JP2005164886A - Optical fiber guide and optical element module - Google Patents

Optical fiber guide and optical element module Download PDF

Info

Publication number
JP2005164886A
JP2005164886A JP2003402626A JP2003402626A JP2005164886A JP 2005164886 A JP2005164886 A JP 2005164886A JP 2003402626 A JP2003402626 A JP 2003402626A JP 2003402626 A JP2003402626 A JP 2003402626A JP 2005164886 A JP2005164886 A JP 2005164886A
Authority
JP
Japan
Prior art keywords
optical fiber
face
optical
substrate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003402626A
Other languages
Japanese (ja)
Other versions
JP3974891B2 (en
Inventor
Osamu Imaki
理 伊巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2003402626A priority Critical patent/JP3974891B2/en
Publication of JP2005164886A publication Critical patent/JP2005164886A/en
Application granted granted Critical
Publication of JP3974891B2 publication Critical patent/JP3974891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber guide in which the end face of an optical fiber (or a fiber collimator), which is diagonally polished, is easily positioned. <P>SOLUTION: The optical fiber guide is constituted so that the end of the optical fiber of which the end face is diagonal to the axis is positioned and fixed on a substrate and a luminous flux propagated in the air is made incident or emitted. The optical fiber guide comprises: a groove for mounting the optical fiber, the cross section of which is formed in a rectangle, provided on the face of the substrate; a wall face for butting the end face of the optical fiber, which is provided at the end of the groove in such a manner that the wall face is diagonal with respect to the groove axis at the same angle as that of the diagonal end of the optical fiber with respect to the axis and the normal line of the diagonal wall face is in parallel to the face of the substrate; a slit formed at the center of the wall face for butting for incidence and emission of the luminous flux propagated in the air; and a pressing plate which pressurizes the optical fiber mounted in the groove downward. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板上に光ファイバ端部を固定し、光ファイバ端部を光スイッチ、可変光減衰器などの可動部を有する光デバイスに対して、端面を介して入出射する光束の光軸を位置決めし、固定する光ファイバガイドに関する。   The present invention relates to an optical axis of a light beam that enters and exits through an end surface of an optical device having an optical fiber end fixed on a substrate and the optical fiber end having a movable part such as an optical switch or a variable optical attenuator. It is related with the optical fiber guide which positions and fixes.

光ファイバ端部を位置決め固定して空中へ光束を出射させ、光ファイバを固定し又は入射させる装置において、従来、光ファイバ端面を壁面に突き当ててパッシブに位置決めする構成を有するものとしては、例えば特許文献1、2に記載されるように光ファイバ端面が垂直端面対応のモジュールが存在した。
しかし光ファイバ光学系において空中伝搬との結合部位が存する場合には、一般にファイバ端面での反射戻り光伝送路への再結合を防ぐために、端面を斜めに切断などすることが望ましい。
一方、光ファイバの端面を斜めにするとそこから出射または入射する光束の光軸は光ファイバの軸から端面の傾斜の向きに従って偏向するため、これを装置に組込んで他の光部品と正確な結合をはかるためには、軸回りの方位に関する角度合わせをする必要が生じる。
In an apparatus for fixing an optical fiber end portion and emitting a light beam into the air and fixing or entering the optical fiber, as a conventional device having a configuration in which the optical fiber end face is abutted against a wall surface and passively positioned, for example, As described in Patent Documents 1 and 2, there is a module whose optical fiber end face corresponds to a vertical end face.
However, when there is a coupling site with aerial propagation in the optical fiber optical system, it is generally desirable to cut the end face obliquely in order to prevent re-coupling to the reflected return optical transmission line at the fiber end face.
On the other hand, if the end face of the optical fiber is inclined, the optical axis of the light beam emitted or incident from it is deflected according to the direction of the inclination of the end face from the axis of the optical fiber. In order to achieve coupling, it is necessary to adjust the angle with respect to the azimuth around the axis.

このため基本的には、例えば特許文献3記載のように光ファイバフェルールにマーキング等を施した上で軸周りの回転に関しては角度合わせをする実装を行う。
斜めに傾斜した端面を有する光ファイバを上記の様な角度合わせする工程なしにパッシブに位置決めできるようにする発明としては、特許文献4ないし9記載のような各発明が存在する。
特許文献4記載の発明は、透光性樹脂で光ファイバ端面と結合相手となる光部品との間の空隙を充填する構成によるので、本発明が主に適用対象となるような光スイッチ等の空中伝搬光路中に可動部を有する光デバイスを配置する装置には適用することができない。
つぎに特許文献5記載の発明は、特定の角度に傾斜した溝を基板上に形成することの困難性とともに、傾斜が基板表面に対して深さ方向に設けられているため、光ファイバを固定する際に押え板を用いることができず、さらに光ファイバを軸方向に押しつけて端面を傾斜した壁面に突き当てる際に光ファイバ端部が斜面に従って基板表面上部へ飛び出す方向に力が作用し、垂直方向に位置ずれを生じるという問題があった。
For this reason, basically, as described in Patent Document 3, for example, an optical fiber ferrule is subjected to marking and the like, and an angle alignment is performed with respect to rotation around the axis.
As inventions that enable an optical fiber having an obliquely inclined end face to be passively positioned without the step of adjusting the angle as described above, there are various inventions as described in Patent Documents 4 to 9.
Since the invention described in Patent Document 4 has a configuration in which a gap between the optical fiber end face and the optical component to be coupled is filled with a translucent resin, an optical switch or the like to which the present invention is mainly applied It cannot be applied to an apparatus in which an optical device having a movable part is arranged in an air propagation optical path.
Next, the invention described in Patent Document 5 fixes the optical fiber because the inclination is provided in the depth direction with respect to the substrate surface, together with the difficulty of forming a groove inclined at a specific angle on the substrate. When pressing the optical fiber in the axial direction and pressing the end face against the inclined wall, a force acts in the direction that the end of the optical fiber jumps out to the upper surface of the substrate along the slope, There has been a problem that a positional shift occurs in the vertical direction.

更に特許文献6、7記載の発明は空中伝搬光路ではなく光導波路との結合を果たす装置であるが、仮にその構成の一部を空中出射用に応用するとしても、傾斜の面が基板面に対し深さ方向に形成されているため上記特許文献5記載の発明に係わると同様に垂直方向に端部の位置ずれを起こしやすいという課題を有している。
特許文献8、9には傾斜を基板内方向に設ける構成の発明が記載されているが、これらはいずれも光ファイバと光導波路との結合をはかる装置であり、空中伝搬光路との結合、特に可動部を有するような光デバイスへの適用は不可能である。
特許第2817778号明細書 特開平10−253856号公報 特開2000−338363号公報 特開2001−21775号公報 特開平3−93285号公報 特開平1−261604号公報 特開平5−188234号公報 特開平5−22404号公報 特開平8−122561号公報
Furthermore, the inventions described in Patent Documents 6 and 7 are devices that perform coupling with an optical waveguide instead of an aerial propagation optical path. On the other hand, since it is formed in the depth direction, it has a problem that the end portion is liable to be displaced in the vertical direction as in the case of the invention described in Patent Document 5.
Patent Documents 8 and 9 describe inventions having a configuration in which an inclination is provided in the direction in the substrate, but these are both devices for coupling an optical fiber and an optical waveguide, and particularly for coupling with an air propagation optical path. Application to an optical device having a movable part is impossible.
Japanese Patent No. 2817778 Japanese Patent Laid-Open No. 10-253856 JP 2000-338363 A Japanese Patent Laid-Open No. 2001-21775 Japanese Patent Laid-Open No. 3-93285 Japanese Patent Laid-Open No. 1-261604 JP-A-5-188234 JP-A-5-22404 JP-A-8-122561

戻り光対策として斜め端面とした光ファイバから出射した光を、他の光ファイバに結合させる場合、傾斜面の向を一定条件に揃える必要がある。このために特に軸周りの角度合せ工程を要し、光ファイバの端面を固定する作業は困難な作業となる。
この発明の目的は戻り光対策として必要な斜め端面を有する光ファイバ端部を、軸周りの角度合わせの工程を要することなく、空中伝搬光路に対して正確に位置決めし、固定することができる光ファイバガイド及びこの光ファイバガイドを用いて構成した光素子モジュールを提供しようとするものである。
When light emitted from an optical fiber having an oblique end face is coupled to another optical fiber as a countermeasure against returning light, the direction of the inclined surface needs to be set to a certain condition. For this reason, an angle adjusting step around the axis is particularly required, and the work of fixing the end face of the optical fiber becomes a difficult work.
An object of the present invention is a light that can accurately position and fix an optical fiber end portion having an oblique end surface necessary as a countermeasure against return light with respect to an aerial propagation optical path without requiring an angle alignment process around the axis. It is an object of the present invention to provide a fiber guide and an optical element module configured using the optical fiber guide.

基板上に軸に対して端面が斜めとされた光ファイバ端部を位置決め固定して空中伝搬光束の入出射をはかる光ファイバガイドであって、
基板の一方の面に形成され、断面が矩形の光ファイバ載置用溝と、この光ファイバ載置用溝の端部に設けられ、光ファイバの端面に形成した斜め端面の軸に対する角度と同一の角度で溝の軸に対して斜めとされ、且つその斜め面の法線が基板の面に平行とされた端面つき当て用壁面と、その端面突き当て用壁面の溝の溝幅の中央に形成された空中伝搬光束入出射用スリットとを具備した光ファイバガイドを提案する。
An optical fiber guide that positions and fixes an end portion of an optical fiber whose end face is inclined with respect to an axis on a substrate and measures the entrance and exit of a light beam propagating in the air,
An optical fiber mounting groove formed on one surface of the substrate and having a rectangular cross section, and provided at the end of the optical fiber mounting groove, the angle with respect to the axis of the oblique end surface formed on the end surface of the optical fiber is the same At the center of the groove width of the groove of the end face abutting wall surface and the end face abutting wall face that is inclined with respect to the groove axis at an angle of An optical fiber guide provided with a formed slit for entering and exiting an airborne light beam is proposed.

この発明ではさらに上記の光ファイバガイドに端面突き当て用壁面が向い合せる姿勢で複数の光ファイバ載置用溝が形成され、これら複数の光ファイバ載置用溝のそれぞれに端面が斜めとされた光ファイバの各端面が各光ファイバ載置用溝に形成された端面突き当て用壁面に接して押え板で押えられて載置され、押え板と基板との間を接着して各光ファイバ載置用溝の内部に光ファイバが固定され、向い合せの姿勢で配置された端面突き当て用壁面の相互の間に、スリットを通じて光ファイバの一方から他方へ光を伝搬させる光の空中伝搬路を形成するための空間を具備し、この中間に光デバイスを配置している光素子モジュールを提案する。   In the present invention, a plurality of optical fiber placement grooves are formed in such a posture that the end face abutting wall faces the optical fiber guide, and the end faces are inclined in each of the plurality of optical fiber placement grooves. Each end face of the optical fiber comes into contact with the end face abutting wall formed in each optical fiber placement groove and is pressed by the presser plate, and is mounted between the presser plate and the substrate. An optical fiber is fixed inside the mounting groove, and an aerial propagation path of light that propagates light from one side of the optical fiber to the other through a slit between the end face abutting wall surfaces arranged in a facing position. An optical element module having a space for formation and having an optical device arranged in the middle is proposed.

この発明の光ファイバガイドによれば基板に形成した光ファイバ載置用溝の一方の端部に光ファイバの斜め端面と同一角度の端面突き当て用壁面を設けた構造としたから、光ファイバの端面をこの端面突き当て用壁面の面にほぼ平行する姿勢で面同士を少し離した状態で光ファイバ載置用溝に挿入し、挿入後に光ファイバを上部から押え板で押えた状態で光ファイバを端面突き当て用壁面に向って移動させ、光ファイバの端面を端面突き当て用壁面に突き当てることにより、光ファイバの先端面は端面突き当て用壁面の面の向に倣らされて所定の向に実装される。   According to the optical fiber guide of the present invention, the end face abutting wall surface having the same angle as the oblique end face of the optical fiber is provided at one end of the optical fiber placement groove formed on the substrate. Insert the end face into the optical fiber mounting groove with the end face almost parallel to the end face abutting wall surface, with the faces slightly separated from each other, and press the optical fiber with the presser plate from the top after insertion. Is moved toward the end surface abutting wall surface, and the end surface of the optical fiber is abutted against the end surface abutting wall surface. To be implemented.

従って、この発明では特に軸周り方向の角度合わせ工程を行うことなく所定の条件つまり、光ファイバの端面に付した傾斜面の向を所定の向に揃った状態で光ファイバの端部を固定することができ、この結果として基板上に向い合わせた姿勢で固定した光ファイバ相互を簡単に且つ確実に光結合した状態に配置することができる。この向い合わせた姿勢で光結合した光ファイバの相互の間に可動ミラー或はフィルタ等の光デバイスを配置することにより、光スイッチ或は光量調節等を行なう光素子モジュールを構成することができ、光素子モジュールの製造を簡単に行うことができる利点が得られる。   Therefore, in the present invention, the end portion of the optical fiber is fixed in a predetermined condition, that is, in a state where the direction of the inclined surface attached to the end surface of the optical fiber is aligned in a predetermined direction without performing the angle adjusting process in the direction around the axis. As a result, the optical fibers fixed in a posture facing each other on the substrate can be simply and reliably optically coupled. By disposing an optical device such as a movable mirror or a filter between optical fibers that are optically coupled in this facing orientation, an optical element module that performs an optical switch or light amount adjustment can be configured. There is an advantage that the optical element module can be easily manufactured.

図1及び図2を用いてこの発明の光ファイバガイドに用いる基板の構造を説明する。基板10は例えばシリコン基板が用いられ、後で説明する製造方法により基板10の一方の面に複数の光ファイバ載置用溝11A〜11Dが形成される。各光ファイバ載置用溝11A〜11Dは断面がほぼ矩形とされ、溝の深さは載置するファイバの直径の約70〜80%程度に浅く形成する。各光ファイバ載置用溝11A〜11Dの各一端は基板10の周縁に開口されるが、他端は基板10の内部で終端とされ、その終端部分に端面突き当て用壁面とスリット13とが形成される。図1に示す実施例ではほぼ正方形の基板10の面に十字状に断面がほぼ矩形状の四本の光ファイバ載置用溝11A、11B、11C、11Dを形成した場合を示す。これら四本の光ファイバ載置用溝11A〜11Dの終端が向い合せの関係にある溝、図1に示す例では11Aと11C及び11Bと11Dは各溝の軸線は互いに平行するが、溝の軸方向にわずかにずらされて形成される。この軸線のずれは上述した理由により光ファイバの端面に傾斜を付したことによる影響である。軸線のずれ量は光ファイバの端面い付す斜面の角度によって決定される。光ファイバの端面に付される斜面の角度(光ファイバの光軸と直行する向の線とのなす角度)は一般に2°〜10°程度の範囲に選定される。極く一般的には6°程度がよく用いられる。   The structure of the substrate used in the optical fiber guide of the present invention will be described with reference to FIGS. For example, a silicon substrate is used as the substrate 10, and a plurality of optical fiber placement grooves 11 </ b> A to 11 </ b> D are formed on one surface of the substrate 10 by a manufacturing method described later. Each of the optical fiber placement grooves 11A to 11D has a substantially rectangular cross section, and the depth of the groove is shallow to about 70 to 80% of the diameter of the fiber to be placed. One end of each of the optical fiber placement grooves 11A to 11D is opened at the peripheral edge of the substrate 10, while the other end is terminated inside the substrate 10, and an end surface abutting wall surface and a slit 13 are formed at the termination portion. It is formed. The embodiment shown in FIG. 1 shows a case where four optical fiber placement grooves 11A, 11B, 11C, and 11D having a cross-like cross section and a substantially rectangular cross section are formed on the surface of a substantially square substrate 10. These four optical fiber mounting grooves 11A to 11D have end-to-end relations. In the example shown in FIG. 1, 11A and 11C and 11B and 11D are parallel to each other. It is formed slightly shifted in the axial direction. This deviation of the axis is an influence due to the inclination of the end face of the optical fiber for the reason described above. The amount of deviation of the axis is determined by the angle of the inclined surface attached to the end face of the optical fiber. The angle of the inclined surface attached to the end face of the optical fiber (the angle formed between the optical axis of the optical fiber and the perpendicular line) is generally selected in the range of about 2 ° to 10 °. In general, about 6 ° is often used.

各光ファイバ載置用溝11A〜11Dの終端に形成される端面突き当て用壁面12の壁面も各光ファイバ載置用溝11A〜11Dの軸線に対して傾斜して形成される。この傾斜角は光ファイバ20の端面に付す傾斜角と同一の角度とされる。互いに向い合わせの関係にある端面つき当て用壁12はその壁面が互に平行して形成され、この平行する端面突き当て用壁面12の形成によって、互に向い合わせる端面突き当て壁面12の各両端に形成される鋭角の屈曲部分と鈍角の屈曲部分は互に対角線上に配置される。
光ファイバの端面に付す斜面の角度を決定すると、光ファイバ載置用溝11A〜11Dの軸線のずれ量は計算で算出することができる。従って、この計算で求められた光ファイバ載置用溝11A〜11Dの位置(主に軸線のずれ量)を忠実に基板10上に再現し、再現された光ファイバ載置用溝11A〜11Dに光ファイバを実装すれば、各光ファイバは互に光軸が合致した状態にガイドされて配置され、無調整で光素子モジュールを製造することができる点がこの発明の特徴である。
光ファイバの端面に付す斜面の角度から各光ファイバ載置用溝11A〜11Dの位置を算出する方法に関しては、この発明の本質ではないから、ここでは説明を省略するが、その計算方法は公知である。
The wall surface of the end face abutting wall surface 12 formed at the end of each of the optical fiber placement grooves 11A to 11D is also formed to be inclined with respect to the axis of each of the optical fiber placement grooves 11A to 11D. This inclination angle is the same as the inclination angle attached to the end face of the optical fiber 20. The end face abutting walls 12 facing each other are formed so that the wall surfaces thereof are parallel to each other, and each end of the end face abutting wall surfaces 12 facing each other is formed by the formation of the parallel end face abutting wall surfaces 12. The bent portion having an acute angle and the bent portion having an obtuse angle are arranged diagonally to each other.
When the angle of the inclined surface attached to the end face of the optical fiber is determined, the amount of deviation of the axes of the optical fiber placement grooves 11A to 11D can be calculated. Accordingly, the positions of the optical fiber placement grooves 11 </ b> A to 11 </ b> D obtained by this calculation (mainly the shift amount of the axis) are faithfully reproduced on the substrate 10, and the reproduced optical fiber placement grooves 11 </ b> A to 11 </ b> D are reproduced. If an optical fiber is mounted, each optical fiber is guided and arranged in a state where the optical axes coincide with each other, and an optical element module can be manufactured without adjustment.
The method for calculating the position of each of the optical fiber mounting grooves 11A to 11D from the angle of the inclined surface attached to the end face of the optical fiber is not the essence of the present invention. It is.

以下に図3乃至図8を用いてこの発明の特徴となる光ファイバの実装時に光ファイバの端面が基板10に形成した端面突き当て用壁面12の斜面に倣って正確に位置決めされる点について説明する。
図3乃至図8はこの発明による光ファイバガイドに光ファイバを実装する工程を示す。各図のAは光ファイバガイドの平面図、Bは側面図を示す。ここでは図1に示した光ファイバ載置用溝11A〜11Dの中の1本を光ファイバ載置用溝11として代表して示し、光ファイバ20の実装方法を説明する。
3 to 8, the description will be given of the fact that the end face of the optical fiber is accurately positioned following the slope of the end face abutting wall surface 12 formed on the substrate 10 when the optical fiber which is a feature of the present invention is mounted. To do.
3 to 8 show a process of mounting the optical fiber on the optical fiber guide according to the present invention. In each figure, A is a plan view of the optical fiber guide, and B is a side view. Here, one of the optical fiber placement grooves 11A to 11D shown in FIG. 1 is representatively shown as the optical fiber placement groove 11, and a method of mounting the optical fiber 20 will be described.

ステップ1
光ファイバ20(先端は融着接続された短尺のグレーデッド・インデクス・ファイバ部であってもよい)を基板10の上空において冶具(特に図示していない)で把持し、上方から端面の傾斜を画像認識して端面が基板表面に対して略垂直になるように軸周り回転角度を粗調し、光ファイバ載置用溝11の上方で光ファイバ20の先端と端面突き当て用壁面12との距離を若干空けて保持する(図4参照)。
ステップ2
図4の状態で光ファイバ20を上から例えばガラス板で構成される押え板30で押圧し、光ファイバ20を光ファイバ載置用溝11の内部に押し込める(図5参照)。
Step 1
An optical fiber 20 (which may be a short graded index fiber portion whose tip is fusion-spliced) is gripped by a jig (not shown) above the substrate 10 and the end face is inclined from above. The image is recognized and the rotational angle around the axis is roughly adjusted so that the end surface is substantially perpendicular to the substrate surface, and the tip of the optical fiber 20 and the end surface abutting wall surface 12 are positioned above the optical fiber placement groove 11. Hold a little distance (see FIG. 4).
Step 2
In the state of FIG. 4, the optical fiber 20 is pressed from above with a pressing plate 30 made of, for example, a glass plate, and the optical fiber 20 is pushed into the optical fiber placement groove 11 (see FIG. 5).

ステップ3
押え板30で光ファイバ20に押圧力を印加した状態で、光ファイバ載置用溝11内に閉じこめた光ファイバ20を軸方向に押し、その先端面を端面突き当て用壁面12に向って前進させ、端面を端面突き当て用壁面12に押しつける(図6参照)。
このステップ3において、ステップ1における光ファイバの軸周りの角度合わせの粗調の残余としての角度エラーが、光ファイバ20自身の若干のねじれによって吸収補償され、光ファイバ20の端面は端面突き当て用壁面12の面に倣らって完全に一致するに至る。
Step 3
With the pressing plate 30 applying a pressing force to the optical fiber 20, the optical fiber 20 confined in the optical fiber placement groove 11 is pushed in the axial direction, and its tip surface advances toward the end surface abutting wall surface 12. Then, the end surface is pressed against the end surface abutting wall surface 12 (see FIG. 6).
In this step 3, the angle error as the remainder of the coarse adjustment of the angle alignment around the axis of the optical fiber in the step 1 is absorbed and compensated by a slight twist of the optical fiber 20 itself, and the end face of the optical fiber 20 is for end face abutment. It follows the surface of the wall surface 12 until it completely coincides.

この角度エラーの自動調整作用は、光ファイバ載置用溝11と押え板30とによって、光ファイバ20の運動が軸に垂直な面内の全方向で束縛されていることによって生じる。特に、光ファイバ20の径を溝11の深さよりも大きく選定するので、ステップ1と2の工程の結果斜め端面が比較的下向きに傾く方位にエラーを持って粗調された場合、斜めとされた光ファイバ端部の鋭角的な先端部分が溝の深さと同一の高さを有する端面突き当て用壁面の上辺よりもさらに上に位置することになる。ここで仮に押え板30による押圧無しで光ファイバ20を軸方向に前進させると、光ファイバ20は突き当て用壁面の上方に乗り上げる運動を起こし、軸周りの回転を誘起して自動的に角度合わせを達成する運動を起こし得ない。そこで光ファイバ載置用溝11の、特にその端面突き当て用壁面と鋭角をなす側の側壁面と、上方からの押え板30とにより、光ファイバ20の運動を束縛する作用が、発明の目的のために必須である。
そしてかかる光ファイバ20の自然のねじれを利用して、従来のアクティブな角度合わせでは困難であった高精度な角度アラインメントが容易に実現することは、本発明固有の効果である。
This automatic adjustment of the angle error is caused by the movement of the optical fiber 20 being constrained in all directions in a plane perpendicular to the axis by the optical fiber placement groove 11 and the presser plate 30. In particular, since the diameter of the optical fiber 20 is selected to be larger than the depth of the groove 11, if the oblique end face is coarsely adjusted with an error in the direction in which the oblique end face is inclined relatively downward as a result of the steps 1 and 2, it is assumed to be oblique. Further, the sharp tip portion of the end portion of the optical fiber is positioned further above the upper side of the end face abutting wall surface having the same height as the groove depth. Here, if the optical fiber 20 is advanced in the axial direction without being pressed by the presser plate 30, the optical fiber 20 moves up above the abutting wall surface and induces rotation around the axis to automatically adjust the angle. Cannot cause exercise to achieve. Therefore, the action of restraining the movement of the optical fiber 20 by the optical fiber placement groove 11, in particular, the side wall surface on the side that forms an acute angle with the end face abutting wall surface and the presser plate 30 from above is an object of the invention. Is essential for.
It is a unique effect of the present invention that the natural twist of the optical fiber 20 is used to easily realize high-accuracy angle alignment, which is difficult with conventional active angle alignment.

ステップ4
押え板30と基板との隙間(約30μmほど)にUV硬化型接着剤31を流し込む(図7参照)。紫外線を照射して接着剤31を図8に示す接着層32に硬化させ、位置決め固定を完了して押え板30への押圧を解放する。なお液相の接着剤は上述のステップ2の後に適用し、ステップ3における溝11内での光ファイバ20の運動の潤滑材として作用させたあと、位置決め後に紫外線を照射して硬化させてもよい。
以上によりこの発明の特徴とする光ファイバ20の先端の位置決め状態について理解できよう。以下では基板10への光ファイバ載置用溝11と、端面突き当て用壁面12及びスリット13の形成方法とこの発明の実用例について説明する。
Step 4
A UV curable adhesive 31 is poured into a gap (about 30 μm) between the pressing plate 30 and the substrate (see FIG. 7). The adhesive 31 is cured to the adhesive layer 32 shown in FIG. 8 by irradiating ultraviolet rays, the positioning and fixing are completed, and the pressing to the presser plate 30 is released. The liquid phase adhesive may be applied after step 2 described above, and after acting as a lubricant for the movement of the optical fiber 20 in the groove 11 in step 3, it may be cured by irradiation with ultraviolet rays after positioning. .
From the above, the positioning state of the tip of the optical fiber 20 which is a feature of the present invention can be understood. Below, the formation method of the optical fiber mounting groove | channel 11, the end surface butting wall surface 12 and the slit 13 to the board | substrate 10, and the practical example of this invention are demonstrated.

図9乃至図12を用いて基板10に光ファイバ載置用溝11と端面突き当て用壁面12とスリット13の形成方法を説明する。各図のAは平面図、Bは断面図である。
基板10は2層構造の例えばシリコン基板を用いることができる。1層目のシリコン層10Aは光ファイバ載置用溝11の深さに対応する厚みに選定され、その表面に第1の絶縁層10Cが形成され、下面に第2の絶縁層10Dが形成される。第2の絶縁層10Dの下面側に第2のシリコン層10Bが形成される。この第2のシリコン層10Bが光ファイバ載置用溝11の形成部分の強度を持ったことになる。
A method of forming the optical fiber placement groove 11, the end face abutting wall surface 12, and the slit 13 in the substrate 10 will be described with reference to FIGS. 9 to 12. In each figure, A is a plan view and B is a cross-sectional view.
As the substrate 10, for example, a silicon substrate having a two-layer structure can be used. The first silicon layer 10A is selected to have a thickness corresponding to the depth of the optical fiber mounting groove 11, the first insulating layer 10C is formed on the surface, and the second insulating layer 10D is formed on the lower surface. The A second silicon layer 10B is formed on the lower surface side of the second insulating layer 10D. This second silicon layer 10B has the strength of the portion where the optical fiber mounting groove 11 is formed.

工程1
絶縁層10Cと10Dはシリコン酸化膜とされ、絶縁層10Cの上面に例えば光硬化性樹脂で構成されるレジスト層14を被着し、このレジスト層14に光ファイバ載置用溝11の形状と、端面突き当て用壁面12の形状及びスリット13の形状をフォトリソによってパターニングを行ない、エッチング除去すべき部分のレジスト層14を除去する(図9参照)。
工程2
RIE(反応性イオンエッチング)装置を用いてドライエッチングを施し、レジスト層14から露出されている絶縁層10Cを除去する(図10参照)。
Process 1
The insulating layers 10C and 10D are silicon oxide films, and a resist layer 14 made of, for example, a photocurable resin is attached to the upper surface of the insulating layer 10C, and the shape of the optical fiber placement groove 11 is formed on the resist layer 14. Then, the shape of the end surface abutting wall surface 12 and the shape of the slit 13 are patterned by photolithography, and the resist layer 14 in a portion to be removed by etching is removed (see FIG. 9).
Process 2
Dry etching is performed using an RIE (reactive ion etching) apparatus, and the insulating layer 10C exposed from the resist layer 14 is removed (see FIG. 10).

工程3
露出している絶縁層10Cをエッチングにより除去した後、レジスト層14を除去する(図11参照)。
工程4
酸化膜10CをマスクとしてICP(誘導結合プラズマ)エッチング装置を用いてディープRIEエッチングによりシリコン層10Aに必要の深さの垂直の壁面を持つ光ファイバ載置用溝11と端面突き当て用壁面12及びスリット13を形成する。ディープエッチングは基板の温度条件や、プラズマの条件によっては従来型のRIE技術によっても可能であるが、ICP装置を利用するのが便利である(図12参照)。
Process 3
After the exposed insulating layer 10C is removed by etching, the resist layer 14 is removed (see FIG. 11).
Process 4
Using the oxide film 10C as a mask, an ICP (inductively coupled plasma) etching apparatus is used to carry out deep RIE etching to form an optical fiber mounting groove 11 having a vertical wall surface having a depth required for the silicon layer 10A, an end surface abutting wall surface 12, and A slit 13 is formed. Although deep etching can be performed by a conventional RIE technique depending on the temperature condition of the substrate and the plasma condition, it is convenient to use an ICP apparatus (see FIG. 12).

尚、シリコン基板への光ファイバ位置決めに多用される異方性エッチングを用いたV溝加工方法では、この発明の課題を解決するための垂直の壁面を持つ光ファイバ載置用溝11と端面突き当て用壁面12とスリット13を形成することはできない。
図13に光ファイバ載置用溝11の寸法数値例を示す。光ファイバ載置用溝11の幅Wは光ファイバ20の直径が125μmの場合、W=126μmとされ、更に深さDは光ファイバ20の直径より浅い100μm程度に設定される。端面突き当て用壁面12の角度θはここではθ=6°とした場合を示す。
In the V-groove processing method using anisotropic etching often used for positioning of the optical fiber on the silicon substrate, the optical fiber mounting groove 11 having a vertical wall surface and the end face protrusion are used to solve the problem of the present invention. The abutting wall surface 12 and the slit 13 cannot be formed.
FIG. 13 shows an example of numerical values of dimensions of the optical fiber mounting groove 11. The width W of the optical fiber mounting groove 11 is set to W = 126 μm when the diameter of the optical fiber 20 is 125 μm, and the depth D is set to about 100 μm, which is shallower than the diameter of the optical fiber 20. The angle θ of the end surface abutting wall surface 12 is shown here when θ = 6 °.

図14及び図15に基板10に光ファイバを実装した光素子モジュールの実施例1を示す。この実施例では十字状に配置した4本の光ファイバ20A〜20Dの中心に可動ミラー40を配置し、この可動ミラー40を可動させて光学通路を切替える光スイッチを構成した例を示す。
尚、光スイッチを構成する場合、空中伝搬光路長が比較的長くなることから光ファイバ20の先端にコリメータを付設して集光性能を持たせ、平行光束を入出射するように構成することが望ましい。その具体的な構造としては、伝送用の光ファイバと同径のグレーテッド・インデクス光ファイバを伝送用の光ファイバの先端に融着して接続した後に、設計される焦点距離に相応する長さ分だけ残して切断し、その切断端面を斜めとすることで実現することができる。グレーテッド・インデクス型の光ファイバはそのまま円柱レンズとして用いることができ、コリメータとして作用する。ここではコリメータ付の光ファイバを用いるものとするが、以下では単に光ファイバと称して説明する。
FIG. 14 and FIG. 15 show Example 1 of an optical element module in which an optical fiber is mounted on a substrate 10. In this embodiment, an example is shown in which a movable mirror 40 is arranged at the center of four optical fibers 20A to 20D arranged in a cross shape, and an optical switch is configured to move the movable mirror 40 and switch an optical path.
In the case of configuring an optical switch, since the optical propagation path length in the air is relatively long, a collimator is attached to the tip of the optical fiber 20 so as to have a condensing performance, and a parallel light flux can be input and output. desirable. The specific structure is a length corresponding to the designed focal length after a graded index optical fiber having the same diameter as the transmission optical fiber is fused and connected to the tip of the transmission optical fiber. It can be realized by cutting the remaining portion and making the cut end face oblique. The graded index type optical fiber can be used as a cylindrical lens as it is, and acts as a collimator. Here, although an optical fiber with a collimator is used, the following description will be simply referred to as an optical fiber.

可動ミラー40は基板10の板の厚み方向に上昇、下降自在に配置され、上昇位置で光ファイバ20A〜20Dの各相互間に形成される光の空中伝搬路に存在し、下降位置で光の空中伝搬路から排除される。図14は可動ミラー40が上昇位置に存在する状態を示す。この状態では例えば光ファイバ20Aから出射した光は可動ミラー40で反射し、光ファイバ20Bに入射し、光ファイバ20Aから光ファイバ20Bに光信号が伝送される。またこのとき光ファイバ20Dから出射した光は可動ミラー40で反射し、光ファイバ20Cに入射し、光ファイバ20Dから光ファイバ20Cに光信号が伝送される。   The movable mirror 40 is arranged so as to be able to rise and fall in the thickness direction of the plate of the substrate 10, and exists in the aerial propagation path of light formed between the optical fibers 20 </ b> A to 20 </ b> D at the raised position. It is excluded from the air propagation path. FIG. 14 shows a state in which the movable mirror 40 is in the raised position. In this state, for example, light emitted from the optical fiber 20A is reflected by the movable mirror 40, enters the optical fiber 20B, and an optical signal is transmitted from the optical fiber 20A to the optical fiber 20B. At this time, the light emitted from the optical fiber 20D is reflected by the movable mirror 40, enters the optical fiber 20C, and an optical signal is transmitted from the optical fiber 20D to the optical fiber 20C.

図15では可動ミラー40が降下位置に存在する状態を示す。この場合には可動ミラー40が光の空中伝搬路上に存在しないから、光ファイバ20Aから出射した光は光ファイバ20Cに入射し、光ファイバ20Aから光ファイバ20Cに光信号が伝送される。また、光ファイバ20Dから出射した光は光ファイバ20Bに入射し、光ファイバ20Dから光ファイバ20Bに光信号が伝送される。
このように、図14及び図15に示した光素子モジュールによれば光信号の系路を切替る光スイッチを構成することができ、この発明によればこのような光スイッチを簡単に製造することができる。特にエッチングで光ファイバ載置用溝11A〜11Dと端面突き当て用壁面12及びスリット13を形成するから、これらの各要素は寸法が精度よく均一に製造できるため、光ファイバを基板10に実装すれば、その状態で各光ファイバ相互の光結合が最良の状態に組みたてられ、均一な特性の光素子モジュールを多量に製造できることになる。
FIG. 15 shows a state in which the movable mirror 40 exists at the lowered position. In this case, since the movable mirror 40 does not exist on the light propagation path, the light emitted from the optical fiber 20A enters the optical fiber 20C, and an optical signal is transmitted from the optical fiber 20A to the optical fiber 20C. The light emitted from the optical fiber 20D enters the optical fiber 20B, and an optical signal is transmitted from the optical fiber 20D to the optical fiber 20B.
As described above, according to the optical element module shown in FIG. 14 and FIG. 15, an optical switch for switching the optical signal path can be configured. According to the present invention, such an optical switch can be easily manufactured. be able to. In particular, since the optical fiber placement grooves 11A to 11D, the end surface abutting wall surface 12 and the slit 13 are formed by etching, each of these elements can be manufactured with high precision and uniformity, so that the optical fiber is mounted on the substrate 10. In this state, the optical coupling between the optical fibers is set to the best state, and a large number of optical element modules having uniform characteristics can be manufactured.

図16に第2の実施例を示す。この実施例では光ファイバの相互の間に光量調整用の光学フィルタ50を介挿した光素子モジュールを構成した場合を示す。このような光素子モジュールを製造する場合でも光ファイバ20を基板10に形成した光ファイバ載置用溝11に挿入し、光ファイバ20の先端を端面突き当て用壁面12に突き当てるだけで光ファイバ20の光軸が相手の光ファイバの光軸と合致して固定されるから、製造が容易である。   FIG. 16 shows a second embodiment. In this embodiment, an optical element module in which an optical filter 50 for adjusting the amount of light is interposed between optical fibers is shown. Even in the case of manufacturing such an optical element module, the optical fiber 20 is inserted into the optical fiber mounting groove 11 formed on the substrate 10, and the optical fiber 20 is merely abutted against the end surface abutting wall surface 12. Since the optical axis of 20 coincides with the optical axis of the counterpart optical fiber and is fixed, manufacturing is easy.

上に説明したこの発明による光ファイバガイド及び光素子モジュールは光通信関連分野で実用される。   The above-described optical fiber guide and optical element module according to the present invention are practically used in the field related to optical communication.

この発明の光ファイバガイドに用いる基板の構造を説明するための平面図。The top view for demonstrating the structure of the board | substrate used for the optical fiber guide of this invention. 図1に示した基板の側面図。The side view of the board | substrate shown in FIG. 図1に示した基板に光ファイバを実装するステップを説明するためのAは平面図、Bは側面図。FIG. 2A is a plan view and B is a side view for explaining a step of mounting an optical fiber on the substrate shown in FIG. 図3に示したステップの次のステップを説明するためのAは平面図、Bは側面図。3A is a plan view and B is a side view for explaining a step subsequent to the step shown in FIG. 図4に示したステップの次のステップを説明するためのAは平面図、Bは側面図。FIG. 5A is a plan view and B is a side view for explaining a step subsequent to the step shown in FIG. 4. 図5に示したステップの次のステップを説明するためのAは平面図、Bは側面図。FIG. 6A is a plan view and B is a side view for explaining a step subsequent to the step shown in FIG. 5. 図6に示したステップの次のステップを説明するためのAは平面図、Bは側面図。FIG. 7A is a plan view and B is a side view for explaining a step subsequent to the step shown in FIG. 6. 図7に示したステップの次のステップを説明するためのAは平面図、Bは側面図。FIG. 8A is a plan view and B is a side view for explaining a step subsequent to the step shown in FIG. 7. 図1に示した基板の製造方法の工程を説明するためのAは平面図、Bは断面図。1A is a plan view and B is a cross-sectional view for explaining the steps of the substrate manufacturing method shown in FIG. 図9に示した工程の次の工程を説明するためのAは平面図、Bは断面図。9A is a plan view and B is a cross-sectional view for explaining a step subsequent to the step shown in FIG. 図10に示した工程の次の工程を説明するためのAは平面図、Bは断面図。FIG. 11A is a plan view and B is a cross-sectional view for explaining a step subsequent to the step shown in FIG. 10. 図11に示した工程の次の工程を説明するためのAは平面図、Bは断面図。11A is a plan view and B is a cross-sectional view for explaining a step subsequent to the step shown in FIG. 図1に示した基板に形成した各部の要素の寸法の数値例を示すAは平面図、Bは断面図。FIG. 2A is a plan view and FIG. 2B is a cross-sectional view showing numerical examples of dimensions of elements of respective portions formed on the substrate shown in FIG. 図1に示した基板に光ファイバを実装し、光素子モジュールを構築した実施例を説明するための平面図。The top view for demonstrating the Example which mounted the optical fiber in the board | substrate shown in FIG. 1, and constructed | assembled the optical element module. 図14に示した実施例の動作を説明するための平面図。The top view for demonstrating operation | movement of the Example shown in FIG. 光素子モジュールの他の実施例を説明するための平面図。The top view for demonstrating the other Example of an optical element module.

符号の説明Explanation of symbols

10 基板
11,11A〜11D 光ファイバ載置用溝
12 端面突き当て用壁面
13 スリット
14 レジスト層
20,20A〜20D 光ファイバ
30 押え板
40 可動ミラー
DESCRIPTION OF SYMBOLS 10 Substrate 11, 11A-11D Optical fiber mounting groove | channel 12 End surface abutting wall surface 13 Slit 14 Resist layer 20, 20A-20D Optical fiber 30 Holding plate 40 Movable mirror

Claims (2)

基板上に、軸に対して端面が斜めとされた光ファイバ端部を位置決め固定し、空中伝搬光束の入出射をはかる光ファイバガイドであって、
基板の板面に断面が矩形状に形成された光ファイバ載置用溝と、
この溝の端部に設けられ、前記光ファイバの斜め端面の軸に対する角度と同一の角度で溝の軸に対して斜めとされ、且つその斜めの面の法線が前記基板の面に対して平行とされた端面突き当て用壁面と、
この端面突き当て用壁面の中央に形成された空中伝搬光束入出射用のスリットと、
前記溝に載置された光ファイバを下方へ押圧する押え板とからなることを特徴とする光ファイバガイド。
An optical fiber guide for positioning and fixing an end portion of an optical fiber whose end face is inclined with respect to an axis on a substrate, and for entering and exiting an airborne light beam,
An optical fiber mounting groove having a rectangular cross section formed on the plate surface of the substrate;
Provided at the end of the groove, and inclined with respect to the axis of the groove at the same angle as the axis of the oblique end surface of the optical fiber, and the normal of the oblique surface is relative to the surface of the substrate A parallel wall for abutting the end face;
A slit for entering and exiting the air propagating light beam formed in the center of the wall for end face abutting,
An optical fiber guide comprising: a pressing plate that presses the optical fiber placed in the groove downward.
請求項1記載の光ファイバガイドには前記端面突き当て用壁面が向い合せる姿勢で複数の光ファイバ載置用溝が形成され、これら複数の光ファイバ載置用溝のそれぞれに端面が斜めとされた光ファイバの各端面が各光ファイバ載置用溝に形成された端面突き当て用壁面に接して前記押え板で押えられて載置され、押え板と前記基板との間を接着して、各光ファイバ載置用溝の内部に光ファイバが固定され、前記向い合せの姿勢で配置された端面突き当て用壁面の相互の間に、前記スリットを通じて光ファイバの一方から他方への光を伝搬させる光の空中伝搬路を形成するための空間を具備し、この空間に光デバイスを配置していることを特徴とする光素子モジュール。




The optical fiber guide according to claim 1 has a plurality of optical fiber placement grooves formed in a posture in which the end face abutting wall faces each other, and the end faces are inclined in each of the plurality of optical fiber placement grooves. Each optical fiber end face is in contact with the end face abutting wall formed in each optical fiber placement groove and is pressed and placed by the press plate, and the press plate and the substrate are bonded together, An optical fiber is fixed inside each optical fiber mounting groove, and light is propagated from one end of the optical fiber to the other through the slit between the end face abutting wall surfaces arranged in the facing orientation. An optical element module comprising: a space for forming an aerial propagation path of light to be transmitted; and an optical device disposed in the space.




JP2003402626A 2003-12-02 2003-12-02 Optical fiber guide, optical element module Expired - Fee Related JP3974891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402626A JP3974891B2 (en) 2003-12-02 2003-12-02 Optical fiber guide, optical element module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402626A JP3974891B2 (en) 2003-12-02 2003-12-02 Optical fiber guide, optical element module

Publications (2)

Publication Number Publication Date
JP2005164886A true JP2005164886A (en) 2005-06-23
JP3974891B2 JP3974891B2 (en) 2007-09-12

Family

ID=34726146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402626A Expired - Fee Related JP3974891B2 (en) 2003-12-02 2003-12-02 Optical fiber guide, optical element module

Country Status (1)

Country Link
JP (1) JP3974891B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505658B2 (en) 2006-10-11 2009-03-17 Japan Aviation Electronics Industry Limited Optical fiber device
US7792399B2 (en) 2008-01-21 2010-09-07 Japan Aviation Electronics Industry Limited Optical device
JP2012113094A (en) * 2010-11-24 2012-06-14 Opnext Japan Inc Optical module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505658B2 (en) 2006-10-11 2009-03-17 Japan Aviation Electronics Industry Limited Optical fiber device
US7580606B2 (en) 2006-10-11 2009-08-25 Japan Aviation Electronics Industry Limited Method of forming an optical fiber
US7634166B2 (en) 2006-10-11 2009-12-15 Japan Aviation Electronics Ind. Ltd. Marker groove forming device
US7792399B2 (en) 2008-01-21 2010-09-07 Japan Aviation Electronics Industry Limited Optical device
JP2012113094A (en) * 2010-11-24 2012-06-14 Opnext Japan Inc Optical module

Also Published As

Publication number Publication date
JP3974891B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
US10429597B2 (en) Interposer assemblies and arrangements for coupling at least one optical fiber to at least one optoelectronic device
JP4732356B2 (en) Planar waveguide having patterned clad and manufacturing method thereof
US5444805A (en) Integrated optical component
EP2281215B1 (en) Integrated photonics device
JP2008089879A (en) Optical coupler, optical connector, and receptacle type optical transmission module
JP2006301610A (en) Optical coupling device
JP2005352453A (en) Optical fiber component, optical waveguide module, and manufacturing method
JP2009198803A (en) Optical module and optical waveguide
US20050031291A1 (en) Assembly of device components and sub-systems
CN114424100A (en) Micro-optical interconnection component and preparation method thereof
JP2008216905A (en) Optical module and manufacturing method of optical waveguide
US20170075070A1 (en) Optical coupler for coupling light in/out of an optical receiving/emitting structure
JP2007178852A (en) Optical wiring board and optical module using the same
JP2002169042A (en) Optical waveguide coupling structure, optical waveguide and its manufacturing method, and optical device part having optical waveguide and its manufacturing method
US7218804B2 (en) Method and device for establishing an optical connection between an optoelectronic component and an optical waveguide
US10126511B2 (en) Fiber coupling device
US6819840B2 (en) Optical transmitting/receiving module and method for manufacturing the same
JP3974891B2 (en) Optical fiber guide, optical element module
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
US20140301702A1 (en) Optical Connections
JP6810076B2 (en) Fiber module
KR20220130767A (en) Alignment of photonic system components using a reference surface
JPH09230167A (en) Connection structure for optical guide
JP2007041122A (en) Method of manufacturing polymer optical waveguide, polymer optical waveguide, and optical module using the same
KR102662752B1 (en) Manufacturing method of optical connector module and optical waveguide substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees