JP2005172634A - Method for measuring occupancy classified by altitude, and method for compensating flooded depth using the same - Google Patents

Method for measuring occupancy classified by altitude, and method for compensating flooded depth using the same Download PDF

Info

Publication number
JP2005172634A
JP2005172634A JP2003413806A JP2003413806A JP2005172634A JP 2005172634 A JP2005172634 A JP 2005172634A JP 2003413806 A JP2003413806 A JP 2003413806A JP 2003413806 A JP2003413806 A JP 2003413806A JP 2005172634 A JP2005172634 A JP 2005172634A
Authority
JP
Japan
Prior art keywords
feature
ground
occupancy
point cloud
cloud data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003413806A
Other languages
Japanese (ja)
Other versions
JP3854270B2 (en
Inventor
Takeshi Nakatani
剛 中谷
Koji Nomura
宏治 野村
Yoichi Numata
洋一 沼田
Shuhei Hatake
周平 畠
Shinichi Kaneda
真一 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Air Survey Co Ltd
Original Assignee
Asia Air Survey Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Air Survey Co Ltd filed Critical Asia Air Survey Co Ltd
Priority to JP2003413806A priority Critical patent/JP3854270B2/en
Publication of JP2005172634A publication Critical patent/JP2005172634A/en
Application granted granted Critical
Publication of JP3854270B2 publication Critical patent/JP3854270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring occupancy, classified by altitude, and to provide a method for compensating flooded depth using the same, in order to accurately understand behaviors of flooding, even in a dense urban area, such as a metropolitan area. <P>SOLUTION: In the method, the total number N of measurement points in a mesh is calculated from three-dimensional point group data obtained by three-dimensional measurements, and the point group data of the measurement points are separated into a ground section and a feature section through a filtering process. Flat planes, parallel to the ground, are set at every prescribed spacing along the vertical direction from the ground, and the point group data of the feature section are projected to respective flat planes located under the vertical position where the point group data exist, and each total number Mi of the point group data is calculated at each flat plane. Then, the rate of area occupancy of the feature section in each flat plane is calculated from the ratio of Mi to N at each flat plane, including the ground, a rate curve of feature occupancy is obtained from each rate of area occupancy, and a curve of flooding quantity versus flooded depth is compensated, by using the rate curve of feature occupancy. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、航空機搭載のレーザースキャナによって取得された標高ランダムデータから標高毎に地物占有率を求める標高別地物占有率計測方法及びこれを用いた浸水深補正方法に関する。   The present invention relates to an elevation-specific feature occupancy measurement method that obtains a feature occupancy for each elevation from elevation random data acquired by an airborne laser scanner, and a flood depth correction method using the same.

氾濫シミュレーションや氾濫解析を行う場合に地形情報が必要となるので、航空機搭載レーザースキャナの計測で得られる地表表面の標高点データを持つ3次元データを取得し、この3次元データから人工建造物・樹木・車等の地物データを除去して、地盤標高データを抽出し、この地盤標高データを用いている。   Since terrain information is required for inundation simulation and inundation analysis, 3D data with elevation surface data obtained from the laser scanner mounted on the aircraft is acquired. The ground elevation data is extracted by removing the feature data such as trees and cars, and this ground elevation data is used.

特開2002−269656号公報JP 2002-269656 A

しかし、上記従来の技術では、特に都市部のような密集市街地においては、建物の容積を考慮した浸水状況の把握ができず、正確な氾濫シミュレーションを行うことができない。
近年新しい水災害として対策が急がれる都市型水害では、都市部の建築物等による氾濫流の容積排除の影響を考慮した氾濫シミュレーションやハザードマップの作成がある。
しかし、これまでの氾濫解析では、標高別の地物占有率を求める手法がなかったので、建物等の氾濫水の挙動への影響は粗度係数として考慮されるにとどまっていた。
However, in the above-described conventional technique, in particular, in a dense urban area such as an urban area, it is impossible to grasp the inundation state in consideration of the volume of the building, and it is impossible to perform an accurate flood simulation.
In recent years, urban floods, which are urgently taken as a new water disaster, include inundation simulations and hazard maps that take into account the effects of volumetric exclusion of inundation flows caused by urban buildings.
However, in the previous inundation analysis, there was no method for determining the feature occupancy rate by altitude, so the influence on the behavior of inundation water such as buildings was only considered as a roughness coefficient.

本発明は、上述した課題を解決するために創案されたものであり、航空機搭載のレーザースキャナによって取得された建物等を含む地表表面の標高点データ(標高ランダムデータ)から標高別地物占有率を算出することにより、データの有効利用を図るとともに、都市部のような密集市街地においても正確に氾濫水の挙動を把握することができる標高別地物占有率計測方法及びこれを用いた浸水深補正方法を提供することを目的としている。   The present invention was devised to solve the above-described problems, and is based on altitude occupancy by altitude from altitude point data (elevation random data) on the surface of the ground surface including buildings acquired by an airborne laser scanner. By calculating the occupancy rate, it is possible to effectively use the data, and to accurately understand the behavior of flood water even in dense urban areas such as urban areas, and the inundation depth using this method The purpose is to provide a correction method.

上記目的を達成するために、請求項1記載の発明は、3次元計測により得られた3次元点群データから所定区画における地物部分の占有率を標高別に求める標高別地物占有率測定方法において、所定区画内の3次元点群データを地盤部分の点群データと地物部分の点群データとに分離する第1段階と、前記所定区画内の3次元点群データのデータ点数の総数を計測する第2段階と、前記地盤部分の高さを基準として前記地盤部分から所定の高さにおける2次元領域内に投影される地物部分の点群データのデータ点数を計測する第3段階と、前記第2段階で計測したデータ点数と前記第3段階で計測したデータ点数との割合から標高毎の地物の面積占有率を求める第4段階とを備えたことを特徴とする標高別地物占有率計測方法である。   In order to achieve the above object, the invention according to claim 1 is a feature occupancy measurement method according to elevation, which obtains the occupancy of the feature portion in a predetermined section from the three dimensional point cloud data obtained by three dimensional measurement. The first step of separating the three-dimensional point cloud data in the predetermined section into the point cloud data of the ground part and the point cloud data of the feature part, and the total number of data points of the three-dimensional point cloud data in the predetermined section And a third step of measuring the number of data points of the point cloud data of the feature portion projected from the ground portion into a two-dimensional region at a predetermined height on the basis of the height of the ground portion. And a fourth stage for determining the area occupancy ratio of each feature at each elevation from the ratio between the number of data points measured in the second stage and the number of data points measured in the third stage. This is a feature occupancy measurement method.

また、請求項2記載の発明は、3次元計測により得られた3次元点群データから所定区画における地物部分の占有率を標高別に求めて前記所定区画内の浸水深を補正する浸水深補正方法において、所定区画内の3次元点群データを地盤部分の点群データと地物部分の点群データとに分離する第1段階と、前記所定区画内の3次元点群データのデータ点数の総数を計測する第2段階と、前記地盤部分の高さを基準として前記地盤部分から所定の高さにおける2次元領域内に投影される地物部分の点群データのデータ点数を計測する第3段階と、前記第2段階で計測したデータ点数と前記第3段階で計測したデータ点数との割合から標高毎の地物の面積占有率を求める第4段階と、前記第4段階で求めた面積占有率と前記所定区画内に流入する浸水量とから前記所定区画内の浸水深を決定する第5段階とを備えたことを特徴とする浸水深補正方法である。   Further, the invention according to claim 2 is an inundation depth correction for correcting the inundation depth in the predetermined section by obtaining the occupancy ratio of the feature portion in the predetermined section from the three-dimensional point cloud data obtained by three-dimensional measurement for each altitude. In the method, a first step of separating the three-dimensional point cloud data in the predetermined section into the point group data of the ground part and the point cloud data of the feature part, and the number of data points of the three-dimensional point cloud data in the predetermined section A second step of measuring the total number, and a third step of measuring the number of data of point cloud data of the feature portion projected from the ground portion into a two-dimensional region at a predetermined height with reference to the height of the ground portion. A fourth stage for determining the area occupancy ratio of each feature at each altitude from the ratio of the stage, the number of data points measured in the second stage and the number of data points measured in the third stage, and the area obtained in the fourth stage Occupancy rate and immersion flowing into the predetermined compartment A flood depth correction method characterized by comprising a fifth step of determining the immersion depth in the predetermined compartment and a quantity.

本発明によれば、これまで取得が困難であった高さ方向における建物等の地物の占有率を得ることができる。また、近年増加傾向にある都市型水害では重要と考えられる、密集市街地等の氾濫シミュレーションでは、建物等の地物があっても、その地物による氾濫水の容積排除を考慮したシミュレーションを行うことができ、精度の良い防災情報を提供できる。   According to the present invention, it is possible to obtain the occupation ratio of a feature such as a building in the height direction, which has been difficult to obtain until now. In addition, in flood simulations of densely built-up areas, which are considered to be important for urban flood damage, which has been increasing in recent years, even if there are features such as buildings, a simulation should be performed that takes into account the volume of flood water due to those features. Can provide disaster prevention information with high accuracy.

以下、図面を参照して本発明の一実施形態を説明する。図1は本発明の計測方法を示す概略図である。
図1において、航空機1にはレーザースキャナが搭載されており、このレーザースキャナから発射されたレーザー光2は地上へ照射され、測定領域3における地盤や地盤上の地物(人工建造物・樹木・車等)から反射して返ってくるまでの時間を測定することにより、距離を測定する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a measuring method of the present invention.
In FIG. 1, an aircraft 1 is equipped with a laser scanner, and laser light 2 emitted from the laser scanner is irradiated to the ground, and the ground in the measurement region 3 and the features on the ground (artificial buildings, trees, Measure the distance by measuring the time it takes to reflect back from the car.

測定領域3は、正方メッシュ又は不定形メッシュ等によるメッシュ4に分割されている。メッシュ4の大きさは、1m〜50m程度の正方形状や一辺1m〜50m程度の長方形や不定形メッシュ等が用いられる。   The measurement region 3 is divided into meshes 4 such as a square mesh or an irregular mesh. As the size of the mesh 4, a square shape of about 1 m to 50 m, a rectangle of about 1 m to 50 m on one side, an irregular mesh, or the like is used.

レーザースキャナより照射されるレーザー光2は一定のパルスレートとスキャンレートを有するパルスレーザー光であり、測定領域3の全領域を等間隔にスキャンしていく。その結果、測定領域3の各メッシュ4には一定のサンプリングポイント(測定点)が構成される。これが、標高点データ(標高ランダムデータ)となる。   The laser beam 2 emitted from the laser scanner is a pulse laser beam having a constant pulse rate and a scan rate, and the entire measurement region 3 is scanned at equal intervals. As a result, a fixed sampling point (measurement point) is formed in each mesh 4 in the measurement region 3. This is elevation point data (elevation random data).

この測定点の分布状況(3次元点群データ)を示したのが、図2である。 図2に示すように、レーザー光2による測定点5は3次元状に分布しており、それらの測定点5を地盤6上(Z=0)に投影すると一定の間隔で並ぶようになる。ここで、Z軸は高さ方向を表す。   FIG. 2 shows the distribution state of the measurement points (three-dimensional point group data). As shown in FIG. 2, the measurement points 5 by the laser beam 2 are distributed three-dimensionally, and when these measurement points 5 are projected on the ground 6 (Z = 0), they are arranged at a constant interval. Here, the Z axis represents the height direction.

この図には、メッシュ4内で3次元状に分布している測定点5の総点数がNであって、メッシュ4の大きさ(面積)がΔx×Δy、中央部にΔzの高さを持つ直方体状の地物7が存在する例が示されている。地物7における測定点5は、図のようにメッシュ4の地盤6を基準とした地盤高から高さΔzの面上に存在し、その数はM個となっている。なお、メッシュ4の大きさを小さくして行く程、地盤6は図のようにほぼ平面とみなせることができ、地盤標高には当該メッシュの平均地盤標高を用いる場合が多い。   In this figure, the total number of measurement points 5 distributed three-dimensionally in the mesh 4 is N, the size (area) of the mesh 4 is Δx × Δy, and the height of Δz is in the center. An example in which a rectangular parallelepiped feature 7 is present is shown. As shown in the figure, the measurement points 5 on the feature 7 are present on the surface from the ground height with respect to the ground 6 of the mesh 4 to the height Δz, and the number thereof is M. As the size of the mesh 4 is reduced, the ground 6 can be regarded as a substantially flat surface as shown in the figure, and the average ground elevation of the mesh is often used as the ground elevation.

レーザースキャナ計測が均一に実施されると、測定点5は縦方向及び横方向で各々一定の間隔で存在することになるので、測定点5の総数Nは、計測されたメッシュ4の面積(Δx×Δy)と等価な関係にあり、また、地物7上の測定点5の総数Mは、計測された地物7の高さΔzにおける断面積と等価な関係にある。   When the laser scanner measurement is performed uniformly, the measurement points 5 exist at regular intervals in the vertical direction and the horizontal direction. Therefore, the total number N of the measurement points 5 is the area of the measured mesh 4 (Δx × Δy), and the total number M of the measurement points 5 on the feature 7 is equivalent to the cross-sectional area of the measured feature 7 at the height Δz.

したがって、高さΔz上の平面における地物7の面積占有率を求めようとすれば、メッシュ4内の測定点5の総数と、地物7上の測定点の総数とを知る必要がある。   Therefore, in order to obtain the area occupancy ratio of the feature 7 on the plane on the height Δz, it is necessary to know the total number of measurement points 5 in the mesh 4 and the total number of measurement points on the feature 7.

ところで、実際、地物7には高層ビルのような大きい構造物から一般住宅のような小さな構造物やその他人工建造物、樹木、車等の様々なものが含まれているので、これらを取り除き、測定点の3次元点群データを地盤部分と地物部分とに分離するために、フィルタリング処理が行われる。   By the way, the features 7 actually include various structures such as large structures such as high-rise buildings, small structures such as ordinary houses, other artificial structures, trees, cars, etc. In order to separate the three-dimensional point cloud data of the measurement points into the ground part and the feature part, a filtering process is performed.

このフィルタリング処理には、例えば、ラストパルスを用いる手法や統計的手法、FFT(高速フーリエ変換)を使用する方法等がある。ラストパルスを用いる手法では、ラストパルスは建物や樹木の隙間を通り抜けて地盤まで到達することが多いため、ラストパルスのみを使用して、地盤部分の3次元点群データの抽出を行う。   Examples of the filtering process include a method using a last pulse, a statistical method, a method using FFT (Fast Fourier Transform), and the like. In the method using the last pulse, the last pulse often passes through the gaps between the buildings and trees and reaches the ground. Therefore, only the last pulse is used to extract the three-dimensional point cloud data of the ground portion.

統計的手法では、地形を曲面で近似し、その曲面に応じて設定された閾値を越える点群データを取り除き、地盤部分の点群データの抽出を行う。また、FFTを使用する方法では、周波数解析を行って、目的の周波数成分を抽出することにより、対応する地盤部分の点群データが抽出される。図では、3次元点群データの総数がNであり、上記のフィルタリング処理が行われると、地物7のM個の点群データが除去されて、地盤6の(N−M)個の点群データが残る。   In the statistical method, the terrain is approximated by a curved surface, point cloud data exceeding a threshold set in accordance with the curved surface is removed, and point cloud data of the ground portion is extracted. In the method using FFT, the frequency analysis is performed to extract the target frequency component, thereby extracting the point group data of the corresponding ground portion. In the figure, the total number of three-dimensional point cloud data is N, and when the above filtering process is performed, M point cloud data of the feature 7 are removed and (N−M) points of the ground 6 are removed. Group data remains.

上述したフィルタリング処理のいずれかの手法を用いて地盤6上の点群データと地物7上の点群データとを分離した後、標高毎に地物7の面積占有率を求める。   After separating the point cloud data on the ground 6 and the point cloud data on the feature 7 using any of the above-described filtering processes, the area occupancy rate of the feature 7 is obtained for each altitude.

図2で示された高さΔzの地物7は直方体形状なので、この地物上の測定点5は高さΔz上の平面上に存在することになり、この平面上の測定点の個数はM個となっている。この地物上のM個の測定点と地盤上(Z=0)の測定点と合計した測定点の総数がNとなる。   Since the feature 7 having the height Δz shown in FIG. 2 has a rectangular parallelepiped shape, the measurement point 5 on the feature exists on the plane on the height Δz, and the number of measurement points on the plane is M. The total number of measurement points, which is the sum of the M measurement points on the feature and the measurement points on the ground (Z = 0), is N.

したがって、Δz上の平面における地物の面積占有率Sは、S=M/Nで表される。この考え方を図3に示すように、メッシュ4内の空間において地盤6(Z=0)から地物7の測定点が存在するZ=Δzの高さまでの中間平面上で同様に行う。地物が直方体状のものである限り、Δz1の平面上に投影される地物の測定点データは、M個となるので、Δz1の平面上での地物の面積占有率S1は、S1=M/Nとなる。同様に、Δz2の平面上における地物の面積占有率S2は、S2=M/Nとなる。   Therefore, the area occupation ratio S of the feature in the plane on Δz is expressed by S = M / N. As shown in FIG. 3, this concept is similarly performed on an intermediate plane from the ground 6 (Z = 0) to the height of Z = Δz where the measurement point of the feature 7 exists in the space in the mesh 4. As long as the feature has a rectangular parallelepiped shape, the measurement point data of the feature projected onto the plane of Δz1 is M, so the area occupation ratio S1 of the feature on the plane of Δz1 is S1 = M / N. Similarly, the area occupation rate S2 of the feature on the plane of Δz2 is S2 = M / N.

以上のようにして、Δz1、Δz2における平面だけでなく、Z=0からΔzまでの間に、細かい間隔で地盤に平行な平面を何枚も仮定して、その平面上における地物の面積占有率を求めることができる。   As described above, not only the planes at Δz1 and Δz2, but also the number of planes parallel to the ground at fine intervals between Z = 0 and Δz, and the area occupation of the features on the planes The rate can be determined.

図4の上側の図は、縦軸に地物占有率(地物の面積占有率)S、横軸に地盤からの高さZをとり、地盤(Z=0)からの高さにしたがって、どのように地物の面積占有率が変化していくのかを地物占有率曲線8で表したものである。   The upper diagram of FIG. 4 shows the feature occupancy rate (area occupancy rate) S on the vertical axis, the height Z from the ground on the horizontal axis, and according to the height from the ground (Z = 0), The feature occupancy rate curve 8 shows how the area occupancy rate of the feature changes.

この例では、H1、H2、H3の各点で地物占有率が変化し、0からH1、H1からH2、H2からH3の各区間における地物占有率は、同一となっている。地盤上(Z=0)では地物占有率が75%の状態であるが、H1において地物占有率が50%に変化し、H2では地物占有率が25%に、H3では地物占有率が0%に変化していく様子が示されている。   In this example, the feature occupancy changes at each of the points H1, H2, and H3, and the feature occupancy in each section from 0 to H1, H1 to H2, and H2 to H3 is the same. The feature occupancy rate is 75% on the ground (Z = 0), but the feature occupancy rate changes to 50% in H1, the feature occupancy rate is 25% in H2, and the feature occupancy in H3. It shows how the rate changes to 0%.

一方、図4の下側の図は、メッシュ4に氾濫水のような水が所定量V流れ込んだときに、そのメッシュ4内での浸水の深さHがどのように変化するかを示すもので、曲線Kは、地盤上に地物が存在しない場合の浸水量Vと浸水深Hとの関係を示す。地盤からの高さH1、H2、H3は、浸水深の深さh1、h2、h3に対応しており、対応する記号は各々同じ高さを示している。この曲線Kは、複数のメッシュ4毎にあらかじめ計算やシミュレーションによって求められており、この例ではわかりやすくするために曲線Kは直線としている。   On the other hand, the lower diagram in FIG. 4 shows how the depth H of the inundation in the mesh 4 changes when a predetermined amount of water such as flood water flows into the mesh 4. The curve K shows the relationship between the inundation amount V and the inundation depth H when no feature is present on the ground. The heights H1, H2, and H3 from the ground correspond to the depths h1, h2, and h3 of the inundation depth, and the corresponding symbols indicate the same height. The curve K is obtained in advance for each of the plurality of meshes 4 by calculation or simulation. In this example, the curve K is a straight line for easy understanding.

ところで、メッシュ4に地物が存在する場合には、地物による容積排除が発生するので、地物が存在しない場合よりも少ない浸水量で一定の浸水深まで到達することになる。そこで、地物による容積排除効の影響を考慮するために、図4の上側の図で示された地物占有率曲線から直線Kを補正したものが曲線Cである。   By the way, when a feature is present in the mesh 4, volume removal due to the feature occurs, and therefore, a constant inundation depth is reached with a smaller amount of water immersion than when no feature is present. Therefore, in order to consider the influence of the volume exclusion effect by the feature, a curve C is obtained by correcting the straight line K from the feature occupancy curve shown in the upper diagram of FIG.

例えば、浸水量V1の水がメッシュ内に流れ込んだ場合、地物の影響がない場合の浸水深はh1となるが、地物の影響がある場合には浸水深がt1となることを示している。メッシュ4の底面積をB、浸水量をV1とすると、地物の影響がない場合の浸水深t1は、t1=V1/Bとなるが、地物の影響があって、地物占有率が75%の場合の底面積は0.25Bとなるので、この場合の浸水深h1はh1=V1/0.25Bとなって、h1=4×t1となり、地物占有率が75%の場合には、地物の影響がない場合と比較して同じ浸水量で4倍の浸水深に達することがわかる。同様に、h1の浸水深に達するのに要する浸水量について、地物の影響がない場合の浸水量V2は、V2=h1×Bであり、地物占有率75%の場合の浸水量V1は、V1=h1×0.25Bとなるので、浸水量V2はV1の4倍となる。すなわち、直線Kの傾きを1とした場合、補正曲線Cの傾きは、0〜h1区間では0.25、h1〜h2の区間では0.5、h2〜h3の区間では0.75となる。   For example, when water of the inundation amount V1 flows into the mesh, the inundation depth is h1 when there is no influence of the feature, but the inundation depth is t1 when there is an influence of the feature. Yes. Assuming that the bottom area of the mesh 4 is B and the amount of inundation is V1, the inundation depth t1 when there is no influence of the feature is t1 = V1 / B. Since the bottom area in the case of 75% is 0.25B, the inundation depth h1 in this case is h1 = V1 / 0.25B, h1 = 4 × t1, and the feature occupancy is 75%. It can be seen that the inundation depth reaches 4 times with the same inundation amount compared with the case where there is no influence of the feature. Similarly, for the amount of inundation required to reach the inundation depth of h1, the inundation amount V2 when there is no influence of the feature is V2 = h1 × B, and the inundation amount V1 when the feature occupation ratio is 75% is V1 = h1 × 0.25B, so that the amount of water V2 is four times V1. That is, when the slope of the straight line K is 1, the slope of the correction curve C is 0.25 in the 0 to h1 section, 0.5 in the section h1 to h2, and 0.75 in the section h2 to h3.

このようにして、地物占有率曲線8の変化点(H1、H2、H3)に対する浸水深(h1、h2、h3)を求めることで、地物による影響を補正した曲線Cを描くことができる。   Thus, the curve C which correct | amended the influence by a feature can be drawn by calculating | requiring the inundation depth (h1, h2, h3) with respect to the change point (H1, H2, H3) of the feature occupancy curve 8. .

図5は、図4の上側の図に示すように地物占有率曲線8が階段状のグラフとはならない例を示すものであり、地盤からの高さをいくつか選び(H1、H2、H3、・・・Hn)、その各高さにおける平面での地物の面積占有率を求め、それらの点をプロットし、近似曲線を当てはめて地物占有率曲線8を描いたものである。   FIG. 5 shows an example in which the feature occupancy rate curve 8 does not become a stepped graph as shown in the upper diagram of FIG. 4, and several heights from the ground are selected (H1, H2, H3). ,..., Hn), the area occupancy rate of the feature on the plane at each height is obtained, the points are plotted, and the feature occupancy curve 8 is drawn by fitting an approximate curve.

図4と同様に地物占有率曲線8におけるH1、H2、H3、・・・Hnの各点に対する浸水深を求めて近似曲線を当てはめれば、地物が存在しない場合の浸水量−浸水深曲線Kを地物による容積排除効を考慮して補正した曲線Cが得られる。   Similar to FIG. 4, if the inundation depth for each of the points H 1, H 2, H 3,... Hn in the feature occupancy curve 8 is obtained and an approximate curve is applied, the amount of inundation in the absence of the feature—the inundation depth A curve C obtained by correcting the curve K in consideration of the volume exclusion effect by the feature is obtained.

以上の一連の動作をフローチャートによって示したのが図6となる。
まず、コンピュータシステムに、航空機1に搭載されたレーザースキャナのレーザー光2により測定された地表表面の測定点の三次元座標を読み込み、測定領域をメッシュに分割する(ST1)。次に、メッシュ内の測定点の総数Nを計算し(ST2)、測定点の点群データを前述したフィルタリング処理により地盤部分と地物部分に分離する(ST3)。
FIG. 6 shows the above series of operations in a flowchart.
First, the three-dimensional coordinates of the measurement points on the ground surface measured by the laser beam 2 of the laser scanner mounted on the aircraft 1 are read into the computer system, and the measurement area is divided into meshes (ST1). Next, the total number N of measurement points in the mesh is calculated (ST2), and the point cloud data of the measurement points is separated into the ground portion and the feature portion by the filtering process described above (ST3).

図3のように、地盤から高さ方向に対して所定の間隔毎に地盤と平行な平面を設定し(ST4)、ステップST3で分離した地物部分の点群データを当該点群データが存在する高さよりも下の方に位置する各平面(地盤を含む)に投影し、各平面毎にその点群データの総数Mi(i=1,2,3,・・・n:nは設定された平面の数でこの数には地盤面も含まれている)を計算する(ST5)。   As shown in FIG. 3, a plane parallel to the ground is set at predetermined intervals from the ground in the height direction (ST4), and the point cloud data of the feature portion separated in step ST3 is present. Projected onto each plane (including the ground) located below the height to be performed, and the total number Mi (i = 1, 2, 3,... N: n) of the point cloud data is set for each plane. (This number includes the ground surface) (ST5).

地盤を含む各平面毎にMiとNとの比から、各平面における地物部分の面積占有率を算出する(ST6)。ステップST6で求めた地盤及び地盤からの所定高さにおける地物の面積占有率を図4や図5のようにプロットして、地物占有率曲線を求める(ST7)。この地物占有率曲線を用いて、図4や図5に示したように浸水量−浸水深曲線を補正する(ST8)。   From the ratio of Mi and N for each plane including the ground, the area occupation ratio of the feature portion in each plane is calculated (ST6). The feature occupancy rate curve is obtained by plotting the ground occupancy rate in step ST6 and the area occupancy rate of the feature at a predetermined height from the ground as shown in FIGS. 4 and 5 (ST7). Using this feature occupancy curve, the inundation amount-inundation depth curve is corrected as shown in FIGS. 4 and 5 (ST8).

次に、測定領域3を分割しているメッシュのすべてについてステップST2〜ST8までの処理(浸水量−浸水深曲線の補正処理)が行われたかどうかを判断し(ST9)、すべてのメッシュについてステップST2〜ST8の処理が終了している場合(ST9YES)には動作を終了する。   Next, it is determined whether or not the processing from step ST2 to ST8 (the correction amount of the inundation amount-infiltration depth curve) has been performed for all the meshes dividing the measurement region 3 (ST9), and the steps are performed for all the meshes. When the processes of ST2 to ST8 are finished (ST9 YES), the operation is finished.

一方、すべてのメッシュについてステップST2〜ST8の処理が終了していない場合(ST9 NO)には、ステップST2に戻り、ステップST2〜ST8までの処理を続行する。   On the other hand, when the processes of steps ST2 to ST8 have not been completed for all meshes (ST9 NO), the process returns to step ST2 and the processes of steps ST2 to ST8 are continued.

すべてのメッシュについて浸水量−浸水深曲線の補正処理が終了した後、各メッシュについて求めた浸水量−浸水深補正曲線を用いて氾濫シミュレーションを行えば、精度の良い防災情報を提供できる。   After completion of the correction process of the inundation amount-infiltration depth curve for all the meshes, if a flood simulation is performed using the infiltration amount-infiltration depth correction curve obtained for each mesh, disaster prevention information with high accuracy can be provided.

本発明におけるレーザー光による測定方法を示す図である。It is a figure which shows the measuring method by the laser beam in this invention. 測定領域のメッシュ内に地物が存在する場合の測定点の分布状況を示す図である。It is a figure which shows the distribution condition of a measurement point when a feature exists in the mesh of a measurement area | region. 地盤から所定間隔で高さ方向に平面を設けた状態を示す図である。It is a figure which shows the state which provided the plane in the height direction at predetermined intervals from the ground. 地物占有率曲線とこれに対応する浸水量−浸水深曲線を示す図である。It is a figure which shows the feature occupancy rate curve and the water immersion amount-water immersion depth curve corresponding to this. 地物占有率曲線とこれに対応する浸水量−浸水深曲線を示す図である。It is a figure which shows the feature occupancy rate curve and the water immersion amount-water immersion depth curve corresponding to this. 本発明の一連の動作を示すフローチャート図である。It is a flowchart figure which shows a series of operation | movement of this invention.

符号の説明Explanation of symbols

1 航空機
2 レーザー光
3 測定領域
4 メッシュ
5 測定点
6 地盤
7 地物
8 地物占有率曲線
1 Aircraft 2 Laser Light 3 Measurement Area 4 Mesh 5 Measurement Point 6 Ground 7 Feature 8 Feature Occupancy Curve

Claims (2)

3次元計測により得られた3次元点群データから所定区画における地物部分の占有率を標高別に求める標高別地物占有率計測方法において、
所定区画内の3次元点群データを地盤部分の点群データと地物部分の点群データとに分離する第1段階と、
前記所定区画内の3次元点群データのデータ点数の総数を計測する第2段階と、
前記地盤部分の高さを基準として前記地盤部分から所定の高さにおける2次元領域内に投影される地物部分の点群データのデータ点数を計測する第3段階と、
前記第2段階で計測したデータ点数と前記第3段階で計測したデータ点数との割合から標高毎の地物の面積占有率を求める第4段階とを備えたことを特徴とする標高別地物占有率計測方法。
In the feature occupancy measurement method according to elevation, which determines the occupancy rate of the feature part in a predetermined section from the three-dimensional point cloud data obtained by three-dimensional measurement, according to elevation,
Separating the three-dimensional point cloud data in the predetermined section into point cloud data of the ground portion and point cloud data of the feature portion;
A second step of measuring the total number of data points of the three-dimensional point cloud data in the predetermined section;
A third step of measuring the number of data points of point cloud data of a feature portion projected into a two-dimensional region at a predetermined height from the ground portion with reference to the height of the ground portion;
A feature according to elevation characterized by comprising a fourth step of determining the area occupancy of the feature for each elevation from the ratio of the number of data points measured in the second step and the number of data points measured in the third step. Occupancy measurement method.
3次元計測により得られた3次元点群データから所定区画における地盤部分の占有率を標高別に求めて前記所定区画内の浸水深を補正する浸水深補正方法において、
所定区画内の3次元点群データを地盤部分の点群データと地物部分の点群データとに分離する第1段階と、
前記所定区画内の3次元点群データのデータ点数の総数を計測する第2段階と、
前記地盤部分の高さを基準として前記地盤部分から所定の高さにおける2次元領域内に投影される地物部分の点群データのデータ点数を計測する第3段階と、
前記第2段階で計測したデータ点数と前記第3段階で計測したデータ点数との割合から標高毎の地物の面積占有率を求める第4段階と、
前記第4段階で求めた面積占有率と前記所定区画内に流入する浸水量とから前記所定区画内の浸水深を決定する第5段階とを備えたことを特徴とする浸水深補正方法。
In the inundation depth correction method for correcting the inundation depth in the predetermined section by obtaining the occupancy rate of the ground part in the predetermined section from the three-dimensional point cloud data obtained by three-dimensional measurement according to the altitude,
Separating the three-dimensional point cloud data in the predetermined section into point cloud data of the ground portion and point cloud data of the feature portion;
A second step of measuring the total number of data points of the three-dimensional point cloud data in the predetermined section;
A third step of measuring the number of data points of point cloud data of a feature portion projected into a two-dimensional region at a predetermined height from the ground portion with reference to the height of the ground portion;
A fourth stage for determining the area occupancy rate of each feature from the ratio of the number of data points measured in the second stage and the number of data points measured in the third stage;
An inundation depth correction method comprising: a fifth step of determining an inundation depth in the predetermined section from the area occupancy obtained in the fourth stage and the amount of inundation flowing into the predetermined section.
JP2003413806A 2003-12-11 2003-12-11 Inundation depth correction method Expired - Lifetime JP3854270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413806A JP3854270B2 (en) 2003-12-11 2003-12-11 Inundation depth correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413806A JP3854270B2 (en) 2003-12-11 2003-12-11 Inundation depth correction method

Publications (2)

Publication Number Publication Date
JP2005172634A true JP2005172634A (en) 2005-06-30
JP3854270B2 JP3854270B2 (en) 2006-12-06

Family

ID=34733831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413806A Expired - Lifetime JP3854270B2 (en) 2003-12-11 2003-12-11 Inundation depth correction method

Country Status (1)

Country Link
JP (1) JP3854270B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084243A (en) * 2006-09-29 2008-04-10 Hitachi Engineering & Services Co Ltd Flood simulation device and program
CN107101670A (en) * 2017-06-12 2017-08-29 山东大学 A kind of method of discrimination and device of the lower vehicle safety of flood effect
CN112951061A (en) * 2021-03-17 2021-06-11 西安大峡谷视觉科技有限公司 Sand table light control display method, sand table model and electronic equipment
JP2021110689A (en) * 2020-01-15 2021-08-02 株式会社パスコ Ground covered condition determination device and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323640A (en) * 2002-04-26 2003-11-14 Asia Air Survey Co Ltd Method, system and program for preparing highly precise city model using laser scanner data and aerial photographic image
JP2005128838A (en) * 2003-10-24 2005-05-19 Foundation Of River & Basin Integrated Communications Japan Simplified system for analyzing flood

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323640A (en) * 2002-04-26 2003-11-14 Asia Air Survey Co Ltd Method, system and program for preparing highly precise city model using laser scanner data and aerial photographic image
JP2005128838A (en) * 2003-10-24 2005-05-19 Foundation Of River & Basin Integrated Communications Japan Simplified system for analyzing flood

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084243A (en) * 2006-09-29 2008-04-10 Hitachi Engineering & Services Co Ltd Flood simulation device and program
CN107101670A (en) * 2017-06-12 2017-08-29 山东大学 A kind of method of discrimination and device of the lower vehicle safety of flood effect
CN107101670B (en) * 2017-06-12 2020-03-31 山东大学 Method and device for judging vehicle safety under action of flood disasters
JP2021110689A (en) * 2020-01-15 2021-08-02 株式会社パスコ Ground covered condition determination device and program
JP6998410B2 (en) 2020-01-15 2022-02-04 株式会社パスコ Ground cover condition determination device and program
CN112951061A (en) * 2021-03-17 2021-06-11 西安大峡谷视觉科技有限公司 Sand table light control display method, sand table model and electronic equipment
CN112951061B (en) * 2021-03-17 2023-03-24 西安大峡谷视觉科技有限公司 Sand table model light control display method, sand table model and electronic equipment

Also Published As

Publication number Publication date
JP3854270B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
CN109522804B (en) Road edge identification method and system
JP6696083B2 (en) Area displacement calculation system, area displacement calculation method, and area displacement calculation program
KR100921424B1 (en) Method of rainfall estimation using doppler weather radar
KR101547940B1 (en) An error correction system for data of terrestrial LiDAR on the same plane and the method thereof
CN107644452A (en) Airborne LiDAR point cloud roof dough sheet dividing method and system
Shaw et al. Comparison of UAV Lidar and imagery for beach monitoring
CN109870459A (en) The track plates crack detection method of non-fragment orbit
CN106157219B (en) Road center line extraction method and device based on vehicle-mounted scanning system
Sailer et al. Digital elevation models derived from airborne laser scanning point clouds: appropriate spatial resolutions for multi‐temporal characterization and quantification of geomorphological processes
CN103017655B (en) Method and system for extracting floor area of multi-floor building
Pfeifer et al. Influences of vegetation on laser altimetry–analysis and correction approaches
CN104156988A (en) Urban building contour regularization method based on iteration minimum bounding rectangle
DE112014007193T5 (en) State estimator
CN106022694B (en) A kind of system of scattered groceries field stacker-reclaimer localization method and realization the method based on Point Cloud Processing technology
CN108074232B (en) Voxel segmentation-based airborne LIDAR building detection method
KR101421128B1 (en) Extraction method of building regions using segmented 3d raw datd based on laser radar
JP5451457B2 (en) 3D model generation apparatus and computer program
CN109242786B (en) Automatic morphological filtering method suitable for urban area
JP3854270B2 (en) Inundation depth correction method
KR101074277B1 (en) Boundary extraction apparatus and method of structure
KR101078238B1 (en) Method for extracting 3-d man-made levee line in stream area using point group of light detection and ranging
CN111080536A (en) Self-adaptive filtering method for airborne laser radar point cloud
JP2007170821A (en) Three-dimensional displacement measurement method
JP5429493B2 (en) Investment plan evaluation method for rainfall observation facilities
KR101255022B1 (en) Detecting method of building crack using point group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Ref document number: 3854270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250