JP2005163132A - Hydrogen storage material - Google Patents

Hydrogen storage material Download PDF

Info

Publication number
JP2005163132A
JP2005163132A JP2003405688A JP2003405688A JP2005163132A JP 2005163132 A JP2005163132 A JP 2005163132A JP 2003405688 A JP2003405688 A JP 2003405688A JP 2003405688 A JP2003405688 A JP 2003405688A JP 2005163132 A JP2005163132 A JP 2005163132A
Authority
JP
Japan
Prior art keywords
hydrogen
particle diameter
hydrogen storage
storage material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003405688A
Other languages
Japanese (ja)
Inventor
Terumi Furuta
照実 古田
Hajime Goto
肇 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003405688A priority Critical patent/JP2005163132A/en
Publication of JP2005163132A publication Critical patent/JP2005163132A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material in which heat quantity when storing or releasing hydrogen can be reduced, and further, the remaining amount of stored hydrogen can be easily confirmed. <P>SOLUTION: The hydrogen storage material is composed of metal particulates having a particle diameter of less than the critical particle diameter to suppress the formation of a hydride phase. The average particle diameter of the metal particulates is <20 nm. The metal particulates are composed of palladium. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車用燃料電池、定置型燃料電池、水素運搬装置等に用いられる水素貯蔵材料に関するものである。   The present invention relates to a hydrogen storage material used in a fuel cell for automobiles, a stationary fuel cell, a hydrogen transport device and the like.

従来、水素を高密度で貯蔵できる材料として、例えばパラジウム等の合金からなる水素吸蔵合金が知られている。前記水素吸蔵合金は、水素と化学的に結合して水素化物を形成することにより水素を貯蔵するものであるため、水素を吸蔵する際には前記水素化物の生成熱に相当する発熱がある。従って、前記水素吸蔵合金は、水素を吸蔵する際には冷却しなければならず、水素を放出させる際には反対に加熱しなければならない。このような水素吸蔵合金を用いて水素貯蔵装置を形成すると、補機として冷却器と加熱器とを必要とする上、水素を吸蔵または放出する効率が低くなる。   Conventionally, a hydrogen storage alloy made of an alloy such as palladium has been known as a material capable of storing hydrogen at a high density. Since the hydrogen storage alloy stores hydrogen by chemically bonding with hydrogen to form a hydride, it generates heat corresponding to the heat of formation of the hydride when storing hydrogen. Therefore, the hydrogen storage alloy must be cooled when storing hydrogen, and heated oppositely when releasing hydrogen. When a hydrogen storage device is formed using such a hydrogen storage alloy, a cooler and a heater are required as auxiliary machines, and the efficiency of storing or releasing hydrogen is reduced.

そこで、前記水素を吸蔵または放出する際の熱量を低減するために、水素を吸蔵する金属と水素を吸蔵しない金属との合金を形成することが試みられている。ところが、このようにすると、重量当たりの水素吸蔵量が減少するという問題がある。   Therefore, in order to reduce the amount of heat at the time of storing or releasing hydrogen, an attempt has been made to form an alloy of a metal that stores hydrogen and a metal that does not store hydrogen. However, if this is done, there is a problem that the hydrogen storage amount per weight decreases.

また、従来の水素吸蔵合金を用いる水素貯蔵装置では、水素の圧力が水素の吸蔵量に関わらず一定になる領域があり、水素の圧力から吸蔵されている水素の残量を知ることが難しいという問題もある。   In addition, in a conventional hydrogen storage device using a hydrogen storage alloy, there is a region where the hydrogen pressure is constant regardless of the amount of hydrogen stored, and it is difficult to know the remaining amount of hydrogen stored from the hydrogen pressure. There is also a problem.

一方、粒子径30nmのパラジウムの微粒子の凝集体からなる塊状金属(バルクメタル)を用いる水素貯蔵材料が提案されている(特許文献1参照)。前記水素貯蔵材料によれば、水素の吸蔵、放出に関する反応速度的な問題を解決することができる。   On the other hand, a hydrogen storage material using a bulk metal made of an aggregate of fine palladium particles having a particle diameter of 30 nm has been proposed (see Patent Document 1). According to the hydrogen storage material, it is possible to solve the reaction rate problem related to the occlusion and release of hydrogen.

しかしながら、前記水素貯蔵材料は、水素化物を形成することにより水素を貯蔵するものであり、前記水素を吸蔵または放出する際の熱量を低減するには至らないという不都合がある。また、前記水素貯蔵材料は、吸蔵されている水素の残量の確認は、従来の水素吸蔵合金と同様に難しいという不都合がある。
米国特許第6589312号明細書 Chem. Mater. 1998, 10, p.594-600
However, the hydrogen storage material stores hydrogen by forming a hydride, and there is an inconvenience that the amount of heat at the time of storing or releasing the hydrogen cannot be reduced. In addition, the hydrogen storage material has the disadvantage that it is difficult to confirm the remaining amount of stored hydrogen, as in the case of conventional hydrogen storage alloys.
US Pat. No. 6,589,312 Chem. Mater. 1998, 10, p.594-600

本発明は、かかる不都合を解消して、水素を吸蔵または放出する際の熱量を低減することができ、しかも吸蔵されている水素の残量を容易に確認することができる水素貯蔵材料を提供することを目的とする。   The present invention provides a hydrogen storage material that can eliminate such inconvenience, can reduce the amount of heat when storing or releasing hydrogen, and can easily check the remaining amount of stored hydrogen. For the purpose.

本発明者らは、水素を吸蔵する金属粒子のナノオーダーにおける挙動について検討した結果、前記金属粒子の粒子径を特定の大きさ以下にすると、水素を吸蔵する際に水素化物の形成が抑制され、該金属粒子に単に固溶しているだけの水素が多くなることを見出し、本発明に到達した。尚、本明細書では、水素を吸蔵する際に水素化物の形成が抑制され始め、金属粒子に単に固溶しているだけの水素が多くなり始める境界となる粒子径を「水素化物相の形成を抑制する限界粒子径」と記載する。   As a result of investigating the nano-order behavior of metal particles that occlude hydrogen, the inventors of the present invention have suppressed the formation of hydride during occlusion of hydrogen if the particle size of the metal particles is less than a specific size. The present inventors have found that the amount of hydrogen that is simply dissolved in the metal particles is increased, and the present invention has been achieved. In the present specification, the formation of hydride during occlusion of hydrogen begins to be suppressed, and the particle diameter that becomes the boundary at which the amount of hydrogen simply dissolved in metal particles begins to increase is defined as “hydride phase formation”. It is described as “the critical particle size for suppressing the”.

そこで、本発明の水素貯蔵材料は、前記目的を達成するために、水素化物相の形成を抑制する限界粒子径未満の粒子径を備える金属微粒子からなることを特徴とする。   Therefore, in order to achieve the above object, the hydrogen storage material of the present invention is characterized by comprising metal fine particles having a particle diameter less than the limit particle diameter for suppressing the formation of a hydride phase.

本発明の水素貯蔵材料では、前記金属粒子は前記粒子径であることにより、水素を吸蔵する際に水素化物の形成が抑制され、固溶体の状態で該金属粒子に含有される水素が多くなる。本発明の水素貯蔵材料によれば、前述のように水素化物の形成が抑制されるので、水素を吸蔵または放出する際の熱量を低減して、水素の吸蔵、放出を効率よく行うことができる。   In the hydrogen storage material of the present invention, since the metal particles have the particle size, formation of hydride is suppressed when hydrogen is occluded, and hydrogen contained in the metal particles in a solid solution state increases. According to the hydrogen storage material of the present invention, since the formation of hydride is suppressed as described above, it is possible to efficiently store and release hydrogen by reducing the amount of heat when storing or releasing hydrogen. .

また、本発明の水素貯蔵材料によれば、固溶体の状態で前記金属粒子に含有される水素が多くなるので、水素の圧力が水素の吸蔵量に関わらず一定になる領域が少なく、該水素の圧力と該水素の吸蔵量との間に相関関係がある。従って、吸蔵されている水素の残量を該水素の圧力から容易に確認することができる。   In addition, according to the hydrogen storage material of the present invention, the amount of hydrogen contained in the metal particles in the solid solution state increases, so that there are few regions where the hydrogen pressure is constant regardless of the amount of occluded hydrogen. There is a correlation between the pressure and the amount of hydrogen stored. Therefore, the remaining amount of stored hydrogen can be easily confirmed from the pressure of the hydrogen.

前記金属微粒子は、平均粒子径が20nm未満であることにより、水素を吸蔵する際に水素化物の形成を抑制することができる。前記金属粒子の平均粒子径が20nm以上では、水素を吸蔵する際に形成される水素化物が多くなり、水素を吸蔵または放出する際の熱量を低減する効果が十分に得られない。また、吸蔵されている水素の残量を確認することが難しくなる。   When the metal fine particles have an average particle diameter of less than 20 nm, formation of hydride can be suppressed when hydrogen is occluded. When the average particle diameter of the metal particles is 20 nm or more, the amount of hydride formed when hydrogen is occluded increases, and the effect of reducing the amount of heat at the time of occlusion or release of hydrogen cannot be obtained sufficiently. In addition, it becomes difficult to check the remaining amount of stored hydrogen.

本発明の水素貯蔵材料において、前記金属微粒子は、例えばパラジウムからなる。   In the hydrogen storage material of the present invention, the metal fine particles are made of palladium, for example.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1はパラジウムの粒子径と水素化物相の割合とを示すグラフ、図2は水素吸蔵量と水素圧との関係を示すグラフ、図3は水素吸蔵量と水素圧の平方根との関係を示すグラフである。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a graph showing the particle size of palladium and the ratio of the hydride phase, FIG. 2 is a graph showing the relationship between the hydrogen storage amount and the hydrogen pressure, and FIG. 3 shows the relationship between the hydrogen storage amount and the square root of the hydrogen pressure. It is a graph.

本実施形態の水素貯蔵材料は、平均粒子径20nm未満、例えば2〜3nmのパラジウム微粒子からなる。   The hydrogen storage material of this embodiment consists of palladium fine particles having an average particle diameter of less than 20 nm, for example, 2 to 3 nm.

前記パラジウム粒子は、例えば、次のようにして調製することができる。まず、希塩酸を用いて調製した4ミリモル/リットルの塩化パラジウム(PdCl2)水溶液600mlに、ポリビニルピロリドン(PVP)1333mgを溶解し、さらにエタノール400mlを添加して原料溶液を調製する。次に、得られた原料溶液を80℃にて2時間保持する。この結果、平均粒子径2〜3nmのパラジウム微粒子を得ることができる。 The palladium particles can be prepared, for example, as follows. First, 1633 mg of polyvinylpyrrolidone (PVP) is dissolved in 600 ml of a 4 mmol / liter palladium chloride (PdCl 2 ) aqueous solution prepared using dilute hydrochloric acid, and 400 ml of ethanol is further added to prepare a raw material solution. Next, the obtained raw material solution is held at 80 ° C. for 2 hours. As a result, palladium fine particles having an average particle diameter of 2 to 3 nm can be obtained.

前記パラジウム微粒子は、前記原料溶液を1時間加熱還流した後の溶液500mlに、希塩酸を用いて調製した4ミリモル/リットルのPdCl2水溶液300mlに、PVP666mgを溶解し、さらにエタノール200mlを添加した溶液を添加し、得られた溶液を80℃にて2時間保持する操作を繰り返すことにより、粒子径を成長させることができる(非特許文献1参照)。 The palladium fine particles are prepared by dissolving 666 mg of PVP in 300 ml of 4 mmol / liter PdCl 2 aqueous solution prepared using dilute hydrochloric acid in 500 ml of the solution obtained by heating and refluxing the raw material solution for 1 hour, and adding 200 ml of ethanol. The particle diameter can be grown by repeating the operation of adding and holding the resulting solution at 80 ° C. for 2 hours (see Non-Patent Document 1).

次に、前述のようにして粒子径を成長させたパラジウム微粒子を、水素吸蔵テストのために、真空エバポレータ等で十分に乾燥させる。この結果、粒子径10〜35nmのパラジウム微粒子が得られる。   Next, the palladium fine particles having the particle diameter grown as described above are sufficiently dried by a vacuum evaporator or the like for the hydrogen storage test. As a result, palladium fine particles having a particle diameter of 10 to 35 nm are obtained.

次に、前述のようにして得られた粒子径10〜35nmのパラジウム微粒子に水素を吸蔵させ、パラジウム微粒子の粒子径と、該パラジウム微粒子に吸蔵されている水素化物相の割合とを調べた。結果を図1に示す。   Next, hydrogen was occluded in the palladium fine particles having a particle diameter of 10 to 35 nm obtained as described above, and the particle diameter of the palladium fine particles and the ratio of the hydride phase occluded in the palladium fine particles were examined. The results are shown in FIG.

図1から、粒子径20〜22nmを境として、それ未満では前記パラジウム微粒子に吸蔵されている水素化物相が激減しており、水素化物相の形成を抑制する限界粒子径が20nm付近であることが明らかである。   From FIG. 1, the hydride phase occluded in the palladium fine particles is drastically reduced with a particle diameter of 20 to 22 nm as a boundary, and the limit particle diameter for suppressing the formation of the hydride phase is around 20 nm. Is clear.

次に、本実施形態の平均粒子径2〜3nmのパラジウム微粒子と、従来のパラジウム微粒子の凝集体からなるバルクメタルとに、それぞれ水素を吸蔵させ、90℃での水素吸蔵量と水素圧との関係を調べた。結果を図2に示す。   Next, hydrogen is occluded in the palladium fine particles having an average particle diameter of 2 to 3 nm of the present embodiment and a bulk metal made of an aggregate of conventional palladium fine particles, and the hydrogen occlusion amount and hydrogen pressure at 90 ° C. I investigated the relationship. The results are shown in FIG.

図2から、従来のパラジウム微粒子の凝集体からなるバルクメタル(図中、「バルク」
と略記する)では、水素圧が水素の吸蔵量に関わらず一定になる領域(プラトー)があり
、該バルクメタルに吸蔵された水素がパラジウムとの間に水素化物を形成していることが明らかである。これに対して、本実施形態の平均粒子径2〜3nmのパラジウム微粒子では、前記プラトーが認められず、該パラジウム微粒子に吸蔵された水素はパラジウムとの間に水素化物を形成せず、単に固溶体の状態で含有されていることが明らかである。
Fig. 2 shows that a conventional bulk metal composed of aggregates of palladium fine particles ("bulk" in the figure)
It is clear that there is a region (plateau) where the hydrogen pressure is constant regardless of the amount of hydrogen occluded, and the hydrogen occluded in the bulk metal forms a hydride with palladium. It is. On the other hand, in the palladium fine particles having an average particle diameter of 2 to 3 nm of the present embodiment, the plateau is not observed, and the hydrogen occluded in the palladium fine particles does not form a hydride with palladium, and is simply a solid solution. It is clear that it is contained in the state.

次に、本実施形態の平均粒子径2〜3nmのパラジウム微粒子について、50℃と90℃とで水素を吸蔵させ、それぞれの場合の水素吸蔵量と水素圧の平方根との関係を調べた。結果を図3に示す。   Next, hydrogen was occluded at 50 ° C. and 90 ° C. for palladium fine particles having an average particle diameter of 2 to 3 nm of the present embodiment, and the relationship between the hydrogen occlusion amount and the square root of the hydrogen pressure in each case was examined. The results are shown in FIG.

図3から、本実施形態のパラジウム微粒子では、50℃と90℃とのいずれの場合においても、水素吸蔵量が水素圧の平方根に略比例していることが明らかである。従って、本実施形態のパラジウム微粒子を用いる水素貯蔵材料では、吸蔵されている水素の残量を水素圧から容易に確認することができる。   From FIG. 3, it is clear that in the palladium fine particles of the present embodiment, the hydrogen occlusion amount is approximately proportional to the square root of the hydrogen pressure in both cases of 50 ° C. and 90 ° C. Therefore, in the hydrogen storage material using the palladium fine particles of this embodiment, the remaining amount of stored hydrogen can be easily confirmed from the hydrogen pressure.

パラジウムの粒子径と水素化物相の割合とを示すグラフ。The graph which shows the particle diameter of palladium, and the ratio of the hydride phase. 水素吸蔵量と水素圧との関係を示すグラフ。The graph which shows the relationship between hydrogen storage amount and hydrogen pressure. 水素吸蔵量と水素圧の平方根との関係を示すグラフ。The graph which shows the relationship between hydrogen storage amount and the square root of hydrogen pressure.

符号の説明Explanation of symbols

符号なし。   No sign.

Claims (3)

水素化物相の形成を抑制する限界粒子径未満の粒子径を備える金属微粒子からなることを特徴とする水素貯蔵材料。   A hydrogen storage material comprising metal fine particles having a particle diameter less than a limit particle diameter for suppressing the formation of a hydride phase. 前記金属微粒子は、平均粒子径が20nm未満であることを特徴とする請求項1記載の水素貯蔵材料。   The hydrogen storage material according to claim 1, wherein the metal fine particles have an average particle diameter of less than 20 nm. 前記金属微粒子は、パラジウムからなることを特徴とする請求項1または請求項2記載の水素貯蔵材料。   The hydrogen storage material according to claim 1, wherein the metal fine particles are made of palladium.
JP2003405688A 2003-12-04 2003-12-04 Hydrogen storage material Pending JP2005163132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405688A JP2005163132A (en) 2003-12-04 2003-12-04 Hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405688A JP2005163132A (en) 2003-12-04 2003-12-04 Hydrogen storage material

Publications (1)

Publication Number Publication Date
JP2005163132A true JP2005163132A (en) 2005-06-23

Family

ID=34728283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405688A Pending JP2005163132A (en) 2003-12-04 2003-12-04 Hydrogen storage material

Country Status (1)

Country Link
JP (1) JP2005163132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170045202A (en) * 2014-08-19 2017-04-26 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Method for preparing active palladium(0) powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170045202A (en) * 2014-08-19 2017-04-26 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Method for preparing active palladium(0) powder
JP2017532435A (en) * 2014-08-19 2017-11-02 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Method for producing active palladium (0) powder
KR102334891B1 (en) 2014-08-19 2021-12-03 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Method for preparing active palladium(0) powder

Similar Documents

Publication Publication Date Title
Zhang et al. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement
Tuan et al. Nanocrystal‐mediated crystallization of silicon and germanium nanowires in organic solvents: the role of catalysis and solid‐phase seeding
US8056840B2 (en) Nanotization of magnesium-based hydrogen storage material
Nair et al. Evolutionary Shape Control During Colloidal Quantum‐Dot Growth
JP2002327230A (en) Magnesium-based hydrogen absorbing alloy
JP2015137370A (en) Method for producing silver nanowire
BR0308703B1 (en) Pre-bonded powder.
CN106463483A (en) Heat dissipation structure and synthesizing method thereof
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
JP2005163132A (en) Hydrogen storage material
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
JP5089080B2 (en) Hydrogen storage material and method for producing the same
Yang et al. Formation and stability of low‐dimensional structures for group VIIIB and IB transition metals: the role of sd4 hybridization
Wang et al. Effects of different functional group-containing organics on morphology-controlled synthesis of silver nanoparticles at room temperature
Li et al. Controlling the Nature of Photoluminescence of Emissive Metal Nanoclusters
JP4835824B2 (en) Hydride composite, hydrogen storage material, and production method thereof
Hainey et al. Aluminum-Catalyzed Growth of‹ 110› Silicon Nanowires
JP5213156B2 (en) High capacity hydrogen storage alloy
JP2006256888A (en) Hydrogen storage material and its manufacturing method
JP2005089264A (en) Carbon nitride substance containing metal and its manufacturing method, and hydrogen occlusion material
JP2009143790A (en) Hydride complex and hydrogen storage material
JP4124700B2 (en) Hydrogen storage alloy and hydrogen storage material
JP2000239703A (en) Manufacture of hydrogen storage alloy powder excellent in oxidation resistance
JP2007113111A (en) Hydrogen storage alloy
JP5329498B2 (en) Hydrogen storage alloy