JP2005163839A - Fluid sealing type cylindrical vibration damper and method of manufacturing the same - Google Patents

Fluid sealing type cylindrical vibration damper and method of manufacturing the same Download PDF

Info

Publication number
JP2005163839A
JP2005163839A JP2003400537A JP2003400537A JP2005163839A JP 2005163839 A JP2005163839 A JP 2005163839A JP 2003400537 A JP2003400537 A JP 2003400537A JP 2003400537 A JP2003400537 A JP 2003400537A JP 2005163839 A JP2005163839 A JP 2005163839A
Authority
JP
Japan
Prior art keywords
elastic body
rubber elastic
fluid
main rubber
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003400537A
Other languages
Japanese (ja)
Inventor
Akihiko Sakuragi
彰彦 櫻木
Tomoji Sato
友治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2003400537A priority Critical patent/JP2005163839A/en
Publication of JP2005163839A publication Critical patent/JP2005163839A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid sealing type cylindrical vibration damper formed so that an increase in the durability of a body rubber elastic body and the securement of fluid sealability can be advantageously realized by effectively applying a specified pre-compression to the body rubber elastic body and a working efficiency can be remarkably increased by easily realizing an operation to apply the pre-compression to the body rubber elastic body and an operation to install an outer cylindrical member to a middle sleeve. <P>SOLUTION: The middle sleeve 18 is formed of a pair of annular split cylindrical bodies 20 and 22 arranged apart from each other in the axial direction. The pair of annular split cylindrical bodies 20 and 22 are fixedly positioned by the outer cylindrical member 14 so as to have an axial separate distance smaller than a separate distance of the pair of annular split cylindrical bodies 20 and 22 in the axial direction in the unit body of an integrated vulcanized molding 30. Accordingly, the axial pre-compression is given to the body rubber elastic body 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内部に封入された流体の流動作用等に基づいて防振効果を得るようにした流体封入式筒型防振装置に係り、例えば自動車用エンジンマウントやボデーマウント、デフマウント、サスペンションブッシュ等として好適に用いられ得る新規な構造の流体封入式筒型防振装置とその製造方法に関するものである。   The present invention relates to a fluid-filled cylindrical vibration damping device that obtains a vibration-proofing effect based on the flow action or the like of a fluid sealed inside, and for example, an automotive engine mount, body mount, differential mount, and suspension bushing. The present invention relates to a fluid-filled cylindrical vibration isolator having a novel structure that can be suitably used as a device and a method for manufacturing the same.

従来から、振動伝達系を構成する部材間に介装される防振連結体の一種として、例えば特許文献1〜3にも示されているように、互いに径方向に離隔配置されたインナ軸部材とアウタ筒部材を本体ゴム弾性体で連結すると共に、それらインナ軸部材とアウタ筒部材の径方向対向面間に流体室を形成し、該流体室に封入した非圧縮性流体における共振作用やずり剪断作用等の流動作用を利用して防振効果を得るようにした流体封入式の筒型防振装置が知られている。このような筒型防振装置においては、流体の流動作用に基づいて特定周波数域の振動に対して、ゴム弾性体だけでは得られ難い程に有効な防振効果を得ることができることから、例えば自動車用のサスペンションブッシュやエンジンマウント、ボデーマウント等への適用が検討されている。   Conventionally, as a kind of anti-vibration coupling body interposed between members constituting a vibration transmission system, for example, as shown in Patent Documents 1 to 3, inner shaft members that are spaced apart from each other in the radial direction And the outer cylinder member are connected by a main rubber elastic body, and a fluid chamber is formed between the radially opposed surfaces of the inner shaft member and the outer cylinder member, and resonance action and shear in the incompressible fluid sealed in the fluid chamber are formed. 2. Description of the Related Art There is known a fluid-filled cylindrical vibration damping device that obtains a vibration damping effect using a fluid action such as a shearing action. In such a cylindrical vibration isolator, it is possible to obtain an effective anti-vibration effect that is difficult to obtain with a rubber elastic body alone against vibration in a specific frequency range based on the fluid flow action. Application to suspension bushes, engine mounts, body mounts, etc. for automobiles is being studied.

また、このような筒型防振装置は、一般に、次のようにして製造されている。先ず、所定の金型内にインナ軸部材と中間スリーブを径方向で離隔配置して、これらインナ軸部材と中間スリーブの径方向対向面間に画成された成形キャビティで本体ゴム弾性体を加硫成形することにより、インナ軸部材と中間スリーブを本体ゴム弾性体で連結した一体加硫成形品を得る。また、かかる一体加硫成形品においては、本体ゴム弾性体にポケット部を設けて、かかるポケット部を中間スリーブに設けた窓部を通じて外周面に開口せしめるようにする。そして、非圧縮性流体中において一体加硫成形品にアウタ筒部材を外嵌固定して、窓部を覆蓋せしめて非圧縮性流体が封入された流体室を形成することによって、目的とする流体封入式の筒型防振装置を得るのである。   Moreover, such a cylindrical vibration isolator is generally manufactured as follows. First, the inner shaft member and the intermediate sleeve are spaced apart in the radial direction in a predetermined mold, and the main rubber elastic body is added to the molding cavity defined between the radially opposed surfaces of the inner shaft member and the intermediate sleeve. By vulcanization molding, an integrally vulcanized molded product in which the inner shaft member and the intermediate sleeve are connected by the main rubber elastic body is obtained. In such an integrally vulcanized molded product, a pocket portion is provided in the main rubber elastic body, and the pocket portion is opened to the outer peripheral surface through a window portion provided in the intermediate sleeve. Then, the outer cylinder member is fitted and fixed to the integrally vulcanized molded product in the incompressible fluid, the window portion is covered to form a fluid chamber in which the incompressible fluid is sealed, and the target fluid An encapsulated cylindrical vibration isolator is obtained.

ところで、このような筒型防振装置では、本体ゴム弾性体の加硫成形時における熱収縮等に起因してゴム弾性体に引張応力が残留するおそれがあり、この残留した引張応力が筒型防振装置の耐久性やばね特性等に悪影響を及ぼすおそれがあった。   By the way, in such a cylindrical vibration isolator, there is a possibility that tensile stress may remain in the rubber elastic body due to heat shrinkage or the like during vulcanization molding of the main rubber elastic body. There is a risk of adversely affecting the durability and spring characteristics of the vibration isolator.

そこで、このような問題に対処するために、従来から、本体ゴム弾性体の加硫成形後に、八方絞りや十六方絞り用の所定の絞り型等を用いて、一体加硫成形品の中間スリーブに縮径加工を施すことにより、本体ゴム弾性体に径方向の予圧縮を加えて、引張応力を軽減乃至は解消せしめることが提案されている。   Therefore, in order to deal with such problems, conventionally, after the vulcanization molding of the main rubber elastic body, using a predetermined drawing die for eight-way drawing or sixteen-way drawing, the intermediate vulcanization molded product It has been proposed to reduce or eliminate the tensile stress by applying a radial pre-compression to the main rubber elastic body by reducing the diameter of the sleeve.

ところが、上述の如き筒型防振装置においては、本体ゴム弾性体の一体加硫成形品を絞り型にセットして中間スリーブに縮径加工を施して本体ゴム弾性体に予圧縮を及ぼした後に、絞り型から一体加硫成形品を取り出して、かかる一体加硫成形品に対してアウタ筒部材を外挿して組み付けた後、再び、別の絞り型にセットしてアウタ筒部材に縮径加工を施すことにより、アウタ筒部材を中間スリーブに対して嵌着固定することが必要であり、作業が非常に面倒で時間もかかるという問題があったのである。   However, in the above-described cylindrical vibration isolator, after the main rubber elastic body is integrally vulcanized and molded into the drawing die, the intermediate sleeve is subjected to diameter reduction processing to pre-compress the main rubber elastic body. Take out the integrally vulcanized molded product from the drawing die, attach the outer cylinder member to the integrally vulcanized molded product and assemble it, then set it again in another drawing die and reduce the diameter of the outer cylinder member As a result, it is necessary to fit and fix the outer cylinder member to the intermediate sleeve, and there is a problem that the operation is very troublesome and takes time.

特に、中間スリーブに対する絞り加工とアウタ筒部材に対する絞り加工は、加工サイズが異なることから、それぞれ、異なる絞り型を準備して絞り加工を施す必要があり、絞り型の製造や取り扱いが一層面倒となっていた。   In particular, the drawing processing for the intermediate sleeve and the drawing processing for the outer cylindrical member are different in processing size, so it is necessary to prepare different drawing dies and perform drawing processing, which makes the manufacture and handling of the drawing dies more troublesome. It was.

加えて、このような筒型防振装置では、本体ゴム弾性体の外周面に被着された中間スリーブにおいて、ポケット部を開口させる複数の窓部が形成されていると共に、別体のオリフィス部材を嵌め入れるための凹部が形成されているなどされて、かかる中間スリーブが複雑な形状とされていることから、本体ゴム弾性体の加硫成形後の絞り加工に際して中間スリーブに安定した絞り加工を施すことが難しいという問題があった。そのために、絞り加工によって中間スリーブが変形してしまい、本体ゴム弾性体に対して目的とする予圧縮を及ぼすことが困難であると共に、アウタ筒部材と中間スリーブのシール性が低下してしまって流体密性が充分に確保され難くなる等の問題が発生するおそれもあったのである。   In addition, in such a cylindrical vibration isolator, a plurality of window portions for opening the pocket portions are formed in the intermediate sleeve attached to the outer peripheral surface of the main rubber elastic body, and a separate orifice member Since the intermediate sleeve has a complicated shape, for example, a concave portion for fitting the rubber elastic body is formed, a stable drawing process is performed on the intermediate sleeve when drawing the rubber elastic body after vulcanization molding. There was a problem that it was difficult to apply. Therefore, the intermediate sleeve is deformed by the drawing process, and it is difficult to exert the desired precompression on the main rubber elastic body, and the sealing performance between the outer cylinder member and the intermediate sleeve is lowered. There is also a possibility that problems such as difficulty in ensuring sufficient fluid tightness may occur.

実開昭61−202738号公報Japanese Utility Model Publication No. 61-202738 特開昭63−130945号公報JP-A 63-130945 特開昭62−224746号公報Japanese Patent Laid-Open No. 62-224746

本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、本体ゴム弾性体に目的とする予圧縮が有効に加えられることにより、本体ゴム弾性体の耐久性能の向上や流体密性の確保が有利に実現され得ることに加えて、本体ゴム弾性体に予圧縮を及ぼす作業やアウタ筒部材を中間スリーブに組み付ける作業が容易に実現されることにより、作業の効率が飛躍的に向上され得る新規な構造の流体封入式筒型防振装置とその新規な製造方法を提供することにある。   The present invention has been made in the background as described above, and the problem to be solved is that the intended pre-compression is effectively applied to the main rubber elastic body, so that the main rubber elastic body is durable. In addition to being able to advantageously improve performance and ensure fluid tightness, the work of pre-compressing the main rubber elastic body and the work of assembling the outer cylinder member to the intermediate sleeve are easily realized. It is an object to provide a fluid-filled cylindrical vibration isolator having a novel structure that can dramatically improve the efficiency and a novel manufacturing method thereof.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized on the basis of.

(流体封入式筒型防振装置に係る本発明の態様1)
流体封入式筒型防振装置に係る本発明の態様1の特徴とするところは、インナ軸部材と該インナ軸部材の外周側に所定距離を隔てて配された中間スリーブとの間に本体ゴム弾性体を配設し、それらインナ軸部材と中間スリーブを該本体ゴム弾性体に加硫接着すると共に、該中間スリーブに窓部を形成して該窓部を通じて外周面に開口するポケット部を該本体ゴム弾性体に設けることによって一体加硫成形品を構成する一方、該一体加硫成形品にアウタ筒部材を外挿して該中間スリーブに嵌着固定することにより該ポケット部の開口を覆蓋せしめて内部に非圧縮性流体が封入された流体室を形成した流体封入式筒型防振装置において、前記中間スリーブが軸方向で離隔配置された一対の環状分割筒体で構成されていると共に、前記一体加硫成形品の単体における該一対の環状分割筒体の軸方向での離隔距離よりも小さな軸方向離隔距離をもって、該一対の環状分割筒体が前記アウタ筒部材で固定的に位置決めされることにより、前記本体ゴム弾性体に対して軸方向の予圧縮が及ぼされている流体封入式筒型防振装置にある。
(Aspect 1 of the present invention relating to a fluid-filled cylindrical vibration isolator)
A feature of the first aspect of the present invention relating to the fluid-filled cylindrical vibration isolator is that the main body rubber is disposed between the inner shaft member and an intermediate sleeve disposed at a predetermined distance on the outer peripheral side of the inner shaft member. An elastic body is disposed, the inner shaft member and the intermediate sleeve are vulcanized and bonded to the main rubber elastic body, and a window portion is formed in the intermediate sleeve, and a pocket portion that opens to the outer peripheral surface through the window portion is formed in the pocket portion. An integral vulcanized molded product is configured by being provided on the rubber elastic body of the main body. On the other hand, an outer cylindrical member is extrapolated to the integral vulcanized molded product and is fitted and fixed to the intermediate sleeve to cover the opening of the pocket portion. In the fluid-filled cylindrical vibration isolator in which a fluid chamber in which an incompressible fluid is sealed is formed, the intermediate sleeve is configured by a pair of annular divided cylindrical bodies that are spaced apart in the axial direction, Integrated vulcanization molding The pair of annular divided cylinders are fixedly positioned by the outer cylinder member with an axial separation distance smaller than an axial separation distance of the pair of annular divided cylinders in the single body, and the main body A fluid-filled cylindrical vibration isolator in which axial compression is exerted on the rubber elastic body.

このような本態様に従う構造とされた流体封入式筒型防振装置においては、一対の環状分割筒体が、一体加硫成形品の単体における両環状分割筒体の軸方向での離隔距離よりも小さな軸方向離隔距離をもってアウタ筒部材で固定的に位置決めされることにより、軸方向に相対的に接近変位せしめられると共に、この接近変位の状態が、一体加硫成形品にアウタ筒部材が組み付けられることにより保持されるようになっている。これにより、本体ゴム弾性体が軸方向に圧縮変形されると共に、該ゴム弾性体の弾性変形に基づくゴム弾性体全体への変形や応力の伝達に基づいて、加硫成形に伴う本体ゴム弾性体の残留応力が軽減乃至は解消されることとなり、本体ゴム弾性体に対する予圧縮が施され得るのである。   In the fluid-filled cylindrical vibration isolator having such a structure according to this aspect, the pair of annular divided cylindrical bodies is separated from the separation distance in the axial direction of both annular divided cylindrical bodies in a single unit of the integrally vulcanized molded product. Since the outer cylinder member is fixedly positioned with a small axial separation distance, it is relatively displaced in the axial direction, and this approach displacement state is assembled to the integrally vulcanized molded product. It is to be held by being. Accordingly, the main rubber elastic body is compressed and deformed in the axial direction, and the main rubber elastic body accompanying the vulcanization molding is transmitted to the entire rubber elastic body based on the elastic deformation of the rubber elastic body and transmission of stress. Thus, the residual stress is reduced or eliminated, and the main rubber elastic body can be pre-compressed.

すなわち、本態様では、中間スリーブを軸方向で離隔配置された一対の環状分割筒体からなる分割構造としたことにより、複雑で大掛かりな絞り型が必要となる中間スリーブへの縮径加工を行うことなく、中間スリーブを軸方向に押圧して相対的に接近変位させるだけで、中間スリーブに被着された本体ゴム弾性体に対する予圧縮を、径方向の縮径加工に比して、簡単な作業で容易に行うことが出来るのである。そして、このように中間スリーブを構成する一対の環状分割筒体を軸方向で相対的に接近変位させて固定的に位置決めした、本態様に従う構造とされた流体封入式筒型防振装置においては、本体ゴム弾性体に有効な予圧縮が及ぼされて加硫成形に伴う残留引張応力が軽減乃至は解消されることにより、良好な耐久性が発揮され得るのである。   That is, in this aspect, the intermediate sleeve is divided into a pair of annular divided cylindrical bodies that are spaced apart in the axial direction, thereby reducing the diameter of the intermediate sleeve that requires a complicated and large drawing die. Without pressing the intermediate sleeve in the axial direction, the pre-compression of the main rubber elastic body attached to the intermediate sleeve is simpler than that in the radial direction. It can be done easily by work. In the fluid-filled cylindrical vibration isolator having the structure according to this aspect in which the pair of annular divided cylindrical bodies constituting the intermediate sleeve are relatively displaced in the axial direction and fixedly positioned as described above. Since effective pre-compression is exerted on the main rubber elastic body and the residual tensile stress accompanying vulcanization molding is reduced or eliminated, good durability can be exhibited.

しかも、中間スリーブには縮径方向への大きな変形が惹起されることがなく、中間スリーブそのものの変形が可及的に回避されることから、完成品である流体封入式筒型防振装置における中間スリーブの形状や寸法の安定化が図られる。その結果、中間スリーブとアウタ筒部材の間の流体密性が高度に且つ安定して達成されることとなり、製品における防振性能や信頼性の安定化が実現され得るのである。   In addition, the intermediate sleeve is not greatly deformed in the direction of diameter reduction, and deformation of the intermediate sleeve itself is avoided as much as possible. Therefore, in the fluid-filled cylindrical vibration isolator as a finished product, The shape and dimensions of the intermediate sleeve can be stabilized. As a result, the fluid tightness between the intermediate sleeve and the outer cylinder member is achieved highly and stably, and the vibration-proof performance and reliability of the product can be stabilized.

加えて、本態様の筒型防振装置においては、一対の環状分割筒体がアウタ筒部材に固定的に位置決めされることで本体ゴム弾性体に軸方向の予圧縮が及ぼされるようになっていることから、例えば、一対の環状分割筒体を相互に軸方向に接近変位させて本体ゴム弾性体に予圧縮を及ぼすと同時に、それら一対の環状分割筒体をアウタ筒部材に嵌着固定することも可能であり、そのように環状分割筒体を相対的に接近変位させる工程とアウタ筒部材を外嵌固定する工程を同時に行うことによって、目的とする流体封入式筒型防振装置を少ない製造工程数で容易に製造することも可能となるのである。   In addition, in the cylindrical vibration isolator of this aspect, the pair of annular divided cylinders are fixedly positioned on the outer cylinder member so that the main rubber elastic body is subjected to axial pre-compression. Therefore, for example, a pair of annular divided cylindrical bodies are displaced toward each other in the axial direction to pre-compress the main rubber elastic body, and at the same time, the pair of annular divided cylindrical bodies are fitted and fixed to the outer cylindrical member. It is also possible to reduce the target fluid-filled cylindrical vibration isolator by simultaneously performing the step of relatively moving the annular divided cylinder and the step of fitting and fixing the outer cylinder member at the same time. It is also possible to manufacture easily with the number of manufacturing steps.

(流体封入式筒型防振装置に係る本発明の態様2)
流体封入式筒型防振装置に係る本発明の態様2の特徴とするところは、本発明の前記態様1に係る流体封入式筒型防振装置において、前記流体室を、前記インナ軸部材と前記アウタ筒部材の軸直角方向対向面間において周方向で相互に離隔位置せしめられて軸直角方向の振動入力時に相対的な圧力変動が生ぜしめられる複数の分割流体室によって構成すると共に、前記一対の環状分割筒体の少なくとも一方において外周面に開口して周方向に延びる周方向凹溝を形成して、該周方向凹溝を該アウタ筒部材で覆蓋することにより該複数の分割流体室を相互に連通するオリフィス通路を形成したことにある。
(Aspect 2 of the present invention relating to a fluid-filled cylindrical vibration isolator)
A feature of aspect 2 of the present invention relating to a fluid-filled cylindrical vibration isolator is that a fluid-filled tubular vibration isolator according to aspect 1 of the present invention is characterized in that the fluid chamber is connected to the inner shaft member. The outer cylinder member is constituted by a plurality of divided fluid chambers that are spaced apart from each other in the circumferential direction between the opposed surfaces in the axis-perpendicular direction and that generate relative pressure fluctuations when vibration is input in the axis-perpendicular direction. Forming a circumferential groove that opens on the outer peripheral surface and extends in the circumferential direction in at least one of the annular divided cylinders, and covers the circumferential groove with the outer cylinder member to thereby form the plurality of divided fluid chambers. That is, the orifice passages communicating with each other are formed.

このような本態様においては、インナ軸部材の外周側に位置せしめられた環状分割筒体にオリフィス通路が形成されることにより、インナ軸部材等に形成する場合に比して、オリフィス通路の全長を大きく設定することが可能となり、オリフィス通路のチューニング自由度が十分に確保され得る。しかも、オリフィス通路を形成するための別部材を配設する必要もないことから、構造が簡略化されて製造が容易となる。特に、例えば前述の特許文献1に記載されているようなアウタ筒部材の内周面に沿って周方向に延びるオリフィス部材を採用する必要もなく、十分に長いオリフィス通路が実現可能となることから、そのようなオリフィス部材によって一対の環状分割筒体の相対的な接近方向への変位が制限されたり、流体室の容積や軸直角方向の有効ストローク長が制限されるなどといった問題の発生も有利に回避され得るのである。   In such an aspect, the orifice passage is formed in the annular divided cylindrical body positioned on the outer peripheral side of the inner shaft member, so that the total length of the orifice passage is larger than that formed in the inner shaft member or the like. Can be set large, and the degree of freedom of tuning of the orifice passage can be sufficiently secured. In addition, since it is not necessary to provide another member for forming the orifice passage, the structure is simplified and the manufacture is facilitated. In particular, it is not necessary to employ an orifice member extending in the circumferential direction along the inner circumferential surface of the outer cylinder member as described in, for example, the above-mentioned Patent Document 1, and a sufficiently long orifice passage can be realized. Such an orifice member is also advantageous in that the displacement of the pair of annular divided cylinders in the relative approaching direction is limited, the volume of the fluid chamber and the effective stroke length in the direction perpendicular to the axis are limited. It can be avoided.

特に本態様では、周方向凹溝を形成することよって形状が複雑とされると共に、厚さ寸法に部分的な差異が生じることに基因して強度差が発生する環状分割筒体に対して、絞り加工を施すと、不規則な変形が惹起せしめられるおそれがあるが、本発明の前記態様1と組み合わせて採用されることにより、本体ゴム弾性体に予圧縮を及ぼす形態が、軸方向で離隔配置せしめられた一対の環状分割筒体を軸方向に相対的に接近変位させることにより実現されることから、本体ゴム弾性体を圧縮変形させる際に、環状分割筒体の不規則な変形が有利に防止される。それ故、オリフィス通路の形状が優れた精度をもって確保され得ると共に、シール性が安定して有利に確保され得るのである。   In particular, in the present aspect, the shape is complicated by forming the circumferential groove, and the annular divided cylindrical body in which the strength difference is generated due to the partial difference in the thickness dimension, If the drawing is performed, irregular deformation may be caused. However, when the drawing is applied in combination with the first aspect of the present invention, the configuration in which the main rubber elastic body is pre-compressed is separated in the axial direction. This is realized by relatively moving the pair of arranged annular divided cylinders relatively close to each other in the axial direction. Therefore, when the main rubber elastic body is compressed and deformed, irregular deformation of the annular divided cylinder is advantageous. To be prevented. Therefore, the shape of the orifice passage can be secured with excellent accuracy, and the sealing performance can be secured stably and advantageously.

(流体封入式筒型防振装置に係る本発明の態様3)
流体封入式筒型防振装置に係る本発明の態様3の特徴とするところは、本発明の前記態様1又は2に係る流体封入式筒型防振装置において、前記一体加硫成形品における前記本体ゴム弾性体の軸方向両端面において、前記インナ軸部材に沿って周方向に連続して延びる環状の肉抜凹所が形成されていることにある。
(Aspect 3 of the present invention relating to a fluid-filled cylindrical vibration isolator)
A feature of the aspect 3 of the present invention relating to the fluid-filled cylindrical vibration isolator is that the fluid-filled tubular vibration-damping apparatus according to the first or second aspect of the present invention is the above-described integral vulcanized molded product. In the both end surfaces in the axial direction of the main rubber elastic body, there is formed an annular hollow recess extending continuously in the circumferential direction along the inner shaft member.

このような本態様においては、こじり方向におけるばね剛性の低減化が図られることとなり、以て、要求に応じたばね特性のチューニングが有利に実現され得る。特に、上述の如き本発明の態様1乃至3の何れかに係る筒型防振装置においては、一対の環状分割筒体を軸方向で相対的に接近変位させることで本体ゴム弾性体の外周部分に対して直接的に及ぼされる予圧縮を、内周部分にまで効率的に伝達させて、本体ゴム弾性体の広い部分に対して有効な予圧縮を及ぼすことが考慮されるべきである。ここにおいて、本発明の態様3に従えば、インナ軸部材に沿って周方向に環状の肉抜凹所が形成されることにより、本体ゴム弾性体の内周部分の軸方向長さが、本体ゴム弾性体の外周部分の軸方向長さよりも小さくされることとなり、本体ゴム弾性体の外周部分に及ぼされる軸方向の変形や圧縮応力が、本体ゴム弾性体の外周部分から内周部分に向かってより効率的に伝達され得て、本体ゴム弾性体の全体に対して目的とする予圧縮をより有効に及ぼすことが可能となるのである。   In this embodiment, the spring rigidity in the twisting direction can be reduced, so that tuning of the spring characteristics according to demand can be realized advantageously. In particular, in the cylindrical vibration isolator according to any one of aspects 1 to 3 of the present invention as described above, the outer peripheral portion of the main rubber elastic body is obtained by relatively displacing the pair of annular divided cylindrical bodies in the axial direction. It should be considered that the precompression applied directly to the inner peripheral portion is efficiently transmitted to the inner peripheral portion, and effective precompression is applied to a wide portion of the main rubber elastic body. Here, according to the third aspect of the present invention, the annular length of the hollow portion is formed in the circumferential direction along the inner shaft member, so that the axial length of the inner peripheral portion of the main rubber elastic body is The length in the axial direction of the outer peripheral portion of the rubber elastic body is made smaller, and the axial deformation and compressive stress exerted on the outer peripheral portion of the main rubber elastic body are directed from the outer peripheral portion to the inner peripheral portion of the main rubber elastic body. Therefore, the desired pre-compression can be more effectively exerted on the entire main rubber elastic body.

特に本態様では、本体ゴム弾性体の軸方向両端面において、環状の肉抜凹所がインナ軸部材に沿って周方向に連続して延びるように形成されていることにより、インナ軸部材の外周面が実質的に肉抜凹所の壁部を含んで構成されていると共に、肉抜凹所が、インナ軸部材の外周面で最も深く、且つ外周側に向かって次第に深さ寸法が小さくなる断面形状とされている。即ち、本体ゴム弾性体の軸方向長さが、内周部分から外周に行くに従って次第に大きくされており、これによって、本体ゴム弾性体の外周部分において軸方向に及ぼされる圧縮変形が、本体ゴム弾性体の内周部分に対して、軸方向両端部分の引張応力の発生を抑えつつ効率的に及ぼされて、本体ゴム弾性体の全体に対する予圧縮が一層効果的に発揮されるのである。   In particular, in this aspect, the outer circumferential surface of the inner shaft member is formed on the both end surfaces in the axial direction of the main rubber elastic body by forming annular recesses continuously extending in the circumferential direction along the inner shaft member. The surface is substantially configured to include the wall portion of the hollow portion, and the hollow portion is deepest on the outer peripheral surface of the inner shaft member, and the depth dimension gradually decreases toward the outer peripheral side. It has a cross-sectional shape. That is, the axial length of the main rubber elastic body is gradually increased from the inner peripheral portion to the outer peripheral portion, whereby the compressive deformation exerted in the axial direction on the outer peripheral portion of the main rubber elastic body is reduced. It is effectively exerted on the inner peripheral portion of the body while suppressing the generation of tensile stress at both end portions in the axial direction, and the pre-compression of the entire main rubber elastic body is more effectively exhibited.

(流体封入式筒型防振装置の製造方法に係る本発明の態様)
流体封入式筒型防振装置の製造方法に係る本発明の態様の特徴とするところは、(a)インナ軸部材の外周側に離隔して、一対の環状分割筒体を軸方向で相互に離隔配置せしめて、それらインナ軸部材と一対の環状分割筒体との間に本体ゴム弾性体を加硫成形することにより、該一対の環状分割筒体の軸方向対向面間に形成された窓部を通じて外周面に開口するポケット部が該本体ゴム弾性体に設けられてなる一体加硫成形品を形成する工程と、(b)該一体加硫成形品に外力を及ぼして、前記一対の環状分割筒体を軸方向で相互に接近する方向に所定距離だけ変位せしめることにより、前記本体ゴム弾性体に対して軸方向の予圧縮を及ぼす工程と、(c)該一体加硫成形品と別途に形成されて外挿されたアウタ筒部材を前記一対の環状分割筒体に対して嵌着固定することにより、前記インナ軸部材と前記アウタ筒部材を前記本体ゴム弾性体で弾性的に連結せしめると共に、前記ポケット部を流体密に覆蓋して非圧縮性流体が封入された流体室を形成し、更に該一対の環状分割筒体を軸方向で相対的に接近する方向に変位せしめた状態で固定的に位置決め保持せしめる工程とを、含む流体封入式筒型防振装置の製造方法にある。
(Aspect of the present invention relating to a method of manufacturing a fluid-filled cylindrical vibration isolator)
A feature of the aspect of the present invention relating to the manufacturing method of the fluid-filled cylindrical vibration isolator is that (a) the pair of annular divided cylindrical bodies are separated from each other in the axial direction, separated from the outer peripheral side of the inner shaft member. A window formed between the opposed surfaces in the axial direction of the pair of annular divided cylinders by placing the rubber elastic body of the main body between the inner shaft member and the pair of annular divided cylinders. A step of forming an integrally vulcanized molded product in which a pocket portion that opens to the outer peripheral surface through the portion is provided on the main rubber elastic body; and (b) exerting an external force on the integrally vulcanized molded product, A step of pre-axially compressing the main rubber elastic body by displacing the divided cylindrical bodies by a predetermined distance in a direction approaching each other in the axial direction; and (c) separately from the integrally vulcanized molded product. The outer cylindrical member formed on and inserted into the pair of annular divisions By fitting and fixing to the body, the inner shaft member and the outer cylinder member are elastically connected by the main rubber elastic body, and the pocket portion is covered fluid-tightly and incompressible fluid is enclosed. A fluid-filled cylindrical vibration isolator including a step of forming a fixed fluid chamber and fixing and holding the pair of annular divided cylindrical bodies in a state of being displaced in a relatively approaching direction in the axial direction. It is in the manufacturing method of an apparatus.

このような本発明方法に従えば、前述の本発明の態様1乃至3の何れかに係る流体封入式筒型防振装置が有利に実現され得る。なお、本態様において、上述の(a),(b),(c)の各工程の順序等は何等限定されるものでない。具体的には、例えば、(a)の一体加硫成形品を形成する工程を完了した後に、(b)の本体ゴム弾性体に軸方向の予圧縮を及ぼす工程を完了して、その後(c)の一対の環状分割筒体を固定的に位置決め保持せしめる工程を完了するようにしても良い。或いは、(a)の工程を完了した後に、例えば本発明の実施形態に例示される如き一つの絞り型を用いて、(b)の工程と(c)の工程を同時に完了するようにしても良い。   According to such a method of the present invention, the fluid-filled cylindrical vibration isolator according to any one of the first to third aspects of the present invention can be advantageously realized. In this embodiment, the order of the steps (a), (b), and (c) described above is not limited at all. Specifically, for example, after completing the step of forming the integrally vulcanized molded product of (a), the step of applying axial pre-compression to the main rubber elastic body of (b) is completed, and then (c The step of fixedly positioning and holding the pair of annular divided cylindrical bodies may be completed. Alternatively, after the step (a) is completed, the step (b) and the step (c) may be completed at the same time by using, for example, one drawing die as exemplified in the embodiment of the present invention. good.

上述の説明からも明らかなように、本発明に従う構造とされた流体封入式筒型防振装置においては、軸方向で離隔配置された一対の環状分割筒体が軸方向に相対的に接近変位せしめられて組み付けられていることで、本体ゴム弾性体に対して軸方向の予圧縮が及ぼされる構造とされている。それ故、中間スリーブ自体の変形を回避しつつ、本体ゴム弾性体に対して有効な予圧縮を及ぼすことが可能となって、中間スリーブとアウタ筒部材の間のシール性能を安定して確保しつつ、優れた耐久性を容易に得ることが出来るのである。   As is clear from the above description, in the fluid-filled cylindrical vibration isolator having the structure according to the present invention, the pair of annular divided cylinders spaced apart in the axial direction is relatively displaced in the axial direction. It is set as the structure where the axial pre-compression is exerted with respect to the main body rubber elastic body by being assembled and assembled. Therefore, effective pre-compression can be exerted on the main rubber elastic body while avoiding deformation of the intermediate sleeve itself, and the sealing performance between the intermediate sleeve and the outer cylinder member can be stably secured. However, excellent durability can be easily obtained.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について説明する。先ず、図1〜2には、本発明の一実施形態としての自動車のサスペンションブッシュ等に用いられる防振ブッシュ10が示されている。この防振ブッシュ10は、インナ軸部材としての内筒金具12とアウタ筒部材としての外筒金具14が、互いに径方向に所定距離を隔てて配設されていると共に、それらの間に介装された本体ゴム弾性体16によって連結された構造を有している。そして、防振ブッシュ10は、内筒金具12と外筒金具14が防振連結される各一方の部材に取り付けられることにより、それら防振連結される部材間に介装されるようになっている。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described. First, FIGS. 1 and 2 show an anti-vibration bush 10 used for an automobile suspension bush or the like as an embodiment of the present invention. The anti-vibration bushing 10 includes an inner cylinder member 12 as an inner shaft member and an outer cylinder member 14 as an outer cylinder member arranged at a predetermined distance in the radial direction and interposed therebetween. The main rubber elastic bodies 16 are connected to each other. The anti-vibration bushing 10 is interposed between the anti-vibration-coupled members by attaching the anti-vibration bush 10 to each of the anti-vibration-coupled members of the inner cylinder fitting 12 and the outer cylinder fitting 14. Yes.

より詳細には、内筒金具12は、小径の略円筒形状を有している。また、内筒金具12の軸方向両端部には、それぞれ、大径の環状カラー部が外周面に突出して一体形成されている。また、内筒金具12の径方向外方には、所定距離を隔てて中間スリーブとしての金属スリーブ18が配設されている。   More specifically, the inner cylinder fitting 12 has a small-diameter, generally cylindrical shape. Further, large-diameter annular collar portions are integrally formed at both end portions in the axial direction of the inner cylindrical fitting 12 so as to protrude from the outer peripheral surface. Further, a metal sleeve 18 serving as an intermediate sleeve is disposed on the outer side in the radial direction of the inner cylindrical metal member 12 at a predetermined distance.

この金属スリーブ18は、一対の環状分割筒体としての第一リング金具20と第二リング金具22から構成されている。これら第一及び第二リング金具20,22は、大径の略円環形状を呈している。また、第一リング金具20の外径寸法と第二リング金具22の外径寸法が、略同じとされている一方、第一リング金具20の内径寸法が、第二リング金具22の内径寸法よりも大きくされている。即ち、第二リング金具22の厚さ寸法が、第一リング金具20のそれよりも大きくされている。また、第一リング金具20や第二リング金具22の形成材料は、特に限定されるものでないが、本実施形態では、例えば第一リング金具20が鉄等の金属材で形成されていると共に、第二リング金具22がアルミニウム合金等の金属材で形成されている。   The metal sleeve 18 includes a first ring fitting 20 and a second ring fitting 22 as a pair of annular divided cylindrical bodies. The first and second ring fittings 20 and 22 have a large-diameter substantially annular shape. The outer diameter of the first ring fitting 20 and the outer diameter of the second ring fitting 22 are substantially the same, while the inner diameter of the first ring fitting 20 is larger than the inner diameter of the second ring fitting 22. Has also been enlarged. That is, the thickness dimension of the second ring fitting 22 is made larger than that of the first ring fitting 20. Moreover, although the formation material of the 1st ring metal fitting 20 and the 2nd ring metal fitting 22 is not specifically limited, In this embodiment, while the 1st ring metal fitting 20 is formed with metal materials, such as iron, The second ring fitting 22 is formed of a metal material such as an aluminum alloy.

また、第二リング金具22には、図3にも拡大して示されているように、周方向凹溝としての周溝24が設けられている。周溝24は、第二リング金具22の周方向に略一周弱の長さで連続して延び、且つ第二リング金具22の外周面に開口して形成されている。また、周溝24の周方向両端部が、第二リング金具22の軸方向一方の面に開口して形成された連通孔26,26の各一方を通じて、それぞれ、軸方向に開口せしめられている。   Further, as shown in FIG. 3 in an enlarged manner, the second ring metal fitting 22 is provided with a circumferential groove 24 as a circumferential groove. The circumferential groove 24 extends continuously in the circumferential direction of the second ring metal fitting 22 with a length of substantially less than one round, and is formed to open on the outer peripheral surface of the second ring metal fitting 22. Further, both end portions in the circumferential direction of the circumferential groove 24 are opened in the axial direction through one of the communication holes 26 formed to open on one axial surface of the second ring fitting 22. .

さらに、第一リング金具20と第二リング金具22が、内筒金具12に外挿されて、内筒金具12と径方向で所定距離を隔てて離隔配置されていると共に、これら内筒金具12や第一リング金具20、第二リング金具22が、略同一中心軸上に位置決め配置されている。また、特に本実施形態では、第一リング金具20と第二リング金具22が、内筒金具12に外挿せしめられた状態で、軸方向に所定の離隔距離:L1 をもって離隔配置されている(図4参照。)。これにより、第一リング金具20と第二リング金具22が、内筒金具12の軸方向両端部近くに位置決め配置されている。 Further, the first ring metal fitting 20 and the second ring metal fitting 22 are extrapolated to the inner cylinder metal fitting 12 and spaced apart from the inner cylinder metal fitting 12 by a predetermined distance in the radial direction. The first ring fitting 20 and the second ring fitting 22 are positioned and arranged on substantially the same central axis. In particular, in the present embodiment, the first ring metal fitting 20 and the second ring metal fitting 22 are spaced apart from each other with a predetermined separation distance L 1 in the axial direction in a state where the first ring metal fitting 20 and the second ring metal fitting 22 are fitted on the inner cylinder fitting 12. (See FIG. 4). Thereby, the first ring metal fitting 20 and the second ring metal fitting 22 are positioned and arranged near both ends in the axial direction of the inner cylinder metal fitting 12.

また、第一リング金具20と第二リング金具22の軸方向対向面間には、周方向の全体に亘って延びる円環形状をもって窓部28が形成されている。   Moreover, between the axial direction opposing surfaces of the 1st ring metal fitting 20 and the 2nd ring metal fitting 22, the window part 28 is formed with the annular shape extended over the whole circumferential direction.

また、第一及び第二リング金具20,22からなる金属スリーブ18と内筒金具12の径方向対向面間には、本体ゴム弾性体16が介装されている。本体ゴム弾性体16の内周面が、内筒金具12の外周面に加硫接着されていると共に、本体ゴム弾性体16の外周面が、第一リング金具20の内周面と第二リング金具22の内周面に対して、それぞれ、加硫接着されている。これにより、本体ゴム弾性体16が、内筒金具12や第一及び第二リング金具20,22を備えた一体加硫成形品30として形成されている。なお、このような一体加硫成形品30の単体においては、本体ゴム弾性体16の加硫成形に伴う熱収縮等によって、第一リング金具20と第二リング金具22が、自ずから相互に軸方向で接近する方向に接近変位せしめられることとなる。以て、第一リング金具20と第二リング金具22における軸方向の所定の離隔距離:L1 が、加硫成形前に所定の成形型に両リング金具20,22を位置決め配置した際の両リング金具20,22における軸方向の所定の離隔距離(図示せず)よりも所定長さ短くされている。 A main rubber elastic body 16 is interposed between the metal sleeve 18 composed of the first and second ring fittings 20 and 22 and the radially opposing surfaces of the inner cylinder fitting 12. The inner peripheral surface of the main rubber elastic body 16 is vulcanized and bonded to the outer peripheral surface of the inner cylindrical metal member 12, and the outer peripheral surface of the main rubber elastic member 16 is connected to the inner peripheral surface of the first ring metal member 20 and the second ring. The inner peripheral surface of the metal fitting 22 is vulcanized and bonded. Thereby, the main rubber elastic body 16 is formed as an integrally vulcanized molded product 30 including the inner cylinder fitting 12 and the first and second ring fittings 20 and 22. Note that, in such a single unit of the integrally vulcanized molded product 30, the first ring metal fitting 20 and the second ring metal fitting 22 are naturally axially connected to each other due to heat shrinkage associated with the vulcanization molding of the main rubber elastic body 16. It will be displaced in the approaching direction. Than Te, the predetermined distance in the axial direction between the first metal ring 20 in the second metal ring 22: L 1 is, both at the time of positioning arranged both metal ring 20, 22 in a predetermined mold before vulcanization A predetermined length is shorter than a predetermined separation distance (not shown) in the axial direction of the ring fittings 20 and 22.

そして、第一及び第二リング金具20,22に加硫接着された本体ゴム弾性体16における軸方向両端部分の外周面を除く軸方向中間部分の外周面が第一及び第二リング金具20,22の各外周面と周方向の全周に亘って略面一とされており、窓部28から露呈されている。換言すれば、本体ゴム弾性体16が窓部28内に充填されている。なお、一体加硫成形品30の型成形時の取り扱い等の理由から、本体ゴム弾性体16の内周面が、内筒金具12の軸方向中間部分の外周面に加硫接着されて、内筒金具12の軸方向両端部の外周面と略面一とされていると共に、該軸方向両端部の外周面には加硫接着されないようになっている。   And the outer peripheral surface of the axial direction intermediate part except the outer peripheral surface of the axial direction both ends in the main rubber elastic body 16 vulcanized and bonded to the first and second ring metal parts 20 and 22 is the first and second ring metal parts 20 and 22. The outer peripheral surfaces 22 are substantially flush with the entire circumference in the circumferential direction, and are exposed from the window portion 28. In other words, the main rubber elastic body 16 is filled in the window portion 28. For reasons such as handling during molding of the integrally vulcanized molded product 30, the inner peripheral surface of the main rubber elastic body 16 is vulcanized and bonded to the outer peripheral surface of the intermediate portion in the axial direction of the inner cylindrical metal member 12. The cylindrical fitting 12 is substantially flush with the outer peripheral surfaces at both axial ends, and is not vulcanized and bonded to the outer peripheral surfaces at both axial ends.

さらに、本体ゴム弾性体16には、内筒金具12を挟んだ径方向一方向(図2中、左右)で対向位置せしめられるようにして一対のポケット部32,32が設けられている。これらポケット部32,32は、略内筒金具12に達する底部を有し、且つ本体ゴム弾性体16の略半周弱の領域において、それぞれ、第一リング金具20と第二リング金具22の軸方向対向面間に形成された窓部28を通じて、本体ゴム弾性体16の外周面に凹所状に開口している。   Further, the main rubber elastic body 16 is provided with a pair of pocket portions 32, 32 so as to be opposed to each other in one radial direction (left and right in FIG. 2) sandwiching the inner cylinder fitting 12. These pocket portions 32, 32 have a bottom portion that reaches substantially the inner cylindrical metal fitting 12, and in the region of a little less than a half circumference of the main rubber elastic body 16, the axial directions of the first ring metal fitting 20 and the second ring metal fitting 22, respectively. Through the window 28 formed between the opposing surfaces, a recess is opened in the outer peripheral surface of the main rubber elastic body 16.

更にまた、内筒金具12の軸方向中間部分には、略矩形平板形状を呈するストッパブロック34が固設されており、その両端部分が、各ポケット部32の底壁部から所定長さで突出位置せしめられている。これにより、後述の如く、外筒金具14が一体加硫成形品30に組み付けられた状態で軸直角方向に大きな振動が入力された際に、内筒金具12がストッパブロック34を介して外筒金具14に当接されるようになっている。即ち、ストッパブロック34には、内筒金具12と外筒金具14の間の過大な変位を軽減乃至は防止するストッパ機能が付与されている。なお、ストッパブロック34の外周面には、本体ゴム弾性体16と一体形成された薄肉のゴム層が全体に亘って被着されている。   Furthermore, a stopper block 34 having a substantially rectangular flat plate shape is fixed to an intermediate portion in the axial direction of the inner cylindrical metal member 12, and both end portions thereof protrude from the bottom wall portion of each pocket portion 32 with a predetermined length. It is positioned. Thus, as described later, when a large vibration is input in the direction perpendicular to the axis in a state where the outer cylinder fitting 14 is assembled to the integrally vulcanized molded product 30, the inner cylinder fitting 12 is inserted into the outer cylinder via the stopper block 34. It comes into contact with the metal fitting 14. That is, the stopper block 34 is provided with a stopper function that reduces or prevents excessive displacement between the inner cylinder fitting 12 and the outer cylinder fitting 14. A thin rubber layer integrally formed with the main rubber elastic body 16 is attached to the entire outer peripheral surface of the stopper block 34.

また、一体加硫成形品30の本体ゴム弾性体16には、軸方向両端面からそれぞれ軸方向内方に所定長さで延びて、内筒金具12に沿って周方向に連続して延びる肉抜凹所としての肉抜部36が形成されている。肉抜部36は、軸方向内方から外方に向かって略円錐状に次第に径寸法が大きくなる逆テーパ面形状とされている。これにより、本体ゴム弾性体16におけるこじり方向のばね剛性が調節されるようになっている。   Further, the main rubber elastic body 16 of the integrally vulcanized molded product 30 has a meat extending from the both end surfaces in the axial direction inward in the axial direction and extending continuously in the circumferential direction along the inner cylindrical fitting 12. A cutout portion 36 is formed as a recess. The thinned portion 36 has an inversely tapered surface shape that gradually increases in diameter in a substantially conical shape from the inner side to the outer side in the axial direction. As a result, the spring stiffness in the twisting direction of the main rubber elastic body 16 is adjusted.

さらに、このような一体加硫成形品30には、外筒金具14が外挿されている。外筒金具14は、大径の略円筒形状を呈していると共に、その内周面には、薄肉のシールゴム層42が略全体に亘って被着されている。そして、外筒金具14が絞り加工されると共に、外筒金具14の軸方向両端部分が径方向内方に屈曲せしめられて、第一及び第二リング金具20,22の各一方に、それぞれ、嵌着固定されている。これにより、第一リング金具20と第二リング金具22が外筒金具14で固定的に位置決め固定されていると共に、外筒金具14が一体加硫成形品30に対して外嵌固定されている。また、第一リング金具20と第二リング金具22の軸方向対向面間に形成された窓部28に充填された本体ゴム弾性体16が、シールゴム層42を介して外筒金具14に実質的に直接に密着して重ね合わされている。   Furthermore, the outer cylinder fitting 14 is extrapolated to such an integrally vulcanized molded product 30. The outer cylinder fitting 14 has a large-diameter, generally cylindrical shape, and a thin seal rubber layer 42 is adhered to the entire inner peripheral surface thereof. Then, the outer cylinder fitting 14 is drawn, and both end portions in the axial direction of the outer cylinder fitting 14 are bent inward in the radial direction, and each of the first and second ring fittings 20 and 22 is respectively It is fitted and fixed. Thereby, the first ring metal fitting 20 and the second ring metal fitting 22 are fixedly positioned and fixed by the outer cylinder metal fitting 14, and the outer cylinder metal fitting 14 is fitted and fixed to the integral vulcanization molded product 30. . Further, the main rubber elastic body 16 filled in the window portion 28 formed between the axially opposed surfaces of the first ring fitting 20 and the second ring fitting 22 is substantially attached to the outer tube fitting 14 via the seal rubber layer 42. Are in close contact with each other.

特に本実施形態では、かかる外筒金具14が一体加硫成形品30に外嵌固定された状態で、第一リング金具20と第二リング金具22が、一体加硫成形品30の単体における軸方向での所定の離隔距離:L1 よりも小さな軸方向離隔距離:L2 をもって軸方向に相対的に接近位置せしめられている(図6参照。)。これにより、本体ゴム弾性体16が、第一及び第二リング金具20,22が相対的に接近変位する方向(図1,6中、上下)に圧縮変形されている。即ち、本体ゴム弾性体16の外周部分が軸方向に圧縮変形せしめられており、かかる圧縮応力が本体ゴム弾性体16の外周部分から内周部分にまで伝達されていて、全体に有効な予圧縮が及ぼされている。これにより、本実施形態に係る本体ゴム弾性体16に軸方向の予圧縮が及ぼされている。また、それと共に、窓部28内に充填された本体ゴム弾性体16が、窓部28から外周面上に盛り上がるように膨出変形せしめられて、本体ゴム弾性体16の外筒金具14に対する面圧が大きく確保されている。 In particular, in the present embodiment, the first ring metal fitting 20 and the second ring metal fitting 22 are shafts in a single piece of the integrated vulcanized molded product 30 in a state where the outer cylindrical metal fitting 14 is fitted and fixed to the integral vulcanized molded product 30. predetermined distance in the direction: L 1 small axial distance than: with L 2 are brought relatively closer position in the axial direction (see FIG. 6.). Thereby, the main rubber elastic body 16 is compressed and deformed in a direction (up and down in FIGS. 1 and 6) in which the first and second ring fittings 20 and 22 are relatively displaced. That is, the outer peripheral portion of the main rubber elastic body 16 is compressed and deformed in the axial direction, and the compressive stress is transmitted from the outer peripheral portion to the inner peripheral portion of the main rubber elastic body 16 so that the pre-compression effective for the whole is effective. Has been applied. Thereby, the axial pre-compression is exerted on the main rubber elastic body 16 according to the present embodiment. At the same time, the main rubber elastic body 16 filled in the window portion 28 is bulged and deformed so as to rise from the window portion 28 to the outer peripheral surface, and the surface of the main rubber elastic body 16 with respect to the outer cylindrical metal fitting 14. A large pressure is secured.

それによって、第一リング金具20と第二リング金具22の軸方向対向面間に形成された窓部28や第二リング金具22に形成された周溝24が、外筒金具14で、それぞれ、流体密に覆蓋されている。更に、一対のポケット部32,32が、外部空間に対して密閉されており、各ポケット部32内には、非圧縮性流体が封入された分割流体室としての受圧室38が形成されている。即ち、本実施形態では、内筒金具12と外筒金具14の軸直角方向対向面間において軸直角方向の振動入力時に相対的な圧力変動が生ぜしめられる流体室が、周方向で相互に離隔位置せしめられた一対の受圧室38,38を含んで構成されている。また、周溝24が外部空間に対して密閉されることにより、周溝24と外筒金具14が協働して第二リング金具22の周方向に略一周弱の長さで延びるオリフィス通路40を形成している。かかるオリフィス通路40は、要求される防振効果に基づいて、通路断面積:Aと通路長さ:Lの比の値:A/Lが設定変更されるようになっている。更に、オリフィス通路40の周方向両端部が、第二リング金具22に形成された連通孔26,26の各一方を通じて、それぞれ、各受圧室38に連通されており、以て、両受圧室38,38が、オリフィス通路40を通じて相互に連通されている。従って、軸直角方向における特定周波数域の振動入力時には、オリフィス通路40を流動せしめられる流体の共振作用等に基づいて、オリフィス通路40を通じて一方の受圧室38と他方の受圧室38の間での流体流動が生ぜしめられて、該オリフィス通路40を通じて流動する流体の流動作用に基づく防振効果が発揮されるようになっている。   Thereby, the circumferential groove 24 formed in the window part 28 formed in the axial direction opposing surface of the 1st ring metal fitting 20 and the 2nd ring metal fitting 22, and the 2nd ring metal fitting 22, is the outer cylinder metal fitting 14, respectively. Fluid tightly covered. Further, the pair of pocket portions 32 and 32 are sealed with respect to the external space, and a pressure receiving chamber 38 as a divided fluid chamber in which an incompressible fluid is sealed is formed in each pocket portion 32. . That is, in the present embodiment, the fluid chambers in which relative pressure fluctuations are generated between the inner cylinder fitting 12 and the outer cylinder fitting 14 in the direction perpendicular to the axis when the vibration is applied in the direction perpendicular to the axis are separated from each other in the circumferential direction. It is configured to include a pair of pressure receiving chambers 38, 38 positioned. Further, since the circumferential groove 24 is sealed with respect to the external space, the circumferential groove 24 and the outer cylinder fitting 14 cooperate to extend the orifice passage 40 with a length of substantially less than one round in the circumferential direction of the second ring fitting 22. Is forming. The orifice passage 40 is configured to change the setting of the ratio of the passage cross-sectional area: A and the passage length: L: A / L based on the required vibration-proofing effect. Further, both end portions in the circumferential direction of the orifice passage 40 are communicated with the pressure receiving chambers 38 through one of the communication holes 26 and 26 formed in the second ring metal fitting 22, respectively. , 38 are in communication with each other through the orifice passage 40. Accordingly, when a vibration in a specific frequency range in the direction perpendicular to the axis is input, the fluid between one pressure receiving chamber 38 and the other pressure receiving chamber 38 through the orifice passage 40 based on the resonance action of the fluid flowing through the orifice passage 40 and the like. The flow is generated, and the vibration isolation effect based on the flow action of the fluid flowing through the orifice passage 40 is exhibited.

なお、封入流体としては、水やアルキレングリコール、ポリアルキレングリコール、シリコーン油等が採用され、特に流体の共振作用に基づく防振効果を得るためには粘性率が0.1Pa・s以下の低粘性流体が有利に採用される。更にまた、流体の封入は、例えば、一体加硫成形品30への外筒金具14の組み付けを流体中で行うことによって為される。   As the sealing fluid, water, alkylene glycol, polyalkylene glycol, silicone oil, or the like is adopted. In particular, in order to obtain a vibration isolation effect based on the resonance action of the fluid, the viscosity is a low viscosity of 0.1 Pa · s or less. A fluid is advantageously employed. Furthermore, the fluid is sealed by, for example, assembling the outer tube fitting 14 to the integrally vulcanized molded product 30 in the fluid.

次に、上述の如き構造とされた防振ブッシュ10の製造方法の一具体例に関して、図4〜6等を参照しつつ説明するが、本実施形態は、かかる具体例に限定されるものでない。   Next, a specific example of the manufacturing method of the vibration isolating bushing 10 having the above-described structure will be described with reference to FIGS. 4 to 6 and the like, but the present embodiment is not limited to such a specific example. .

先ず、図示しない所定の金型内にストッパブロック34を組み付けた内筒金具12と第一リング金具20と第二リング金具22を、それぞれ、収容して、第一リング金具20および第二リング金具22を内筒金具12の径方向外方に所定距離を隔てて離隔配置させると共に、軸方向で所定の離隔距離をもって相互に離隔配置させる。これにより、第一リング金具20と第二リング金具22の軸方向対向面間に周方向の全周に亘って延びるように窓部28を形成する。また、内筒金具12と第一及び第二リング金具20,22の径方向対向面間に本体ゴム弾性体16を加硫成形することにより、一体加硫成形品30を得る。また、本体ゴム弾性体16の加硫成形に際して、本体ゴム弾性体16の外周面には、内筒金具12を挟んだ径方向一方向で対向位置せしめるようにして一対のポケット部32,32を窓部28を通じて外周面に開口して形成する。なお、本体ゴム弾性体16の加硫成形後に該ゴム弾性体16に熱収縮等が及ぼされることに伴い第一リング金具20と第二リング金具22が、自ずから相互に軸方向で接近する方向に変位して、軸方向に所定の離隔距離:L1 をもって離隔配置されている。 First, the inner cylinder fitting 12, the first ring fitting 20, and the second ring fitting 22 in which the stopper block 34 is assembled in a predetermined mold (not shown) are accommodated, respectively, and the first ring fitting 20 and the second ring fitting are accommodated. 22 are spaced apart from each other by a predetermined distance radially outward of the inner cylindrical metal member 12 and are spaced apart from each other with a predetermined separation distance in the axial direction. Thereby, the window part 28 is formed between the axial direction opposing surfaces of the 1st ring metal fitting 20 and the 2nd ring metal fitting 22 so that it may extend over the perimeter of the circumferential direction. Further, the main rubber elastic body 16 is vulcanized between the radially opposing surfaces of the inner cylinder fitting 12 and the first and second ring fittings 20 and 22 to obtain an integrally vulcanized molded product 30. Further, during the vulcanization molding of the main rubber elastic body 16, a pair of pocket portions 32, 32 are formed on the outer peripheral surface of the main rubber elastic body 16 so as to be opposed to each other in one radial direction with the inner cylinder fitting 12 interposed therebetween. An opening is formed in the outer peripheral surface through the window portion 28. The first ring metal fitting 20 and the second ring metal fitting 22 naturally approach each other in the axial direction in accordance with the heat shrinkage or the like applied to the rubber elastic body 16 after the vulcanization molding of the main rubber elastic body 16. Displaced and spaced apart with a predetermined separation distance L 1 in the axial direction.

また、内周面にシールゴム層42を被着した外筒金具14を、一体加硫成形品30とは別に形成する。更に、外筒金具14における軸方向一方(図4中、下方)の端部を径方向内方に所定長さで屈曲させる。   In addition, the outer tubular metal fitting 14 having the sealing rubber layer 42 attached to the inner peripheral surface is formed separately from the integrally vulcanized molded product 30. Further, one end (downward in FIG. 4) in the axial direction of the outer cylinder fitting 14 is bent radially inward by a predetermined length.

さらに、非圧縮性流体中にて、外筒金具14および一体加硫成形品30を、図4〜5に示される如き絞り型44にセットする。   Further, in the incompressible fluid, the outer cylinder fitting 14 and the integrally vulcanized molded product 30 are set in a drawing die 44 as shown in FIGS.

ここにおいて、本実施形態に係る防振ブッシュ10の製造において採用される絞り型は、何等限定されるものでなく、従来から公知の各種絞り型が採用可能であることから、本実施形態で採用される絞り型44の説明を簡単にする。   Here, the drawing die employed in the manufacture of the vibration isolating bushing 10 according to the present embodiment is not limited in any way, and various conventionally known drawing die can be employed. The description of the aperture die 44 to be performed will be simplified.

かかる絞り型44は、上型46、下型48、第一の中型50および第二の中型52を含んで構成されている。上型46は、厚肉の略円筒形状を呈しており、その中央孔には、軸方向上方(図4中、上方)から軸方向下方(図4中、下方)に向かって円錐状に次第に径寸法が大きくなる逆テーパ状面54が設けられている。また、上型46における中央孔の上端縁部には、径方向内方に所定長さで突出する段差部56が、周方向に連続に乃至は不連続に延びるようにして形成されている。また、下型48は、大径の略円板形状を呈していると共に、その中央部分には、略平面視円形状の保持凹所58が軸方向上方に向かって開口して形成されている。   The drawing die 44 includes an upper die 46, a lower die 48, a first middle die 50, and a second middle die 52. The upper die 46 has a thick, substantially cylindrical shape, and its central hole gradually increases in a conical shape from the upper axial direction (upward in FIG. 4) to the lower axial direction (lower in FIG. 4). An inversely tapered surface 54 having a larger diameter is provided. Further, a stepped portion 56 that protrudes inward in the radial direction with a predetermined length is formed on the upper edge of the central hole in the upper mold 46 so as to extend continuously or discontinuously in the circumferential direction. Further, the lower die 48 has a large-diameter substantially disk shape, and a holding recess 58 having a substantially circular shape in a plan view is formed in the center portion so as to open upward in the axial direction. .

さらに、第一の中型50は、略逆向き有底円筒形状を有しており、上底部の外径寸法が上型46の段差部56の内径寸法よりも僅かに小さくされていると共に、下端筒壁部の外径寸法が、一体加硫成形品30における第一リング金具20や第二リング金具22の外径寸法と略同じに設定されている。また、第一の中型50の軸方向中間部分には、径方向外方に向かって環状の段差部60が突設されている。更に、第一の中型50における段差部60の外周面には、軸方向下方(図4中、下方)から軸方向上方(図4中、上方)に向かって円錐状に次第に径寸法が小さくなるテーパ状面62が形成されている。また、テーパ状面62における軸方向下方から上方に向かう勾配の大きさが、上型46の逆テーパ状面54における軸方向下方から上方に向かう勾配の大きさと略同じとされている。また、第一の中型50の底壁部の中央には、支持ロッド64が、軸方向下方に向かって突設されている。この支持ロッド64は、小径の略円柱形状を有していると共に、その外径寸法が、一体加硫成形品30における内筒金具12の内径寸法よりも僅かに小さくされている。   Further, the first middle mold 50 has a substantially inverted bottomed cylindrical shape, the outer diameter of the upper base is slightly smaller than the inner diameter of the stepped portion 56 of the upper mold 46, and the lower end. The outer diameter dimension of the cylindrical wall portion is set to be substantially the same as the outer diameter dimension of the first ring fitting 20 and the second ring fitting 22 in the integrally vulcanized molded product 30. In addition, an annular stepped portion 60 protrudes radially outward from the axially intermediate portion of the first middle mold 50. Further, on the outer peripheral surface of the step portion 60 in the first middle mold 50, the diameter dimension gradually decreases conically from the lower side in the axial direction (lower side in FIG. 4) to the upper side in the axial direction (upper side in FIG. 4). A tapered surface 62 is formed. Further, the magnitude of the gradient in the tapered surface 62 from the lower side in the axial direction to the upper side is substantially the same as the magnitude of the gradient in the reverse tapered surface 54 of the upper mold 46 from the lower side in the axial direction. Further, a support rod 64 protrudes downward in the axial direction at the center of the bottom wall portion of the first middle mold 50. The support rod 64 has a substantially cylindrical shape with a small diameter, and the outer diameter dimension thereof is slightly smaller than the inner diameter dimension of the inner cylinder fitting 12 in the integrally vulcanized molded product 30.

更にまた、第二の中型52は、略円筒形状を呈していると共に、周方向で12等分された12個の細片型66から構成されている。そして、これら12個の細片型66が、下型48の保持凹所58を囲むようにして下型48に載置されて、各細片型66が下型48の中央部分(保持凹所58)に接近/離隔する径方向に変位可能に支持されている。なお、図面上に明示されていないが、下型48には、各細片型66を径方向に移動案内せしめる溝部や駆動アーム等が、必要に応じて、配設されている。   Furthermore, the second middle mold 52 has a substantially cylindrical shape and is composed of twelve strip molds 66 equally divided in the circumferential direction. These twelve strip molds 66 are placed on the lower mold 48 so as to surround the holding recesses 58 of the lower mold 48, and each strip mold 66 is a central portion of the lower mold 48 (holding recesses 58). It is supported so as to be displaceable in the radial direction approaching / separating from. Although not explicitly shown in the drawing, the lower die 48 is provided with a groove portion, a drive arm, and the like for moving and guiding each strip die 66 in the radial direction as necessary.

また、第二の中型52の外周面、換言すれば各細片型66の外周面には、軸方向下方(図4中、下方)から軸方向上方(図4中、上方)に向かって円錐状に次第に径寸法が小さくなるテーパ状面68が、第二の中型52の軸方向上端部から中間部分に亘って形成されている。また、テーパ状面68における軸方向下方から上方に向かう勾配の大きさが、上型46の逆テーパ状面54のそれと略同じとされている。また、第二の中型52の中央孔の上端部分、換言すると各細片型66の内周面の上端部分には、周方向の全長に亘ってかしめ片70が突設されている。かしめ片70は、略三角断面形状とされており、その内周面が軸方向下方から上方に向かって円錐状に次第に径寸法が小さくなるテーパ状とされている。   Further, on the outer peripheral surface of the second middle mold 52, in other words, on the outer peripheral surface of each of the strip molds 66, a cone is formed from the lower side in the axial direction (lower in FIG. 4) to the upper side in the axial direction (upward in FIG. 4). A tapered surface 68 having a gradually decreasing diameter is formed from the upper end in the axial direction of the second middle mold 52 to the middle portion. Further, the magnitude of the gradient of the tapered surface 68 from the lower side to the upper side in the axial direction is substantially the same as that of the reverse tapered surface 54 of the upper mold 46. Further, a caulking piece 70 projects from the upper end portion of the center hole of the second middle die 52, in other words, the upper end portion of the inner peripheral surface of each strip die 66 over the entire length in the circumferential direction. The caulking piece 70 has a substantially triangular cross-sectional shape, and an inner peripheral surface thereof has a tapered shape whose diameter is gradually reduced in a conical shape from the lower side in the axial direction to the upper side.

而して、このような構造とされた絞り型44を非圧縮性流体中に設置すると共に、前述したように、外筒金具14と一体加硫成形品30を該絞り型44にセットする。   Thus, the drawing die 44 having such a structure is installed in an incompressible fluid, and the outer cylinder fitting 14 and the integral vulcanized molded product 30 are set in the drawing die 44 as described above.

当該外筒金具14と一体加硫成形品30の絞り型44へのセットに際しては、先ず、外筒金具14を一体加硫成形品30に外挿して、第一リング金具20と第二リング金具22の軸方向対向面間に形成された窓部28に充填された本体ゴム弾性体16を、外筒金具14に被着されたシールゴム層42を介して外筒金具14に実質的に直接に密着して重ね合わせると共に、該外筒金具14の径方向内方に屈曲した端部に一体加硫成形品30における第二リング金具22を載置して保持する。そして、一体加硫成形品30を保持した外筒金具14を第二の中型52に内挿して、外筒金具14を下型48に載置すると共に、一体加硫成形品30における内筒金具12の下端部分を下型48の保持凹所58に嵌め込んで支持させる。   When setting the outer cylinder fitting 14 and the integrally vulcanized molded product 30 to the drawing die 44, first, the outer cylinder fitting 14 is extrapolated to the integral vulcanized molded article 30, and the first ring fitting 20 and the second ring fitting are inserted. The main rubber elastic body 16 filled in the window portion 28 formed between the axially opposed surfaces 22 is substantially directly attached to the outer cylinder fitting 14 via the seal rubber layer 42 attached to the outer cylinder fitting 14. The second ring metal fitting 22 in the integrally vulcanized molded product 30 is placed and held on the end of the outer cylinder metal fitting 14 bent inward in the radial direction. Then, the outer cylinder fitting 14 holding the integral vulcanization molded product 30 is inserted into the second middle mold 52 and the outer cylinder fitting 14 is placed on the lower mold 48, and the inner cylinder fitting in the integral vulcanization molded product 30. The lower end portion of 12 is fitted into the holding recess 58 of the lower mold 48 and supported.

また、第一の中型50を一体加硫成形品30の上方から該一体加硫成形品30に向かって導き、第一の中型50に設けられた支持ロッド64を一体加硫成形品30における内筒金具12に内挿すると共に、その下端部分を一体加硫成形品30における第一リング金具20の上端部分に当接させる。更に、上型48を第一の中型50の上方から該第一の中型50に導いて、上型48の内周面に形成された逆テーパ状面54を、第一の中型50に形成されたテーパ状面62と第二の中型52(各細片型66)に形成されたテーパ状面68に当接させるようにすると共に、上型46の段差部56を第一の中型50の段差部60に当接させるようにして、上型46を図示しない駆動装置を用いて軸方向上方から下方に向かって駆動変位させる。   Further, the first middle die 50 is guided from above the integral vulcanized molded product 30 toward the integral vulcanized molded product 30, and the support rod 64 provided on the first middle die 50 is connected to the inner vulcanized molded product 30. While inserting in the cylindrical metal fitting 12, the lower end part is made to contact | abut to the upper end part of the 1st ring metal fitting 20 in the integral vulcanization molded product 30. FIG. Further, the upper mold 48 is guided from above the first middle mold 50 to the first middle mold 50, and a reverse tapered surface 54 formed on the inner peripheral surface of the upper mold 48 is formed on the first middle mold 50. The tapered surface 62 and the tapered surface 68 formed on the second middle mold 52 (each strip mold 66) are brought into contact with each other. The upper die 46 is driven and displaced from the upper side to the lower side in the axial direction by using a driving device (not shown) so as to contact the portion 60.

而して、図6にも示されているように、上型46の段差部56と第一の中型50の段差部60が互いに当接すると共に、上型46が軸方向上方から下型48に当接するまで駆動変位することにより、第一の中型50を軸方向下方に向かって変位させて、一体加硫成形品30に軸方向の圧力を及ぼす。これにより、一体加硫成形品30の単体における第一リング金具20と第二リング金具22の軸方向での所定の離隔距離:L1 が所定の離隔距離:L2 になるまで、第一リング金具20と第二リング金具22が軸方向に相対的に接近変位すると共に、該変位に伴い本体ゴム弾性体16が、第一及び第二リング金具20,22が相対的に接近変位する方向(図6中、上下)に圧縮変形する。即ち、本体ゴム弾性体16の外周部分に軸方向の圧縮応力が及ぼされて、本体ゴム弾性体16の外周部分から内周部分に向かって伝達される。以て、本体ゴム弾性体16に軸方向の予圧縮を及ぼす。また、それと共に、窓部28に充填された本体ゴム弾性体16が、窓部28から外周面上に盛り上がるようように膨出変形することとなり、本体ゴム弾性体16の外筒金具14に対する面圧が大きく確保されている。 Accordingly, as shown in FIG. 6, the step portion 56 of the upper mold 46 and the step portion 60 of the first middle mold 50 are in contact with each other, and the upper mold 46 changes from the upper side in the axial direction to the lower mold 48. By displacing the drive until it abuts, the first middle die 50 is displaced downward in the axial direction, and an axial pressure is exerted on the integrally vulcanized molded product 30. As a result, the first ring until the predetermined separation distance L 1 in the axial direction of the first ring fitting 20 and the second ring fitting 22 in the single unit of the integrally vulcanized molded product 30 becomes the predetermined separation distance L 2. The metal fitting 20 and the second ring metal fitting 22 are relatively displaced in the axial direction, and the main rubber elastic body 16 is relatively displaced along the displacement in the direction in which the first and second ring metal fittings 20 and 22 are relatively displaced ( In FIG. 6, compression deformation occurs in the vertical direction. That is, an axial compressive stress is applied to the outer peripheral portion of the main rubber elastic body 16 and is transmitted from the outer peripheral portion of the main rubber elastic body 16 toward the inner peripheral portion. Thus, the main rubber elastic body 16 is pre-compressed in the axial direction. At the same time, the main rubber elastic body 16 filled in the window portion 28 bulges and deforms so as to rise from the window portion 28 onto the outer peripheral surface. A large pressure is secured.

また、一体加硫成形品30に軸方向の予圧縮を及ぼすと共に、上型46の逆テーパ状面54と第二の中型52のテーパ状面68が当接する際のテーパ作用により、上型46が軸方向上方から下型48に当接するまで駆動変位することに伴い第二の中型52を構成する12個の細片型66が径方向外方から内方に向かって変位する。これにより、外筒金具14に十二方絞りの縮径加工を施すと共に、かしめ片70が外筒金具14の軸方向上端部分に当接してかしめ加工を施す。以て、本体ゴム弾性体16に径方向の予圧縮を及ぼすと共に、前述の如く、本体ゴム弾性体16に軸方向の予圧縮を及ぼした状態で、これら第一及び第二リング金具20,22を外筒金具14に位置決め固定すると共に、外筒金具14の軸方向上端部にかしめ加工を施して、該上端部分を流体密に覆蓋する。それによって、一対のポケット部32,32を流体密に覆蓋して非圧縮性流体が封入された一対の受圧室38,38を形成する。   The upper vulcanization molded product 30 is pre-compressed in the axial direction, and the upper mold 46 is caused by a taper action when the reverse tapered surface 54 of the upper mold 46 and the tapered surface 68 of the second middle mold 52 come into contact with each other. The 12 strip molds 66 constituting the second middle mold 52 are displaced from the outer side in the radial direction toward the inner side in accordance with the drive displacement from the upper side in the axial direction until it contacts the lower mold 48. As a result, the outer cylinder fitting 14 is subjected to a twelve-way diameter reduction process, and the caulking piece 70 is brought into contact with the upper end portion in the axial direction of the outer cylinder fitting 14 to perform the caulking process. Thus, the main rubber elastic body 16 is pre-compressed in the radial direction, and as described above, the first and second ring fittings 20 and 22 are applied in a state where the main rubber elastic body 16 is pre-compressed in the axial direction. Is positioned and fixed to the outer cylinder fitting 14, and the upper end portion in the axial direction of the outer cylinder fitting 14 is caulked to cover the upper end portion in a fluid-tight manner. As a result, a pair of pressure receiving chambers 38, 38 in which an incompressible fluid is sealed is formed by covering the pair of pocket portions 32, 32 fluid tightly.

なお、本実施形態では、一体加硫成形品30に及ぼされる軸方向の圧縮力と径方向の圧縮力の大きさの関係や、シールゴム層42と本体ゴム弾性体16におけるばね特性や形状等の相違等に基づき、上述の如き組み付け状態下において、外筒金具14に被着されたシールゴム層42が、一体加硫成形品30の窓部28から本体ゴム弾性体16側に入り込むようにして膨出変形している。   In the present embodiment, the relationship between the axial compressive force and the radial compressive force exerted on the integrally vulcanized molded product 30, the spring characteristics and the shape of the seal rubber layer 42 and the main rubber elastic body 16, etc. Based on the difference and the like, the sealing rubber layer 42 attached to the outer tube fitting 14 is expanded so as to enter the main rubber elastic body 16 side from the window portion 28 of the integrally vulcanized molded product 30 under the assembled state as described above. Deformed.

これにより、本実施形態では、一体加硫成形品30に外力を及ぼして、第一リング金具20と第二リング金具22を軸方向で相互に接近する方向に所定距離:L1 から所定距離:L2 になるまで変位せしめることにより、本体ゴム弾性体16に対して軸方向の予圧縮を及ぼす工程と、外筒金具14を第一リング金具20と第二リング金具22に対して嵌着固定することにより、内筒金具12と外筒金具14を本体ゴム弾性体16で弾性的に連結せしめると共に、ポケット部32を流体密に覆蓋して非圧縮性流体が封入された一対の流体室38,38を形成し、更に第一リング金具20と第二リング金具22を軸方向で相対的に接近する方向に変位せしめた状態で固定的に位置決め保持せしめる工程とが、同一の絞り型44を用いて同時に完了する。而して、絞り型44から成形品を離型することにより、本実施形態の防振ブッシュ10が実現される。 Thus, in this embodiment, integrally exerts an external force on the vulcanization molded component 30, the direction a predetermined distance to approach the first metal ring 20 and the second metal ring 22 to each other in the axial direction: a predetermined from L 1 Distance: By displacing until L 2 , the step of pre-compressing the main rubber elastic body 16 in the axial direction, and fitting the outer cylinder fitting 14 to the first ring fitting 20 and the second ring fitting 22 are fixed. By doing so, the inner cylinder fitting 12 and the outer cylinder fitting 14 are elastically connected by the main rubber elastic body 16, and the pocket portion 32 is covered fluid-tightly and a pair of fluid chambers 38 filled with an incompressible fluid are sealed. , 38, and the step of fixing and holding the first ring metal fitting 20 and the second ring metal fitting 22 in a state in which the first ring metal fitting 20 and the second ring metal fitting 22 are displaced in a relatively approaching direction in the axial direction. Complete at the same time The Thus, by releasing the molded product from the drawing die 44, the vibration isolating bush 10 of the present embodiment is realized.

上述の如き構造とされた防振ブッシュ10においては、金属スリーブ18が、軸方向で離隔配置された第一リング金具20と第二リング金具22を含んで構成されていると共に、これら第一及び第二リング金具20,22を軸方向に相対的に接近変位せしめることによって本体ゴム弾性体16に軸方向の予圧縮が及ぼされるようにしたことにより、金属スリーブ18が軸方向に容易に且つ安定して圧縮変形せしめられることとなり、延いては本体ゴム弾性体16の圧縮変形が容易に且つ安定して実現され得る。それ故、金属スリーブ18の圧縮変形に際して不規則な変形が防止されると共に、本体ゴム弾性体16に予圧縮が有効に加えられることとなり、金属スリーブ18と外筒金具14のシール性の確保と本体ゴム弾性体16の耐久性能の向上が併せて高度に達成される。   In the vibration isolating bushing 10 having the above-described structure, the metal sleeve 18 includes the first ring fitting 20 and the second ring fitting 22 that are spaced apart from each other in the axial direction. By causing the second ring metal fittings 20 and 22 to move relatively close to each other in the axial direction, the main rubber elastic body 16 is pre-compressed in the axial direction, so that the metal sleeve 18 is easily and stable in the axial direction. As a result, the main rubber elastic body 16 can be easily and stably compressed and deformed. Therefore, irregular deformation during the compression deformation of the metal sleeve 18 is prevented, and pre-compression is effectively applied to the main rubber elastic body 16, thereby ensuring the sealing performance between the metal sleeve 18 and the outer tube fitting 14. The durability performance of the main rubber elastic body 16 is improved to a high degree.

また、本実施形態では、肉抜部36が本体ゴム弾性体16の軸方向各端面において内筒金具12に沿って周方向に連続して延びるように形成されていることにより、第一及び第二リング金具20,22を軸方向に相対的に接近変位させることに伴い本体ゴム弾性体16の外周部分に及ぼされる圧縮応力が、本体ゴム弾性体16の外周部分から内周部分に向かってより一層効率的にされることとなり、本体ゴム弾性体16に対する予圧縮をより効果的に加えることが可能となる。   Further, in the present embodiment, the thinned portion 36 is formed so as to continuously extend in the circumferential direction along the inner cylinder fitting 12 at each axial end surface of the main rubber elastic body 16, thereby The compressive stress exerted on the outer peripheral portion of the main rubber elastic body 16 as the two ring metal fittings 20 and 22 are relatively displaced in the axial direction is increased from the outer peripheral portion of the main rubber elastic body 16 toward the inner peripheral portion. As a result, the main rubber elastic body 16 can be pre-compressed more effectively.

また、本実施形態では、外筒金具14の一体加硫成形品30への組み付けに際して、窓部28内に充填された本体ゴム弾性体16の外周面が外筒金具14に実質的に直接に密着して重ね合わされるようになっていることにより、本体ゴム弾性体16に軸方向の予圧縮が及ぼされた際に、本体ゴム弾性体16が軸方向に圧縮変形されることに伴い窓部28内で外周面上に盛り上がるように膨出変形されることとなり、ゴム弾性体16の外筒金具14に対する面圧が大きく確保され得る。それ故、本体ゴム弾性体16と外筒金具14が密着状態に保持されて、一対の受圧室38,38間の短絡が安定して防止されることにより、防振効果が安定して発揮され得るのである。   Further, in the present embodiment, when the outer cylinder fitting 14 is assembled to the integrally vulcanized molded product 30, the outer peripheral surface of the main rubber elastic body 16 filled in the window 28 is substantially directly attached to the outer cylinder fitting 14. When the main rubber elastic body 16 is compressed and deformed in the axial direction when the main rubber elastic body 16 is subjected to axial pre-compression, the window portion is provided. In this case, the rubber elastic body 16 is swelled and deformed so as to rise on the outer peripheral surface, so that a large surface pressure of the rubber elastic body 16 with respect to the outer cylinder fitting 14 can be secured. Therefore, the main rubber elastic body 16 and the outer cylinder fitting 14 are held in close contact with each other, and the short circuit between the pair of pressure receiving chambers 38 and 38 is stably prevented, so that the vibration isolation effect is stably exhibited. To get.

また、本実施形態では、第二リング金具22の厚さ寸法が第一リング金具20の厚さ寸法よりも大きくされていることにより、第二リング金具22において周溝24の設計自由度が大きく確保されることから、オリフィス通路40のチューニング自由度が有利に確保され得る。しかも、オリフィス通路40が設けられない第一リング金具20の厚さ寸法が小さくされていることにより、該リング金具20内に加硫成形された本体ゴム弾性体16のゴムボリュームや軸直角方向の有効自由長が効率的に確保され得ると共に、軽量化も有利に図られ得る。   In the present embodiment, since the thickness dimension of the second ring metal fitting 22 is larger than the thickness dimension of the first ring metal fitting 20, the design freedom of the circumferential groove 24 in the second ring metal fitting 22 is large. Therefore, the degree of freedom of tuning of the orifice passage 40 can be advantageously ensured. In addition, since the thickness dimension of the first ring fitting 20 where the orifice passage 40 is not provided is reduced, the rubber volume of the main rubber elastic body 16 vulcanized and molded in the ring fitting 20 and the direction perpendicular to the axis. An effective free length can be ensured efficiently, and weight reduction can also be achieved advantageously.

さらに、本実施形態に係る防振ブッシュ10の製造方法に従えば、本体ゴム弾性体16に軸方向の予圧縮を及ぼすと共に、外筒金具14を一体加硫成形品30に組み付けることが出来、更に、外筒金具14に絞り加工を施して本体ゴム弾性体16に径方向の予圧縮を及ぼすことが可能となる。それ故、ゴム弾性体16の引張応力の残留が有利に解消されて、耐久性能の更なる向上が図られ得ることに加え、それら複数の工程が一つの絞り型44を用いて同時に実現されることにより、作業効率が飛躍的に向上され得るのである。   Furthermore, according to the method for manufacturing the vibration isolating bush 10 according to the present embodiment, the main rubber elastic body 16 can be pre-compressed in the axial direction, and the outer cylinder fitting 14 can be assembled to the integrally vulcanized molded product 30. Further, the outer cylindrical metal member 14 can be subjected to a drawing process so that the main rubber elastic body 16 can be pre-compressed in the radial direction. Therefore, the residual elastic stress of the rubber elastic body 16 can be advantageously eliminated, and the durability can be further improved. In addition, the plurality of processes can be realized simultaneously by using one drawing die 44. As a result, work efficiency can be dramatically improved.

以上、本発明の一実施形態について詳述してきたが、これはあくまでも例示であり、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   As mentioned above, although one embodiment of the present invention has been described in detail, this is merely an example, and the present invention is not limited to any specific description by this embodiment, and is based on the knowledge of those skilled in the art. The present invention can be implemented with various changes, modifications, improvements, etc., and all such embodiments are within the scope of the present invention without departing from the spirit of the present invention. Needless to say, there is.

例えば、前記実施形態では、外筒金具に絞り加工が施されることにより、本体ゴム弾性体に径方向の予圧縮が及ぼされるようになっていたが、かかる絞り加工は、必要に応じて施されるものであり、必須の作業でない。   For example, in the above-described embodiment, the outer cylinder fitting is subjected to a drawing process so that the main rubber elastic body is subjected to radial pre-compression. However, the drawing process is performed as necessary. Is not required work.

また、前記実施形態では、例示の如き防振ブッシュの製造方法や絞り型等に限定されるものでない。例えば、非圧縮性流体中で、外筒金具を一体加硫成形品に外挿せしめると共に、外筒金具の軸方向両端部分にかしめ加工を施して、一体加硫成形品を外筒金具に保持させると共に、非圧縮性流体中または大気中において、かかる外筒金具を組み付けた一体加硫成形品に軸方向の圧力を及ぼすことにより、本体ゴム弾性体に軸方向の予圧縮を加えて、防振ブッシュが実現されるようにしても良い。   Moreover, in the said embodiment, it is not limited to the manufacturing method of an anti-vibration bush as illustrated, a drawing type | mold, etc. For example, in an incompressible fluid, the outer cylinder fitting is inserted into the integrally vulcanized molded product, and the axially opposite end portions of the outer cylinder fitting are caulked to hold the integral vulcanized molded product on the outer cylinder fitting. In addition, in the incompressible fluid or in the air, by applying an axial pressure to the integral vulcanized product assembled with such an outer cylinder fitting, axial pre-compression is applied to the main rubber elastic body to prevent it. A vibration bush may be realized.

また、前記実施形態では、第二リング金具に周溝が設けられることにより、オリフィス通路が形成されていたが、第二リング金具に代えて或いは加えて第一リング金具に周溝を設けることにより、オリフィス通路の設ける位置や数等を適宜に設定変更するようにしても良い。   Moreover, in the said embodiment, although the orifice channel | path was formed by providing a circumferential groove in the 2nd ring metal fitting, it replaces with or adds to a 2nd ring metal fitting, and provides a circumferential groove in the 1st ring metal fitting. The position and number of orifice passages may be set and changed as appropriate.

また、前記実施形態では、オリフィス通路が第二リング金具において周方向に一周弱の長さで形成されていたが、周方向に螺旋状に延びるようにして一周以上の長さで形成するようにしても良い。   In the above-described embodiment, the orifice passage is formed in the second ring fitting with a length of slightly less than one turn in the circumferential direction. May be.

また、前記実施形態では、受圧室にオリフィス通路を形成するためのオリフィス部材が設けられていなかったが、要求される防振性能等によっては、該オリフィス部材を受圧室に設けることも可能である。   In the above-described embodiment, the orifice member for forming the orifice passage is not provided in the pressure receiving chamber. However, the orifice member may be provided in the pressure receiving chamber depending on the required vibration isolating performance or the like. .

加えて、前記実施形態では、オリフィス通路を通じて流動する流体の共振作用等の流動作用に基づいて防振効果が発揮される防振ブッシュに対して、本発明を適用したものの一具体例が示されていたが、本発明は、これに限定されるものでなく、例えば、オリフィス通路を設けずに流体室に封入された高粘性流体のずり剪断作用等の流動作用に基づいて防振効果が発揮されるようにした防振ブッシュの他、各種の流体封入式筒型防振装置に対して適用されることは勿論可能である。   In addition, in the above-described embodiment, a specific example in which the present invention is applied to a vibration isolating bush that exhibits a vibration isolating effect based on a fluid action such as a resonance action of a fluid flowing through an orifice passage is shown. However, the present invention is not limited to this. For example, the vibration-proofing effect is exhibited based on the fluid action such as shearing action of the high-viscosity fluid sealed in the fluid chamber without providing the orifice passage. Of course, the present invention can be applied to various fluid-filled cylindrical vibration-proof devices in addition to the vibration-proof bush.

本発明の一実施形態としての防振ブッシュを示す説明図であり、図2におけるI−I断面に相当する図である。It is explanatory drawing which shows the anti-vibration bush as one Embodiment of this invention, and is a figure equivalent to the II cross section in FIG. 図1における防振ブッシュを示す横断面説明図である。It is a cross-sectional explanatory drawing which shows the anti-vibration bush in FIG. 図1における防振ブッシュの一部を構成する第二リング金具をモデル的に示す斜視説明図である。It is a perspective explanatory view which shows the 2nd ring metal fitting which constitutes a part of anti-vibration bush in Drawing 1 as a model. 図1における防振ブッシュを製造する際の一具体例としての製造工程の一形態をモデル的に示す縦断面説明図である。It is longitudinal cross-sectional explanatory drawing which shows typically one form of the manufacturing process as a specific example at the time of manufacturing the anti-vibration bush in FIG. 図4におけるV−V断面図である。It is VV sectional drawing in FIG. 図1における防振ブッシュを製造する際の一具体例としての製造工程の別の形態を示す縦断面説明図である。It is longitudinal cross-sectional explanatory drawing which shows another form of the manufacturing process as a specific example at the time of manufacturing the vibration isolating bush in FIG.

符号の説明Explanation of symbols

10 防振ブッシュ
12 内筒金具
14 外筒金具
16 本体ゴム弾性体
18 金属スリーブ
20 第一リング金具
22 第二リング金具
28 窓部
30 一体加硫成形品
32 ポケット部
38 受圧室
DESCRIPTION OF SYMBOLS 10 Anti-vibration bush 12 Inner cylinder metal fitting 14 Outer cylinder metal fitting 16 Main body rubber elastic body 18 Metal sleeve 20 First ring metal fitting 22 Second ring metal fitting 28 Window part 30 Integrated vulcanization molding 32 Pocket part 38 Pressure receiving chamber

Claims (4)

インナ軸部材と該インナ軸部材の外周側に所定距離を隔てて配された中間スリーブとの間に本体ゴム弾性体を配設し、それらインナ軸部材と中間スリーブを該本体ゴム弾性体に加硫接着すると共に、該中間スリーブに窓部を形成して該窓部を通じて外周面に開口するポケット部を該本体ゴム弾性体に設けることによって一体加硫成形品を構成する一方、該一体加硫成形品にアウタ筒部材を外挿して該中間スリーブに嵌着固定することにより該ポケット部の開口を覆蓋せしめて内部に非圧縮性流体が封入された流体室を形成した流体封入式筒型防振装置において、
前記中間スリーブが軸方向で離隔配置された一対の環状分割筒体で構成されていると共に、前記一体加硫成形品の単体における該一対の環状分割筒体の軸方向での離隔距離よりも小さな軸方向離隔距離をもって、該一対の環状分割筒体が前記アウタ筒部材で固定的に位置決めされることにより、前記本体ゴム弾性体に対して軸方向の予圧縮が及ぼされていることを特徴とする流体封入式筒型防振装置。
A main rubber elastic body is disposed between the inner shaft member and an intermediate sleeve disposed at a predetermined distance on the outer peripheral side of the inner shaft member, and the inner shaft member and the intermediate sleeve are added to the main rubber elastic body. While forming a window portion in the intermediate sleeve and providing a pocket portion that opens to the outer peripheral surface through the window portion in the main rubber elastic body, an integral vulcanized molded product is formed. An outer cylinder member is extrapolated to the molded product and is fitted and fixed to the intermediate sleeve, thereby covering the opening of the pocket portion and forming a fluid chamber in which an incompressible fluid is enclosed. In the vibration device,
The intermediate sleeve is composed of a pair of annular divided cylinders spaced apart in the axial direction, and is smaller than the separation distance in the axial direction of the pair of annular divided cylinders in the single unit of the integrally vulcanized molded product. The pair of annular divided cylindrical bodies are fixedly positioned by the outer cylindrical member with an axial separation distance, whereby axial compression is exerted on the main rubber elastic body. Fluid-filled cylindrical vibration isolator.
前記流体室を、前記インナ軸部材と前記アウタ筒部材の軸直角方向対向面間において周方向で相互に離隔位置せしめられて軸直角方向の振動入力時に相対的な圧力変動が生ぜしめられる複数の分割流体室によって構成すると共に、前記一対の環状分割筒体の少なくとも一方において外周面に開口して周方向に延びる周方向凹溝を形成して、該周方向凹溝を該アウタ筒部材で覆蓋することにより該複数の分割流体室を相互に連通するオリフィス通路を形成した請求項1に記載の流体封入式筒型防振装置。   The fluid chambers are spaced apart from each other in the circumferential direction between the surfaces perpendicular to the axis of the inner shaft member and the outer cylinder member, and a plurality of relative pressure fluctuations are caused when vibration is input in the direction perpendicular to the axis. A circumferential fluid groove is formed on the outer circumferential surface of at least one of the pair of annular divided cylinders and extends in the circumferential direction, and the circumferential groove is covered with the outer cylinder member. The fluid-filled cylindrical vibration damping device according to claim 1, wherein an orifice passage that communicates the plurality of divided fluid chambers with each other is formed. 前記一体加硫成形品における前記本体ゴム弾性体の軸方向両端面において、前記インナ軸部材に沿って周方向に連続して延びる環状の肉抜凹所が形成されている請求項1又は2に記載の流体封入式筒型防振装置。   3. An annular hollow recess extending continuously in the circumferential direction along the inner shaft member is formed on both axial end surfaces of the main rubber elastic body in the integrally vulcanized molded product. The fluid-filled cylindrical vibration isolator as described. インナ軸部材の外周側に離隔して、一対の環状分割筒体を軸方向で相互に離隔配置せしめて、それらインナ軸部材と一対の環状分割筒体との間に本体ゴム弾性体を加硫成形することにより、該一対の環状分割筒体の軸方向対向面間に形成された窓部を通じて外周面に開口するポケット部が該本体ゴム弾性体に設けられてなる一体加硫成形品を形成する工程と、
該一体加硫成形品に外力を及ぼして、前記一対の環状分割筒体を軸方向で相互に接近する方向に所定距離だけ変位せしめることにより、前記本体ゴム弾性体に対して軸方向の予圧縮を及ぼす工程と、
該一体加硫成形品と別途に形成されて外挿されたアウタ筒部材を前記一対の環状分割筒体に対して嵌着固定することにより、前記インナ軸部材と前記アウタ筒部材を前記本体ゴム弾性体で弾性的に連結せしめると共に、前記ポケット部を流体密に覆蓋して非圧縮性流体が封入された流体室を形成し、更に該一対の環状分割筒体を軸方向で相対的に接近する方向に変位せしめた状態で固定的に位置決め保持せしめる工程と
を、含むことを特徴とする流体封入式筒型防振装置の製造方法。
A pair of annular split cylinders are spaced apart from each other on the outer peripheral side of the inner shaft member, and the main rubber elastic body is vulcanized between the inner shaft member and the pair of annular split cylinders. By molding, an integrally vulcanized molded product is formed in which the main rubber elastic body has a pocket portion that opens to the outer peripheral surface through a window portion formed between the axially opposed surfaces of the pair of annular divided cylindrical bodies. And a process of
By applying an external force to the integrally vulcanized molded product and displacing the pair of annular divided cylindrical bodies by a predetermined distance in a direction approaching each other in the axial direction, axial pre-compression with respect to the main rubber elastic body And a process that exerts
An inner cylinder member and the outer cylinder member that are formed separately from the integrally vulcanized molded product and fitted to the pair of annular divided cylinders are fixed to the pair of annular divided cylinders. The elastic body is elastically connected, and the pocket portion is fluid-tightly covered to form a fluid chamber filled with an incompressible fluid, and the pair of annular divided cylinders are relatively approached in the axial direction. A method of manufacturing a fluid-filled cylindrical vibration isolator, the method including a step of positioning and holding in a fixed manner in a state of being displaced in a direction in which to move.
JP2003400537A 2003-11-28 2003-11-28 Fluid sealing type cylindrical vibration damper and method of manufacturing the same Withdrawn JP2005163839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400537A JP2005163839A (en) 2003-11-28 2003-11-28 Fluid sealing type cylindrical vibration damper and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400537A JP2005163839A (en) 2003-11-28 2003-11-28 Fluid sealing type cylindrical vibration damper and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005163839A true JP2005163839A (en) 2005-06-23

Family

ID=34724783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400537A Withdrawn JP2005163839A (en) 2003-11-28 2003-11-28 Fluid sealing type cylindrical vibration damper and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005163839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664172A (en) * 2016-07-27 2018-02-06 住友理工株式会社 Manufacture method, fixture and the manufacture device of fluid-filled type tubular antihunting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664172A (en) * 2016-07-27 2018-02-06 住友理工株式会社 Manufacture method, fixture and the manufacture device of fluid-filled type tubular antihunting device
CN107664172B (en) * 2016-07-27 2020-07-24 住友理工株式会社 Method, jig, and apparatus for manufacturing fluid-filled cylindrical vibration damping device

Similar Documents

Publication Publication Date Title
US4998345A (en) Method of manufacturing fluid-filled elastic mount having pressure-receiving and equilibrium chambers
JPH04357344A (en) Fluid filled type mount device and manufacture thereof
US4919401A (en) Fluid-filled bushing having radially displaceable intermediate sleeve coated with sealing rubber layer
JP2000257665A (en) Fluid-filled vibration isolator and its manufacture
JP2002181117A (en) Fluid sealing type vibration control device and its manufacturing method
EP1118794B1 (en) Fluid filled cylindrical elastic mount having intermediate sleeve exhibiting improved deformation resistance and method of producing the same
CN107664172B (en) Method, jig, and apparatus for manufacturing fluid-filled cylindrical vibration damping device
JP2005163839A (en) Fluid sealing type cylindrical vibration damper and method of manufacturing the same
US5310168A (en) Fluid-filled cylindrical elastic mount having annular fluid chamber with constant cross sectional area over the entire circumference
JP6207280B2 (en) Fluid filled vibration isolator
JP4131410B2 (en) Method for manufacturing fluid-filled cylindrical mount
JP4061493B2 (en) Fluid filled cylindrical vibration isolator
JP2001271865A (en) Fluid-filled vibration control device
JP6297371B2 (en) Method for manufacturing fluid-filled vibration isolator
EP0410455A1 (en) Fluid-filled cylindrical elastic mount having annular fluid chamber with constant cross sectional area over the entire circumference
JP4131396B2 (en) Liquid filled cylindrical vibration isolator
JP2005163840A (en) Fluid sealing type cylindrical vibration damper
JP2877940B2 (en) Cylindrical mount and method of manufacturing the same
JPH09222148A (en) Liquid sealing type mount
JP2006266438A (en) Fluid sealed type cylindrical vibration control device
JP2005106152A (en) Fluid enclosed vibration damper and method of manufacturing the same
JP4833188B2 (en) Fluid-filled vibration isolator and manufacturing method thereof
JPH086779B2 (en) Fluid-filled cylindrical mount device and method of manufacturing the same
JP2003269525A (en) Fluid sealed type tubular vibration isolator and manufacturing method therefor
JPH0324914Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061226