JP2005170167A - Hollow vessel for fuel tank having gas barrier characteristic, and manufacturing method thereof - Google Patents

Hollow vessel for fuel tank having gas barrier characteristic, and manufacturing method thereof Download PDF

Info

Publication number
JP2005170167A
JP2005170167A JP2003411368A JP2003411368A JP2005170167A JP 2005170167 A JP2005170167 A JP 2005170167A JP 2003411368 A JP2003411368 A JP 2003411368A JP 2003411368 A JP2003411368 A JP 2003411368A JP 2005170167 A JP2005170167 A JP 2005170167A
Authority
JP
Japan
Prior art keywords
fuel tank
hollow container
resin
fuel
day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003411368A
Other languages
Japanese (ja)
Inventor
Seiichi Tejima
成市 手嶋
Takanobu Ameno
孝信 雨野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Seiko Corp
Original Assignee
Takagi Seiko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Seiko Corp filed Critical Takagi Seiko Corp
Priority to JP2003411368A priority Critical patent/JP2005170167A/en
Publication of JP2005170167A publication Critical patent/JP2005170167A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow vessel for a fuel tank having surface gloss and gas barrier characteristic, while suppressing the cost, and to provide a manufacturing method thereof. <P>SOLUTION: The manufacturing method of the hollow vessel for a fuel tank has a fluoridation process for performing fluoridation to a surface of a resin particle to obtain a surface-fluoride resin particle, and a molding process for molding the surface-fluoride resin particles to the hollow vessel for the fuel tank. Especially, quantity of fluorine in the hollow vessel for the fuel tank is set at 1 - 500 mg/cm<SP>3</SP>, and fuel passing rate is set at 15.0 g mm/m<SP>2</SP>day or less, and degree of surface gloss in the outer surface of the vessel is set at 30 % or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料タンク等に用いられるガスバリヤ性を有する燃料タンク用中空容器及びその製造方法に関する。特に、本発明は、ポリマー及び該ポリマーに含有されるフッ化処理部位を有する燃料タンク用中空容器及びその製造方法に関する。   The present invention relates to a fuel tank hollow container having gas barrier properties used for a fuel tank and the like, and a method for producing the same. In particular, the present invention relates to a polymer, a hollow container for a fuel tank having a fluorination site contained in the polymer, and a method for producing the same.

近年、各種車両用部品の分野において、軽量化による燃費の向上、形状の自由度などの利点から、樹脂製の燃料タンクが要望されている。燃料タンクは、その性質上、高いガスバリヤ性(燃料の耐透過性)、及び高い衝撃強度を有することが望まれている。
高いガスバリヤ性を達成する手法の一つとして、樹脂から燃料タンクを成形し、その後、その成形品である燃料タンクの表面をフッ化処理する手法が、特許文献1に開示されている。
特開昭60−6735号公報。
In recent years, resin fuel tanks have been demanded in the field of various vehicle parts because of advantages such as improvement in fuel efficiency due to weight reduction and freedom of shape. The fuel tank is desired to have high gas barrier properties (permeation resistance of fuel) and high impact strength due to its properties.
As one of techniques for achieving high gas barrier properties, Patent Document 1 discloses a technique in which a fuel tank is molded from a resin, and then the surface of the fuel tank that is the molded product is fluorinated.
JP-A-60-6735.

しかしながら、燃料タンク用中空容器をフッ化処理するには、該燃料タンク用中空容器を反応器に収め、該反応器内にフッ化処理用ガス(例えば、フッ素ガス単独、又はフッ素ガスと各種ガスとの混合ガス)を充満させて、フッ化処理する工程が必要となる。即ち、この手法では、反応器として大きな設備が必要であり、設備投資面におけるコストの問題点を有していた。また、反応器内にフッ素ガス等を充満させなければならないため、反応に用いるフッ素ガス等を無駄にするという原材料面におけるコストの問題点も有していた。
また、このようなフッ化処理は、得られる燃料タンク用中空容器の外観が損なわれるという欠点、具体的には、燃料タンク用中空容器の表面光沢が失われるという欠点を有していた。
However, in order to fluorinate a fuel tank hollow container, the fuel tank hollow container is placed in a reactor, and a fluorination gas (for example, fluorine gas alone or fluorine gas and various gases) is contained in the reactor. And a fluorination process is required. That is, this method requires a large facility as a reactor, and has a problem of cost in terms of capital investment. In addition, since the reactor must be filled with fluorine gas or the like, there has been a problem of cost in terms of raw materials that wastes fluorine gas or the like used for the reaction.
Further, such a fluorination treatment has a drawback that the appearance of the resulting fuel tank hollow container is impaired, specifically, the surface gloss of the fuel tank hollow container is lost.

そこで、本発明の目的は、上記の従来の問題点を解決することにある。
即ち、本発明の目的は、設備投資面及び原材料面のコストを抑えつつ表面光沢を有し且つガスバリヤ性を保持する燃料タンク用中空容器及びその製造方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-described conventional problems.
That is, an object of the present invention is to provide a fuel tank hollow container having a surface gloss and maintaining a gas barrier property, and a method for producing the same, while suppressing costs for capital investment and raw materials.

本発明者らは、以下の発明により、上記課題を解決できることを見出した。
<1> 樹脂及び該樹脂をフッ化処理したフッ化処理部位を有し、表面光沢度が30%以上、好ましくは35%以上、より好ましくは38%以上である燃料タンク用中空容器。
<2> 上記<1>において、燃料タンク用中空容器の燃料透過量が15.0g・mm/m・day以下、好ましくは10.0g・mm/m・day以下、より好ましくは3.0g・mm/m・day以下であるのがよい。
<3> 上記<1>又は<2>において、フッ化処理部位は、燃料タンク用中空容器のフッ素量が1〜500mg/cm、好ましくは10〜300mg/cm、より好ましくは50〜200mg/cmであるのがよい。
The present inventors have found that the above-described problems can be solved by the following invention.
<1> A fuel tank hollow container having a resin and a fluorination treatment site obtained by fluorination treatment of the resin, and having a surface glossiness of 30% or more, preferably 35% or more, more preferably 38% or more.
<2> In the above item <1>, the fuel permeation amount of the fuel tank hollow container is 15.0 g · mm / m 2 · day or less, preferably 10.0 g · mm / m 2 · day or less, more preferably 3. It should be 0 g · mm / m 2 · day or less.
<3> In the above item <1> or <2>, the fluorination treatment site has a fluorine amount of 1 to 500 mg / cm 3 , preferably 10 to 300 mg / cm 3 , more preferably 50 to 200 mg in the hollow container for a fuel tank. / Cm 3 is preferable.

<4> 樹脂及び該樹脂をフッ化処理したフッ化処理部位を有するフッ化物含有樹脂層を有する燃料タンク用中空容器であって、該容器の外表面の表面光沢度が30%以上、好ましくは35%以上、より好ましくは38%以上である燃料タンク用中空容器。
<5> 上記<4>において、フッ化物含有樹脂層のフッ素量が1〜500mg/cm、好ましくは10〜300mg/cm、より好ましくは50〜200mg/cmであるのがよい。
<6> 上記<4>又は<5>において、燃料タンク用中空容器の燃料透過量が15.0g・mm/m・day以下、好ましくは10.0g・mm/m・day以下、より好ましくは3.0g・mm/m・day以下であるのがよい。
<4> A hollow container for a fuel tank having a resin and a fluoride-containing resin layer having a fluorination treatment site obtained by fluorination treatment of the resin, wherein the surface glossiness of the outer surface of the container is 30% or more, preferably A fuel tank hollow container of 35% or more, more preferably 38% or more.
<5> In the above item <4>, the fluorine content of the fluoride-containing resin layer is 1 to 500 mg / cm 3 , preferably 10 to 300 mg / cm 3 , and more preferably 50 to 200 mg / cm 3 .
<6> In the above item <4> or <5>, the fuel permeation amount of the fuel tank hollow container is 15.0 g · mm / m 2 · day or less, preferably 10.0 g · mm / m 2 · day or less. Preferably, it is 3.0 g · mm / m 2 · day or less.

<7> 樹脂粒子の表面をフッ化処理して表面フッ化処理樹脂粒子を得、その表面フッ化処理樹脂粒子を燃料タンク用中空容器に成形する成形工程を有する燃料タンク用中空容器の製造方法。
<8> 上記<7>において、成形工程を、ブロー成形;回転成形;並びに射出及び溶着成形からなる群から選ばれる少なくとも1種により行うのがよい。
<9> 上記<7>又は<8>において、燃料タンク用中空容器のフッ素量が1〜500mg/cm、好ましくは10〜300mg/cm、より好ましくは50〜200mg/cmであるのがよい。
<10> 上記<7>〜<9>のいずれかにおいて、燃料タンク用中空容器の燃料透過量が15.0g・mm/m・day以下、好ましくは10.0g・mm/m・day以下、より好ましくは3.0g・mm/m・day以下であるのがよい。
<7> A method for producing a hollow container for a fuel tank, comprising a step of fluorinating the surface of resin particles to obtain surface fluorinated resin particles, and molding the surface fluorinated resin particles into a hollow container for a fuel tank .
<8> In the above <7>, the molding step may be performed by at least one selected from the group consisting of blow molding; rotational molding; and injection and welding molding.
<9> In the above <7> or <8>, the fluorine content of the fuel tank hollow container is 1 to 500 mg / cm 3 , preferably 10 to 300 mg / cm 3 , more preferably 50 to 200 mg / cm 3 . Is good.
<10> In any one of the above items <7> to <9>, the fuel permeation amount of the fuel tank hollow container is 15.0 g · mm / m 2 · day or less, preferably 10.0 g · mm / m 2 · day. Below, it is more preferable that it is 3.0 g · mm / m 2 · day or less.

本発明により、設備投資面及び原材料面のコストを抑えつつ表面光沢を有し且つガスバリヤ性を保持する燃料タンク用中空容器及びその製造方法を提供することができる。   According to the present invention, it is possible to provide a fuel tank hollow container having a surface gloss and a gas barrier property while suppressing costs for capital investment and raw materials, and a method for manufacturing the same.

以下、本発明を詳細に説明する。
本発明は、樹脂及び該樹脂をフッ化処理したフッ化処理部位を有する構成面を有する燃料タンク用中空容器であって、該容器の外表面の表面光沢度が30%以上、好ましくは35%以上、より好ましくは38%以上である燃料タンク用中空容器を提供する。
本発明に用いられる樹脂は、特に限定されないが、例えば熱可塑性樹脂、熱硬化性樹脂など、種々の樹脂を挙げることができる。具体的には、エチレン、プロピレン、1−ブテン、3−メチル−1−ブテンなどのα−オレフィンの単独重合体及び2種以上のコモノマーからなる共重合体、上記α−オレフィンと他の共重合可能なモノマー(例えば、スチレン、アクリロニトリル、塩化ビニル、酢酸ビニル、メタクリル酸及びその誘導体)との共重合体などのオレフィン系樹脂;及び6ナイロン、66ナイロン、11ナイロン、12ナイロンなどのポリアミド系樹脂を挙げることができる。また、フェノール樹脂、ポリエステル、ポリエーテル、ポリスルホン、ポリカーボネート、ポリエポキシ、セルロース系誘導体なども挙げることができる。さらには、上記重合体のうち、2種以上によるブロック共重合体、グラフト重合体なども挙げることができる。
Hereinafter, the present invention will be described in detail.
The present invention is a fuel tank hollow container having a resin and a component surface having a fluorination treatment site obtained by fluorination treatment of the resin, the surface glossiness of the outer surface of the container being 30% or more, preferably 35% As described above, a hollow container for a fuel tank that is more preferably 38% or more is provided.
Although the resin used for this invention is not specifically limited, For example, various resins, such as a thermoplastic resin and a thermosetting resin, can be mentioned. Specifically, homopolymers of α-olefins such as ethylene, propylene, 1-butene and 3-methyl-1-butene and copolymers composed of two or more comonomers, the α-olefin and other copolymers. Olefin resins such as copolymers with possible monomers (for example, styrene, acrylonitrile, vinyl chloride, vinyl acetate, methacrylic acid and derivatives thereof); and polyamide resins such as 6 nylon, 66 nylon, 11 nylon and 12 nylon Can be mentioned. Moreover, a phenol resin, polyester, polyether, polysulfone, polycarbonate, polyepoxy, a cellulose derivative, etc. can be mentioned. Furthermore, among the above-mentioned polymers, a block copolymer, a graft polymer, etc. by 2 or more types can be mentioned.

なお、本発明に用いられる樹脂には、後述のフッ化処理前に、種々の成分を微粒子として添加してもよい。これらの成分の微粒子として、二酸化ケイ素、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウムなどの無機酸化物;ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素化樹脂;エチレン−ビニルアルコール共重合体、プロピレン−ビニルアルコール共重合体、ナイロン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスルホン、ポリフェニレンスルファイド、ポリカーボネートなど;を挙げることができるが、これらに限定されない。   In addition, you may add various components to the resin used for this invention as microparticles | fine-particles before the below-mentioned fluorination process. As fine particles of these components, inorganic oxides such as silicon dioxide, zinc oxide, magnesium oxide, calcium oxide and barium oxide; fluorinated resins such as polytetrafluoroethylene and polyvinylidene fluoride; ethylene-vinyl alcohol copolymer, propylene -Vinyl alcohol copolymer, nylon, polyethylene terephthalate, polybutylene terephthalate, polysulfone, polyphenylene sulfide, polycarbonate and the like can be mentioned, but not limited thereto.

本発明の燃料タンク用中空容器は、その構成物質として、上記樹脂が含まれる他、該樹脂をフッ化処理したフッ化処理部位を含有する。換言すると、本発明の燃料タンク用中空容器は、フッ素が上記樹脂中に含有されてなる。
本発明の燃料タンク用中空容器中のフッ化処理部位とは、燃料タンク用中空容器を形成する樹脂のポリマー分子の全体又はその一部がフッ化処理された部位を意味する。例えば、樹脂としてポリエチレンを用いた場合、i)ポリエチレン分子のうち、一部の分子のH−(CH−CH−HのすべてのHがFとなる一方、その他の分子がフッ化されていない場合、ii)ポリエチレン分子のうち、すべて又は一部のポリエチレン分子のH−(CH−CH−Hの一部がFとなる場合、iii)上記i)とii)とが存在する場合、を意味する。なお、樹脂のフッ化処理法に関しては後述する。
The hollow container for a fuel tank of the present invention contains the above resin as a constituent material, and also includes a fluorination treatment site obtained by fluorination treatment of the resin. In other words, the hollow container for a fuel tank according to the present invention contains fluorine in the resin.
The fluorination treatment site in the fuel tank hollow container of the present invention means a site where all or part of the polymer molecules of the resin forming the fuel tank hollow vessel have been fluorinated. For example, when polyethylene is used as the resin, i) all of H- (CH 2 —CH 2 ) n —H of some of the polyethylene molecules become F, while other molecules are fluorinated. If not, ii) of the polyethylene molecules, all or a portion of the polyethylene molecules H- (CH 2 -CH 2) If a part of the n -H is F, iii) above i) and ii) and Means if exists. The resin fluorination method will be described later.

燃料タンク用中空容器のフッ素の量は、1〜500mg/cm、好ましくは10〜300mg/cm、より好ましくは50〜200mg/cmであるのがよい。なお、フッ素量は、一般的な元素分析法によって測定することができる。 The amount of fluorine in the fuel tank hollow container is 1 to 500 mg / cm 3 , preferably 10 to 300 mg / cm 3 , more preferably 50 to 200 mg / cm 3 . The amount of fluorine can be measured by a general elemental analysis method.

本発明の燃料タンク用中空容器は、その燃料透過量が15.0g・mm/m・day以下、好ましくは10.0g・mm/m・day以下、より好ましくは3.0g・mm/m・day以下であるのがよい。
なお、本願において、「燃料透過量」は、特記しない限り、燃料タンク用中空容器を用いて、測定温度:40±2℃でガソリン透過量(g・mm/m・day)を測定したものをいう。ここで、測定に用いるガソリンは、ガソリン含有量が90vol%のものを使用する。ガソリン透過量(g・mm/m・day)が一定になってからその透過量を測定し、単位が示すように、単位面積、単位厚さ、1日あたりの透過量として標準化する。ここで、一定とは10回連続して測定した透過量の変動が±5%以内になったことをいう。厚みに分布がある場合には「単位厚さ」を導くために、平均厚さを用いることができる。また、「燃料透過量」は、いわゆるカップ法によって測定することもできる。この場合、使用するガソリン、測定温度等は、上記と同一の条件で行うことにより、ほぼ同一のガソリン透過量(g・mm/m・day)を測定することができる。
The fuel tank hollow container of the present invention has a fuel permeation amount of 15.0 g · mm / m 2 · day or less, preferably 10.0 g · mm / m 2 · day or less, more preferably 3.0 g · mm / day. It is good that it is below m 2 · day.
In the present application, “fuel permeation amount” is a value obtained by measuring a gasoline permeation amount (g · mm / m 2 · day) at a measurement temperature of 40 ± 2 ° C. using a hollow container for a fuel tank unless otherwise specified. Say. Here, the gasoline used for measurement has a gasoline content of 90 vol%. After the gasoline permeation amount (g · mm / m 2 · day) becomes constant, the permeation amount is measured, and the unit area, unit thickness, and permeation amount per day are standardized as indicated by the unit. Here, “constant” means that the variation of the transmission amount measured continuously 10 times is within ± 5%. If there is a distribution in thickness, the average thickness can be used to derive the “unit thickness”. The “fuel permeation amount” can also be measured by a so-called cup method. In this case, the gasoline used, the measurement temperature, and the like can be measured under the same conditions as described above, so that almost the same gasoline permeation amount (g · mm / m 2 · day) can be measured.

本発明の燃料タンク用中空容器は、樹脂をフッ化処理したフッ化処理部位が樹脂に含有されてなるフッ化物含有樹脂層のみから成る中空容器であっても、該フッ化物含有樹脂層を有する燃料タンク用中空容器であってもよい。例えば、本発明の燃料タンク用中空容器を燃料タンクに用いる場合、フッ化物含有樹脂層の上層及び/又は下層にフッ化物層、例えばテトラフルオロエチレンからなる層を設けることにより、耐燃料透過性をさらに高めることができる。   The hollow container for a fuel tank of the present invention has the fluoride-containing resin layer even if it is a hollow container composed only of a fluoride-containing resin layer in which a fluorination treatment site obtained by fluorination treatment of a resin is contained in the resin. It may be a hollow container for a fuel tank. For example, when the hollow container for a fuel tank of the present invention is used for a fuel tank, fuel permeation resistance is improved by providing a fluoride layer, for example, a layer made of tetrafluoroethylene, on the upper layer and / or lower layer of the fluoride-containing resin layer. It can be further increased.

本発明の燃料タンク用中空容器は、その表面の表面光沢度が30%以上、好ましくは35%以上、より好ましくは38%以上であるのがよい。なお、本発明の燃料タンク用中空容器がフッ化物含有樹脂層を含む場合、該フッ化物含有樹脂層は最外表面であってもそれ以外であってもよい。いずれの場合であっても、燃料タンク用中空容器の表面の表面光沢度が30%以上、好ましくは35%以上、より好ましくは38%以上であるのがよい。
本発明において、表面光沢度は、BYK光沢度計(MINOLTA MULTI-GROWW 268)を用いて、入射角60℃の設定で測定した反射光強度を表面光沢度とした。試料の面の5点を測定点として測定し、その平均値を表面光沢度として採用した。
The hollow container for a fuel tank of the present invention has a surface glossiness of 30% or more, preferably 35% or more, more preferably 38% or more. In addition, when the hollow container for fuel tanks of this invention contains a fluoride containing resin layer, this fluoride containing resin layer may be the outermost surface or other than that. In any case, the surface glossiness of the surface of the fuel tank hollow container should be 30% or more, preferably 35% or more, more preferably 38% or more.
In the present invention, the surface glossiness is defined as the reflected light intensity measured at a setting of an incident angle of 60 ° C. using a BYK glossiness meter (MINOLTA MULTI-GROWW 268). Five points on the surface of the sample were measured as measurement points, and the average value was adopted as the surface glossiness.

本発明の燃料用タンク用中空容器は、その形態については特に限定されない。例えば、燃料タンクの形態として、表面フッ化樹脂で作製した樹脂製燃料タンクの表面及び/又は周囲にガラス繊維、炭素繊維などを巻き付けて強度を向上させたフィラメント・ワインディングタンクであってもよい。   The form of the fuel tank hollow container of the present invention is not particularly limited. For example, the form of the fuel tank may be a filament winding tank in which the strength is improved by wrapping glass fiber, carbon fiber or the like around and / or around the surface of a resin fuel tank made of a surface fluorinated resin.

本発明の燃料タンク用中空容器は、次の方法により製造することができる。
即ち、樹脂粒子の表面をフッ化処理して表面フッ化処理樹脂粒子を得、その表面フッ化処理樹脂粒子を燃料タンク用中空容器に成形する成形工程を有する燃料タンク用中空容器の製造方法により製造することができる。
The fuel tank hollow container of the present invention can be produced by the following method.
That is, by a method for producing a hollow container for a fuel tank, the surface of the resin particles is fluorinated to obtain surface fluorinated resin particles, and the surface fluorinated resin particles are molded into a fuel tank hollow container. Can be manufactured.

以下、本発明の方法について詳述する。
本発明の方法は、まず、樹脂粒子の表面をフッ化処理して表面フッ化処理樹脂粒子を得る工程に付される。
本発明の方法に用いられる樹脂粒子の樹脂は、上述した通りである。
樹脂粒子の粒径は、特に限定されないが、1〜100μmであれば、その後の成形工程において都合がよい。
Hereinafter, the method of the present invention will be described in detail.
The method of the present invention is first subjected to a step of fluorinating the surface of resin particles to obtain surface fluorinated resin particles.
The resin of the resin particles used in the method of the present invention is as described above.
The particle size of the resin particles is not particularly limited, but if it is 1 to 100 μm, it is convenient in the subsequent molding step.

従来より公知のフッ化処理法を用いて本発明のフッ化処理を行うことができる。例えば、樹脂粒子をフッ化処理反応器に入れ、該容器内をフッ化処理用ガス雰囲気下にすることによりフッ化処理することができる。フッ化処理用ガスとしては、フッ素ガス単独及びフッ素ガスとその他のガス、例えば酸素ガス、窒素ガス又は各種不活性ガスとの混合物を用いることができる。
フッ化処理工程の各種条件は、所望の表面フッ化処理状態に依存する。フッ化処理される表面の厚さは、一般に、0.1〜50μm、好ましくは1〜10μmであるのがよい。
The fluorination treatment of the present invention can be performed using a conventionally known fluorination treatment method. For example, the fluorination treatment can be performed by placing resin particles in a fluorination treatment reactor and placing the inside of the container in a gas atmosphere for fluorination treatment. As the fluorination gas, fluorine gas alone or a mixture of fluorine gas and other gases such as oxygen gas, nitrogen gas or various inert gases can be used.
Various conditions of the fluorination treatment process depend on a desired surface fluorination treatment state. The thickness of the surface to be fluorinated is generally from 0.1 to 50 μm, preferably from 1 to 10 μm.

本発明の方法は、次いで、成形工程に付される。
成形工程において、上記で得られた表面フッ化処理樹脂粒子を燃料タンク用中空容器に成形する。燃料タンク用中空容器に成形する手法は、従来より公知の各種の手法を用いることができ、例えばブロー成形;回転成形;並びに射出及び溶着成形からなる群から選ばれる少なくとも1種を用いることができる。
成形工程における手法及び各手法における各種条件は、用いる樹脂、表面フッ化処理の厚さなどに依存する。
The method of the present invention is then subjected to a molding process.
In the molding step, the surface fluorinated resin particles obtained above are molded into a fuel tank hollow container. Various conventionally known methods can be used as the method for forming the fuel tank hollow container, and for example, at least one selected from the group consisting of blow molding; rotational molding; and injection and welding molding can be used. .
Techniques in the molding process and various conditions in each technique depend on the resin used, the thickness of the surface fluorination treatment, and the like.

上記のフッ化処理部位は、そのフッ素量が1〜500mg/cm、好ましくは10〜300mg/cm、より好ましくは50〜200mg/cmであるのがよい。
また、本発明の方法により得られる燃料タンク用中空容器は、その燃料透過量が15.0g・mm/m・day以下、好ましくは10.0g・mm/m・day以下、より好ましくは3.0g・mm/m・day以下であるのがよい。
The amount of fluorine in the fluorinated region is 1 to 500 mg / cm 3 , preferably 10 to 300 mg / cm 3 , more preferably 50 to 200 mg / cm 3 .
Further, the fuel tank hollow container obtained by the method of the present invention has a fuel permeation amount of 15.0 g · mm / m 2 · day or less, preferably 10.0 g · mm / m 2 · day or less, more preferably It is good that it is 3.0 g · mm / m 2 · day or less.

本発明の方法は、成形工程後、燃料タンク用中空容器に各種修飾を施す工程をさらに有してもよい。例えば、本発明により得られた燃料タンク用中空容器の表面に塗装を施す工程をさらに有してもよい。
上述の本発明の方法により、上記した本発明の燃料タンク用中空容器、フッ化物含有樹脂層を得ることができる。
以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明は本実施例に限定されるものではない。
The method of the present invention may further include a step of applying various modifications to the fuel tank hollow container after the molding step. For example, you may further have the process of coating the surface of the hollow container for fuel tanks obtained by this invention.
By the method of the present invention described above, the above-described fuel tank hollow container and fluoride-containing resin layer of the present invention can be obtained.
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to a present Example.

<フッ化処理工程>
粒径1〜30μmのポリエチレン樹脂500gをフッ化処理用反応器に入れ、該反応器内を1mmHgまで減圧した後、容器内の圧力が700mmHgとなるまでフッ素と窒素との混合ガス(フッ素10vol%:窒素90vol%)を導入して4時間静置した。その後、反応器から樹脂粒子を取り出し(樹脂粒子535g)、EPA(電子線マイクロアナライザー)で確認したところ、表面がフッ化処理されていることが観察された。
<Fluorination treatment process>
500 g of polyethylene resin having a particle size of 1 to 30 μm is put into a reactor for fluorination treatment, the inside of the reactor is depressurized to 1 mmHg, and then a mixed gas of fluorine and nitrogen (fluorine 10 vol% until the pressure in the container becomes 700 mmHg. : 90% by volume of nitrogen) was introduced and allowed to stand for 4 hours. Thereafter, the resin particles were taken out from the reactor (resin particles 535 g) and confirmed by EPA (electron beam microanalyzer), and it was observed that the surface was fluorinated.

<成形工程>
上記で得られた表面をフッ化処理したポリエチレン樹脂粒子を用いて、該樹脂の温度を230℃として、ブロー成形を行い、燃料タンク用中空容器A−1(2.0L)を作製した。
<Molding process>
Using the polyethylene resin particles obtained by fluorinating the surface obtained above, the temperature of the resin was set to 230 ° C., and blow molding was performed to produce a fuel tank hollow container A-1 (2.0 L).

得られた燃料タンク用中空容器A−1のガソリン透過性試験を行った(環境温度:40±2℃)。その結果、燃料透過量は11.0g・mm/m・dayであった。
また、得られた中空容器A−1の表面光沢度を、BYK光沢度計(MINOLTA MULTI-GROWW 268)を用いて、入射角60℃の設定で測定したところ、その結果は表面光沢度:40%であった。
The obtained fuel tank hollow container A-1 was subjected to a gasoline permeability test (environmental temperature: 40 ± 2 ° C.). As a result, the fuel permeation amount was 11.0 g · mm / m 2 · day.
Moreover, when the surface glossiness of the obtained hollow container A-1 was measured at an incident angle of 60 ° C. using a BYK glossiness meter (MINOLTA MULTI-GROWW 268), the result was a surface glossiness of 40 %Met.

(比較例1)
実施例1で用いたフッ化処理したポリエチレン樹脂粒子を用いる代わりに、フッ化処理前のポリエチレン樹脂粒子を用いた以外、実施例1と同様にブロー成形して燃料タンク用中空容器A−2(2.0L)を作製した。
この中空容器A−2を用いて、実施例1と同様に、燃料透過量を測定したところ、燃料透過量は20.0g・mm/m・dayであった。実施例1と比較すると分かるように、実施例1の中空容器A−1は、燃料透過性が少ないこと、即ちガスバリヤ性を有することがわかる。
(Comparative Example 1)
Instead of using the fluorinated polyethylene resin particles used in Example 1, except that the fluorinated polyethylene resin particles were used, blow molding was performed in the same manner as in Example 1, and the fuel tank hollow container A-2 ( 2.0L).
Using this hollow container A-2, the fuel permeation amount was measured in the same manner as in Example 1. The fuel permeation amount was 20.0 g · mm / m 2 · day. As can be seen from comparison with Example 1, it can be seen that the hollow container A-1 of Example 1 has low fuel permeability, that is, has gas barrier properties.

(比較例2)
比較例1で作製した中空容器A−2を反応容器中で、フッ素/窒素=10/90(vol%)の混合ガスと反応させて、容器表面のフッ素化を行い、燃料タンク用中空容器A−3を得た。得られた燃料タンク用中空容器A−3のガソリン透過試験を、実施例1及び比較例1と同様に、行ったところ、燃料透過量は12.0g・mm/m・dayであった。また、実施例1と同様に、表面光沢度を測定したところ、表面光沢度:20%であった。比較例2は、実施例1と比較して、燃料透過量がほぼ同じ値であるものの、表面光沢度が低く、外観が著しく損なわれていた。
(Comparative Example 2)
The hollow container A-2 produced in Comparative Example 1 was reacted with a mixed gas of fluorine / nitrogen = 10/90 (vol%) in the reaction container to fluorinate the container surface, and the fuel tank hollow container A -3 was obtained. When the gasoline permeation test of the obtained fuel tank hollow container A-3 was conducted in the same manner as in Example 1 and Comparative Example 1, the fuel permeation amount was 12.0 g · mm / m 2 · day. Further, when the surface glossiness was measured in the same manner as in Example 1, the surface glossiness was 20%. In Comparative Example 2, the fuel permeation amount was almost the same value as in Example 1, but the surface glossiness was low and the appearance was remarkably impaired.

樹脂粒子が10〜30μmのポリエチレン樹脂を用いる以外、実施例1の<フッ化処理工程>と同様にして調製したフッ化処理したポリエチレン樹脂(2000g)を用いて、回転成形により内容量10L、構成面の厚さ約4mmの燃料タンク用中空容器A−4を作成した。回転成形条件は次の通りである。
加熱工程:260℃で25分;
冷却工程:2分間の空冷+10分間の水冷。
得られた燃料タンク用中空容器A−4のガソリン透過試験(得られた中空容器A−4を測定容器として用いた。測定面積:4000cm;環境温度:40±2℃)を行った。その結果、ガソリン透過量は10.0g・mm/m・dayであった。
また、実施例1と同様にして測定した表面光沢度は、60%であった。
Using a fluorinated polyethylene resin (2000 g) prepared in the same manner as in the <fluorination treatment step> of Example 1 except that a polyethylene resin having a resin particle of 10 to 30 μm is used, the content is 10 L by rotational molding. A fuel tank hollow container A-4 having a surface thickness of about 4 mm was prepared. The rotational molding conditions are as follows.
Heating step: 260 ° C. for 25 minutes;
Cooling step: air cooling for 2 minutes + water cooling for 10 minutes.
A gasoline permeation test of the obtained fuel tank hollow container A-4 (the obtained hollow container A-4 was used as a measurement container. Measurement area: 4000 cm 2 ; environmental temperature: 40 ± 2 ° C.) was performed. As a result, the gasoline permeation amount was 10.0 g · mm / m 2 · day.
Moreover, the surface glossiness measured in the same manner as in Example 1 was 60%.

実施例1の<フッ化処理工程>と同様にして調製したフッ化処理したポリエチレン樹脂(1500g)を用いて、射出成形及び熱板溶着法により内容量10Lの燃料タンク用中空容器A−5を作成した。即ち、射出成形により、中空容器の上側と下側とを作製し、その後に熱板溶着法(条件は、温度:230℃、時間:5分間であった)で中空容器の上側と下側とを溶着させた。
得られた燃料タンク用中空容器A−5のガソリン透過試験(得られた中空容器A−5を測定容器として用いた。測定面積:1500cm;環境温度:40±2℃)を行った。その結果、ガソリン透過量は13.0g・mm/m・dayであった。
また、実施例1と同様にして測定した表面光沢度は、50%であった。
Using a fluorinated polyethylene resin (1500 g) prepared in the same manner as in the <fluorination treatment step> of Example 1, a hollow container A-5 for a fuel tank having an internal volume of 10 L was prepared by injection molding and hot plate welding. Created. That is, the upper side and the lower side of the hollow container are prepared by injection molding, and then the upper side and the lower side of the hollow container are formed by a hot plate welding method (conditions are temperature: 230 ° C., time: 5 minutes). Was welded.
A gasoline permeation test of the obtained fuel tank hollow container A-5 (the obtained hollow container A-5 was used as a measurement container. Measurement area: 1500 cm 2 ; environmental temperature: 40 ± 2 ° C.) was performed. As a result, the gasoline permeation amount was 13.0 g · mm / m 2 · day.
Further, the surface glossiness measured in the same manner as in Example 1 was 50%.

Claims (8)

樹脂及び該樹脂をフッ化処理したフッ化処理部位を有し、表面光沢度が30%以上である燃料タンク用中空容器。 A hollow container for a fuel tank having a resin and a fluorination treatment site obtained by fluorination treatment of the resin and having a surface glossiness of 30% or more. 前記燃料タンク用中空容器の燃料透過量が15.0g・mm/m・day以下である請求項1記載の燃料タンク用中空容器。 2. The fuel tank hollow container according to claim 1, wherein a fuel permeation amount of the fuel tank hollow container is 15.0 g · mm / m 2 · day or less. 前記フッ化処理部位は、燃料タンク用中空容器のフッ素量が1〜500mg/cmである請求項1又は2記載の燃料タンク用中空容器。 The hollow container for a fuel tank according to claim 1 or 2, wherein the fluorine treatment site has a fluorine content of 1 to 500 mg / cm 3 in the fuel tank hollow container. 樹脂及び該樹脂をフッ化処理したフッ化処理部位を有するフッ化物含有樹脂層を有する燃料タンク用中空容器であって、該容器の外表面の表面光沢度が30%以上である燃料タンク用中空容器。 A fuel tank hollow container comprising a resin and a fluoride-containing resin layer having a fluorination treatment site obtained by fluorination treatment of the resin, wherein the surface glossiness of the outer surface of the container is 30% or more container. 前記フッ化物含有樹脂層のフッ素量が1〜500mg/cmである請求項4記載の燃料タンク用中空容器。 The hollow container for a fuel tank according to claim 4, wherein the fluorine content of the fluoride-containing resin layer is 1 to 500 mg / cm 3 . 前記燃料タンク用中空容器の燃料透過量が15.0g・mm/m・day以下である請求項4又は5記載の燃料タンク用中空容器。 The fuel tank hollow container according to claim 4 or 5, wherein the fuel permeation amount of the fuel tank hollow container is 15.0 g · mm / m 2 · day or less. 樹脂粒子の表面をフッ化処理して表面フッ化処理樹脂粒子を得、その表面フッ化処理樹脂粒子を燃料タンク用中空容器に成形する成形工程を有する燃料タンク用中空容器の製造方法。 A method for producing a hollow container for a fuel tank, comprising a step of fluorinating the surface of resin particles to obtain surface fluorinated resin particles, and molding the surface fluorinated resin particles into a fuel tank hollow container. 前記成形工程を、ブロー成形;回転成形;並びに射出及び溶着成形からなる群から選ばれる少なくとも1種により行う請求項7記載の方法。 The method according to claim 7, wherein the molding step is performed by at least one selected from the group consisting of blow molding; rotational molding; and injection and welding molding.
JP2003411368A 2003-12-10 2003-12-10 Hollow vessel for fuel tank having gas barrier characteristic, and manufacturing method thereof Pending JP2005170167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411368A JP2005170167A (en) 2003-12-10 2003-12-10 Hollow vessel for fuel tank having gas barrier characteristic, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411368A JP2005170167A (en) 2003-12-10 2003-12-10 Hollow vessel for fuel tank having gas barrier characteristic, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005170167A true JP2005170167A (en) 2005-06-30

Family

ID=34732126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411368A Pending JP2005170167A (en) 2003-12-10 2003-12-10 Hollow vessel for fuel tank having gas barrier characteristic, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005170167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041645A1 (en) 2006-09-29 2008-04-10 Daikin Industries, Ltd. Fuel tank and method for producing the same
JP2008134178A (en) * 2006-11-29 2008-06-12 Takagi Seiko Corp Method and apparatus for sorting product made of low gasoline permeable polyethylene and manufacturing method of the product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044120A (en) * 1990-04-19 1992-01-08 Mitsubishi Motors Corp Fuel tank
JPH04318041A (en) * 1991-04-17 1992-11-09 Onoda Cement Co Ltd Method for treating surface of filler for composite material
JPH0633084B2 (en) * 1982-03-15 1994-05-02 三井石油化学工業株式会社 Hollow molded product
JPH08108431A (en) * 1994-10-13 1996-04-30 Mitsubishi Chem Corp Treatment of surface of polyolefin molding material and production of molding
JP2003001770A (en) * 2001-06-19 2003-01-08 Toyobo Co Ltd Laminate for automotive parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633084B2 (en) * 1982-03-15 1994-05-02 三井石油化学工業株式会社 Hollow molded product
JPH044120A (en) * 1990-04-19 1992-01-08 Mitsubishi Motors Corp Fuel tank
JPH04318041A (en) * 1991-04-17 1992-11-09 Onoda Cement Co Ltd Method for treating surface of filler for composite material
JPH08108431A (en) * 1994-10-13 1996-04-30 Mitsubishi Chem Corp Treatment of surface of polyolefin molding material and production of molding
JP2003001770A (en) * 2001-06-19 2003-01-08 Toyobo Co Ltd Laminate for automotive parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041645A1 (en) 2006-09-29 2008-04-10 Daikin Industries, Ltd. Fuel tank and method for producing the same
US8334032B2 (en) 2006-09-29 2012-12-18 Daikin Industries, Ltd. Fuel tank and method for producing the same
JP2008134178A (en) * 2006-11-29 2008-06-12 Takagi Seiko Corp Method and apparatus for sorting product made of low gasoline permeable polyethylene and manufacturing method of the product

Similar Documents

Publication Publication Date Title
AU2005254290B2 (en) Process for the manufacture of a leaktight bladder of a type IV tank, and type IV tank
CN1122686C (en) Injection moulding
CA1317735C (en) Oxygen barrier properties of pet containers
RU2464287C2 (en) High-density polyethylene-based compositions, methods for production thereof, articles moulded therefrom and method of obtaining said articles
RU2444545C2 (en) High-density polyethylene compositions, preparation methods thereof, articles made therefrom, and method of making said articles
US20030096069A1 (en) Halogenated polymeric containers for 1, 1-disubstituted monomer compositions
EP1882007B1 (en) Process for plasma coating a polypropylene object
JPH11515036A (en) High strength and air permeable membrane of polytetrafluoroethylene
DE4124730A1 (en) Intercalation of fluorinated polymer particles - into microporous oxide surfaces of aluminium@, magnesium@ and aluminium@ magnesium@ alloy objects for homogeneous coating of polymers
JPH02269134A (en) Method for producing smooth surface on object comprising polymer of ethylene, propylene, butadiene, and styrene, and object comprising hdpe
JP2005170167A (en) Hollow vessel for fuel tank having gas barrier characteristic, and manufacturing method thereof
JP4803856B2 (en) Polypropylene for film and method for producing film
JPS62252435A (en) Fluorocarbon resin foam, its production and sealing member prepared therefrom
Samarth et al. Study and characterization of LLDPE/polyolefin elastomer and LLDPE/EPDM blend: effect of chlorinated water on blend performance
CN115353775A (en) High-barrier high-strength composite packaging film and preparation method thereof
JPH0730189B2 (en) Surface treatment method for organic polymer materials
JP2008075091A (en) Cross-linked polyethylene pipe
Volkmann et al. Fluorination of polyethylene films
JPS59171625A (en) Biaxially stretched polypropylene film and manufacture thereof
JPH03277268A (en) Bag for cell culture
Sevast’yanov et al. Comparative study of the influence of polyethylene film surface modification on interaction with blood components
BE1006883A3 (en) Surface protection method for items made of thermoplastic material with asurface treatment
KR100490834B1 (en) Polyethylene resin composition for corsslinking rotational molding
KR102498961B1 (en) Chlorinated vinyl chloride resin
JP5349028B2 (en) Method for producing modified tetrafluoroethylene resin powder and modified tetrafluoroethylene resin powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330