JP2005172713A - Flow velocity sensor, flow direction determination method, and flow velocity determination method - Google Patents

Flow velocity sensor, flow direction determination method, and flow velocity determination method Download PDF

Info

Publication number
JP2005172713A
JP2005172713A JP2003415720A JP2003415720A JP2005172713A JP 2005172713 A JP2005172713 A JP 2005172713A JP 2003415720 A JP2003415720 A JP 2003415720A JP 2003415720 A JP2003415720 A JP 2003415720A JP 2005172713 A JP2005172713 A JP 2005172713A
Authority
JP
Japan
Prior art keywords
flow velocity
temperature
determination method
fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003415720A
Other languages
Japanese (ja)
Inventor
Soichi Sato
聡一 佐藤
Keisuke Fukuchi
圭介 福地
Masatsugu Kojima
正嗣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003415720A priority Critical patent/JP2005172713A/en
Publication of JP2005172713A publication Critical patent/JP2005172713A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow velocity sensor capable of measuring a flow velocity in a river or the like accurately with a simple constitution without providing a complicated constitution such as a mechanical driving part or a strain generation part. <P>SOLUTION: In this flow velocity sensor, heating plates 2 are stuck on both surfaces of a heater 3 provided with a heater electrode 5, and an FBG 4 connected to a sensor cable 1 is fixed on the heating plate 2 with an epoxy resin, and the heater 3, the heating plate 2 and the FBG 4 are molded integrally with a waterproof material by a waterproof mold 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、FBG(ファイバブラッググレーティング)を用いて、河川等の流向や流速を検知する流速センサ、流向判定方法及び流速判定方法に関するものである。   The present invention relates to a flow velocity sensor, a flow direction determination method, and a flow velocity determination method that detect a flow direction and a flow velocity of a river or the like using an FBG (fiber Bragg grating).

台風や大雨の洪水時には、河川の水位が堤防を越えて河川氾濫が起きたり、河川敷や河床の洗掘により、堤防や橋等の破壊が起きたりする。そこで、河川氾濫や洗掘現象を予測するために、河川の流速を常時監視しておくことが重要となる。   When a typhoon or heavy rain floods, the river water level crosses the embankment, resulting in river inundation, or scouring the riverbed or riverbed, resulting in destruction of the embankment or bridge. Therefore, it is important to constantly monitor the river flow velocity in order to predict river flooding and scouring phenomena.

流速測定の手段に光ファイバを用いた従来技術の例として以下のものがある。
(1)流体の流れにより風杯式回転子を回転させ、その回転毎に光ファイバ式歪みセンサに歪みを与え、風杯式回転子の回転数から流速を求める方法(特許文献1参照)。
(2)受圧板が受けた水圧を光ファイバの歪みに変換して、この歪みを光ファイバ歪測定器により検出する方法(特許文献2、3参照)
特開2001−194378号公報 特開2002−202163号公報 特開2000−162226号公報
Examples of the prior art using an optical fiber as a means for measuring the flow velocity include the following.
(1) A method in which a cup-type rotor is rotated by a fluid flow, a strain is applied to an optical fiber type strain sensor for each rotation, and a flow velocity is obtained from the number of rotations of the cup-type rotor (see Patent Document 1).
(2) A method of converting the water pressure received by the pressure receiving plate into strain of the optical fiber and detecting the strain with an optical fiber strain measuring instrument (see Patent Documents 2 and 3).
JP 2001-194378 A JP 2002-202163 A JP 2000-162226 A

しかしながら、特許文献1記載の方法では風杯式回転子を回転させる機械的な駆動部があるため、水中の障害物が絡まった場合は正確な測定が行えなくなってしまうという課題があった。また、特許文献2記載の方法では受圧板及び歪発生部を設ける必要があるため、特許文献3記載の方法では張力付加機構を設ける必要があるため、共にセンサの構成が複雑になり、センサ本体が大型化してしまうという不都合があった。   However, in the method described in Patent Document 1, there is a problem that an accurate measurement cannot be performed when there is an obstacle in the water because there is a mechanical drive unit that rotates the cup-type rotor. Further, in the method described in Patent Document 2, it is necessary to provide a pressure receiving plate and a strain generating portion, and in the method described in Patent Document 3, it is necessary to provide a tension applying mechanism. However, there was a disadvantage that the size was increased.

従って、本発明の目的は、機械的な駆動部や歪発生部等の複雑な構成を設けず、簡易な構成で正確に河川等の流速を測定することが可能な流速センサ、及び該流速センサを用いた流向判定方法及び流速判定方法を提供することにある。   Accordingly, an object of the present invention is to provide a flow rate sensor capable of accurately measuring a flow rate of a river or the like with a simple configuration without providing a complicated configuration such as a mechanical drive unit or a strain generation unit, and the flow rate sensor. It is an object to provide a flow direction determination method and a flow velocity determination method using the above.

上記目的を達成するため、本発明の流速センサは、加熱手段の両面に測定板がそれぞれ設けられ、該測定板に光ファイバブラッググレーティングがそれぞれ固定されていることを特徴とする。   In order to achieve the above object, the flow rate sensor of the present invention is characterized in that measurement plates are provided on both sides of the heating means, and optical fiber Bragg gratings are respectively fixed to the measurement plates.

前記加熱手段、前記測定板、及び前記光ファイバブラッググレーティングを耐水性材料により一体にモールドすることが望ましい。   It is desirable that the heating means, the measurement plate, and the optical fiber Bragg grating are integrally molded with a water resistant material.

また、本発明の流向判定方法は、加熱手段の両面にそれぞれ設けられた測定板の温度を光ファイバブラッググレーティングにより測定し、両測定板の温度を比較して温度の低い方を上流側と流向判定することを特徴とする。   In addition, the flow direction determination method of the present invention measures the temperature of the measurement plates provided on both surfaces of the heating means with an optical fiber Bragg grating, compares the temperature of both measurement plates, and determines the lower temperature and the flow direction. It is characterized by determining.

前記加熱手段の電源を定期的に入り切りして加熱及び自然冷却を繰り返し、前記両測定板の加熱時の温度上昇勾配を比較して、温度勾配の低い方を上流側と流向判定することもできる。   The heating means can be turned on and off periodically to repeat heating and natural cooling, and the temperature rising gradients during heating of the two measuring plates can be compared to determine the flow direction of the lower temperature gradient as the upstream side. .

更に、本発明の流速判定方法は、加熱手段の両面にそれぞれ設けられた測定板の温度を光ファイバブラッググレーティングにより測定して両測定板の平衡温度差を算出し、予め求めておいた流体の衝突速度と流体の衝突面及び裏面の平衡温度差との関係に基づき流体の衝突速度を検出することを特徴とする。   Furthermore, in the flow rate determination method of the present invention, the temperature of the measurement plates provided on both sides of the heating means is measured with an optical fiber Bragg grating to calculate the equilibrium temperature difference between the two measurement plates, and the previously determined fluid The collision speed of the fluid is detected based on the relationship between the collision speed and the equilibrium temperature difference between the collision surface and the back surface of the fluid.

前記加熱手段の電源を定期的に入り切りして加熱及び自然冷却を繰り返し、前記両測定板の加熱時の温度上昇勾配を測定し、予め求めておいた流体の衝突速度と温度上昇勾配との関係に基づき流体の衝突速度を検出することもできる。   Periodically turning on and off the power supply of the heating means to repeat heating and natural cooling, measuring the temperature rise gradient during heating of the two measurement plates, and the relationship between the fluid collision speed and the temperature rise gradient determined in advance The collision speed of the fluid can also be detected based on the above.

本発明の流速センサは、加熱手段、測定板、光ファイバブラッググレーティングを設けた簡素な構成であるため、センサ自体を小型化することが可能である。また、従来の歪みセンサのように歪みを与えるための駆動部等を必要としないため、水中の障害物によって測定が行えなくなってしまうことが無い。   Since the flow rate sensor of the present invention has a simple configuration provided with a heating means, a measurement plate, and an optical fiber Bragg grating, the sensor itself can be miniaturized. In addition, since a drive unit or the like for applying a strain is not required unlike a conventional strain sensor, measurement cannot be performed by an obstacle in water.

また、本発明の流向判定方法は、光ファイバブラッググレーティングにより測定した両測定板の温度を比較して温度の低い方を上流側と流向判定しているため、簡易な方法で正確な流向判定が可能となる。   In addition, since the flow direction determination method of the present invention compares the temperature of both measurement plates measured by the optical fiber Bragg grating and determines the flow direction of the lower one as the upstream side, accurate flow direction determination can be performed by a simple method. It becomes possible.

更に、本発明の流速判定方法は、光ファイバブラッググレーティングにより測定した両測定板の平衡温度差を、予め求めておいた流体の衝突速度と流体の衝突面及び裏面の平衡温度差との関係と照らし合わせることにより流体の衝突速度を検出しているので、簡易な方法であるにもかかわらず正確な流速判定が可能となる。   Furthermore, the flow velocity determination method of the present invention is based on the relationship between the equilibrium velocity difference between the fluid collision velocity and the fluid collision surface and the back surface, which is obtained in advance as the equilibrium temperature difference between the two measurement plates measured by the optical fiber Bragg grating. Since the collision speed of the fluid is detected by collating, it is possible to accurately determine the flow velocity despite the simple method.

以下に、本発明の流速センサの実施の形態について図面を参照しながら説明する。   Embodiments of a flow rate sensor of the present invention will be described below with reference to the drawings.

図1(a)、(b)に、本発明の流速センサの一実施形態を示す。   1 (a) and 1 (b) show an embodiment of a flow rate sensor of the present invention.

この流速センサは、ヒーター電極5が設けられたヒーター3の両面に加熱板2が貼り付けられ、センサケーブル1と接続されたFBG4がその加熱板2上にエポキシ樹脂で固定され、更にヒーター3、加熱板2、FBG4が耐水モールド6により耐水性の材料で一体にモールドされて構成されている。   In this flow rate sensor, the heating plate 2 is attached to both sides of the heater 3 provided with the heater electrode 5, the FBG 4 connected to the sensor cable 1 is fixed on the heating plate 2 with an epoxy resin, and the heater 3, The heating plate 2 and FBG 4 are integrally molded with a water-resistant material by a water-resistant mold 6.

加熱板2は金属や高分子系プラスチック材料などの熱伝導率の高い材料で出来た薄板である。加熱板2上に固定されたFBG4は加熱板2上の温度を測定するのに使用される。FBG4の反射波長は温度によって変化し、その変化量は1℃につき10〜60pm程度であり、これはFBG4を貼り付ける加熱板2の材質によって変化する。そこで、流速センサ製作完了時にFBG4の反射波長と温度の関係を求めておく事で温度測定が可能となる。FBG4によって測定された両面の加熱板2上の温度から流向、流速を検出する方法を以下に記す。   The heating plate 2 is a thin plate made of a material having a high thermal conductivity such as a metal or a polymer plastic material. The FBG 4 fixed on the heating plate 2 is used to measure the temperature on the heating plate 2. The reflection wavelength of the FBG 4 changes depending on the temperature, and the amount of change is about 10 to 60 pm per 1 ° C., which changes depending on the material of the heating plate 2 to which the FBG 4 is attached. Therefore, by measuring the relationship between the reflection wavelength of the FBG 4 and the temperature when the production of the flow velocity sensor is completed, the temperature can be measured. A method for detecting the flow direction and the flow velocity from the temperature on the heating plate 2 on both sides measured by the FBG 4 will be described below.

このセンサを流体中に置いて、ヒーター3に通電加熱した場合、ヒーター3の発熱量と流体によって奪われる熱量が等しくなる温度で平衡する。流体の衝突する面では流体による冷却効果が高いため、裏面よりも平衡温度は低くなる。FBG4により加熱板2両面の温度は常時測定されているため、加熱板2両面の平衡温度を比較する事で流向判定ができ、温度の低い面が上流側となる。   When this sensor is placed in a fluid and the heater 3 is energized and heated, the amount of heat generated by the heater 3 and the amount of heat taken away by the fluid are equilibrated at a temperature. Since the cooling effect by the fluid is high on the surface where the fluid collides, the equilibrium temperature is lower than that on the back surface. Since the temperature of both surfaces of the heating plate 2 is constantly measured by the FBG 4, the flow direction can be determined by comparing the equilibrium temperatures of both surfaces of the heating plate 2, and the surface with the lower temperature is the upstream side.

流体が衝突する面の平衡温度は流体の温度および流体の衝突速度によって変化する。流体の衝突する速度によって、流体に奪われる熱量は変わるため、流体の衝突速度が影響する。裏面の平衡温度は周囲流体の温度の影響のみで決まるとすると、流体の衝突面と裏面の平衡温度の差が流速に関係する。そこで、ヒーター3に通電加熱した状態で、流体の衝突速度と流体の衝突面と裏面の平衡温度差の関係を求めておけば、その関係からから流速が測定できる。   The equilibrium temperature of the surface on which the fluid collides changes depending on the temperature of the fluid and the collision speed of the fluid. The amount of heat taken away by the fluid changes depending on the velocity of the collision of the fluid, so that the velocity of the collision of the fluid affects. If the back surface equilibrium temperature is determined only by the influence of the temperature of the surrounding fluid, the difference in the equilibrium temperature between the fluid impinging surface and the back surface is related to the flow velocity. Therefore, if the relationship between the collision speed of the fluid and the equilibrium temperature difference between the collision surface and the back surface of the fluid is obtained while the heater 3 is energized and heated, the flow velocity can be measured from the relationship.

このように、FBG4の貼り付けられた面での熱移動を利用して流向、流速を測定するため、FBG4の貼り付けられた両面の条件(耐水モールド6の厚さや加熱板2の厚さ、加熱板2の面積等)を等しくする必要がある。また、センサ表面に凹凸があると流体の流れが変化するため、センサ表面はなるべく平面にする必要がある。   Thus, in order to measure the flow direction and flow velocity using the heat transfer on the surface to which the FBG 4 is attached, the conditions on both sides to which the FBG 4 is attached (the thickness of the water-resistant mold 6 and the thickness of the heating plate 2, It is necessary to make the area of the heating plate 2 equal). Further, if the sensor surface is uneven, the fluid flow changes, so the sensor surface needs to be as flat as possible.

また、ヒーター3の電源を定期的に入り切りして、加熱及び自然冷却を操り返した場合も、流体の衝突する面では流体による冷却効果が高いため、裏面に比べて温度上昇勾配が小さくなる。これより流向を判定することが可能となる。また、流体の衝突速度と加熱時の温度上昇勾配の関係をあらかしめ求めておくことで流速を検出する事も出来る。   In addition, even when the power source of the heater 3 is periodically turned on and off and heating and natural cooling are repeated, the cooling effect by the fluid is high on the surface where the fluid collides, and therefore the temperature rise gradient is smaller than that on the back surface. This makes it possible to determine the flow direction. Also, the flow velocity can be detected by preliminarily determining the relationship between the fluid collision velocity and the temperature rise gradient during heating.

以上のように、本実施形態の流速センサはヒーター3、加熱板2、FBG4を設けた簡素な構成であるため、センサ自体を小型化することが可能である。また流体の衝突側と裏面側との平衡温度差から流速を求めているため、従来のような駆動部等を必要とせず、このため水中の障害物によって測定が行えなくなってしまうことが無い。   As described above, since the flow velocity sensor of the present embodiment has a simple configuration in which the heater 3, the heating plate 2, and the FBG 4 are provided, the sensor itself can be reduced in size. Further, since the flow velocity is obtained from the equilibrium temperature difference between the fluid collision side and the back surface side, a conventional drive unit or the like is not required, and therefore, measurement cannot be performed due to an obstacle in the water.

図2に本実施形態の流速センサの適用例を示す。
本実施形態の流速センサ10はFBGの反射波長の変化から流向、流速を測定するので、センサケーブル1の片端に光源(図示せず)、FBG反射波長測定器8および演算装置9を接続する。センサケーブル1を長くする事で光源、反射波長測定器8および演算装置9を遠隔地に置き、監視施設7により流向、流速を遠隔監視することが可能となる。また、流速センサ10を直列に繋ぐ事で、一本のセンサケーブル1上に流速センサ10が繋がるので、複数個のセンサを監視することが出来、場所による流速の相違等を監視することが可能になる。
FIG. 2 shows an application example of the flow rate sensor of the present embodiment.
Since the flow velocity sensor 10 of this embodiment measures the flow direction and flow velocity from the change in the reflection wavelength of the FBG, a light source (not shown), the FBG reflection wavelength measuring device 8 and the arithmetic device 9 are connected to one end of the sensor cable 1. By making the sensor cable 1 longer, the light source, the reflected wavelength measuring device 8 and the arithmetic unit 9 can be placed at a remote place, and the monitoring facility 7 can remotely monitor the flow direction and flow velocity. Moreover, since the flow rate sensor 10 is connected on one sensor cable 1 by connecting the flow rate sensor 10 in series, a plurality of sensors can be monitored, and the difference in flow rate depending on the location can be monitored. become.

本実施形態の流速センサ10を河川12に設置する場合、河川12の岸壁に固定するか、もしくは河川12に柱を立てて、その側面に固定する。本実施形態の流速センサ10は構成が簡素であるため、従来の流速センサに比べて小型化が可能である。そのため従来の流速センサは河川の底面に沈めるタイプが多かったが、本流速センサ10は任意の深さに容易にセンサを設置する事ができる。   When the flow velocity sensor 10 of the present embodiment is installed in the river 12, it is fixed to the quay of the river 12, or a pillar is set up on the river 12 and fixed to the side surface. Since the flow rate sensor 10 of the present embodiment has a simple configuration, the size can be reduced as compared with the conventional flow rate sensor. For this reason, many conventional flow velocity sensors are submerged in the bottom of the river, but the flow velocity sensor 10 can be easily installed at an arbitrary depth.

なお、本実施形態の流速センサ10は正確な流速の測定のためには流れに対して垂直に設置する必要があるが、小型で設置が容易なため、設置角度を変えて複数個設置することによりさらに正確な測定が可能になる。   In addition, although the flow velocity sensor 10 of this embodiment needs to be installed perpendicular to the flow for accurate measurement of the flow velocity, since it is small and easy to install, it is necessary to install a plurality of sensors at different installation angles. Enables more accurate measurement.

本実施形態の流速センサの一例であり、(a)は斜視図、(b)は(a)のb−b断面図である。It is an example of the flow velocity sensor of this embodiment, (a) is a perspective view, (b) is bb sectional drawing of (a). 本実施形態の流速センサの実際の適用例を示す概略図である。It is the schematic which shows the actual application example of the flow velocity sensor of this embodiment.

符号の説明Explanation of symbols

1 センサケーブル(光ファイバ)
2 加熱板(測定板)
3 ヒーター(加熱手段)
4 FBG
5 ヒーター電極
6 耐水モールド
7 監視施設
8 FBG反射波長測定器
9 演算装置
10 流速センサ
1 Sensor cable (optical fiber)
2 Heating plate (measuring plate)
3 Heater (heating means)
4 FBG
5 Heater electrode 6 Water resistant mold 7 Monitoring facility 8 FBG reflection wavelength measuring instrument 9 Arithmetic device 10 Flow rate sensor

Claims (6)

加熱手段の両面に測定板がそれぞれ設けられ、該測定板に光ファイバブラッググレーティングがそれぞれ固定されていることを特徴とする流速センサ。   A flow rate sensor characterized in that measuring plates are provided on both sides of the heating means, and optical fiber Bragg gratings are fixed to the measuring plates, respectively. 前記加熱手段、前記測定板、及び前記光ファイバブラッググレーティングが耐水性材料により一体にモールドされていることを特徴とする請求項1記載の流速センサ。   The flow rate sensor according to claim 1, wherein the heating means, the measurement plate, and the optical fiber Bragg grating are integrally molded with a water-resistant material. 加熱手段の両面にそれぞれ設けられた測定板の温度を光ファイバブラッググレーティングにより測定し、両測定板の温度を比較して温度の低い方を上流側と流向判定することを特徴とする流向判定方法。   A flow direction determination method characterized in that the temperature of the measurement plates provided on both sides of the heating means is measured by an optical fiber Bragg grating, and the temperature of both measurement plates is compared to determine the flow direction of the lower temperature from the upstream side. . 前記加熱手段の電源を定期的に入り切りして加熱及び自然冷却を繰り返し、前記両測定板の加熱時の温度上昇勾配を比較して、温度勾配の低い方を上流側と流向判定することを特徴とする請求項3記載の流向判定方法。   Periodically turning on and off the power supply of the heating means to repeat heating and natural cooling, comparing the temperature rise gradients during heating of the two measurement plates, and determining the flow direction of the lower temperature gradient as the upstream side The flow direction determination method according to claim 3. 加熱手段の両面にそれぞれ設けられた測定板の温度を光ファイバブラッググレーティングにより測定して両測定板の平衡温度差を算出し、予め求めておいた流体の衝突速度と流体の衝突面及び裏面の平衡温度差との関係に基づき流体の衝突速度を検出することを特徴とする流速判定方法。   The temperature of the measurement plates provided on both sides of the heating means is measured with an optical fiber Bragg grating to calculate the equilibrium temperature difference between the two measurement plates. A method for determining a flow velocity, comprising detecting a collision speed of a fluid based on a relationship with an equilibrium temperature difference. 前記加熱手段の電源を定期的に入り切りして加熱及び自然冷却を繰り返し、前記両測定板の加熱時の温度上昇勾配を測定し、予め求めておいた流体の衝突速度と温度上昇勾配との関係に基づき流体の衝突速度を検出することを特徴とする請求項5記載の流速判定方法。

Periodically turning on and off the power supply of the heating means to repeat heating and natural cooling, measuring the temperature rise gradient during heating of the two measurement plates, and the relationship between the fluid collision speed and the temperature rise gradient determined in advance 6. The flow velocity determination method according to claim 5, wherein the collision speed of the fluid is detected based on the above.

JP2003415720A 2003-12-12 2003-12-12 Flow velocity sensor, flow direction determination method, and flow velocity determination method Pending JP2005172713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003415720A JP2005172713A (en) 2003-12-12 2003-12-12 Flow velocity sensor, flow direction determination method, and flow velocity determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003415720A JP2005172713A (en) 2003-12-12 2003-12-12 Flow velocity sensor, flow direction determination method, and flow velocity determination method

Publications (1)

Publication Number Publication Date
JP2005172713A true JP2005172713A (en) 2005-06-30

Family

ID=34735125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415720A Pending JP2005172713A (en) 2003-12-12 2003-12-12 Flow velocity sensor, flow direction determination method, and flow velocity determination method

Country Status (1)

Country Link
JP (1) JP2005172713A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007104614A1 (en) * 2006-03-16 2007-09-20 Siemens Aktiengesellschaft Flowmeter for determining a flow direction
WO2010116004A1 (en) 2009-04-10 2010-10-14 Thales Device for characterising the nature of an aerodynamic flow along a wall and loop for controlling a profile of the wall
US8217333B2 (en) 2006-03-16 2012-07-10 Siemens Aktiengesellschsft Flowmeter having at least two optical waveguides and one controlled electrical heating element for determining a flow direction
CN110398610A (en) * 2019-08-29 2019-11-01 山东省科学院激光研究所 Current velocity testing method and optical fiber hot wire flow rate sensor probe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007104614A1 (en) * 2006-03-16 2007-09-20 Siemens Aktiengesellschaft Flowmeter for determining a flow direction
US7854164B2 (en) 2006-03-16 2010-12-21 Siemens Aktiengesellschaft Flowmeter for determining a flow direction
US8217333B2 (en) 2006-03-16 2012-07-10 Siemens Aktiengesellschsft Flowmeter having at least two optical waveguides and one controlled electrical heating element for determining a flow direction
WO2010116004A1 (en) 2009-04-10 2010-10-14 Thales Device for characterising the nature of an aerodynamic flow along a wall and loop for controlling a profile of the wall
FR2944356A1 (en) * 2009-04-10 2010-10-15 Thales Sa OPTICAL SENSOR FOR MEASURING THE SPEED OF A FLUID ALONG A WALL AND A SYSTEM COMPRISING MULTIPLE SENSORS
US8959993B2 (en) 2009-04-10 2015-02-24 Thales Device for determining an aerodynamic flow along a wall and controlling a profile of the wall
CN110398610A (en) * 2019-08-29 2019-11-01 山东省科学院激光研究所 Current velocity testing method and optical fiber hot wire flow rate sensor probe
CN110398610B (en) * 2019-08-29 2021-06-01 山东省科学院激光研究所 Flow velocity detection method and probe of optical fiber hot wire flow velocity sensor

Similar Documents

Publication Publication Date Title
US8746968B2 (en) Microsensor produced in microsystem technologies for the measurement and/or detection of fouling
JP3027007B2 (en) Turbine wheel type flow measurement transducer
JP5001461B2 (en) Measurement of mold meniscus by optical fiber
CA2643242C (en) Temperature sensor using an optical fiber
CN102575953B (en) System for determining exhaust gas volume
RU2009128199A (en) ASSEMBLY UNIT OF VORTEX POCKET FLOW METER CONTAINING A BRAGG FIBER GRID SENSOR AND METHOD FOR MEASURING A FLUID FLOW
KR20150064173A (en) Method for monitoring soil erosion around buried devices, instrumented device and system implementing the method
CN101311684B (en) Thermal mass flow meter and method for its operation
CN103907002A (en) Device for calibrating temperature, and methods for calibrating the temperature of and positioning fiber-optic temperature sensor
JP2005172713A (en) Flow velocity sensor, flow direction determination method, and flow velocity determination method
CN109856032A (en) Heat point source moving distributing seepage monitoring system and its monitoring method
US20110098944A1 (en) Thermal, flow measuring device
Manzoni et al. Bless: A fiber optic sedimeter
Fujiwara et al. All-optical fiber anemometer based on the pitot-static tube
EP2174094B1 (en) Hydraulic monitoring unit
JP2005003535A (en) Optical flow direction/speed sensor
CN112729399B (en) Liquid-gas pressure and liquid-gas vibration sensor and preparation method thereof
CN213353175U (en) Wind-powered electricity generation blade mould zone of heating, wind-powered electricity generation blade mould and mould profile monitoring system
JP2003294662A (en) Method for measuring degree of wettability of soil and optical fiber bragg grating wettability sensor
JP6257539B2 (en) Optical fiber water level measuring device and water level measuring method
Wong et al. Resin directional flow and degree of cure sensing using chirped optical fiber long period gratings
JP3899900B2 (en) Optical flow direction sensor
GB2586974A (en) System for producing strain in a fibre
JP4271417B2 (en) Vortex flow meter and manufacturing method thereof
JP2005172445A (en) Flow sensor