JP2005171799A - Axial flow fluid machinery - Google Patents

Axial flow fluid machinery Download PDF

Info

Publication number
JP2005171799A
JP2005171799A JP2003410132A JP2003410132A JP2005171799A JP 2005171799 A JP2005171799 A JP 2005171799A JP 2003410132 A JP2003410132 A JP 2003410132A JP 2003410132 A JP2003410132 A JP 2003410132A JP 2005171799 A JP2005171799 A JP 2005171799A
Authority
JP
Japan
Prior art keywords
peripheral surface
outer member
inner member
axial flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003410132A
Other languages
Japanese (ja)
Inventor
Tomohisa Hirakawa
智久 平川
Hideki Kanebako
秀樹 金箱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP2003410132A priority Critical patent/JP2005171799A/en
Publication of JP2005171799A publication Critical patent/JP2005171799A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axial flow fluid machinery, for preventing contact of an outer member with an inner member in high speed rotation, while decreasing a flow rate of back-flow of gas by reducing clearance between the outer member and inner member. <P>SOLUTION: The axial flow fluid machinery comprises: the cylindrical outer member 2; the inner member 3 having an outer circumferential face 3a opposed to an inner circumferential side 2a of the outer member 2 through the clearance d; a screw part 4 at least one of the inner circumferential side and an outer circumferential side of the outer member 2. In the fluid machinery, fluid is sucked or discharged by rotating at least one of the outer member 2 and inner member 3. A fluid bearing part 5 is disposed between the inner circumferential face 2a of the outer member 2 and an outer circumferential member 3a of the inner member 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、筒状の外側部材とその内部に配置された内側部材とこれらの間に形成されたねじ部とを備えるねじ溝式の軸流型流体機械に関する。   The present invention relates to a thread groove type axial flow type fluid machine including a cylindrical outer member, an inner member disposed therein, and a screw portion formed therebetween.

流体を軸方向に移送する軸流型流体機械として、従来から、筒形状の外側部材と、外側部材の内周面に間隙を介して対向配置された外周面を有する内側部材と、外側部材の内周側及び内側部材の外周側の少なくともいずれか一方に形成されたねじ部とを備え、外側部材及び内側部材の少なくともいずれか一方を回転させることで流体の吸入または排出を行う軸流型流体機械が用いられている。   Conventionally, as an axial flow type fluid machine for transferring fluid in the axial direction, a cylindrical outer member, an inner member having an outer peripheral surface opposed to an inner peripheral surface of the outer member via a gap, and an outer member Axial flow type fluid that includes a thread portion formed on at least one of the inner peripheral side and the outer peripheral side of the inner member and sucks or discharges the fluid by rotating at least one of the outer member and the inner member A machine is used.

このような軸流型流体機械としては、例えば図7に示すように固定子である外側部材101と、この外側部材101の内周側に配置された回転子である内側部材102と、ねじ溝部103aとねじ山部103bとから構成され内側部材102の外周側に形成されたねじ部103とを備えるねじ溝式真空ポンプ104が知られている(例えば、特許文献1参照)。   As such an axial flow type fluid machine, for example, as shown in FIG. 7, an outer member 101 that is a stator, an inner member 102 that is a rotor disposed on the inner peripheral side of the outer member 101, and a thread groove portion There is known a thread groove type vacuum pump 104 that includes a threaded portion 103 that is composed of 103a and a threaded portion 103b and is formed on the outer peripheral side of the inner member 102 (see, for example, Patent Document 1).

このねじ溝式真空ポンプ104では、内側部材102を高速回転させることでねじ部103が気体を圧縮し、吸気側105から排気側106へ排気を行っている。ここで、外側部材101と内側部材102との間隙は通常で数十μm〜数百μmに設定されている。このため、吸気側105から排気側106に向かって粘性流領域(真空度:1.0×10(=大気圧)〜1.0×10Pa)の気体を排気する際には、吸気側105と排気側106との圧力差が発生すると排気側106から吸気側105へ気体の逆流が生じる。ねじ部103が気体を圧縮して排気する流量を逆流流量よりも大きくすることで、気体が吸気側105から排気側106へ排気され吸気側105の真空度を高めることができる。
特開昭62−38898号公報
In the thread groove type vacuum pump 104, the screw portion 103 compresses gas by rotating the inner member 102 at a high speed, and exhausts air from the intake side 105 to the exhaust side 106. Here, the gap between the outer member 101 and the inner member 102 is normally set to several tens of μm to several hundreds of μm. For this reason, when exhausting a gas in the viscous flow region (vacuum degree: 1.0 × 10 5 (= atmospheric pressure) to 1.0 × 10 2 Pa) from the intake side 105 toward the exhaust side 106, When a pressure difference between the side 105 and the exhaust side 106 occurs, a backflow of gas occurs from the exhaust side 106 to the intake side 105. By making the flow rate at which the screw portion 103 compresses and exhausts the gas larger than the reverse flow rate, the gas is exhausted from the intake side 105 to the exhaust side 106, and the degree of vacuum on the intake side 105 can be increased.
Japanese Unexamined Patent Publication No. 62-38898

上述したねじ溝式真空ポンプ104においては、圧縮比を高め、また排気流量を大きくするために外側部材101と内側部材102との間隙をなるべく小さくして気体の逆流流量を小さくする必要がある。しかしながら、上述したねじ溝式真空ポンプ103では、外側部材101と内側部材102の間隙を小さくすると、高速に回転する内側部材102が遠心力、熱応力あるいは振動などの影響を受け、その外周面が外側部材101に接触するおそれがある。   In the above-described thread groove type vacuum pump 104, in order to increase the compression ratio and increase the exhaust gas flow rate, it is necessary to reduce the gap between the outer member 101 and the inner member 102 as much as possible to reduce the gas back flow rate. However, in the above-described thread groove type vacuum pump 103, when the gap between the outer member 101 and the inner member 102 is reduced, the inner member 102 that rotates at high speed is affected by centrifugal force, thermal stress, vibration, etc. There is a risk of contact with the outer member 101.

そこで、本発明の課題は、外側部材と内側部材との間隙を小さくして気体の逆流流量を小さくしながら、高速回転時における外側部材と内側部材との接触を防止することができる軸流式流体機械を提供することにある。   Therefore, an object of the present invention is to reduce the backflow flow rate of the gas by reducing the gap between the outer member and the inner member, while preventing contact between the outer member and the inner member during high speed rotation. It is to provide a fluid machine.

上記の課題を解決するために、本発明では、筒形状の外側部材と、該外側部材の内周面に間隙を介して対向配置された外周面を有する内側部材と、前記外側部材の内周側及び前記内側部材の外周側の少なくともいずれか一方に形成されたねじ部とを備え、前記外側部材及び前記内側部材の少なくともいずれか一方を回転させることで流体の吸入または排出を行う軸流型流体機械において、前記外側部材の内周面と前記内側部材の外周面との間に流体軸受部が設けられていることを特徴とする。   In order to solve the above-described problems, in the present invention, a cylindrical outer member, an inner member having an outer peripheral surface disposed opposite to an inner peripheral surface of the outer member via a gap, and an inner periphery of the outer member And an axial flow type in which fluid is sucked or discharged by rotating at least one of the outer member and the inner member, and a thread portion formed on at least one of the outer member and the outer peripheral side of the inner member. In the fluid machine, a fluid bearing portion is provided between an inner peripheral surface of the outer member and an outer peripheral surface of the inner member.

本発明においては、外側部材の内周面と内側部材の外周面との間に流体軸受部が設けられている。そのため、高速回転時においても、外側部材と内側部材とを非接触状態に保つことができる。また、外側部材と内側部材との間隙を流体軸受の軸受隙間程度に小さくする事ができる。すなわち、例えば、流体として気体が用いられた場合には、外側部材と内側部材との間隙を通常十数μmとすることができる。そのため、逆流を小さく抑える事ができる。   In the present invention, the hydrodynamic bearing portion is provided between the inner peripheral surface of the outer member and the outer peripheral surface of the inner member. Therefore, the outer member and the inner member can be kept in a non-contact state even during high-speed rotation. Further, the gap between the outer member and the inner member can be made as small as the bearing gap of the fluid bearing. That is, for example, when a gas is used as the fluid, the gap between the outer member and the inner member can be normally set to several tens of μm. As a result, the backflow can be kept small.

本発明において、前記流体軸受部を構成する流体軸受は、流体動圧軸受であることが好ましい。軸流型流体機械においては、外側部材と内側部材との間に相対回転を生じさせることで、流体を軸方向に移送している。そのため、流体軸受を流体動圧軸受とすることで、流体軸受部に存在する流体を用いつつ、外側部材と内側部材との間の相対回転を利用して軸受部を構成することができる。   In this invention, it is preferable that the fluid bearing which comprises the said fluid bearing part is a fluid dynamic pressure bearing. In an axial flow type fluid machine, fluid is transferred in the axial direction by causing relative rotation between an outer member and an inner member. Therefore, by using the fluid dynamic bearing as the fluid dynamic bearing, the bearing portion can be configured using the relative rotation between the outer member and the inner member while using the fluid existing in the fluid bearing portion.

本発明において、前記流体軸受部は、少なくとも前記流体の排出側端における前記外側部材の内周面と前記内側部材の外周面との間に設けられていることが好ましい。排出側端に流体軸受部を設けることで、排気側からの逆流を効果的に抑える事ができる。   In the present invention, it is preferable that the fluid bearing portion is provided at least between the inner peripheral surface of the outer member and the outer peripheral surface of the inner member at the fluid discharge side end. By providing the fluid bearing at the discharge side end, the backflow from the exhaust side can be effectively suppressed.

本発明において、前記流体軸受部は、回転軸方向における前記ねじ部の両側に設けられていることが好ましい。このように構成することで、軸流型流体機械において要部を構成するねじ部の両端を支持することができ、軸受としての十分な機能を果たすことができる。   In this invention, it is preferable that the said fluid bearing part is provided in the both sides of the said thread part in the rotating shaft direction. By comprising in this way, the both ends of the thread part which comprises the principal part in an axial flow type fluid machine can be supported, and the function sufficient as a bearing can be fulfill | performed.

本発明において、前記外側部材の内周面及び前記内側部材の外周面の少なくともいずれか一方は、前記ねじ部のねじ山部に嵌め込まれた筒状のスリーブにより形成されていることが好ましい。すなわち、ねじ山部に嵌め込まれた筒状のスリーブの内周面あるいは外周面を用いて流体軸受部を構成することが好ましい。このように構成することで、既存のねじ部を用いつつ流体軸受部を構成することができる。   In the present invention, it is preferable that at least one of the inner peripheral surface of the outer member and the outer peripheral surface of the inner member is formed by a cylindrical sleeve fitted into a thread portion of the screw portion. That is, it is preferable that the hydrodynamic bearing portion is configured by using the inner peripheral surface or the outer peripheral surface of the cylindrical sleeve fitted into the thread portion. By comprising in this way, a fluid bearing part can be comprised, using the existing screw part.

本発明においては、前記軸流式流体機械は、気体の排気を行うねじ溝式真空ポンプとすることができる。   In the present invention, the axial flow type fluid machine may be a thread groove type vacuum pump for exhausting gas.

本発明では、軸流型流体機械を構成する外側部材の内周面と内側部材の外周面との間に流体軸受部が設けられている。そのため、外側部材と内側部材との間隙を小さくして気体の逆流流量を小さくながら、高速回転時における外側部材と内側部材との接触を防止することができる。従って、簡易な構成により、軸流式流体機械の圧縮比を高めあるいは吸入・排出流量を大きくすることができる。すなわち、従来の軸流型流体機械と比較すると、同じ圧縮比であれば吸入・排出流量を大きくすることができる。また、従来よりも小さい回転数でも、圧縮比を高めあるいは吸入・排出流量を大きくすることができる。   In the present invention, the fluid bearing portion is provided between the inner peripheral surface of the outer member and the outer peripheral surface of the inner member constituting the axial flow type fluid machine. Therefore, contact between the outer member and the inner member during high-speed rotation can be prevented while reducing the gap between the outer member and the inner member to reduce the back flow rate of the gas. Therefore, with a simple configuration, the compression ratio of the axial flow type fluid machine can be increased or the suction / discharge flow rate can be increased. That is, as compared with the conventional axial flow type fluid machine, the suction / discharge flow rate can be increased if the compression ratio is the same. In addition, the compression ratio can be increased or the intake / exhaust flow rate can be increased even at a lower rotational speed than in the prior art.

以下、本発明を図面に示す実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係る軸流型流体機械を示す縦断面側面図である。図1では、外側部材を切断した状態の軸流型流体機械の側面を示している。
[Embodiment 1]
FIG. 1 is a longitudinal sectional side view showing an axial flow type fluid machine according to Embodiment 1 of the present invention. In FIG. 1, the side surface of the axial-flow type fluid machine with the outer member cut is shown.

(概略構成)
本形態にかかる軸流型流体機械は、円筒形状の外側部材2と、外側部材2の内周面2aに間隙dを介して対向配置された外周面3aを有する内側部材3と、内側部材3の外周側に形成されたねじ部4とを備えたねじ溝式真空ポンプ1である。このねじ溝式真空ポンプ1は、内側部材3を回転させることで、吸気側8から排気側7へ気体の排気を行うように構成されている。また、外側部材2の内周面2aと内側部材3の外周面3aとの間に流体軸受部としての気体軸受部5が設けられている。
(Outline configuration)
The axial flow type fluid machine according to the present embodiment includes a cylindrical outer member 2, an inner member 3 having an outer peripheral surface 3 a disposed opposite to an inner peripheral surface 2 a of the outer member 2 via a gap d, and an inner member 3. It is the thread groove type vacuum pump 1 provided with the thread part 4 formed in the outer peripheral side. The thread groove type vacuum pump 1 is configured to exhaust gas from the intake side 8 to the exhaust side 7 by rotating the inner member 3. Further, a gas bearing portion 5 as a fluid bearing portion is provided between the inner peripheral surface 2 a of the outer member 2 and the outer peripheral surface 3 a of the inner member 3.

内側部材3は、外周側にねじ溝部4aとねじ山部4bとからなるねじ部4が形成されたシャフト31と、筒状のスリーブ32とから構成されている。シャフト31は、図示下端側が図示を省略するモータ等の駆動源に接続されており、外側部材2の内周側を回転するように構成されている。スリーブ32は本形態においては、薄肉円筒形状をしており、ねじ山部4bに圧入等の手段によりその内周面がねじ山部4bに密着して気密性を保持しながら嵌め込まれている。スリーブ32の外周面が内側部材3の外周面3aに該当する。また、スリーブ32は、シャフト31の回転軸方向におけるねじ部4の両端側、すなわち、図1におけるねじ部4の図示上下端側における2箇所で、ねじ山部4bに嵌め込まれている。尚、ねじ山部4bと外側部材2の内周面2aとの間隙は、数十μm〜数百μmに設定されている。   The inner member 3 includes a shaft 31 having a threaded portion 4 including a threaded groove portion 4a and a threaded portion 4b on the outer peripheral side, and a cylindrical sleeve 32. The lower end side of the shaft 31 is connected to a drive source such as a motor (not shown), and the shaft 31 is configured to rotate on the inner peripheral side of the outer member 2. In the present embodiment, the sleeve 32 has a thin cylindrical shape, and is fitted into the screw thread portion 4b while maintaining its airtightness with its inner peripheral surface being in close contact with the screw thread portion 4b by means such as press fitting. The outer peripheral surface of the sleeve 32 corresponds to the outer peripheral surface 3 a of the inner member 3. Further, the sleeve 32 is fitted into the screw thread portion 4b at two positions on both ends of the screw portion 4 in the rotation axis direction of the shaft 31, that is, on the upper and lower ends of the screw portion 4 in FIG. In addition, the clearance gap between the thread part 4b and the inner peripheral surface 2a of the outer member 2 is set to several tens μm to several hundreds μm.

外側部材2の内周面2aと内側部材3の外周面3aとの間に気体軸受部5が設けられていることから、内周面2aと外周面3aとは、例えばスリーブ32はアルミ金属から形成される一方、外側部材2はステンレス鋼から形成されるように異種の金属材質により構成されている。   Since the gas bearing portion 5 is provided between the inner peripheral surface 2a of the outer member 2 and the outer peripheral surface 3a of the inner member 3, the inner peripheral surface 2a and the outer peripheral surface 3a, for example, the sleeve 32 is made of aluminum metal. On the other hand, the outer member 2 is made of a different metal material so as to be formed of stainless steel.

気体軸受部5を構成する気体軸受は、回転子としての内側部材3をその回転時に、固定子としての外側部材2に対してラジアル方向に非接触状態で支持するように構成された気体動圧軸受である。本形態においては、外側部材2の内周面2aと内側部材3の外周面3aとの間隙dは十数μmに設定されるとともに、外側部材2の内周面2a及び内側部材3の外周面3aの少なくともいずれか一方にへリングボーン等の溝形状が形成されている。上述のように、スリーブ32は、図1におけるねじ部4の図示上下端側において、ねじ山部4bに嵌め込まれていることから、気体軸受部5は、ねじ部4の両側において2箇所に設けられている。また、本形態では、気体軸受部5は、排気側7端及び吸気側8端における外側部材2の内周面2aと内側部材3の外周面3aとの間に設けられている。尚、気体動圧軸受としては、回転軸と直交する方向における外側部材2の内周面2a及び内側部材3の外周面3aの断面を略真円に形成したいわゆる真円軸受や、外側部材2の内周面2a及び内側部材3の外周面3aの少なくともいずれか一方に凹凸を形成した軸受等の種々の気体動圧軸受を用いることができる。   The gas bearing which comprises the gas bearing part 5 is a gas dynamic pressure comprised so that the inner member 3 as a rotor may be supported in the non-contact state in the radial direction with respect to the outer member 2 as a stator at the time of the rotation. It is a bearing. In this embodiment, the gap d between the inner peripheral surface 2a of the outer member 2 and the outer peripheral surface 3a of the inner member 3 is set to tens of μm, and the inner peripheral surface 2a of the outer member 2 and the outer peripheral surface of the inner member 3 are set. A groove shape such as a herringbone is formed in at least one of 3a. As described above, since the sleeve 32 is fitted into the screw thread portion 4 b on the upper and lower ends of the screw portion 4 in FIG. 1, the gas bearing portion 5 is provided at two locations on both sides of the screw portion 4. It has been. Further, in this embodiment, the gas bearing portion 5 is provided between the inner peripheral surface 2 a of the outer member 2 and the outer peripheral surface 3 a of the inner member 3 at the exhaust side 7 end and the intake side 8 end. In addition, as a gas dynamic pressure bearing, what is called a perfect circle bearing which formed the cross section of the inner peripheral surface 2a of the outer side member 2 in the direction orthogonal to a rotating shaft and the outer peripheral surface 3a of the inner side member 3 in the substantially perfect circle, or the outer member 2 Various gas dynamic pressure bearings such as a bearing in which irregularities are formed on at least one of the inner peripheral surface 2a and the outer peripheral surface 3a of the inner member 3 can be used.

(排気動作)
以上のように構成されたねじ溝式真空ポンプ1により、吸気側8から排気側7へ粘性流領域の気体の排気を行う際の排気動作を以下に説明する。
(Exhaust operation)
The exhaust operation when the gas in the viscous flow region is exhausted from the intake side 8 to the exhaust side 7 by the thread groove type vacuum pump 1 configured as described above will be described below.

吸気側8から排気側7へ気体の排気を行うときは、内側部材3を高速回転させる。内側部材3が回転することで、ねじ部4が回転され、気体は吸気側8から排気側7へ押し流される。吸気側8から排気側7へ押し流される気体は主としてねじ溝部4aを通過する。このとき、ねじ部4の両側に設けられた気体軸受部5においては、内側部材3を高速回転させることで、ラジアル方向に動圧力が発生し、内側部材3が外側部材2に対して非接触状態で支持される。   When exhausting gas from the intake side 8 to the exhaust side 7, the inner member 3 is rotated at a high speed. By rotating the inner member 3, the screw portion 4 is rotated, and the gas is pushed from the intake side 8 to the exhaust side 7. The gas pushed away from the intake side 8 to the exhaust side 7 mainly passes through the thread groove 4a. At this time, in the gas bearing portions 5 provided on both sides of the screw portion 4, dynamic pressure is generated in the radial direction by rotating the inner member 3 at a high speed, and the inner member 3 is not in contact with the outer member 2. Supported in state.

(本形態の効果)
以上説明したように、本形態におけるねじ溝式真空ポンプ1には、外側部材2の内周面2aと内側部材3の外周面3aとの間に気体軸受部5が設けられている。そのため、内側部材3の高速回転時における遠心力や振動等の影響で、外側部材2と内側部材3とが接近すればする程、気体軸受部5において両部材2,3間には大きな正圧が発生し、両部材2,3を遠ざける方向に反発力が作用する。従って、内側部材3の高速回転時においても、外側部材2と内側部材3とを非接触状態に保つことができる。また、内側部材3を高速回転させ、吸気側8から排気側7へ気体の排気を行う際には、外側部材2の内周面2aと内側部材3の外周面3aとの間に形成された間隙d、すなわち気体軸受部5における間隙dを通過する気体の逆流が生じる。しかし、本形態のように、気体軸受部5における間隙dは十数μmと小さく設定できることから、気体の逆流流量を小さくすることができる。従って、ねじ溝式真空ポンプ1の圧縮比を高め、また排気流量を大きくすることができる。また、従来と同程度の圧縮比及び排気流量を得るために必要な内側部材3の回転速度を小さくすることができる。
(Effect of this embodiment)
As described above, in the thread groove type vacuum pump 1 according to the present embodiment, the gas bearing portion 5 is provided between the inner peripheral surface 2 a of the outer member 2 and the outer peripheral surface 3 a of the inner member 3. For this reason, the closer the outer member 2 and the inner member 3 are to each other due to the influence of centrifugal force or vibration during the high speed rotation of the inner member 3, the greater the positive pressure between the members 2 and 3 in the gas bearing portion 5. Is generated, and a repulsive force acts in a direction in which both members 2 and 3 are moved away. Therefore, the outer member 2 and the inner member 3 can be kept in a non-contact state even when the inner member 3 rotates at a high speed. Further, when the inner member 3 is rotated at a high speed and gas is exhausted from the intake side 8 to the exhaust side 7, it is formed between the inner peripheral surface 2 a of the outer member 2 and the outer peripheral surface 3 a of the inner member 3. A back flow of the gas passing through the gap d, that is, the gap d in the gas bearing portion 5 occurs. However, as in the present embodiment, the gap d in the gas bearing portion 5 can be set as small as several tens of μm, so that the back flow rate of gas can be reduced. Therefore, the compression ratio of the thread groove type vacuum pump 1 can be increased and the exhaust flow rate can be increased. In addition, the rotational speed of the inner member 3 necessary for obtaining a compression ratio and exhaust flow rate comparable to those in the prior art can be reduced.

また、外側部材2の内周面2aと内側部材3の外周面3aとの間に気体軸受部5を構成している。従って、別途内側部材2の軸受部を設ける必要がなく、ねじ溝式真空ポンプ1の構成が簡略化される。さらに、軸受として気体軸受を採用することから、ボール軸受や磁気軸受等のように治工具を用いた高精度な組立の必要がない。そのため、比較的簡単に組立作業をすることができ、ねじ溝式真空ポンプ1の組立作業の効率が良い。   A gas bearing portion 5 is formed between the inner peripheral surface 2 a of the outer member 2 and the outer peripheral surface 3 a of the inner member 3. Therefore, it is not necessary to separately provide a bearing portion for the inner member 2, and the configuration of the thread groove type vacuum pump 1 is simplified. Further, since a gas bearing is employed as the bearing, there is no need for high-precision assembly using a tool such as a ball bearing or a magnetic bearing. Therefore, the assembly work can be performed relatively easily, and the efficiency of the assembly work of the thread groove type vacuum pump 1 is good.

本形態では、気体軸受部5を構成する気体軸受は気体動圧軸受である。従って、気体軸受部5に存在する気体を用いつつ、外側部材2と内側部材3との間の相対回転を利用して軸受部を構成することができる。すなわち、簡易な構成で気体軸受部5を構成することが可能になる。   With this form, the gas bearing which comprises the gas bearing part 5 is a gas dynamic pressure bearing. Therefore, the bearing portion can be configured using the relative rotation between the outer member 2 and the inner member 3 while using the gas present in the gas bearing portion 5. That is, the gas bearing portion 5 can be configured with a simple configuration.

本形態では、気体軸受部5は、少なくとも排気側7端における外側部材2の内周面2aと内側部材3の外周面3aとの間に設けられている。従って、排気側7からの気体の逆流を効果的に防止することができる。すなわち、図1において吸気側8端における外側部材2の内周面2aと内側部材3の外周面3aとの間に気体軸受部5が形成されていなかったとしても、排気側7からの気体の逆流は防止することができる。   In this embodiment, the gas bearing portion 5 is provided between the inner peripheral surface 2 a of the outer member 2 and the outer peripheral surface 3 a of the inner member 3 at least at the exhaust side 7 end. Therefore, the backflow of gas from the exhaust side 7 can be effectively prevented. That is, even if the gas bearing portion 5 is not formed between the inner peripheral surface 2a of the outer member 2 and the outer peripheral surface 3a of the inner member 3 at the end of the intake side 8 in FIG. Backflow can be prevented.

本形態では、気体軸受部5は、回転軸方向におけるねじ部4の両側に設けられている。従って、ねじ溝式真空ポンプ1において要部を構成するねじ部4の両端を支持することができ、回転子としての内側部材2の軸受としての十分な機能を果たすことができる。   In this embodiment, the gas bearing portion 5 is provided on both sides of the screw portion 4 in the rotation axis direction. Therefore, both ends of the screw part 4 constituting the main part of the thread groove type vacuum pump 1 can be supported, and a sufficient function as a bearing of the inner member 2 as a rotor can be achieved.

また、本形態では、内側部材3の外周面3aは、ねじ山部4bに嵌め込まれた薄肉円筒形状のスリーブ32により形成されている。すなわち、スリーブ32の外周面を用いて気体軸受部5が構成されている。従って、従来から用いられているねじ部4を変更することなく気体軸受部5を構成することができる。   In this embodiment, the outer peripheral surface 3a of the inner member 3 is formed by a thin cylindrical sleeve 32 fitted into the thread portion 4b. That is, the gas bearing portion 5 is configured using the outer peripheral surface of the sleeve 32. Therefore, the gas bearing part 5 can be comprised, without changing the screw part 4 used conventionally.

(本形態の変形例)
図2は、本発明の実施の形態1に係る軸流型流体機械の変形例を示す縦断面側面図である。図2においても、図1と同様に外側部材を切断した状態の軸流型流体機械の側面を示している。
(Modification of this embodiment)
FIG. 2 is a longitudinal sectional side view showing a modification of the axial flow type fluid machine according to Embodiment 1 of the present invention. Also in FIG. 2, the side surface of the axial-flow type fluid machine in a state in which the outer member is cut is shown as in FIG.

図2に示すように、ねじ部4の回転軸方向の全長にわたって薄肉円筒状スリーブ32を嵌め込むように構成しても良い。このように構成しても実施の形態1と同様の効果を得ることができる。   As shown in FIG. 2, a thin cylindrical sleeve 32 may be fitted over the entire length of the screw portion 4 in the rotation axis direction. Even if comprised in this way, the effect similar to Embodiment 1 can be acquired.

[実施の形態2]
図3(A)、(B)は、それぞれ本発明の実施の形態2に係る軸流型流体機械を示す上面図及び縦断面側面図である。図3(B)では、外側部材を切断した状態の軸流型流体機械の側面を示している。本形態に係る軸流型流体機械は、基本的な構成が実施の形態1と共通しているため、共通している部分については、同一の符号を付して図示することとし、それらの説明を省略する。
[Embodiment 2]
3A and 3B are a top view and a longitudinal sectional side view, respectively, showing an axial-flow type fluid machine according to Embodiment 2 of the present invention. FIG. 3B shows a side surface of the axial fluid machine with the outer member cut. Since the basic configuration of the axial flow type fluid machine according to the present embodiment is the same as that of the first embodiment, common portions are denoted by the same reference numerals and illustrated. Is omitted.

図3に示すように本形態におけるねじ溝式真空ポンプ1では、内側部材3は、外周側にねじ溝部4aとねじ山部4bとからなるねじ部4が一部に形成されたシャフト部33とこのシャフト部33と一体で形成されたボス部34とから構成されている。シャフト部33の図示下端側は、図示を省略するモータ等の駆動源に接続されており、内側部材3は外側部材2の内周側を回転するように構成されている。   As shown in FIG. 3, in the thread groove type vacuum pump 1 according to the present embodiment, the inner member 3 includes a shaft portion 33 in which a thread portion 4 including a thread groove portion 4 a and a screw thread portion 4 b is formed in part on the outer peripheral side. The shaft portion 33 and the boss portion 34 formed integrally with the shaft portion 33 are configured. The illustrated lower end side of the shaft portion 33 is connected to a driving source such as a motor (not shown), and the inner member 3 is configured to rotate on the inner peripheral side of the outer member 2.

ボス部34は、シャフト部33よりも大径で、シャフト部33に形成されたねじ部4の両端側で2箇所に形成されている。本形態では、ボス部34の外周面が内側部材3の外周面3aに該当する。この外周面3aと外側部材2の内周面2aとの間に気体軸受部5が設けられている。また、ボス部34には、吸気側8から排気側7へ気体の排気を行う際に気体が通過する貫通孔34aが軸方向に貫通して設けられている。本形態においては、45°間隔で円環状に8個の貫通孔34aが設けられている。   The boss part 34 has a larger diameter than the shaft part 33, and is formed at two locations on both ends of the screw part 4 formed on the shaft part 33. In this embodiment, the outer peripheral surface of the boss portion 34 corresponds to the outer peripheral surface 3 a of the inner member 3. A gas bearing portion 5 is provided between the outer peripheral surface 3 a and the inner peripheral surface 2 a of the outer member 2. The boss portion 34 is provided with a through hole 34a through which gas passes when the gas is exhausted from the intake side 8 to the exhaust side 7 in the axial direction. In this embodiment, eight through holes 34a are provided in an annular shape at intervals of 45 °.

以上のように構成された本形態の係るねじ溝式真空ポンプ1で、実施の形態1と同様に内側部材3を高速回転させて吸気側8から排気側7へ気体の排気を行うこととなる。この際、吸気側8から排気側7へ押し流される気体は主として吸気側8の貫通孔34a、ねじ溝部4a、排気側7の貫通孔34aを通過することになる。   In the thread groove type vacuum pump 1 according to the present embodiment configured as described above, the inner member 3 is rotated at a high speed as in the first embodiment, and gas is exhausted from the intake side 8 to the exhaust side 7. . At this time, the gas pushed away from the intake side 8 to the exhaust side 7 mainly passes through the through hole 34 a on the intake side 8, the thread groove 4 a, and the through hole 34 a on the exhaust side 7.

本形態におけるねじ溝式真空ポンプ1では、シャフト部33とボス部34とが一体で形成されて内側部材3が構成され、ボス34部の外周面すなわち内側部材3の外周面3aと外側部材2の内周面2aとの間に気体軸受部5が設けられている。そのため、実施の形態1のように、従来から用いられているねじ部4を変更することなく気体軸受部5を構成することはできない。しかしながら、シャフト部33とボス部34とを一体で形成するため加工が容易になる。また、ねじ山部4bにスリーブ32を嵌め込んだ場合には、ねじ山部4bとスリーブ32の内周面との間からの気体が漏れ出し、排気側7から吸気側8へ逆流を生ずるおそれがあるため、気体の漏れを防止する手段を施す必要が生じる場合がある。しかし、本形態の構成を採用すれば気体の漏れを考慮する必要がない。   In the thread groove type vacuum pump 1 in this embodiment, the shaft portion 33 and the boss portion 34 are integrally formed to constitute the inner member 3, and the outer peripheral surface of the boss 34 portion, that is, the outer peripheral surface 3 a of the inner member 3 and the outer member 2. A gas bearing portion 5 is provided between the inner peripheral surface 2a of the first and second inner peripheral surfaces 2a. Therefore, as in the first embodiment, the gas bearing portion 5 cannot be configured without changing the conventionally used screw portion 4. However, since the shaft portion 33 and the boss portion 34 are integrally formed, processing becomes easy. Further, when the sleeve 32 is fitted into the thread portion 4 b, gas from between the thread portion 4 b and the inner peripheral surface of the sleeve 32 leaks out, and there is a risk of causing a back flow from the exhaust side 7 to the intake side 8. Therefore, it may be necessary to provide means for preventing gas leakage. However, if the configuration of this embodiment is adopted, it is not necessary to consider gas leakage.

[他の実施の形態]
上述した形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形可能である。例えば、上述した形態においては、内側部材3にねじ部4を形成するとともに内側部材3を回転させることとしたが、ねじ部4の形成部材並びに内側部材3と外側部材2との回転及び固定のパターンとしては以下の表1の組合せを採用することができる。
[Other embodiments]
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the screw part 4 is formed on the inner member 3 and the inner member 3 is rotated. However, the screw member 4 forming member and the inner member 3 and the outer member 2 can be rotated and fixed. The combinations shown in Table 1 below can be adopted as the patterns.

Figure 2005171799
Figure 2005171799

すなわち、表中NO.1の組合せが上述した実施の形態1及び2に該当するが、図4に示すように内側部材3を固定するとともに外側部材2を回転させても良い(表中NO.2)。この場合、ねじ部4が回転せず気体を流通させることができないため、外側部材2の少なくとも一方の端部に気体を流通させるためのインペラ10を設けるか(図4参照)、排気側7に油回転真空ポンプやドライ真空ポンプなどの粗引き用の補助ポンプを設けるようにする。なお、補助ポンプを使用する場合には、インペラ10を設ける必要はない。また、内側部材3と外側部材2のいずれか一方を回転させることには限られず、両部材3,2を回転させるようにしても良い(表中NO.3)。この場合はインペラ10等は不要である。このときの回転方向は互いに逆向きであることが好ましいが、同方向に回転させて回転速度差を設けるようにしても良い。   That is, NO. Although the combination of 1 corresponds to Embodiments 1 and 2 described above, the inner member 3 may be fixed and the outer member 2 may be rotated as shown in FIG. 4 (NO. 2 in the table). In this case, since the screw part 4 does not rotate and the gas cannot be circulated, an impeller 10 for circulating the gas is provided at at least one end of the outer member 2 (see FIG. 4) or on the exhaust side 7 An auxiliary pump for roughing such as an oil rotary vacuum pump or a dry vacuum pump is provided. In addition, when using an auxiliary pump, it is not necessary to provide the impeller 10. Moreover, it is not restricted to rotating any one of the inner side member 3 and the outer side member 2, You may make it rotate both the members 3 and 2 (in the table | surface NO.3). In this case, the impeller 10 or the like is not necessary. The rotation directions at this time are preferably opposite to each other, but may be rotated in the same direction to provide a rotation speed difference.

また、図5に示されるように、ねじ部4を外側部材2に形成しても良い(表中NO.4〜6)。この場合、ねじ部4が設けられた部材が固定されるときには、回転側の部材にインペラ10を設けるようにするか(図5参照)、排気側7に油回転真空ポンプやドライ真空ポンプなどの粗引き用の補助ポンプを設けるようにする(表中NO.4)。尚、外側部材2にねじ部4を形成する場合には、図5に示されるように薄肉円筒形状のスリーブ21をねじ山部4bに嵌め込むことで外側部材2の内周面2aを形成して気体軸受部5を設ければ良い。あるいは、上記の実施の形態2に対応して、外側部材2にねじ山部4bよりも内径が小径となる肉厚部を設けることで内周面2aを形成して気体軸受部5を設けるようにしても良い。   Moreover, as FIG. 5 shows, you may form the thread part 4 in the outer side member 2 (in the table | surface NO.4-6). In this case, when the member provided with the threaded portion 4 is fixed, the impeller 10 is provided on the rotating member (see FIG. 5), or an oil rotary vacuum pump, a dry vacuum pump, or the like is provided on the exhaust side 7. An auxiliary pump for roughing is provided (No. 4 in the table). When the screw part 4 is formed on the outer member 2, the inner peripheral surface 2a of the outer member 2 is formed by fitting a thin cylindrical sleeve 21 into the screw thread part 4b as shown in FIG. The gas bearing 5 may be provided. Or corresponding to said Embodiment 2, the inner peripheral surface 2a is formed and the gas bearing part 5 is provided by providing the outer member 2 with the thick part whose inner diameter is smaller than the screw thread part 4b. Anyway.

さらに、図6に示されるように内側部材3と外側部材2との両部材にねじ部4を形成しても良い(表中NO.7〜9)。この場合、ねじ部4が設けられた部材が必ず回転するので、インペラ10を設けることは要しない。尚、この場合には、内側部材3のねじ山部4bにスリーブ32を嵌め込むこと(図6参照)または内側部材3にボス部を設けることで内側部材3の外周面3aを形成するとともに、外側部材2にねじ山部4bよりも内径が小径となる肉厚部22を設けること(図6参照)あるいは外側部材2のねじ山部4bにスリーブを嵌め込むことで外側部材2の内周面2aを形成して気体軸受部5を設けるようにすれば良い。   Furthermore, as shown in FIG. 6, the screw portion 4 may be formed on both the inner member 3 and the outer member 2 (NO. 7 to 9 in the table). In this case, since the member provided with the screw portion 4 always rotates, it is not necessary to provide the impeller 10. In this case, the outer peripheral surface 3a of the inner member 3 is formed by fitting the sleeve 32 into the screw thread 4b of the inner member 3 (see FIG. 6) or by providing a boss portion on the inner member 3. An inner peripheral surface of the outer member 2 is provided by providing the outer member 2 with a thick portion 22 whose inner diameter is smaller than that of the screw thread portion 4b (see FIG. 6) or by fitting a sleeve into the screw thread portion 4b of the outer member 2. The gas bearing portion 5 may be provided by forming 2a.

さらにまた、上述した実施の形態では、軸流型流体機械は気体を排気するねじ溝式真空ポンプ1であったが、本発明における軸流型流体機械はこれには限定されない。すなわち、例えば、気体の吸入を行うコンプレッサ装置に本発明を適用しても良い。また、気体以外の水や油等の非圧縮性流体を扱う軸流型流体機械に本発明を適用しても良い。   Furthermore, in the embodiment described above, the axial flow type fluid machine is the thread groove type vacuum pump 1 that exhausts gas, but the axial flow type fluid machine in the present invention is not limited to this. That is, for example, the present invention may be applied to a compressor device that performs gas suction. Further, the present invention may be applied to an axial flow type fluid machine that handles an incompressible fluid such as water or oil other than gas.

また、上述した実施の形態では、気体軸受部5を構成する気体軸受は気体動圧軸受であったが、気体軸受は気体静圧軸受であっても良い。すなわち、例えば、図1における気体軸受部5における内側部材3の外周面3aに所定の圧力を有する気体を径方向外方から供給することで気体軸受を構成しても良い。   In the embodiment described above, the gas bearing constituting the gas bearing portion 5 is a gas dynamic pressure bearing, but the gas bearing may be a gas static pressure bearing. That is, for example, a gas bearing may be configured by supplying a gas having a predetermined pressure to the outer peripheral surface 3a of the inner member 3 in the gas bearing portion 5 in FIG.

さらに、上述した実施の形態では、外側部材2はその内周面2aの内径が一定の円筒形状であったが、外側部材2の内周面2aはその内径が軸方向で次第に変化するテーパ形状を有する円錐状に形成しても良い。また、上述した実施の形態では内側部材3は略円柱状であったが、内側部材3も円錐状に形成しても良い。尚、上述した実施の形態では、気体軸受部5はねじ部4の両端側で2箇所に設けられていたが、例えば、ねじ部4が軸方向両側から挟みこむように1箇所に設けても良い。   Furthermore, in the above-described embodiment, the outer member 2 has a cylindrical shape with a constant inner diameter of the inner peripheral surface 2a. However, the inner peripheral surface 2a of the outer member 2 has a tapered shape in which the inner diameter gradually changes in the axial direction. You may form in the cone shape which has. In the embodiment described above, the inner member 3 has a substantially cylindrical shape, but the inner member 3 may also be formed in a conical shape. In the above-described embodiment, the gas bearing portion 5 is provided at two locations on both ends of the screw portion 4, but may be provided at one location so that the screw portion 4 is sandwiched from both sides in the axial direction, for example. .

さらにまた、上述した実施の形態では、粘性流領域の気体の排気を行っているが、逆流は吸気側と排気側との圧力差により生じるので、粘性流体だけでなく例えば中間流領域(真空度:1.0×10〜1.0×10−2Pa)の気体を排気するようにしても良い。さらには、分子流領域(真空度:>1.0×10−2Pa)の気体を排気するようにしても良い。 Furthermore, in the above-described embodiment, the gas in the viscous flow region is exhausted. However, since the reverse flow is caused by the pressure difference between the intake side and the exhaust side, not only the viscous fluid but also the intermediate flow region (vacuum degree) : 1.0 × 10 2 to 1.0 × 10 −2 Pa) gas may be exhausted. Furthermore, the gas in the molecular flow region (degree of vacuum:> 1.0 × 10 −2 Pa) may be exhausted.

本発明の実施の形態1に係る軸流型流体機械を示す縦断面側面図である。It is a longitudinal cross-sectional side view which shows the axial flow type fluid machine which concerns on Embodiment 1 of this invention. 実施の形態1に係る軸流型流体機械の変形例を示す縦断面側面図である。FIG. 6 is a longitudinal sectional side view showing a modification of the axial flow type fluid machine according to the first embodiment. (A)、(B)は、それぞれ本発明の実施の形態2に係る軸流型流体機械を示す上面図及び縦断面側面図である。(A), (B) is the top view and longitudinal cross-sectional side view which respectively show the axial flow type fluid machine which concerns on Embodiment 2 of this invention. ねじ部を有しない外側部材が回転する本発明の他の実施の形態に係る軸流型流体機械を示す縦断面側面図である。It is a longitudinal cross-sectional side view which shows the axial flow type fluid machine which concerns on other embodiment of this invention which the outer side member which does not have a thread part rotates. ねじ部を有しない内側部材が回転する本発明の他の実施の形態に係る軸流型流体機械を示す縦断面側面図である。It is a longitudinal cross-sectional side view which shows the axial-flow type fluid machine which concerns on other embodiment of this invention which the inner member which does not have a thread part rotates. 内側部材及び外側部材がねじ部を有する本発明の他の実施の形態に係る軸流型流体機械を示す縦断面側面図である。It is a longitudinal cross-sectional side view which shows the axial-flow type fluid machine which concerns on other embodiment of this invention in which an inner member and an outer member have a thread part. 従来の軸流型流体機械を示す側面図である。It is a side view which shows the conventional axial flow type fluid machine.

符号の説明Explanation of symbols

1 ねじ溝式真空ポンプ(軸流型流体機械)
2 外側部材
2a 内周面
3 内側部材
3a 外周面
4 ねじ部
4a ねじ溝部
4b ねじ山部
5 気体軸受部(流体軸受部)
21 スリーブ
32 スリーブ
d 間隙
1 Thread groove type vacuum pump (axial flow type fluid machine)
2 outer member 2a inner peripheral surface 3 inner member 3a outer peripheral surface 4 screw portion 4a screw groove portion 4b screw thread portion 5 gas bearing portion (fluid bearing portion)
21 sleeve 32 sleeve d gap

Claims (6)

筒形状の外側部材と、該外側部材の内周面に間隙を介して対向配置された外周面を有する内側部材と、前記外側部材の内周側及び前記内側部材の外周側の少なくともいずれか一方に形成されたねじ部とを備え、前記外側部材及び前記内側部材の少なくともいずれか一方を回転させることで流体の吸入または排出を行う軸流型流体機械において、
前記外側部材の内周面と前記内側部材の外周面との間に流体軸受部が設けられていることを特徴とする軸流型流体機械。
At least one of a cylindrical outer member, an inner member having an outer peripheral surface opposed to the inner peripheral surface of the outer member via a gap, and an inner peripheral side of the outer member and an outer peripheral side of the inner member An axial flow type fluid machine that includes a threaded portion formed on the outer surface and rotates and / or sucks or discharges fluid by rotating at least one of the outer member and the inner member.
An axial flow type fluid machine, wherein a fluid bearing portion is provided between an inner peripheral surface of the outer member and an outer peripheral surface of the inner member.
前記流体軸受部を構成する流体軸受は、流体動圧軸受であることを特徴とする請求項1記載の軸流型流体機械。 The axial flow type fluid machine according to claim 1, wherein the fluid bearing constituting the fluid bearing portion is a fluid dynamic pressure bearing. 前記流体軸受部は、少なくとも前記流体の排出側端における前記外側部材の内周面と前記内側部材の外周面との間に設けられていることを特徴とする請求項1記載の軸流型流体機械。 2. The axial flow type fluid according to claim 1, wherein the fluid bearing portion is provided between an inner peripheral surface of the outer member and an outer peripheral surface of the inner member at least at a fluid discharge side end. machine. 前記流体軸受部は、回転軸方向における前記ねじ部の両側に設けられていることを特徴とする請求項1記載の軸流型流体機械。 2. The axial flow type fluid machine according to claim 1, wherein the fluid bearing portion is provided on both sides of the screw portion in the rotation axis direction. 前記外側部材の内周面及び前記内側部材の外周面の少なくともいずれか一方は、前記ねじ部のねじ山部に嵌め込まれた筒状のスリーブにより形成されていることを特徴とする請求項1記載の軸流型流体機械。 The at least one of the inner peripheral surface of the outer member and the outer peripheral surface of the inner member is formed by a cylindrical sleeve fitted into a thread portion of the screw portion. Axial flow type fluid machine. 前記軸流式流体機械は、気体の排気を行うねじ溝式真空ポンプであることを特徴とする請求項1記載の軸流型流体機械。 2. The axial flow type fluid machine according to claim 1, wherein the axial flow type fluid machine is a thread groove type vacuum pump for exhausting gas.
JP2003410132A 2003-12-09 2003-12-09 Axial flow fluid machinery Pending JP2005171799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410132A JP2005171799A (en) 2003-12-09 2003-12-09 Axial flow fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410132A JP2005171799A (en) 2003-12-09 2003-12-09 Axial flow fluid machinery

Publications (1)

Publication Number Publication Date
JP2005171799A true JP2005171799A (en) 2005-06-30

Family

ID=34731292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410132A Pending JP2005171799A (en) 2003-12-09 2003-12-09 Axial flow fluid machinery

Country Status (1)

Country Link
JP (1) JP2005171799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101593A (en) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 Motor and electric supercharger with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101593A (en) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 Motor and electric supercharger with the same

Similar Documents

Publication Publication Date Title
JP6872623B2 (en) Bearing devices for the drive shafts of turbo machines, and turbo machines with such bearing devices
JPS61290232A (en) Gas static pressure bearing
JP2008519662A (en) Dental handpiece with airfoil bearing
JP2021519887A (en) Screw compressor elements and machinery
JP3652187B2 (en) Fluid bearing
JP2010043680A (en) Floating bush bearing
US7625122B2 (en) Fluid dynamic bearing
JP4293722B2 (en) Bearing device
JP2005171799A (en) Axial flow fluid machinery
JP2014238066A (en) Rotary machine
JPS62210282A (en) Shift seal device of oil-free fluid machine
JP2006275077A (en) Hydrodynamic pressure bearing device
JP4508585B2 (en) Air bearing device
JP2006057487A (en) Centrifugal compressor
JP2004197848A (en) Shaft seal device and turbo compressor
JP4210835B2 (en) Hydrostatic air bearing spindle
JP3256315B2 (en) Pneumatic bearing
JP2005163613A (en) Thread groove type vacuum pump
JP2000081028A (en) Dynamic pressure bearing device for fan motor
JP2018096479A (en) Method of manufacturing tilting pad journal bearing and tilting pad journal bearing, and compressor
JPH0610477B2 (en) Turbo vacuum pump
JP2003056362A (en) Gas-turbine engine
JP2004330384A (en) Rotary main shaft device and working device
JP3693749B2 (en) Thrust dynamic pressure bearing
CN114258460A (en) Pump device comprising a radial bearing