JP2005167124A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2005167124A
JP2005167124A JP2003407223A JP2003407223A JP2005167124A JP 2005167124 A JP2005167124 A JP 2005167124A JP 2003407223 A JP2003407223 A JP 2003407223A JP 2003407223 A JP2003407223 A JP 2003407223A JP 2005167124 A JP2005167124 A JP 2005167124A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
metal layer
dielectric film
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003407223A
Other languages
Japanese (ja)
Inventor
Taizo Fujii
泰三 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003407223A priority Critical patent/JP2005167124A/en
Publication of JP2005167124A publication Critical patent/JP2005167124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of precisely controlling the thickness of a dielectric film to have a highly precise electrostatic capacity value in a semiconductor device having a MIM capacitive element. <P>SOLUTION: After a lower electrode and a second silicon oxide film are formed on a first silicon oxide film, the second silicon oxide film is selectively etched to form a capacitance formation region and a through hole. Then, after reverse sputter etching, Ti and TiN are formed continuously as a contact layer, and further a dielectric film is formed on the capacitance formation region. Then, a tungsten layer is formed over the entire surface without implementing the reverse sputter etching, and a resist film is formed in the capacitance formation region, which is used to etch the tungsten layer. Further, a metal layer is formed over the entire surface, and upper electrode and lower electrode lead wirings are formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体基板上に金属−絶縁膜−金属(MIM)容量素子を搭載した半導体装置の構造及びその製造方法に関するものである。   The present invention relates to a structure of a semiconductor device in which a metal-insulating film-metal (MIM) capacitor element is mounted on a semiconductor substrate, and a manufacturing method thereof.

近年、金属−絶縁膜−金属(以下、MIM)容量素子を搭載した半導体装置に関する提案が数多くみられる。MIM容量素子は寄生抵抗が極めて低いことから様々な回路に応用が可能である。ここで、従来のMIM容量素子の製造方法について、図面を参照しながら説明する(例えば、特許文献1参照)。   In recent years, there have been many proposals regarding semiconductor devices on which a metal-insulating film-metal (hereinafter referred to as MIM) capacitive element is mounted. Since the MIM capacitor element has a very low parasitic resistance, it can be applied to various circuits. Here, a method for manufacturing a conventional MIM capacitor will be described with reference to the drawings (for example, see Patent Document 1).

図6に示すように、半導体基板200上の第1の絶縁膜201上に下部電極202を形成し、全面に第2の絶縁膜203を形成する。次に、容量形成領域の第2の絶縁膜203を選択的に除去する。次に、図7に示すように、全面に誘電体膜204を堆積する。   As shown in FIG. 6, the lower electrode 202 is formed on the first insulating film 201 on the semiconductor substrate 200, and the second insulating film 203 is formed on the entire surface. Next, the second insulating film 203 in the capacitor formation region is selectively removed. Next, as shown in FIG. 7, a dielectric film 204 is deposited on the entire surface.

次に、図8に示すように、誘電体膜204、第2の絶縁膜203の一部をエッチングして下部電極を引き出すための接続孔205を形成する。次に、図9に示すように、全面に逆スパッタエッチング後、金属層を形成する。次に、選択的にエッチングすることにより上部電極206及び下部電極引き出し配線207を形成する。以上の工程により、MIM容量素子が完成する。
特開平08−306862号公報
Next, as shown in FIG. 8, a part of the dielectric film 204 and the second insulating film 203 is etched to form a connection hole 205 for extracting the lower electrode. Next, as shown in FIG. 9, a metal layer is formed on the entire surface after reverse sputter etching. Next, the upper electrode 206 and the lower electrode lead wiring 207 are formed by selective etching. The MIM capacitor element is completed through the above steps.
Japanese Patent Laid-Open No. 08-306862

しかしながら、上記従来の半導体装置の製造方法ではMIM容量素子の静電容量値が精度よく得られず、耐電圧特性のばらつきが大きく、歩留まりが低いという課題を有していた。これらの課題は上部電極を形成する際の逆スパッタエッチングに起因している。逆スパッタエッチングとは、上部電極用金属層を堆積する際に、接続孔205を通して下部電極202との電気接続を良好にするため、堆積前に接続孔205の下部電極202の表面酸化膜層(例えばアルミナなど)をArなどの不活性ガスプラズマ中で生成されるイオン粒子の衝突作用によって除去する方法である。従来例では、この逆スパッタエッチングによって下部電極202の表面酸化膜層を除去する際に誘電体膜204も一部が同時にエッチングされ、堆積時より膜厚が減少する。逆スパッタエッチングはスパッタ雰囲気中の酸素や水分などの残留ガスによりエッチレートが変動しやすく、誘電体膜204の膜厚がばらつく。このため、静電容量値が精度よく得られず、耐電圧特性のばらつきが大きくなり、歩留まりが低くなってしまう。従って、MIM容量素子の静電容量値を高精度に安定して実現することが難しいという課題を有していた。   However, the conventional method for manufacturing a semiconductor device has a problem in that the capacitance value of the MIM capacitor element cannot be obtained with high accuracy, the withstand voltage characteristics vary greatly, and the yield is low. These problems are caused by reverse sputter etching when the upper electrode is formed. In reverse sputter etching, when the upper electrode metal layer is deposited, the surface oxide film layer of the lower electrode 202 in the connection hole 205 is deposited before deposition in order to improve electrical connection with the lower electrode 202 through the connection hole 205. For example, alumina is removed by collision of ion particles generated in an inert gas plasma such as Ar. In the conventional example, when the surface oxide film layer of the lower electrode 202 is removed by this reverse sputter etching, a part of the dielectric film 204 is also etched at the same time, and the film thickness is reduced as compared with the deposition. In reverse sputter etching, the etch rate is likely to vary due to residual gases such as oxygen and moisture in the sputter atmosphere, and the thickness of the dielectric film 204 varies. For this reason, the capacitance value cannot be obtained with high accuracy, the variation in withstand voltage characteristics is increased, and the yield is lowered. Accordingly, there is a problem that it is difficult to stably realize the capacitance value of the MIM capacitor element with high accuracy.

本発明は上記の問題点を解決するもので、MIM容量素子において、誘電体膜厚を精密に制御することが可能で、高精度な静電容量値及び高信頼性を有する素子の構造及びその製造方法を提供することを目的とする。   The present invention solves the above-described problems, and in the MIM capacitor element, the dielectric film thickness can be precisely controlled, and the structure of the element having a highly accurate capacitance value and high reliability, and its An object is to provide a manufacturing method.

上記目的を達成するために、本発明に係る半導体装置は、半導体基板上に形成された第1の金属層からなる下部電極と、下部電極上の容量形成領域上に形成された誘電体膜と、誘電体膜上に形成された第2の金属層からなる上部電極とを備えた半導体装置において、下部電極における第1の金属層の誘電体膜に接する部位は第1の高融点金属の窒化物からなり、上部電極における第2の金属層の誘電体膜と接する部位は第2の高融点金属からなることを特徴とする。   In order to achieve the above object, a semiconductor device according to the present invention includes a lower electrode made of a first metal layer formed on a semiconductor substrate, a dielectric film formed on a capacitance forming region on the lower electrode, In the semiconductor device including the upper electrode made of the second metal layer formed on the dielectric film, the portion of the lower electrode in contact with the dielectric film of the first metal layer is nitrided of the first refractory metal The portion of the upper electrode in contact with the dielectric film of the second metal layer is made of the second refractory metal.

上記の構成により、誘電体膜の直下は密着層である第1の高融点金属の窒化物からなる。すなわち、逆スパッタエッチングは誘電体膜の形成前に行われるため、誘電体膜の膜厚がばらつくことはない。   With the above configuration, the first refractory metal nitride, which is an adhesion layer, is formed immediately below the dielectric film. That is, since reverse sputter etching is performed before the formation of the dielectric film, the film thickness of the dielectric film does not vary.

上記の半導体装置において、第1の金属層はアルミニウム層と第1の高融点金属の窒化物層とからなり、第1の高融点金属はチタンであることが好ましい。   In the above semiconductor device, it is preferable that the first metal layer includes an aluminum layer and a first refractory metal nitride layer, and the first refractory metal is titanium.

上記の半導体装置において、第2の金属層はアルミニウム層と第2の高融点金属層とからなり、第2の高融点金属はタングステンであることが好ましい。   In the above semiconductor device, the second metal layer is preferably composed of an aluminum layer and a second refractory metal layer, and the second refractory metal is preferably tungsten.

上記の半導体装置において、誘電体膜はシリコン窒化膜であることが好ましい。   In the above semiconductor device, the dielectric film is preferably a silicon nitride film.

また、本発明に係る半導体装置の製造方法は、半導体基板上に形成された第1の絶縁膜上に下部電極となる第1の金属層を形成する工程と、半導体基板上に第2の絶縁膜を形成する工程と、第2の絶縁膜を選択的に開口して下部電極上に容量形成領域とを形成する工程と、逆スパッタエッチング後に半導体基板の全面に第1の高融点金属の窒化物層を形成する工程と、容量形成領域上に誘電体膜を形成する工程と、逆スパッタエッチングを行わずに半導体基板の全面に第2の高融点金属層を形成する工程と、容量形成領域にレジスト膜を形成する工程と、レジスト膜をマスクに第2の高融点金属層をエッチングする工程と、容量形成領域上に上部電極となる第2の金属層を形成する工程とを備えている。   The method for manufacturing a semiconductor device according to the present invention includes a step of forming a first metal layer serving as a lower electrode on a first insulating film formed on a semiconductor substrate, and a second insulation on the semiconductor substrate. A step of forming a film, a step of selectively opening a second insulating film to form a capacitance formation region on the lower electrode, and nitriding a first refractory metal on the entire surface of the semiconductor substrate after reverse sputter etching A step of forming a physical layer, a step of forming a dielectric film on the capacitance forming region, a step of forming a second refractory metal layer on the entire surface of the semiconductor substrate without performing reverse sputter etching, and a capacitance forming region Forming a resist film, etching the second refractory metal layer using the resist film as a mask, and forming a second metal layer serving as an upper electrode on the capacitance forming region. .

上記の構成により、逆スパッタエッチング後に全面に密着層である第1の高融点金属の窒化物層を形成し、その後に誘電体膜を形成している。さらに、その後に逆スパッタエッチングを行わずに全面に第2の高融点金属層を形成している。従って、誘電体膜は逆スパッタエッチングによりエッチングされることはない。すなわち、誘電体膜の膜厚は堆積後に変化することはない。従って、誘電体膜がばらつくことはなく、高精度な静電容量値を持つMIM容量素子を形成することができる。   With the above configuration, a first refractory metal nitride layer as an adhesion layer is formed on the entire surface after reverse sputter etching, and then a dielectric film is formed. Further, a second refractory metal layer is formed on the entire surface without performing reverse sputter etching thereafter. Therefore, the dielectric film is not etched by reverse sputter etching. That is, the thickness of the dielectric film does not change after deposition. Therefore, the dielectric film does not vary, and an MIM capacitive element having a highly accurate capacitance value can be formed.

本発明の半導体装置及びその製造方法によると、逆スパッタエッチング後に誘電体膜を形成するため、誘電体膜の膜厚は堆積後に変化することはない。従って、誘電体膜がばらつくことはなく、高精度な静電容量値を持つMIM容量素子を形成することができる。   According to the semiconductor device and the manufacturing method thereof of the present invention, since the dielectric film is formed after the reverse sputter etching, the film thickness of the dielectric film does not change after the deposition. Therefore, the dielectric film does not vary, and an MIM capacitive element having a highly accurate capacitance value can be formed.

以下、本発明の実施形態について図面を参照しながら説明する。図1〜図5は、本実施形態における半導体装置の製造工程を示す断面図である。なお、レジスト膜の除去工程については特に断らない限り説明を省略している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 5 are cross-sectional views showing the manufacturing steps of the semiconductor device according to this embodiment. Note that the description of the resist film removal step is omitted unless otherwise specified.

まず、図1に示すように、比抵抗が例えば10〜15Ω・cmの(100)面を主面とするシリコン単結晶からなるP型半導体基板100上に約1000nmの第1のシリコン酸化膜101を形成する。次に、スパッタにより金属層を形成し、レジスト膜(図示せず)を用いて下部電極102を形成する。次に、全面に約2100nmの第2のシリコン酸化膜103を形成後、例えばCMP(化学的機械的研磨法)を用いて、下部電極102上で第2のシリコン酸化膜103の厚さが約1000nmになるように平坦化研磨を行う。次に、レジスト膜(図示せず)を用いて第2のシリコン酸化膜103を選択的にエッチングし、容量形成領域104及び下部電極引き出し用スルーホール105を形成する。   First, as shown in FIG. 1, a first silicon oxide film 101 having a thickness of about 1000 nm is formed on a P-type semiconductor substrate 100 made of a silicon single crystal whose principal surface is a (100) plane having a specific resistance of 10 to 15 Ω · cm. Form. Next, a metal layer is formed by sputtering, and a lower electrode 102 is formed using a resist film (not shown). Next, after a second silicon oxide film 103 having a thickness of about 2100 nm is formed on the entire surface, the thickness of the second silicon oxide film 103 is set on the lower electrode 102 by using, for example, CMP (Chemical Mechanical Polishing). Planarization polishing is performed so that the thickness becomes 1000 nm. Next, the second silicon oxide film 103 is selectively etched using a resist film (not shown) to form the capacitor formation region 104 and the lower electrode lead-through hole 105.

次に、図2に示すように、逆スパッタエッチングを行った後、連続してTi及びTiNを密着層106として形成する。次に、シリコン窒化膜を約60nm堆積後、レジスト膜(図示せず)を用いてシリコン窒化膜をエッチングし、容量形成領域104に誘電体膜107を形成する。   Next, as shown in FIG. 2, after performing reverse sputter etching, Ti and TiN are successively formed as the adhesion layer 106. Next, after depositing a silicon nitride film of about 60 nm, the silicon nitride film is etched using a resist film (not shown) to form a dielectric film 107 in the capacitance forming region 104.

次に、図3に示すように、逆スパッタエッチングを行わずに全面にタングステン層108を形成する。この時、スルーホール105はタングステンにより充填される。   Next, as shown in FIG. 3, a tungsten layer 108 is formed on the entire surface without performing reverse sputter etching. At this time, the through hole 105 is filled with tungsten.

次に、図4に示すように、容量形成領域104にレジスト膜109を形成し、これを用いてタングステン層108のエッチングを行う。この時、レジスト膜109に覆われている部分のタングステン層108はエッチングされない。   Next, as illustrated in FIG. 4, a resist film 109 is formed in the capacitor formation region 104, and the tungsten layer 108 is etched using the resist film 109. At this time, the portion of the tungsten layer 108 covered with the resist film 109 is not etched.

次に、図5に示すように、レジスト膜109を除去後、全面にスパッタにより金属層を形成し、レジスト膜(図示せず)を用いて上部電極110及び下部電極引き出し配線111を形成する。この時、不要な部分の密着層106も同時にエッチングされる。   Next, as shown in FIG. 5, after removing the resist film 109, a metal layer is formed on the entire surface by sputtering, and an upper electrode 110 and a lower electrode lead-out wiring 111 are formed using the resist film (not shown). At this time, unnecessary portions of the adhesion layer 106 are also etched.

以上のように、本実施形態によると、逆スパッタエッチング後に全面に密着層であるTiN層106を形成し、その後に誘電体膜107を形成している。さらに、その後に逆スパッタエッチングを行わずに全面にタングステン層108を形成している。従って、誘電体膜107は逆スパッタエッチングによりエッチングされることはない。すなわち、誘電体膜107の膜厚は堆積後に変化することはない。従って、誘電体膜がばらつくことはなく、高精度な静電容量値を持つMIM容量素子を形成することができる。   As described above, according to the present embodiment, the TiN layer 106 as the adhesion layer is formed on the entire surface after the reverse sputter etching, and then the dielectric film 107 is formed. Further, the tungsten layer 108 is formed on the entire surface without performing reverse sputter etching thereafter. Therefore, the dielectric film 107 is not etched by reverse sputter etching. That is, the thickness of the dielectric film 107 does not change after deposition. Therefore, the dielectric film does not vary, and an MIM capacitive element having a highly accurate capacitance value can be formed.

なお、本実施形態においては、平坦化の方法としてCMPを用いたが、これはレジストエッチバック等でも良い。また、誘電体膜としてシリコン窒化膜を用いたが、これはシリコン酸化膜またはシリコン酸窒化膜等でも良い。   In this embodiment, CMP is used as a planarization method, but this may be resist etch back or the like. Further, although the silicon nitride film is used as the dielectric film, it may be a silicon oxide film or a silicon oxynitride film.

以上説明したように、本発明に係る半導体装置及びその製造方法は、高精度な静電容量値及び高信頼性を有するMIM容量素子を有し、半導体装置の応用回路等に有用である。   As described above, the semiconductor device and the manufacturing method thereof according to the present invention have a highly accurate MIM capacitance element having a high capacitance value and high reliability, and are useful for application circuits of semiconductor devices.

本発明の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in embodiment of this invention 本発明の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in embodiment of this invention 本発明の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in embodiment of this invention 本発明の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in embodiment of this invention 本発明の実施形態における半導体装置の製造工程断面図Sectional drawing of the manufacturing process of the semiconductor device in embodiment of this invention 従来の半導体装置の製造工程断面図Cross-sectional view of conventional semiconductor device manufacturing process 従来の半導体装置の製造工程断面図Cross-sectional view of conventional semiconductor device manufacturing process 従来の半導体装置の製造工程断面図Cross-sectional view of conventional semiconductor device manufacturing process 従来の半導体装置の製造工程断面図Cross-sectional view of conventional semiconductor device manufacturing process

符号の説明Explanation of symbols

100 P型半導体基板
101 第1のシリコン酸化膜
102 下部電極
103 第2のシリコン酸化膜
104 容量形成領域
105 スルーホール
106 密着層
107 誘電体膜
108 タングステン層
109 レジスト膜
110 上部電極
111 下部電極引き出し配線
DESCRIPTION OF SYMBOLS 100 P-type semiconductor substrate 101 1st silicon oxide film 102 Lower electrode 103 2nd silicon oxide film 104 Capacitance formation area 105 Through hole 106 Adhesion layer 107 Dielectric film 108 Tungsten layer 109 Resist film 110 Upper electrode 111 Lower electrode extraction wiring

Claims (5)

半導体基板上に形成された第1の金属層からなる下部電極と、前記下部電極上の容量形成領域上に形成された誘電膜と、前記誘電体膜上に形成された第2の金属層からなる上部電極とを備えた半導体装置において、前記下部電極における前記第1の金属層の前記誘電体膜に接する部位は第1の高融点金属の窒化物からなり、前記上部電極における前記第2の金属層の前記誘電体膜と接する部位は第2の高融点金属からなることを特徴とする半導体装置。 A lower electrode made of a first metal layer formed on a semiconductor substrate, a dielectric film formed on a capacitance forming region on the lower electrode, and a second metal layer formed on the dielectric film In the semiconductor device including the upper electrode, the portion of the lower electrode in contact with the dielectric film of the first metal layer is made of a first refractory metal nitride, and the second electrode of the upper electrode A portion of the metal layer in contact with the dielectric film is made of a second refractory metal. 前記第1の金属層はアルミニウム層と前記第1の高融点金属の窒化物層とからなり、前記第1の高融点金属はチタンであることを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the first metal layer includes an aluminum layer and a nitride layer of the first refractory metal, and the first refractory metal is titanium. 前記第2の金属層はアルミニウム層と前記第2の高融点金属層とからなり、前記第2の高融点金属はタングステンであることを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the second metal layer includes an aluminum layer and the second refractory metal layer, and the second refractory metal is tungsten. 前記誘電体膜はシリコン窒化膜であることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the dielectric film is a silicon nitride film. 半導体基板上に形成された第1の絶縁膜上に下部電極となる第1の金属層を形成する工程と、前記半導体基板上に第2の絶縁膜を形成する工程と、前記第2の絶縁膜を選択的に開口して前記下部電極上に容量形成領域とを形成する工程と、逆スパッタエッチング後に前記半導体基板の全面に第1の高融点金属の窒化物層を形成する工程と、前記容量形成領域上に誘電体膜を形成する工程と、逆スパッタエッチングを行わずに前記半導体基板の全面に第2の高融点金属層を形成する工程と、前記容量形成領域にレジスト膜を形成する工程と、前記レジスト膜をマスクに前記第2の高融点金属層をエッチングする工程と、前記容量形成領域上に上部電極となる第2の金属層を形成する工程とを備えた半導体装置の製造方法。 Forming a first metal layer serving as a lower electrode on a first insulating film formed on a semiconductor substrate; forming a second insulating film on the semiconductor substrate; and Selectively opening a film to form a capacitance forming region on the lower electrode; forming a first refractory metal nitride layer on the entire surface of the semiconductor substrate after reverse sputter etching; Forming a dielectric film on the capacitance forming region, forming a second refractory metal layer on the entire surface of the semiconductor substrate without performing reverse sputter etching, and forming a resist film on the capacitance forming region. Manufacturing a semiconductor device comprising: a step; a step of etching the second refractory metal layer using the resist film as a mask; and a step of forming a second metal layer serving as an upper electrode on the capacitance forming region Method.
JP2003407223A 2003-12-05 2003-12-05 Semiconductor device and its manufacturing method Pending JP2005167124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407223A JP2005167124A (en) 2003-12-05 2003-12-05 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407223A JP2005167124A (en) 2003-12-05 2003-12-05 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005167124A true JP2005167124A (en) 2005-06-23

Family

ID=34729337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407223A Pending JP2005167124A (en) 2003-12-05 2003-12-05 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005167124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007048178A1 (en) * 2007-10-02 2009-04-16 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik Method for manufacturing metal-insulator-metal trench capacitor, involves providing substrate with metal layer and insulator layer separated by metal layer, and opening is formed for vias in insulator layer
JP2016219588A (en) * 2015-05-20 2016-12-22 イビデン株式会社 Thin film capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007048178A1 (en) * 2007-10-02 2009-04-16 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik Method for manufacturing metal-insulator-metal trench capacitor, involves providing substrate with metal layer and insulator layer separated by metal layer, and opening is formed for vias in insulator layer
JP2016219588A (en) * 2015-05-20 2016-12-22 イビデン株式会社 Thin film capacitor

Similar Documents

Publication Publication Date Title
JP5089406B2 (en) Chip carrier substrate including capacitor and manufacturing method thereof
US6259128B1 (en) Metal-insulator-metal capacitor for copper damascene process and method of forming the same
US6344964B1 (en) Capacitor having sidewall spacer protecting the dielectric layer
JP4002647B2 (en) Thin film capacitor manufacturing method for semiconductor device
US7687867B2 (en) Inexpensive method of fabricating a higher performance capacitance density MIMcap integrable into a copper interconnect scheme
US7955944B2 (en) Method of manufacturing semiconductor device
JP4317015B2 (en) Metal-to-metal antifuses using carbon-containing antifuse materials
US6924207B2 (en) Method of fabricating a metal-insulator-metal capacitor
JP4425707B2 (en) Semiconductor device and manufacturing method thereof
JP3820003B2 (en) Thin film capacitor manufacturing method
JP2001320026A (en) Semiconductor device and its manufacturing method
JP2005167124A (en) Semiconductor device and its manufacturing method
JP2704575B2 (en) Manufacturing method of capacitive element
JP2005191182A (en) Semiconductor device and its manufacturing method
KR100300046B1 (en) Fabricating method of semiconductor device
JPH05343613A (en) Integrated circuit device
CN100419993C (en) Method for making semiconductor device
JP2003031665A (en) Method of manufacturing semiconductor device
JP2002141472A (en) Semiconductor device and manufacturing method therefor
JP2006253268A (en) Semiconductor device and its manufacturing method
KR100688724B1 (en) Method for manufacturing high volume mim capacitor
US20040063295A1 (en) One-mask process flow for simultaneously constructing a capacitor and a thin film resistor
JP2002222857A (en) Semiconductor chip, device structure, method for fabricating device structure and method for fabricating semiconductor device
JP2003188265A (en) Method for manufacturing mim type capacitor element
KR20040057079A (en) simultaneous manufacturing method of capacitor and contact hole for semiconductor device