. 5, the current collector 12 is welded at a time without dividing the welding region along each slit 14. That is, the interval between the left and right welding electrodes 30, 30 is matched to the interval between the slits 14, the welding head 20 is lowered, and the welding electrodes 30, 30 are pressed against both side edges of the slit of the current collector 12 to apply a voltage. Apply and weld.

このとき、タングステン片31bは、アルミナ分散銅を材質としている電極本体31aよりも電気抵抗が大きいので、タングステン片31bが接触している部分、すなわち外側の溶接領域には、電極本体31aが接触している内側の溶接領域に較べて流れる電流の大きさは小さくなる。他方、外側領域は無効電流が小さく、内側領域は無効電流が大きいので、全体としてみれば、実際に溶接に関与する電流値は、位置によるばらつきがなくなる。このため、あらかじめスパッタが発生しない程度の適当な電流が流れるように溶接電極30に電圧を印加すれば、スパッタを発生させずに集電体12を溶接することができる。   At this time, since the tungsten piece 31b has a larger electric resistance than the electrode body 31a made of alumina-dispersed copper, the electrode body 31a is in contact with the portion where the tungsten piece 31b is in contact, that is, the outer welding region. The magnitude of the flowing current is smaller than that of the inner welding area. On the other hand, since the reactive current is small in the outer region and the reactive current is large in the inner region, the current value actually involved in welding does not vary depending on the position as a whole. For this reason, if the voltage is applied to the welding electrode 30 in advance so that an appropriate current that does not generate spatter flows, the current collector 12 can be welded without generating spatter.

なお、電極本体31aに接合する金属小片には、タングステン鋼の他、ベリリウム鋼、モリブデン鋼などの材料も適用することができる。   In addition, materials, such as beryllium steel and molybdenum steel other than tungsten steel, can also be applied to the metal piece joined to the electrode body 31a.

第3実施形態
次に、本発明の第3の実施形態による捲回電極の溶接方法について図6、図7を参照しながら説明する。
図6は、第3実施形態による捲回電極の溶接方法に用いる抵抗溶接機の溶接ヘッドを示す。
Third Embodiment Next, a wound electrode welding method according to a third embodiment of the present invention will be described with reference to FIGS.
FIG. 6 shows a welding head of a resistance welder used for the wound electrode welding method according to the third embodiment.

溶接電極40は、それぞれ正極、負極の一組の電極からなり、一対の溶接電極40を電極ホルダ21a、21bを介してヘッド本体20に取り付けている点は、第2実施形態と同様であるが、この第3実施形態では、アルミナ分散銅を材質として、図7に示すように横断面を台形とすることによって、熱容量を増加させている。   The welding electrodes 40 are each composed of a pair of positive and negative electrodes, and the pair of welding electrodes 40 is attached to the head body 20 via the electrode holders 21a and 21b, similar to the second embodiment. In this third embodiment, the heat capacity is increased by using alumina-dispersed copper as the material and making the cross section trapezoidal as shown in FIG.

次に、以上のように構成される溶接ヘッドを用いて実施する溶接方法について説明する。
本実施形態では、左右の溶接電極40、40の間隔を、スリット14同士の間隔に合わせておき、溶接ヘッド20を降下させて溶接電極40、40を集電体12のスリット14の両側縁部に押し付け電圧を印加し溶接を行う。そして、電流が流れて集電体12が溶接される間、最低でも500(msec)好ましくは、それ以上の時間、溶接電極40、40を押さえ込んだままにしておく。
Next, the welding method implemented using the welding head comprised as mentioned above is demonstrated.
In the present embodiment, the interval between the left and right welding electrodes 40, 40 is matched to the interval between the slits 14, and the welding head 20 is lowered to place the welding electrodes 40, 40 on both side edges of the slit 14 of the current collector 12. Welding is performed by applying a pressing voltage to. While the current flows and the current collector 12 is welded, the welding electrodes 40 and 40 are kept pressed for at least 500 (msec), preferably more time.

この間、溶接電極40は、通常の溶接電極よりもは熱容量を大きくしているので、発生した熱の一部を吸収して、過熱によるスパッタの発生を抑制することができる。   During this time, since the welding electrode 40 has a larger heat capacity than a normal welding electrode, it can absorb a part of the generated heat and suppress the occurrence of spatter due to overheating.

本発明による二次電池捲回電極の溶接方法の第1実施形態に用いる溶接ヘッドの側面図。The side view of the welding head used for 1st Embodiment of the welding method of the secondary battery winding electrode by this invention. 本発明による二次電池捲回電極の溶接方法が適用される集電体の平面図。The top view of the electrical power collector with which the welding method of the secondary battery winding electrode by this invention is applied. 本発明による二次電池捲回電極の溶接方法の第1の実施形態における溶接順序の説明図。Explanatory drawing of the welding order in 1st Embodiment of the welding method of the secondary battery winding electrode by this invention. 本発明による二次電池捲回電極の溶接方法の第2実施形態に用いる溶接ヘッドの側面図。The side view of the welding head used for 2nd Embodiment of the welding method of the secondary battery winding electrode by this invention. 本発明の二次電池捲回電極の溶接方法の第2実施形態において、集電体上の電極位置を示す説明図。Explanatory drawing which shows the electrode position on a collector in 2nd Embodiment of the welding method of the secondary battery winding electrode of this invention. 本発明による二次電池捲回電極の溶接方法の第3実施形態に用いる溶接ヘッドの側面図。The side view of the welding head used for 3rd Embodiment of the welding method of the secondary battery winding electrode by this invention. 本発明の二次電池捲回電極の溶接方法の第3実施形態において、集電体上の電極位置を示す説明図。Explanatory drawing which shows the electrode position on a collector in 3rd Embodiment of the welding method of the secondary battery winding electrode of this invention. 二次電池の捲回電極を示す斜視図。The perspective view which shows the winding electrode of a secondary battery. 捲回電極の展開図。FIG. 捲回電極に溶接される集電体を示す斜視図。The perspective view which shows the electrical power collector welded to the winding electrode. 従来の捲回電極の溶接方法に用いられる電極と集電体を示す平面図。The top view which shows the electrode and collector which are used for the welding method of the conventional winding electrode.

符号の説明Explanation of symbols

2 正極板
4 負極板
6 セパレータ
10 捲回電極
12 集電体
14 スリット
15 曲折部
20 ヘッド本体
22 溶接電極
24 内側溶接領域
26 外側溶接領域
30 溶接電極
31a 電極本体
31b タングステン片
40 溶接電極
2 Positive electrode plate 4 Negative electrode plate 6 Separator 10 Winding electrode 12 Current collector 14 Slit 15 Bending portion 20 Head body 22 Welding electrode 24 Inner welding region 26 Outer welding region 30 Welding electrode 31a Electrode body 31b Tungsten piece 40 Welding electrode

Claims (7)

帯状の正極板と負極板とをセパレータを間に介在させて渦巻き状に捲いてなる二次電池用の捲回電極に、放射状に延びる複数のスリットを有する集電体を抵抗溶接により溶接する方法であって、
前記スリットに沿って溶接領域を略等分割し、
抵抗溶接機の溶接電極に、分割した各溶接領域に溶接範囲を限定する溶接端面を持つ溶接電極を用い、
スリット沿って前記溶接電極の位置を変えながら分割した溶接領域ごとに溶接することを特徴とする二次電池用捲回電極の溶接方法。
A method of welding a current collector having a plurality of radially extending slits to a wound electrode for a secondary battery in which a strip-like positive electrode plate and a negative electrode plate are spirally wound with a separator interposed therebetween by resistance welding Because
Divide the welding region approximately equally along the slit,
For the welding electrode of the resistance welder, use a welding electrode having a welding end face that limits the welding range to each divided welding region,
A welding method for a wound electrode for a secondary battery, wherein welding is performed for each welding region divided while changing the position of the welding electrode along the slit.
前記スリットに沿って略等分割した前記溶接領域のうち、最内側の溶接領域から始めて、順次外側の溶接領域に抵抗溶接を行うことを特徴とする請求項1に記載の二次電池用捲回電極の溶接方法。   2. The secondary battery winding according to claim 1, wherein resistance welding is sequentially performed on an outer welding region starting from an innermost welding region among the welding regions divided substantially equally along the slit. Electrode welding method. 帯状の正極板と負極板とをセパレータを間に介在させて渦巻き状に捲いてなる二次電池用の捲回電極に、放射状に延びる複数のスリットを有する集電体を抵抗溶接により溶接する方法であって、
異なる電気抵抗の金属を組み合わせてなる溶接電極を用い、
内側の溶接領域に電気抵抗の高い方の金属を、外側の溶接領域に電気抵抗の低い方の金属を押し付け、
前記両方の溶接領域を同時に抵抗溶接することを特徴とする二次電池用捲回電極の溶接方法。
A method of welding a current collector having a plurality of radially extending slits to a wound electrode for a secondary battery in which a strip-like positive electrode plate and a negative electrode plate are spirally wound with a separator interposed therebetween by resistance welding Because
Using welding electrodes made by combining metals with different electrical resistances,
Press the metal with the higher electrical resistance against the inner welding area and the metal with the lower electric resistance against the outer welding area,
A welding method for a wound electrode for a secondary battery, wherein both the welding regions are simultaneously resistance-welded.
帯状の正極板と負極板とをセパレータを間に介在させて渦巻き状に捲いてなる二次電池用の捲回電極に、放射状に延びる複数のスリットを有する集電体を抵抗溶接により溶接する方法であって、
抵抗溶接機の溶接電極に熱容量の十分に大きな溶接電極を用い、
前記スリットに沿って溶接電極を押し付け、電圧を印加した後少なくとも500(msec)の間、前記溶接電極を押さえ込むことを特徴とする二次電池用捲回電極の溶接方法。
A method of welding a current collector having a plurality of radially extending slits to a wound electrode for a secondary battery in which a strip-like positive electrode plate and a negative electrode plate are spirally wound with a separator interposed therebetween by resistance welding Because
Use a welding electrode with a sufficiently large heat capacity for the welding electrode of the resistance welder.
A welding method of a wound electrode for a secondary battery, wherein the welding electrode is pressed along the slit and pressed down for at least 500 (msec) after applying a voltage.
帯状の正極板と負極板とをセパレータを間に介在させて渦巻き状に捲いてなる二次電池用の捲回電極に、放射状に延びる複数のスリットを有する集電体を抵抗溶接により溶接するための抵抗溶接機の溶接ヘッドにおいて、
前記スリットに沿って略等分割した溶接領域に溶接範囲を限定する溶接端面を有する一対の溶接電極と、
前記一対の溶接電極を保持するとともに、その間隔を調整可能なヘッド本体を有することを特徴とする抵抗溶接機の溶接ヘッド。
In order to weld a current collector having a plurality of radially extending slits by resistance welding to a wound electrode for a secondary battery in which a strip-like positive electrode plate and a negative electrode plate are wound in a spiral with a separator interposed therebetween In the resistance welding machine welding head,
A pair of welding electrodes having a welding end face that limits a welding range to a welding region substantially equally divided along the slit;
A welding head for a resistance welding machine, wherein the welding head has a head main body capable of holding the pair of welding electrodes and adjusting an interval between the electrodes.
帯状の正極板と負極板とをセパレータを間に介在させて渦巻き状に捲いてなる二次電池用の捲回電極に、放射状に延びる複数のスリットを有する集電体を抵抗溶接により溶接するための抵抗溶接機の溶接ヘッドにおいて、
異なる電気抵抗の2種類の金属を組み合わせてなる溶接電極を有し、前記スリットに沿った内側の溶接領域と外側の溶接領域とで接触する電極の端面が異なる金属からなることを特徴とする抵抗溶接機の溶接ヘッド。
In order to weld a current collector having a plurality of radially extending slits by resistance welding to a wound electrode for a secondary battery in which a strip-like positive electrode plate and a negative electrode plate are wound in a spiral with a separator interposed therebetween In the resistance welding machine welding head,
A resistance having a welding electrode formed by combining two kinds of metals having different electric resistances, and an end face of the electrode contacting the inner welding area and the outer welding area along the slit is made of different metals Welding head of welding machine.
前記溶接電極は、アルミナ分散銅を材料とする電極本体に、タングステンを材料とする小片を接合してなることを特徴とする請求項6に記載の抵抗溶接機の溶接ヘッド。   The welding head of the resistance welding machine according to claim 6, wherein the welding electrode is formed by joining a small piece made of tungsten to an electrode body made of alumina-dispersed copper.
JP2003416460A 2003-12-15 2003-12-15 Method of welding wound electrode for secondary battery and welding head of resistance welding machine used for the welding method Expired - Fee Related JP4545427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416460A JP4545427B2 (en) 2003-12-15 2003-12-15 Method of welding wound electrode for secondary battery and welding head of resistance welding machine used for the welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416460A JP4545427B2 (en) 2003-12-15 2003-12-15 Method of welding wound electrode for secondary battery and welding head of resistance welding machine used for the welding method

Publications (2)

Publication Number Publication Date
JP2005174857A true JP2005174857A (en) 2005-06-30
JP4545427B2 JP4545427B2 (en) 2010-09-15

Family

ID=34735649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416460A Expired - Fee Related JP4545427B2 (en) 2003-12-15 2003-12-15 Method of welding wound electrode for secondary battery and welding head of resistance welding machine used for the welding method

Country Status (1)

Country Link
JP (1) JP4545427B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335232A (en) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
JP2008218135A (en) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd Welding equipment for battery
JP2013105691A (en) * 2011-11-16 2013-05-30 Toyota Industries Corp Cell
US9333587B2 (en) 2010-12-13 2016-05-10 Denso Corporation Resistance welding system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714569A (en) * 1993-06-24 1995-01-17 Yuasa Corp Current collecting terminal and manufacture of storage battery using same
JPH1131497A (en) * 1997-05-12 1999-02-02 Matsushita Electric Ind Co Ltd Cylindrical battery
JPH11167914A (en) * 1997-12-05 1999-06-22 Matsushita Electric Ind Co Ltd Cylindrical storage battery
JP2000260418A (en) * 1999-03-12 2000-09-22 Furukawa Battery Co Ltd:The Collector for cylindrical storage battery and cylindrical storage battery
JP2001060456A (en) * 1999-06-18 2001-03-06 Hitachi Maxell Ltd Metal-plate current collector and secondary battery using same
JP2001266838A (en) * 2000-03-17 2001-09-28 Yuasa Corp Alkaline battery
JP2002050339A (en) * 2000-08-02 2002-02-15 Toshiba Battery Co Ltd Welding electrode for battery
JP2002151047A (en) * 2000-11-14 2002-05-24 Yuasa Corp Alkaline storage battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714569A (en) * 1993-06-24 1995-01-17 Yuasa Corp Current collecting terminal and manufacture of storage battery using same
JPH1131497A (en) * 1997-05-12 1999-02-02 Matsushita Electric Ind Co Ltd Cylindrical battery
JPH11167914A (en) * 1997-12-05 1999-06-22 Matsushita Electric Ind Co Ltd Cylindrical storage battery
JP2000260418A (en) * 1999-03-12 2000-09-22 Furukawa Battery Co Ltd:The Collector for cylindrical storage battery and cylindrical storage battery
JP2001060456A (en) * 1999-06-18 2001-03-06 Hitachi Maxell Ltd Metal-plate current collector and secondary battery using same
JP2001266838A (en) * 2000-03-17 2001-09-28 Yuasa Corp Alkaline battery
JP2002050339A (en) * 2000-08-02 2002-02-15 Toshiba Battery Co Ltd Welding electrode for battery
JP2002151047A (en) * 2000-11-14 2002-05-24 Yuasa Corp Alkaline storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335232A (en) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
JP2008218135A (en) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd Welding equipment for battery
US9333587B2 (en) 2010-12-13 2016-05-10 Denso Corporation Resistance welding system
JP2013105691A (en) * 2011-11-16 2013-05-30 Toyota Industries Corp Cell

Also Published As

Publication number Publication date
JP4545427B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JPH11342477A (en) Spot welding method
WO2017110354A1 (en) Manufacturing method for shunt resistor
US4476372A (en) Spot welding electrode
JP7010720B2 (en) Resistance spot welding method
US6403913B1 (en) Electrode geometry design for optimized aluminum resistance spot welding
JP4545427B2 (en) Method of welding wound electrode for secondary battery and welding head of resistance welding machine used for the welding method
JP2004521752A (en) Ultra-small welding electrode
JP2008262898A (en) Electrochemical cell and method of manufacturing it
JP5491093B2 (en) Resistance welding equipment
JP6763796B2 (en) Manufacturing method of laminated iron core
JP3513082B2 (en) Apparatus and method for supporting vacuum circuit breaker subassembly during manufacturing
JP2008110397A (en) Projection welding method for article to be welded having high conductivity
JPS607058A (en) Method of welding terminal for current collection
JP2010284653A (en) Spot welding apparatus
JP3263559B2 (en) Method of welding lead plate to battery electrode
JP4228381B2 (en) Alkaline storage battery and method of manufacturing the same
JP6123904B2 (en) Resistance spot welding method and manufacturing method of welded structure
JP2000228336A (en) Lead wire welder for electronic component and welding method
JPH028417B2 (en)
JP5993110B1 (en) Method for manufacturing welded article and welded article
JPH11185724A (en) Manufacture of cylindrical battery
JP3083318B2 (en) Multipoint welding method and carrier obtained by the method
JP5873402B2 (en) Spot welding electrode tips
JPH08330195A (en) Manufacture of electronic part
JP2005039132A (en) Electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees