JP2005170708A - Sol-gel electroconductive glass and optically functional element using the same - Google Patents

Sol-gel electroconductive glass and optically functional element using the same Download PDF

Info

Publication number
JP2005170708A
JP2005170708A JP2003410513A JP2003410513A JP2005170708A JP 2005170708 A JP2005170708 A JP 2005170708A JP 2003410513 A JP2003410513 A JP 2003410513A JP 2003410513 A JP2003410513 A JP 2003410513A JP 2005170708 A JP2005170708 A JP 2005170708A
Authority
JP
Japan
Prior art keywords
sol
gel
conductive polymer
light
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003410513A
Other languages
Japanese (ja)
Other versions
JP4743743B2 (en
Inventor
Satoshi Aihara
聡 相原
Setsu Kubota
節 久保田
Norihiko Kamata
憲彦 鎌田
Hiroaki Terunuma
大陽 照沼
Takeshi Hatano
健 幡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Saitama University NUC
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp, Saitama University NUC filed Critical Nippon Hoso Kyokai NHK
Priority to JP2003410513A priority Critical patent/JP4743743B2/en
Publication of JP2005170708A publication Critical patent/JP2005170708A/en
Application granted granted Critical
Publication of JP4743743B2 publication Critical patent/JP4743743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein stable, uniform dispersion of an electroconductive polymer in sol-gel glass is difficult due to its hydrophobicity, or a pre-treatment for imparting hydrophilicity to the polymer is required. <P>SOLUTION: The sol-gel electroconductive glass wherein the electroconductive polymer is stably and uniformly dispersed is provided by including a side chain of the hydrophobic electroconductive polymer in a hydrophilic host molecule (e.g. dextrin). This enables easy production of an industrially useful, highly reliable light-emitting or light-receiving device, such as a photodiode which converts a light signal into an electrical signal, an imaging device, a light source for optical communication such as an EL device which emits light by current injection, a display device and a lighting device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ゾルゲル導電性ガラス、及びそれを用いた光機能素子に関するものであり、より詳細には、疎水性の導電性高分子をホスト分子に包接させたゾルゲル導電性ガラス、及びそれを用いた光機能素子に関する。   The present invention relates to a sol-gel conductive glass and an optical functional device using the same, and more specifically, a sol-gel conductive glass in which a hydrophobic conductive polymer is included in a host molecule, and the same. The present invention relates to the optical functional element used.

光信号を電流信号に変換する有機光導電素子や、電流注入により発光を生じる有機エレクトロルミネッセンス(EL)素子は、一般に透明電極を設けたガラス基板上に光機能性物質の薄膜を作製し、その上に金属電極を蒸着する方法により作製される。光導電素子の場合、ガラス基板側から入射した光は透明電極を透過後、光導電性物質に吸収され、伝導帯に電子が、価電子帯に正孔がそれぞれ発生する。両キャリアは電界によってそれぞれ反対方向に加速され、両端の電極に達することにより外部回路に電流が流れる。また、有機ELでは、透明電極より注入された正孔、金属電極より注入された電子は、発光層内で励起子を形成し、それが基底状態に戻るときのエネルギー放出によって発光が生じる。   Organic photoconductive elements that convert optical signals into current signals and organic electroluminescence (EL) elements that emit light by current injection are generally produced by forming a thin film of an optical functional material on a glass substrate provided with a transparent electrode. It is produced by a method of depositing a metal electrode on it. In the case of a photoconductive element, light incident from the glass substrate side passes through the transparent electrode and is then absorbed by the photoconductive substance, generating electrons in the conduction band and holes in the valence band. Both carriers are accelerated in opposite directions by the electric field, and current reaches an external circuit by reaching the electrodes at both ends. In the organic EL, holes injected from the transparent electrode and electrons injected from the metal electrode form excitons in the light emitting layer, and light emission occurs due to energy emission when it returns to the ground state.

有機分子を用いてこれらの光機能素子を作製する場合、導電性高分子がよく用いられる。低分子材料より高分子材料を有機高分子に用いる場合の利点としては、耐熱性、機械的強度に勝る、湿式法により成膜できるため製造コスト面で有利であることなどが挙げられる。一方、高分子、低分子に限らず有機材料は、一般に大気中の酸素や水分の影響により劣化しやすい欠点がある。信頼性を確保するためには強固な封止技術の確立が不可欠であり、一般的にはUV硬化樹脂の塗布、不活性ガスの導入、封止キャップの張り合わせ、UV照射による樹脂の硬化などの工程を連続して行うが、プロセスコストはその分上昇することになる。   When producing these optical functional elements using organic molecules, conductive polymers are often used. Advantages in the case of using a polymer material as an organic polymer rather than a low-molecular material include superior heat resistance and mechanical strength, and advantageous in terms of manufacturing cost because a film can be formed by a wet method. On the other hand, organic materials, not limited to polymers and low molecules, generally have a drawback that they are likely to deteriorate due to the influence of oxygen and moisture in the atmosphere. In order to ensure reliability, it is indispensable to establish a strong sealing technology. Generally, such as application of UV curable resin, introduction of inert gas, pasting of sealing cap, curing of resin by UV irradiation, etc. Although the process is performed continuously, the process cost increases accordingly.

上記課題のうち、導電性高分子をゾルゲルガラスに封入することで、導電性高分子を大気中の酸素や水分から保護できることが示されている(特許文献1、及び非特許文献1を参照されたい。)加えて、ゾルゲル法はウェットプロセスのため蒸着装置などの大規模成膜装置が不要であり、任意形状対応、大面積化、低コスト化等にも有利である。
ゾルゲルガラスの主成分は、目的とする酸化物に対応した金属アルコキシドであり、この金属アルコキシドをアルコールと混ぜて混合溶液とし、加水分解に必要な水、及び触媒として酸又は塩基を加えて原料溶液を調整する。そのため、ゾルゲルガラスに添加できる導電性高分子は、アルコールや水に可溶な親水性の材料に限られるが、一般的に導電性高分子は疎水性であるものが殆どであり、例えば導電性高分子の一つであるポリシランに水溶性を付加する場合、ポリシランの側鎖に含まれるフェニル基を、フリーデルクラフツ(Freidel−Crafts)反応でクロロメチル化し、更に3級アミンを作用させることによって強い親水性をもつアンモニウム塩を導入するなどの複雑な化学的処理を施す必要があった。
特開2001-253721号公報(段落0004、図1) 「半導体国際会議(ICPS)、2001年大会予稿集pp. 1669-1670」(佐藤、鎌田他(H. Satoh, N. Kamata, K. Kanezaki, S. Aihara, Y. Yaoita and D. Terumura, Proc. Int. Conf. On Physics of Semiconductors, Springer Proc. In Physics, 87, pp. 1669-1670, 2001)
Among the above problems, it has been shown that encapsulating a conductive polymer in sol-gel glass can protect the conductive polymer from oxygen and moisture in the atmosphere (see Patent Document 1 and Non-Patent Document 1). In addition, since the sol-gel method is a wet process, it does not require a large-scale film forming apparatus such as a vapor deposition apparatus, and is advantageous for dealing with an arbitrary shape, increasing the area, and reducing the cost.
The main component of the sol-gel glass is a metal alkoxide corresponding to the target oxide, and this metal alkoxide is mixed with alcohol to form a mixed solution, water necessary for hydrolysis, and an acid or base as a catalyst to add a raw material solution Adjust. Therefore, the conductive polymer that can be added to the sol-gel glass is limited to hydrophilic materials that are soluble in alcohol and water. However, in general, most conductive polymers are hydrophobic, for example, conductive When adding water-solubility to polysilane, one of the polymers, the phenyl group contained in the side chain of polysilane is chloromethylated by the Friedel-Crafts reaction, followed by the action of a tertiary amine. It was necessary to perform complicated chemical treatments such as introducing ammonium salts with strong hydrophilicity.
JP 2001-253721 (paragraph 0004, FIG. 1) "Semiconductor International Conference (ICPS), 2001 Conference Proceedings pp. 1669-1670" (H. Satoh, N. Kamata, K. Kanezaki, S. Aihara, Y. Yaoita and D. Terumura, Proc Int. Conf. On Physics of Semiconductors, Springer Proc. In Physics, 87, pp. 1669-1670, 2001)

疎水性の分子に親水性を付加する一手法として、シクロデキストリンに分子を包接させることが知られている。包接とは、原子または分子が結合して形成する三次元構造物の内部に空孔があり、その空孔の中に別の原子や分子が入り込む現象のことで、この三次元構造物をホスト分子と呼ぶ。シクロデキストリンは代表的なホスト分子であり、六個から十個のグルコースが環状に繋がったグルコース・オリゴマーである。環の外側が親水性で内側が疎水性であることから、種々の疎水性分子を環内に取り込む。この包接作用は食品や医薬分野で用いられており、たとえばチューブ入り練りわさびの辛み成分の長期安定化などに応用されている(佐藤充克著、「化学と教育」(49巻1号、P4−7、2001)を参照されたい。)。   As one method for adding hydrophilicity to a hydrophobic molecule, it is known to include the molecule in cyclodextrin. Inclusion is a phenomenon in which a hole is inside a three-dimensional structure formed by the combination of atoms or molecules, and another atom or molecule enters the hole. Called host molecule. Cyclodextrin is a typical host molecule, and is a glucose oligomer in which 6 to 10 glucoses are linked in a cyclic manner. Since the outside of the ring is hydrophilic and the inside is hydrophobic, various hydrophobic molecules are incorporated into the ring. This inclusion action is used in the food and pharmaceutical fields, and is applied to, for example, long-term stabilization of the spicy ingredients of kneaded wasabi in tubes (Mitsatsu Sato, “Chemistry and Education” (Vol. 49, No. 1, P4-7, 2001).

本発明は、導電性高分子や光機能性有機低分子材料の全体、その末端基、或いは側鎖の一部をホスト分子に包接させることで、ホスト分子の親水性によりゾルゲルガラスへの導電性高分子の封入を可能とし、信頼性の高い素子の作製を容易に実現するものである。
即ち、本発明によるゾルゲル導電性ガラスは、
親水性のホスト分子及び疎水性の導電性高分子を含むゾルゲル導電性ガラスであって、
前記導電性高分子の疎水性を呈する側鎖の少なくとも一部が、疎水性のもの(例えば、分子全体、側鎖、或いは末端基など)を包接する機能を有する親水性のホスト分子に包接されている、
ことを特徴とする。
本発明によれば、疎水性であるためにゾルゲルガラスに安定して均一に分散させることが困難であった疎水性の導電性高分子をゲスト分子としてホスト分子に包接させることにより当該高分子を封入したゾルゲルガラスを提供することができるようになる。即ち、大気中の酸素や水分など機能阻害物質から導電性高分子を効果的に保護して、これらによる導電性物質の劣化(主鎖の酸化や分解などによる断裂など)を防止し、耐用時間を顕著に増加させることが可能である。よって、本発明によれば、安定した導電性(即ち安定した光応答性或いは電流応答性)を長期にわたって保障することができる。また、疎水性のため不安的かつ不均一な分散状態であった導電性高分子を均一かつ安定した状態で分散させることが可能となり、よって均一かつ安定した導電性機能を長期にわたり発揮させることが可能となる。このようなゾルゲルガラスは、光導電素子、光電変換素子、或いは発光・表示・照明素子など様々な用途に利用可能である。
In the present invention, the entire conductive polymer or photofunctional organic low-molecular material, the terminal group, or part of the side chain is included in the host molecule, so that the conductive property to the sol-gel glass is improved by the hydrophilicity of the host molecule. This makes it possible to encapsulate a functional polymer and easily produce a highly reliable device.
That is, the sol-gel conductive glass according to the present invention is
A sol-gel conductive glass comprising a hydrophilic host molecule and a hydrophobic conductive polymer,
At least part of the hydrophobic side chain of the conductive polymer is included in a hydrophilic host molecule having a function of including a hydrophobic group (for example, the whole molecule, side chain, or end group). Being
It is characterized by that.
According to the present invention, a hydrophobic conductive polymer, which has been difficult to stably and uniformly disperse in sol-gel glass due to hydrophobicity, is included in a host molecule as a guest molecule to thereby include the polymer. It becomes possible to provide a sol-gel glass encapsulating the. In other words, it effectively protects the conductive polymer from function-inhibiting substances such as oxygen and moisture in the atmosphere, prevents the deterioration of the conductive substance (such as rupture due to oxidation or decomposition of the main chain), etc. Can be significantly increased. Therefore, according to the present invention, stable conductivity (that is, stable photoresponse or current response) can be ensured over a long period of time. In addition, it is possible to disperse the conductive polymer, which is in an unstable and non-uniform dispersion state due to hydrophobicity, in a uniform and stable state, so that a uniform and stable conductive function can be exhibited over a long period of time. It becomes possible. Such sol-gel glass can be used for various applications such as a photoconductive element, a photoelectric conversion element, or a light emitting / display / illuminating element.

また、本発明によるゾルゲル導電性ガラスは、
光機能性有機低分子をも含む、
ことを特徴とする。
本発明によれば、ホスト分子の包接機能によって一般的に疎水性の導電性高分子ゾルゲルガラスに封入し、さらに光機能性有機低分子をもゾルゲルガラスに封入することで、導電性高分子及び光機能性有機低分子を空気中の水分や酸素などの機能阻害物質から効果的に保護することが可能となる。
The sol-gel conductive glass according to the present invention is
Including photofunctional organic small molecules,
It is characterized by that.
According to the present invention, a conductive polymer is generally encapsulated in a hydrophobic conductive polymer sol-gel glass by the inclusion function of the host molecule, and further, a photofunctional organic low molecule is also encapsulated in the sol-gel glass. In addition, it is possible to effectively protect the photofunctional organic small molecules from function-inhibiting substances such as moisture and oxygen in the air.

さらにまた、本発明によるゾルゲル導電性ガラスは、
光機能性有機低分子をも含み、
前記光機能性有機低分子、或いは当該低分子のうちの疎水性を呈する部分の少なくとも一部(例えば、分子全体、疎水性を呈する側鎖、官能基、または末端基など)が、前記親水性のホスト分子に包接されている、
ことを特徴とする。
本発明によれば、ホスト分子の包接機能によって、光機能性有機低分子が疎水性であってもゾルゲルガラスに安定かつ均一に分散させることができ、前述の構成と同様に、導電性高分子及び光機能性有機低分子を空気中の水分や酸素などの機能阻害物質から効果的に保護することが可能となる。また、均一かつ安定した導電性機能を長期にわたり発揮させることが可能となる。
なお、ホスト分子の包接機能、即ちホスト分子内部のゲストを包接する空間のサイズとゲスト分子のサイズとに応じて包接の状態は異なる。この場合は有機低分子のサイズとホスト分子のサイズに応じて、分子全体、側鎖、官能基、或いは末端基の一部などがホスト分子に包接され、このホスト分子を親水性の溶媒などに分散させてゾルゲルガラスを作製することが可能となる。
Furthermore, the sol-gel conductive glass according to the present invention is:
Including photofunctional organic small molecules,
The photofunctional organic low molecule or at least part of the hydrophobic portion of the low molecule (for example, the whole molecule, a hydrophobic side chain, a functional group, or a terminal group) is hydrophilic. Included in the host molecule,
It is characterized by that.
According to the present invention, due to the inclusion function of the host molecule, even if the photofunctional organic small molecule is hydrophobic, it can be stably and uniformly dispersed in the sol-gel glass. It becomes possible to effectively protect molecules and small photofunctional organic molecules from function inhibitors such as moisture and oxygen in the air. In addition, a uniform and stable conductive function can be exhibited over a long period of time.
Note that the inclusion state differs depending on the inclusion function of the host molecule, that is, the size of the space for inclusion of the guest inside the host molecule and the size of the guest molecule. In this case, depending on the size of the organic small molecule and the size of the host molecule, the entire molecule, side chain, functional group, or part of the terminal group is included in the host molecule, and this host molecule is treated as a hydrophilic solvent, etc. It is possible to produce a sol-gel glass by dispersing in a glass.

本発明による光機能素子は、
ゾルゲル導電性ガラスを用いた光機能素子であって、
前記ゾルゲル導電性ガラスは、親水性のホスト分子及び疎水性の導電性高分子を含み、
前記導電性高分子の疎水性を呈する側鎖の少なくとも一部が、疎水性のもの(分子、側鎖、末端基など)を包接する機能を有する親水性のホスト分子に包接されており、
入射した光を受け、前記導電性高分子で定まる特定波長の光を選択的に吸収し、吸収量に応じた電流を出力する、
ことを特徴とする光機能素子(受光、撮像素子、光導電素子、光電変換素子など)である。
The optical functional element according to the present invention is
An optical functional element using sol-gel conductive glass,
The sol-gel conductive glass includes a hydrophilic host molecule and a hydrophobic conductive polymer,
At least part of the hydrophobic side chain of the conductive polymer is included in a hydrophilic host molecule having a function of including a hydrophobic group (molecule, side chain, end group, etc.),
Receiving incident light, selectively absorbing light of a specific wavelength determined by the conductive polymer, and outputting a current according to the amount of absorption;
This is an optical functional element (light receiving, imaging element, photoconductive element, photoelectric conversion element, etc.).

また、本発明による光機能素子は、
ゾルゲル導電性ガラスを用いた光機能素子であって、
前記ゾルゲル導電性ガラスは、親水性のホスト分子及び疎水性の導電性高分子を含み、
前記導電性高分子の疎水性を呈する側鎖の少なくとも一部が、疎水性のもの(分子、側鎖、或いは末端基など)を包接する機能を有する親水性のホスト分子に包接されており、
供給された電流の値に応じて、前記導電性高分子で伝導されるキャリアを用いて前記導電性高分子で定まる特定波長の光を発光する、
ことを特徴とする光機能素子(発光、表示、照明素子など)である。
The optical functional element according to the present invention is
An optical functional element using sol-gel conductive glass,
The sol-gel conductive glass includes a hydrophilic host molecule and a hydrophobic conductive polymer,
At least part of the hydrophobic side chain of the conductive polymer is included in a hydrophilic host molecule having a function of including a hydrophobic group (molecule, side chain, end group, etc.). ,
Depending on the value of the supplied current, light of a specific wavelength determined by the conductive polymer is emitted using a carrier conducted by the conductive polymer.
This is an optical functional element (light emission, display, illumination element, etc.).

さらにまた、本発明による光機能素子は、
ゾルゲル導電性ガラスを用いた光機能素子であって、
光機能性有機低分子をも含み、
入射した光を受け、前記光機能性有機低分子で定まる特定波長の光を選択的に吸収し、吸収量に応じた電流を出力する、
ことを特徴とする光機能素子(受光、撮像素子、光導電素子、光電変換素子など)である。
Furthermore, the optical functional element according to the present invention is:
An optical functional element using sol-gel conductive glass,
Including photofunctional organic small molecules,
Receiving incident light, selectively absorbing light of a specific wavelength determined by the light functional organic small molecule, and outputting a current according to the amount of absorption;
This is an optical functional element (light receiving, imaging element, photoconductive element, photoelectric conversion element, etc.).

さらにまた、本発明による光機能素子は、
ゾルゲル導電性ガラスを用いた光機能素子であって、
前記導電性高分子の近傍には、光機能性有機低分子が分散されており、
供給された電流の値に応じて、前記導電性高分子で伝導されるキャリアを用いて、前記導電性高分子の近傍に分散させた前記光機能性有機低分子で定まる特定波長の光を発光する、
ことを特徴とする光機能素子(発光、表示、照明素子など)である。
Furthermore, the optical functional element according to the present invention is:
An optical functional element using sol-gel conductive glass,
In the vicinity of the conductive polymer, photofunctional organic small molecules are dispersed,
Depending on the value of the supplied current, light of a specific wavelength determined by the photofunctional organic small molecule dispersed in the vicinity of the conductive polymer is emitted using carriers conducted by the conductive polymer. To
This is an optical functional element (light emission, display, illumination element, etc.).

以下、諸図面を参照しつつ本発明の実施態様を詳細に説明する。
(1)ホスト分子
本発明では、機能性を発揮する疎水性の導電性高分子や光機能性有機低分子を包接してその疎水性を除去して親水性の溶媒に溶解や分散させるために、包接機能を有するホスト分子を利用する。本発明に好適なホスト分子の1例としてはシクロデキストリンがある。ホスト分子であるシクロデキストリンは、グルコースの結合数が六個環状に連なったα−シクロデキストリン、七個からなるβ−シクロデキストリン、八個からなるγ一シクロデキストリンがよく知られている。図1A)に、α−シクロデキストリンの構造式を示す。また、シクロデキストリンの構造簡略図を図1Bのように表す。このうち、α−シクロデキストリンの内径は0.4nm(4Å)程度であり、ちょうどベンゼン環が一つ入る大きさである。また、β−シクロデキストリンの内径は0.7nm(7Å)程度であり、ベンゼン環2つからなるナフタレンが入る。γ−シクロデキストリンの内径は1nm(10Å)程度であり、これはナフタレンが2個入る大きさである。ホスト分子としては、これらシクロデキストリンだけでなく、各種シクロデキストリン誘導体も含まれる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1) Host molecule In the present invention, in order to dissolve and disperse a hydrophobic conductive polymer that exhibits functionality and a low-functioning organic functional organic molecule, remove the hydrophobicity, and dissolve in a hydrophilic solvent. The host molecule having an inclusion function is used. One example of a host molecule suitable for the present invention is cyclodextrin. The cyclodextrin as a host molecule is well known as α-cyclodextrin having 6 consecutive glucose bonds, β-cyclodextrin consisting of seven, and γ-cyclodextrin consisting of eight. FIG. 1A) shows the structural formula of α-cyclodextrin. A simplified structure of cyclodextrin is represented as shown in FIG. 1B. Among these, α-cyclodextrin has an inner diameter of about 0.4 nm (4 mm), and is just large enough to contain one benzene ring. Moreover, the internal diameter of β-cyclodextrin is about 0.7 nm (7 cm), and naphthalene consisting of two benzene rings is contained. The inner diameter of γ-cyclodextrin is about 1 nm (10 cm), which is a size that can contain two naphthalene. The host molecule includes not only these cyclodextrins but also various cyclodextrin derivatives.

(2)導電性高分子
一方、導電性高分子の一つであるポリシラン誘導体は、Si原子が直鎖状に結合した一次元高分子であり、主鎖のσ電子共役による電子状態の広がりに応じた高効率の紫外発光、高い正孔輸送特性を呈するため、本発明に用いる導電性高分子に適した材料の1つである。また、Siを骨格構造としているため、シリカガラスやSi集積回路との親和性がよい。代表的なポリシラン誘導体であるポリメチルフェニルシランは、側鎖にメチル基とフェニル基を有しており、α−シクロデキストリンがそのフェニル基を包接することにより、分子全体が親水性となる。ポリメチルフェニルシランがα−シクロデキストリンに包接された状態の模式図を図2に示す。α−シクロデキストリンに包接されるポリシランの一例としては、例えば、図3Aに示す化学式のように側鎖の片方にフェニル基が結合していればよい。
ここで、もう一方の側鎖であるR1はフェニル基、ナフチル基、あるいはアルキル基が好適で、アルキル基(CnH2n+1)の場合、nはn=1から10程度がよい。β−シクロデキストリンに包接されるポリシランの一例としては、例えば図3Bに示す化学式のように、側鎖の片方にナフチル基が結合していればよい。
(2) Conductive polymer On the other hand, the polysilane derivative, one of the conductive polymers, is a one-dimensional polymer in which Si atoms are linearly bonded. Therefore, it is one of the materials suitable for the conductive polymer used in the present invention because it exhibits highly efficient ultraviolet light emission and high hole transport properties. Moreover, since Si has a skeleton structure, it has good affinity with silica glass and Si integrated circuits. Polymethylphenylsilane, which is a typical polysilane derivative, has a methyl group and a phenyl group in the side chain, and the entire molecule becomes hydrophilic by inclusion of the phenyl group by α-cyclodextrin. FIG. 2 shows a schematic diagram of the state in which polymethylphenylsilane is included in α-cyclodextrin. As an example of polysilane included in α-cyclodextrin, for example, a phenyl group may be bonded to one side chain as shown in the chemical formula shown in FIG. 3A.
Here, R1 as the other side chain is preferably a phenyl group, a naphthyl group, or an alkyl group. In the case of an alkyl group (C n H 2n + 1 ), n is preferably about n = 1 to 10. As an example of polysilane included in β-cyclodextrin, a naphthyl group may be bonded to one side chain as shown in the chemical formula shown in FIG. 3B, for example.

ここで、R2はフェニル基、ナフチル基、あるいはアルキル基が好適で、アルキル基(CnH2n+1)の場合、nはn=1から10程度がよい。さらに、上記フェニル基、ナフチル基以外でも、シクロデキストリンに包接され得る分子(例えばポリエチレングリコールなど)が側鎖に結合している化合物でもよい。また、上記側鎖フェニル基上のm−、あるいはp−位にアルキルあるいはアルコキシ置換基を有するポリシランも含まれる。ポリシラン誘導体以外の好適な導電性高分子としては、側鎖にフェニル基やナフチル基、ポリエチレングリコールなど、シクロデキストリンに包接される分子が結合しているものがよく、例えばポリバラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリピロール誘導体、ポリアセチレン誘導体などが挙げられる。 Here, R2 is preferably a phenyl group, a naphthyl group, or an alkyl group. In the case of an alkyl group (C n H 2n + 1 ), n is preferably about n = 1 to 10. Further, other than the above phenyl group and naphthyl group, a compound in which a molecule that can be included in cyclodextrin (for example, polyethylene glycol) is bonded to a side chain may be used. Also included are polysilanes having an alkyl or alkoxy substituent at the m- or p-position on the side chain phenyl group. Examples of suitable conductive polymers other than polysilane derivatives include those in which molecules included in cyclodextrins, such as phenyl groups, naphthyl groups, and polyethylene glycol, are bonded to the side chains. For example, polybaraphenylene vinylene derivatives, Examples include polythiophene derivatives, polypyrrole derivatives, polyacetylene derivatives, and the like.

(3)ホスト分子に包接された導電性高分子の調整
ホスト分子の飽和水溶液に導電性高分子をそのまま、あるいは少量の有機溶媒に溶解した溶液を加え、数時間攪拌した後、乾燥することにより得られる。
(3) Preparation of the conductive polymer included in the host molecule Add the solution of the conductive polymer to the saturated aqueous solution of the host molecule as it is or in a small amount of organic solvent, stir for several hours, and then dry. Is obtained.

(4)ゾルゲルガラス
ゾルゲル法は原料溶液を調合し、その後溶液反応を利用して母体ネットワークを形成するという、均一性に優れた低温プロセスである。テトラエトキシシラン(TEOS)を出発原料とした場合、加水分解、重縮合反応及び焼成過程を経て−Si−O−Si−O−Si−‥‥という3次元ネットワークを有するシリカガラスが作製可能である。標準的なゾルゲルプロセスとしては、TEOS:EtOH(エタノール):H2O:HNO3:DMF(ジメチルホルムアミド)=1:6:11:0.3:1の組成比(モル比、以下同様)で出発溶液を調合し、ゾルゲガラスを作製することができる(詳細には、作花済夫著「ゾルゲル法の科学」(アグネ承風社)を参照されたい。)。この場合容器形状により最終的なバルク固体形状が定まり、また基板へのディップ、滴下やスピンコートによりガラス薄膜を得ることが出来る。
(4) Sol-gel glass The sol-gel method is a low-temperature process with excellent uniformity, in which a raw material solution is prepared and then a matrix network is formed by using a solution reaction. When tetraethoxysilane (TEOS) is used as a starting material, a silica glass having a three-dimensional network of -Si-O-Si-O-Si -... can be produced through hydrolysis, polycondensation reaction and firing process. . As a standard sol-gel process, a composition ratio of TEOS: EtOH (ethanol): H 2 O: HNO 3 : DMF (dimethylformamide) = 1: 6: 11: 0.3: 1 (molar ratio, the same applies hereinafter) The starting solution can be formulated to make a Sorge glass (for details, see Sakuo Sakuo, “Sci-Gel Science” (Agne Jofu)). In this case, the final bulk solid shape is determined by the container shape, and a glass thin film can be obtained by dipping, dropping, or spin coating on the substrate.

(5)導電性高分子がゾルゲルガラスに封入された有機EL素子
導電性高分子がキャリア伝導および発光の両方を担う場合、シクロデキストリンに側鎖を包接された導電性高分子をゾルゲルガラスに封入すればよい。ゾルゲルプロセスの出発組成比としては、TEOSの1モルに対してホスト分子に包接された導電性高分子が0.01〜0.1モル程度がよい。
導電性高分子がキャリアの伝導を担い、高分子膜内に分散された有機色素などの低分子材料が発光を担う分散型高分子系有機ELの場合、分散させる低分子材料がエタノールなどのアルコール類に可溶であればそのままゾルゲルガラスに分散させることが可能である。また、対象となる低分子材料がアルコールに不溶であっても、その低分子材料にフェニル基、あるいはナフチル基が結合している湯合、さらにはその低分子材料にフェニル基、あるいはナフチル基を化学的に結合させ、ホスト分子に包接させることでゾルゲルガラスに分散させることが可能となる。発光性低分子材料の一例を挙げるとアクリジン系色素、クマリン系色素、シアニン系色素、キサンテン系色素、スタアリウム系色素、各種金属錯体などがある。ゾルゲルプロセスの組成比としては、導電性高分子の1モルに対して低分子系材料が0.001〜0.01モル程度がよい。
(5) Organic EL element in which conductive polymer is encapsulated in sol-gel glass When the conductive polymer is responsible for both carrier conduction and light emission, the conductive polymer in which the side chain is included in cyclodextrin is used as sol-gel glass. What is necessary is just to enclose. The starting composition ratio of the sol-gel process is preferably about 0.01 to 0.1 mol of the conductive polymer included in the host molecule with respect to 1 mol of TEOS.
In the case of a dispersed polymer organic EL in which a conductive polymer is responsible for carrier conduction and a low molecular material such as an organic dye dispersed in a polymer film is responsible for light emission, the low molecular material to be dispersed is an alcohol such as ethanol. It is possible to disperse it as it is in sol-gel glass if it is soluble in a kind. In addition, even if the target low molecular weight material is insoluble in alcohol, the low molecular weight material has a phenyl group or a naphthyl group bonded thereto, and further, the low molecular weight material has a phenyl group or a naphthyl group. It can be dispersed in sol-gel glass by chemically bonding and inclusion in host molecules. Examples of the light-emitting low-molecular material include acridine dyes, coumarin dyes, cyanine dyes, xanthene dyes, stararium dyes, and various metal complexes. The composition ratio of the sol-gel process is preferably about 0.001 to 0.01 mol of the low molecular weight material with respect to 1 mol of the conductive polymer.

(6)導電性高分子がゾルゲルガラスに封入された光機能素子(受光・撮像素子など)
導電性高分子が光吸収によるキャリア発生およびキャリア伝導の両方を担う場合、シクロデキストリンに側鎖を包接された導電性高分子をゾルゲルガラスに封入すればよい。ゾルゲルプロセスの出発組成比としては、TEOSの1モルに対してホスト分子に包接された導電性高分子が0.01〜0.1モル程度がよい。
導電性高分子がキャリアの伝導を担い、高分子膜内に分散された有機色素などの低分子材料がキャリアを担う分散型高分子系受光・撮像素子の場合、分散させる低分子材料がエタノールなどのアルコール類に可溶であればそのままゾルゲルガラスに分散させることが可能である。また、アルコールに不溶な低分子材料であっても、その低分子材料にフェニル基、あるいはナフチル基が結合している場合、さらにはその低分子材料にフェニル基、あるいはナフチル基を化学的に結合させ、ホスト分子に包接させることでゾルゲルガラスに分散させることが可能となる。光吸収性低分子材料の一列を挙げるとアクリジン系色素、クマリン系色素、シアニン系色素、キサンテン系色素、スクアリウム系色素、各種金属錯体などがある。ゾルゲルプロセスの組成比としては、導電性高分子の1モルに対して低分子系材料が0.001〜0.01モル軽度がよい。
(6) Optical functional device (light receiving / imaging device, etc.) with conductive polymer sealed in sol-gel glass
When the conductive polymer is responsible for both carrier generation and carrier conduction due to light absorption, the conductive polymer in which the side chain is included in the cyclodextrin may be encapsulated in sol-gel glass. The starting composition ratio of the sol-gel process is preferably about 0.01 to 0.1 mol of the conductive polymer included in the host molecule with respect to 1 mol of TEOS.
In the case of a dispersed polymer light-receiving / imaging device in which a conductive polymer is responsible for carrier conduction and a low-molecular material such as an organic dye dispersed in a polymer film is the carrier, the low-molecular material to be dispersed is ethanol, etc. If it is soluble in these alcohols, it can be directly dispersed in sol-gel glass. In addition, even if the low molecular weight material is insoluble in alcohol, if the phenyl or naphthyl group is bonded to the low molecular weight material, the phenyl or naphthyl group is further chemically bonded to the low molecular weight material. It can be dispersed in sol-gel glass by inclusion in a host molecule. Examples of light-absorbing low molecular weight materials include acridine dyes, coumarin dyes, cyanine dyes, xanthene dyes, squalium dyes, and various metal complexes. The composition ratio of the sol-gel process is preferably such that the low molecular weight material is light in the range of 0.001 to 0.01 mole per mole of the conductive polymer.

以下の手順で実際に本発明によるゾルゲル導電性ガラスを作成した。
(i)ホスト分子に包接された導電性高分子の作製
α−シクロデキストリンの飽和水溶液10mlに、ポリメチルフェニルシラン1mgを1mlのクロロホルムに溶かした溶液を滴下し、2時間攪拌することにより、沈殿物が生じた。溶媒を除去乾燥することで、α−シクロデキストリンに包接されたポリメチルフェニルシラン(CD−PMPS)の粉末を得た。
A sol-gel conductive glass according to the present invention was actually prepared by the following procedure.
(I) Preparation of conductive polymer included in host molecule To 10 ml of a saturated aqueous solution of α-cyclodextrin, a solution of 1 mg of polymethylphenylsilane dissolved in 1 ml of chloroform was dropped and stirred for 2 hours. A precipitate formed. By removing the solvent and drying, a powder of polymethylphenylsilane (CD-PMPS) encapsulated in α-cyclodextrin was obtained.

(ii)導電性ゾルゲルガラスの作製と光学特性
標準的なゾルゲルプロセスにより、TEOS:エタノール:水:硝酸:ジメチルホルムアミド:CD−PMPS=1:6:11:0.3:1:0.05の組成比になるように調整し、30分攪拌混合することにより出発溶液を調合した。調整したゾルゲル溶液0.2mlを、インジウム錫酸化膜(ITO)透明電極付石英ガラス基板上に滴下した後、回転塗布法(1500回転、60秒)により塗布し、100℃にて1時間乾燥させることで、薄膜ゾルゲルガラスを作製した。作製した薄膜ガラスは無色透明であったことから、ポリメチルフェニルシランがガラス中に均一に分散されていることを確認した。また、作製したゾルゲルガラス上にアルミニウム電極を蒸着することにより、「ITO電極/ゾルゲルガラス/アルミ電極」構造のサンドイッチセルを形成した。ITO電極側からPMPSの光吸収波長である330nmの光を入射したとき、光キャリア生成による電流を観測し、作製したゾルゲルガラスが光機能素子として動作することを確認した。
なお、この実施例は触媒として硝酸を用いたシリカガラスの場合であり、他の酸(塩酸等)や塩基(アンモニア)触媒を用いても、またシリカ系以外のガラスでも作製可能である。
(Ii) Preparation and optical properties of conductive sol-gel glass By standard sol-gel process, composition ratio of TEOS: ethanol: water: nitric acid: dimethylformamide: CD-PMPS = 1: 6: 11: 0.3: 1: 0.05 And the starting solution was prepared by stirring and mixing for 30 minutes. After dropping 0.2 ml of the prepared sol-gel solution onto a quartz glass substrate with an indium tin oxide film (ITO) transparent electrode, apply by spin coating (1500 rpm, 60 seconds) and dry at 100 ° C. for 1 hour. Thus, a thin film sol-gel glass was produced. Since the produced thin film glass was colorless and transparent, it was confirmed that polymethylphenylsilane was uniformly dispersed in the glass. In addition, a sandwich cell having an “ITO electrode / sol-gel glass / aluminum electrode” structure was formed by vapor-depositing an aluminum electrode on the produced sol-gel glass. When light having a wavelength of 330 nm, which is the light absorption wavelength of PMPS, was incident from the ITO electrode side, the current generated by photocarrier generation was observed, and it was confirmed that the produced sol-gel glass operated as an optical functional element.
This example is a case of silica glass using nitric acid as a catalyst, and it can be produced using other acid (hydrochloric acid) or base (ammonia) catalyst, or glass other than silica.

以上に示したように、疎水性の導電性高分子を、導電性高分子の側鎖をホスト分子に包接させてゾルゲルガラスに封入することにより、光信号を電流信号に変換するフォトダイオード、撮像デバイスや、電流注入により発光を生じるELデバイスを始めとする光通信光源、表示・照明デバイス等、産業上有用な信頼性の高い発光・受光デバイスを、容易に作製することが可能となる。   As shown above, a hydrophobic conductive polymer is a photodiode that converts an optical signal into a current signal by enclosing the conductive polymer in a sol-gel glass with the side chain of the conductive polymer being included in a host molecule, Industrially useful highly reliable light emitting / receiving devices such as imaging devices, optical communication light sources such as EL devices that emit light by current injection, and display / illumination devices can be easily produced.

本明細書では、様々な実施態様で本発明の原理を説明してきたが、本発明は上述した実施例に限定されず幾多の変形および修正を施すことが可能であり、これら変形および修正されたものも本発明に含まれることを理解されたい。例えば、ゲスト分子としては、主としてデキストリンを挙げて説明したが、本発明には、その他の包接機能を有する各種材料を用いることも可能である。   In the present specification, the principle of the present invention has been described in various embodiments. However, the present invention is not limited to the above-described embodiments, and many variations and modifications can be made. It should be understood that these are also included in the present invention. For example, as the guest molecule, dextrin has been mainly described, but various materials having other inclusion functions can be used in the present invention.

α−シクロデキストリンの構造を示す図である。It is a figure which shows the structure of (alpha) -cyclodextrin. シクロデキストリンの構造簡略図である。It is a structure simplification figure of cyclodextrin. ホスト分子に側鎖を包接されたポリメチルフェニルシランの模式図である。It is a schematic diagram of polymethylphenylsilane in which a side chain is included in a host molecule. α−シクロデキストリンに包接されるポリシランの化学式の一例を示す図である。It is a figure which shows an example of the chemical formula of the polysilane included by alpha-cyclodextrin. β−シクロデキストリンに包接されるポリシランの化学式の一例を示す図である。It is a figure which shows an example of the chemical formula of polysilane included by (beta) -cyclodextrin.

Claims (7)

疎水性の導電性高分子を含むゾルゲル導電性ガラスであって、
前記導電性高分子の側鎖の少なくとも一部が、疎水性のものを包接する機能を有する親水性のホスト分子に包接されている、
ことを特徴とするゾルゲル導電性ガラス。
A sol-gel conductive glass containing a hydrophobic conductive polymer,
At least a part of the side chain of the conductive polymer is included in a hydrophilic host molecule having a function of including a hydrophobic one,
Sol-gel conductive glass characterized by the above.
請求項1に記載のゾルゲル導電性ガラスにおいて、
光機能性有機低分子をも含む、
ことを特徴とするゾルゲル導電性ガラス。
In the sol-gel conductive glass according to claim 1,
Including photofunctional organic small molecules,
Sol-gel conductive glass characterized by the above.
請求項1に記載のゾルゲル導電性ガラスにおいて、
光機能性有機低分子をも含み、
前記光機能性有機低分子、或いは当該低分子の少なくとも一部が、前記親水性のホスト分子に包接されている、
ことを特徴とするゾルゲル導電性ガラス。
In the sol-gel conductive glass according to claim 1,
Including photofunctional organic small molecules,
The photofunctional organic small molecule, or at least a part of the small molecule is included in the hydrophilic host molecule,
Sol-gel conductive glass characterized by the above.
ゾルゲル導電性ガラスを用いた光機能素子であって、
前記ゾルゲル導電性ガラスは、疎水性の導電性高分子を含み、
前記導電性高分子の側鎖の少なくとも一部が、疎水性のものを包接する機能を有する親水性のホスト分子に包接されており、
入射した光を受け、前記導電性高分子で定まる特定波長の光を選択的に吸収し、吸収量に応じた電流を出力する、
ことを特徴とする光機能素子。
An optical functional element using sol-gel conductive glass,
The sol-gel conductive glass includes a hydrophobic conductive polymer,
At least a part of the side chain of the conductive polymer is included in a hydrophilic host molecule having a function of including a hydrophobic one,
Receiving incident light, selectively absorbing light of a specific wavelength determined by the conductive polymer, and outputting a current according to the amount of absorption;
An optical functional element characterized by the above.
ゾルゲル導電性ガラスを用いた光機能素子であって、
前記ゾルゲル導電性ガラスは、疎水性の導電性高分子を含み、
前記導電性高分子の側鎖の少なくとも一部が、疎水性のものを包接する機能を有する親水性のホスト分子に包接されており、
供給された電流の値に応じて、前記導電性高分子で伝導されるキャリアを用いて前記導電性高分子で定まる特定波長の光を発光する、
ことを特徴とする光機能素子。
An optical functional element using sol-gel conductive glass,
The sol-gel conductive glass includes a hydrophobic conductive polymer,
At least a part of the side chain of the conductive polymer is included in a hydrophilic host molecule having a function of including a hydrophobic one,
Depending on the value of the supplied current, light of a specific wavelength determined by the conductive polymer is emitted using a carrier conducted by the conductive polymer.
An optical functional element characterized by the above.
請求項2、または3に記載のゾルゲル導電性ガラスを用いた光機能素子であって、
入射した光を受け、前記光機能性有機低分子で定まる特定波長の光を選択的に吸収し、吸収量に応じた電流を出力する、
ことを特徴とする光機能素子。
An optical functional device using the sol-gel conductive glass according to claim 2 or 3,
Receiving incident light, selectively absorbing light of a specific wavelength determined by the light functional organic small molecule, and outputting a current according to the amount of absorption;
An optical functional element characterized by the above.
請求項2、または3に記載のゾルゲル導電性ガラスを用いた光機能素子であって、
供給された電流の値に応じて、前記導電性高分子で伝導されるキャリアを用いて前記光機能性有機低分子で定まる特定波長の光を発光する、
ことを特徴とする光機能素子。
An optical functional device using the sol-gel conductive glass according to claim 2 or 3,
Depending on the value of the supplied current, light of a specific wavelength determined by the photofunctional organic small molecule is emitted using a carrier conducted by the conductive polymer.
An optical functional element characterized by the above.
JP2003410513A 2003-12-09 2003-12-09 Sol-gel conductive glass and optical functional device using the same Expired - Lifetime JP4743743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410513A JP4743743B2 (en) 2003-12-09 2003-12-09 Sol-gel conductive glass and optical functional device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410513A JP4743743B2 (en) 2003-12-09 2003-12-09 Sol-gel conductive glass and optical functional device using the same

Publications (2)

Publication Number Publication Date
JP2005170708A true JP2005170708A (en) 2005-06-30
JP4743743B2 JP4743743B2 (en) 2011-08-10

Family

ID=34731587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410513A Expired - Lifetime JP4743743B2 (en) 2003-12-09 2003-12-09 Sol-gel conductive glass and optical functional device using the same

Country Status (1)

Country Link
JP (1) JP4743743B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508568A (en) * 2011-12-22 2015-03-19 サイノーラ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Organic molecules for OLEDs and other optoelectronic devices
JP2020201163A (en) * 2019-06-11 2020-12-17 阿波製紙株式会社 Radiation detection powder and method of manufacturing the same, and radiographic inspection paper with radiation detection powder and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167254A (en) * 1987-12-24 1989-06-30 Ricoh Co Ltd Electrically conductive polymer material composite
JPH01183420A (en) * 1988-01-13 1989-07-21 Nippon Telegr & Teleph Corp <Ntt> Production of glass
JPH0333031A (en) * 1989-06-29 1991-02-13 Sumitomo Electric Ind Ltd Production of functional organic molecule-doped amorphous silica
JPH08295537A (en) * 1994-09-19 1996-11-12 Toshiba Corp Glass composite material, precursor for the material, nitrogen-containing composite material, light emitting element, electrophotographic photoreceptor, nonlinear optical element and laser element
JPH11236210A (en) * 1998-02-25 1999-08-31 Kyocera Corp Preparation of polysilane compound, photoreceptor using the same and image forming device
JP2001253721A (en) * 2000-03-14 2001-09-18 Japan Science & Technology Corp Water-soluble polysilane dispersed sol-gel glass and method for producing the same
JP2001271012A (en) * 2000-01-20 2001-10-02 Sharp Corp Recording liquid and method for using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167254A (en) * 1987-12-24 1989-06-30 Ricoh Co Ltd Electrically conductive polymer material composite
JPH01183420A (en) * 1988-01-13 1989-07-21 Nippon Telegr & Teleph Corp <Ntt> Production of glass
JPH0333031A (en) * 1989-06-29 1991-02-13 Sumitomo Electric Ind Ltd Production of functional organic molecule-doped amorphous silica
JPH08295537A (en) * 1994-09-19 1996-11-12 Toshiba Corp Glass composite material, precursor for the material, nitrogen-containing composite material, light emitting element, electrophotographic photoreceptor, nonlinear optical element and laser element
JPH11236210A (en) * 1998-02-25 1999-08-31 Kyocera Corp Preparation of polysilane compound, photoreceptor using the same and image forming device
JP2001271012A (en) * 2000-01-20 2001-10-02 Sharp Corp Recording liquid and method for using the same
JP2001253721A (en) * 2000-03-14 2001-09-18 Japan Science & Technology Corp Water-soluble polysilane dispersed sol-gel glass and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508568A (en) * 2011-12-22 2015-03-19 サイノーラ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Organic molecules for OLEDs and other optoelectronic devices
US10312456B2 (en) 2011-12-22 2019-06-04 Cynora Gmbh Organic molecules for OLEDs and other optoelectronic devices
JP2020201163A (en) * 2019-06-11 2020-12-17 阿波製紙株式会社 Radiation detection powder and method of manufacturing the same, and radiographic inspection paper with radiation detection powder and method of manufacturing the same
JP7295514B2 (en) 2019-06-11 2023-06-21 阿波製紙株式会社 RADIATION DETECTION POWDER AND MANUFACTURING METHOD THEREOF, AND RADIATION INSPECTION PAPER INCLUDING RADIATION DETECTION POWDER AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JP4743743B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
Wang et al. Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer
Lai et al. Tunable near-infrared luminescence in tin halide perovskite devices
Ercan et al. Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications
JP4291973B2 (en) Photoelectric conversion material and photovoltaic cell
KR101460021B1 (en) Use of a heterocyclic radical or heterocyclic diradical, the dimers, oligomers, polymers, dispiro compounds and polycycles thereof as a dopant for doping an organic semiconductive matrix material
EP1974399B1 (en) Improved carbon nanotube based semiconducting devices and methods for their production
Tsuda et al. Discrete conjugated porphyrin tapes with an exceptionally small bandgap
EP2466664B1 (en) Method for producing a hole blocking layer and method for manufacturing a photoelectric conversion element comprising the hole blocking layer
KR102027362B1 (en) Semiconductor composition
Luponosov et al. Branched triphenylamine-based oligomers for organic electronics
Omer et al. Electrochemistry, spectroscopy, and electrogenerated chemiluminescence of some star-shaped truxene− oligofluorene compounds
JP2007536753A (en) Organic electronic devices
US20070295395A1 (en) Photovoltaic Device With Trimetaspheres
JP2017126676A (en) Photoelectric conversion element
JP4743743B2 (en) Sol-gel conductive glass and optical functional device using the same
CN102576804A (en) Organic photoelectric conversion element and manufacturing method thereof
KR101039574B1 (en) Coaxial 4-layer semiconducting organic nanocable including conductive charge trasfer p-n junction, the photo-electric device using the same and method for preparing the same
Zhang et al. Phototunable and Photopatternable Polymer Semiconductors
Soares et al. Fabrication of fluorescent PMMA-carbon nanodots optical films and their feasibility in improving solar cells efficiency using low-cost sustainable materials
Wang et al. Cu–Thienoquinone Charge-Transfer Complex: Synthesis, Characterization, and Application in Organic Transistors
CN105175690A (en) Preparation method for poly(4-alkoxy-9,9-diphenyl fluorene) beta phase
Ramkumar et al. π-Stacking, conjugated, polymer-supported carbon nanotubes (CNTs) composite materials for light-emitting diode (LED) application
Gaur et al. Studies on stability of bi-functional P3HT: PCBM: rubrene optoelectronic devices
KR101012542B1 (en) Polymer and solarcell having the same
JP4371303B2 (en) Photoconductive element and light emitting element provided with sol-gel conductive glass

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050624

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4743743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term