JP2005162552A - Composite material for hydrogen generation and its manufacturing method - Google Patents

Composite material for hydrogen generation and its manufacturing method Download PDF

Info

Publication number
JP2005162552A
JP2005162552A JP2003405322A JP2003405322A JP2005162552A JP 2005162552 A JP2005162552 A JP 2005162552A JP 2003405322 A JP2003405322 A JP 2003405322A JP 2003405322 A JP2003405322 A JP 2003405322A JP 2005162552 A JP2005162552 A JP 2005162552A
Authority
JP
Japan
Prior art keywords
aluminum
hydrogen
composite material
water
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003405322A
Other languages
Japanese (ja)
Other versions
JP4054877B2 (en
Inventor
Shinen Tou
シンエン トウ
Liu Yu-Fu
玉付 劉
Yoshihisa Tanaka
義久 田中
Kinka Yo
金花 葉
Yoshio Sakka
義雄 目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003405322A priority Critical patent/JP4054877B2/en
Publication of JP2005162552A publication Critical patent/JP2005162552A/en
Application granted granted Critical
Publication of JP4054877B2 publication Critical patent/JP4054877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Powder Metallurgy (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently generate hydrogen gas by a simple means even under mild conditions. <P>SOLUTION: The composite material comprises one or more kinds of aluminum metal from aluminum and aluminum alloys and a metal oxide in contact with the metal on the interface, and has ability of generating hydrogen to generate hydrogen gas by contact with water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この出願の発明は、燃料電池の水素源等として有用な、新しい水素発生用複合材とその製造方法、並びにこれを用いた水素ガスの発生方法、水素発生用の部品と装置、さらには水循環型燃料電池に関するものである。   The invention of this application is a new hydrogen generating composite material useful as a hydrogen source for fuel cells and the like, a method for producing the same, a method for generating hydrogen gas using the same, parts and devices for hydrogen generation, and a water circulation type The present invention relates to a fuel cell.

クリーンなエネルギー源として水素の発生・貯蔵・運搬・利用などの様々な解決策が提起されている。水素社会を実現するための一つの提案として、軽量かつハンドリングが容易なアルミニウム金属を水を用いて熱化学反応させて水素ガスを製造する方法が提案されている(特許文献1)。   Various solutions such as generation, storage, transportation and use of hydrogen have been proposed as clean energy sources. As one proposal for realizing a hydrogen society, a method has been proposed in which hydrogen gas is produced by thermochemical reaction of aluminum metal, which is light and easy to handle, using water (Patent Document 1).

アルミニウムは金属の中で軽量に加え、3価であり、電子密度が極めて高いものの、常温・常圧では水に接触し、腐食に強い数ナノメートルから数十ナノメートルぐらいの不動膜が容易に形成され、反応が進行しないことは古くから知られている事実であり、水素の発生量がごく僅かで効率が悪いという大きな問題点がある。そこで、絶えずアルミの新鮮面を作ることや前記の方法では、200℃以上の高温で熱化学反応を行わせている。しかし、このような高温での熱化学反応では、水素ガス発生を効率的に行わせることは難しく、また発生装置も大型化し高価となるので、実用的な水素ガス発生方法であるとは言い難い。一方、より穏和な条件で金属と水から水素を発生する方法として、アルミニウムに鉄、亜鉛などの金属を粉末状で混合したものと水とを反応させる方法(特許文献2)や、アルミにインジウム、ガリウムを合金化して水と反応させる(特許文献3−4)等の工夫がなされている。   Aluminum is a trivalent metal in addition to being light in weight and has an extremely high electron density. However, it is easily contacted with water at room temperature and normal pressure, and it can easily form an immobile film that is resistant to corrosion from several nanometers to several tens of nanometers. It is a fact that has been formed for a long time, and the reaction does not proceed, and there is a big problem that the amount of hydrogen generated is negligible and the efficiency is poor. Therefore, the thermochemical reaction is performed at a high temperature of 200 ° C. or higher by constantly making a fresh surface of aluminum or by the above method. However, in such a high temperature thermochemical reaction, it is difficult to efficiently generate hydrogen gas, and the generator is large and expensive, so it is difficult to say that it is a practical hydrogen gas generation method. . On the other hand, as a method of generating hydrogen from a metal and water under milder conditions, a method of reacting a mixture of metal such as iron and zinc with aluminum and water (Patent Document 2), or indium on aluminum. Further, contrivances such as alloying gallium and reacting with water have been made (Patent Documents 3-4).

だが、アルミニウムと鉄、亜鉛との混合金属粉末と水とを反応させる方法においては、加温するか、水溶液のpH7(純水)から酸またはアルカリ側にシフトした条件で行わないと充分な水素ガスの発生は起こらない。また、インジウム、ガリウムを合金化した材料と水とを反応させる方法では、毒性が問題となるインジウムおよびガリウムは取扱いが難しく、汎用的な水素ガス発生方法としては考え難い。   However, in the method in which the mixed metal powder of aluminum, iron, and zinc is reacted with water, sufficient hydrogen must be used unless the solution is heated or under conditions shifted from an aqueous solution pH 7 (pure water) to an acid or alkali side. No gas generation occurs. In addition, in a method in which a material in which indium and gallium are alloyed and water are reacted, indium and gallium that are problematic in toxicity are difficult to handle, and it is difficult to consider as a general-purpose hydrogen gas generation method.

このように、従来提案されている上記のような金属もしくは合金を用いる方法においては、水素発生のための反応条件が過酷であったり、水素ガスの発生が少なく、取扱いが難しい等という問題が解決されておらず、しかも
1)材料重量比に対しての発生水素量が少く、発生が持続される時間が短い、
2)水素の発生速度と発生量の制御が容易ではない、
3)電源や改質装置、熱源等を必要としている
等の問題がある。
特開平8−115733号公報 特開2002−104801号公報 特開2002−161325号公報 特開2003−12301号公報
As described above, the conventional methods using metals or alloys as described above solve the problems such as severe reaction conditions for hydrogen generation, less generation of hydrogen gas, and difficult handling. 1) The amount of hydrogen generated relative to the weight ratio of the material is small, and the duration of generation is short.
2) Control of hydrogen generation rate and generation amount is not easy.
3) There is a problem that a power source, a reformer, a heat source, etc. are required.
JP-A-8-115733 JP 2002-104801 A JP 2002-161325 A JP 2003-12301 A

そこで、この出願の発明は、上記のような従来の問題点を解決し、過酷な条件下でなくとも、効率的な水素発生をより長時間持続させることができ、水素発生速度や発生量の制御も比較的容易であって、電源や熱源等の装置を必要とせず、取扱いも容易である等の優れた作用効果を実現することのできる新しい技術手段を提供し、これをもって燃料電池等
の発展に資することを課題としている。
Therefore, the invention of this application solves the conventional problems as described above, and can maintain efficient hydrogen generation for a longer time even under harsh conditions. Control is relatively easy, does not require devices such as a power source or a heat source, and provides new technical means that can realize excellent operational effects such as easy handling. The challenge is to contribute to development.

この出願の発明は、上記の課題を解決するものとして、第1には、アルミニウムおよびアルミニウム合金のうちの少くとも1種以上のアルミニウム金属とその界面に接する金属酸化物とを有する複合材であって、水との接触により水素ガスを発生させる水素発生能を備えていることを特徴とする水素発生用複合材を提供し、第2にはアルミニウム金属の粒子表面に金属酸化物が接触もしくは付着していることを特徴とする上記の水素発生用複合材を提供する。   In order to solve the above problems, the invention of this application is first a composite material having at least one aluminum metal of aluminum and an aluminum alloy and a metal oxide in contact with the interface. Providing a hydrogen generating composite material that has a hydrogen generating ability to generate hydrogen gas upon contact with water, and second, a metal oxide contacts or adheres to the surface of aluminum metal particles The above-mentioned composite material for hydrogen generation is provided.

また、この出願の発明は、第3には、アルミニウムおよびアルミニウム合金のうちの少くとも1種以上のアルミニウム金属とその界面に接する金属酸化物もしくは金属酸化物生成材とを非酸化性雰囲気下に熱処理することで、水との接触により水素ガスを発生させる水素発生能を備えている複合材を形成することを特徴とする水素発生用複合材の製造方法を提供し、第4には、焼結することを特徴とする上記の水素発生用複合材の製造方法を、第5には、真空排気または不活性ガスによる非酸化雰囲気下に熱処理することを特徴とする水素発生用複合材の製造方法を提供する。   In addition, according to the third aspect of the invention of this application, at least one kind of aluminum metal of aluminum and aluminum alloy and a metal oxide or metal oxide generating material in contact with the interface are placed in a non-oxidizing atmosphere. Provided is a method for producing a composite material for hydrogen generation, characterized by forming a composite material having a hydrogen generation capability of generating hydrogen gas by contact with water by heat treatment. In the fifth aspect of the method for producing a composite material for hydrogen generation described above, fifth, the composite material for hydrogen generation is characterized in that heat treatment is performed in a non-oxidizing atmosphere by evacuation or inert gas. Provide a method.

第6には、上記の水素発生用複合材を水と接触させることを特徴とする水素ガスの発生方法を提供する。   Sixth, the present invention provides a method for generating hydrogen gas, characterized in that the hydrogen generating composite material is brought into contact with water.

そして、この出願の発明は、第7には、上記水素発生用複合材をその構成の少くとも一部としていることを特徴とする水素発生用の部品または装置を提供し、第8には、これらの部品または装置を用いていることを特徴とする水循環型燃料電池を提供する。   And, the invention of this application provides, in a seventh aspect, a hydrogen generating part or device characterized in that the hydrogen generating composite material is at least a part of its configuration, and in the eighth, Provided is a water circulation type fuel cell characterized by using these parts or devices.

上記のとおりのこの出願の発明によれば、従来に比べてより緩和された条件下であっても、簡便に効率的な水素発生を可能とし、以下のような効果を奏することが可能となる。   According to the invention of this application as described above, it is possible to easily and efficiently generate hydrogen even under conditions that are more relaxed than in the past, and to achieve the following effects. .

(1)材料の重量および容量ベースで発生する全水素ガス量が多い。   (1) A large amount of total hydrogen gas is generated based on the weight and volume of the material.

(2)供給時に供給速度とガス発生量の制御が容易。   (2) Easy control of supply speed and gas generation during supply.

(3)電源・改質装置と熱源が不要。   (3) No power source / reformer and heat source are required.

(4)水素発生時に一酸化炭素、二酸化炭素の排出がない。   (4) There is no emission of carbon monoxide and carbon dioxide when hydrogen is generated.

(5)水素貯蔵・供給システムがシンプル。   (5) Simple hydrogen storage and supply system.

(6)貯蔵・運搬・輸送・取り扱いが簡単・安全。   (6) Easy to store, transport, transport and handle, safe.

(7)使用上の健康障害への影響はない。   (7) There is no impact on health problems in use.

(8)材料の取扱いが容易。   (8) Easy handling of materials.

そして、この出願の発明の材料は、水素エネルギー源として発電・自動車・航空宇宙などの様々な産業分野に応用でき、特に最近注目されている自動車などの燃料電池の水素源として有望である。また、この出願の発明の材料、これを用いた部品や装置は、燃料電池の中で発生する水を循環利用することで水素を作ることができ、予備エネルギー源・予備電池の機能を有している。   The material of the invention of this application can be applied as a hydrogen energy source in various industrial fields such as power generation, automobiles, and aerospace, and is particularly promising as a hydrogen source for fuel cells such as automobiles that have recently attracted attention. In addition, the materials of the invention of this application, and parts and devices using the same, can produce hydrogen by circulating and using the water generated in the fuel cell, and have the function of a reserve energy source and a reserve battery. ing.

この出願の発明は上記のような特徴をもつものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and the embodiments thereof will be described below.

この出願の発明の水素発生用複合材は、基本的に
(A)アルミニウムおよびアルミニウム合金のうちの1種以上からなるアルミニウム金属粒子、
(B)金属酸化物
をその成分として構成されているのである。
The composite material for hydrogen generation of the invention of this application is basically (A) aluminum metal particles comprising at least one of aluminum and an aluminum alloy,
(B) A metal oxide is used as its component.

アルミニウム金属粒子(A)のうちのアルミニウム合金については、アルミニウムの活性が発現されものであれば各種の元素との二元、もしくはさらに多元の合金であってよく、加工性、成形性、安定性等を考慮して、たとえば、チタン、ジルコニウム、鉄、スズ、ニオブ、タンタル、ケイ素、銅、鉄、モリブデン、亜鉛等の各種元素の1種以上との合金であってよい。また、合金でのアルミニウムの含有割合も、水素発生のためのアルミニウムの活性等を考慮して定めることができる。   The aluminum alloy of the aluminum metal particles (A) may be a binary alloy with various elements or a multi-element alloy as long as the aluminum activity is expressed, and it is workable, formable, and stable. For example, it may be an alloy with one or more of various elements such as titanium, zirconium, iron, tin, niobium, tantalum, silicon, copper, iron, molybdenum, and zinc. Further, the aluminum content in the alloy can also be determined in consideration of the activity of aluminum for generating hydrogen.

一方、金属酸化物(B)についても各種元素の酸化物でよく、好適には、アルミニウム、チタン、ジルコニウム、ハフニウム、クロム、インジウム、マグネシウム、マンガン、スズ、亜鉛、鉛、ガリウム、銅、バナジウム、ニオブ、タンタル、モリブデン、タングステン、ビスエス、アンチセン、ホウ素、リン、鉄、ニッケル、コバルト等のうちの1種以上が考慮される。なかでも、アルミニウム、チタン、マグネシウムの酸化物が好適なものとして例示される。アルミナ、チタニア、マグネシア等である。   On the other hand, the metal oxide (B) may be an oxide of various elements, and preferably aluminum, titanium, zirconium, hafnium, chromium, indium, magnesium, manganese, tin, zinc, lead, gallium, copper, vanadium, One or more of niobium, tantalum, molybdenum, tungsten, screws, anticene, boron, phosphorus, iron, nickel, cobalt, etc. are considered. Among these, oxides of aluminum, titanium, and magnesium are illustrated as preferable examples. Alumina, titania, magnesia, etc.

また金属酸化物(B)は、2種以上のものの混合物や複合酸化物であってもよい。たとえば、シリカ・アルミナ、チタニア・シリカ、天然あるいは合成のゼオライト、アルミナ・ボリア、アルミナ・酸化ニオブ等が例示される。   Further, the metal oxide (B) may be a mixture or composite oxide of two or more kinds. Examples include silica / alumina, titania / silica, natural or synthetic zeolite, alumina / boria, alumina / niobium oxide, and the like.

そして、この出願の発明の金属酸化物(B)は、酸水化物あるいは水酸化物を含むものである。   The metal oxide (B) of the invention of this application contains an acid hydrate or hydroxide.

以上のような金属酸化物(B)については、その製造において、最終的に形成された複合体中の金属酸化物の形態が酸化物、酸水化物および水酸化物となるかぎりにおいて、これらの金属酸化物の出発原料として、酸化物、水酸化物以外の塩化物、臭化物などのハロゲン化物、修酸塩、酢酸塩などの有機酸塩などを使用することもできる。そして、これらの酸化物はある程度以上の表面積を有し、還元されにくい酸化物であることが好ましい。   As for the metal oxide (B) as described above, as long as the form of the metal oxide in the finally formed composite becomes an oxide, an acid hydrate and a hydroxide in the production thereof, As starting materials for metal oxides, oxides, halides such as chlorides and bromides other than hydroxides, and organic acid salts such as oxalates and acetates can also be used. These oxides preferably have a surface area of a certain level or more and are not easily reduced.


この出願の発明の水素発生用複合材では、上記の成分(A)(B)の他に、賦形材、安定化材等としてのセラミックスや樹脂、金属、合金等を併用してもよい。

In the composite material for hydrogen generation of the invention of this application, in addition to the above components (A) and (B), ceramics, resins, metals, alloys and the like as shaping materials and stabilizing materials may be used in combination.

いずれの形態においても、この出願の発明の水素発生用複合材では、アルミニウムにごく少量の金属酸化物を加えることで水素ガス発生量はアルミニウム単独に比べて改善されるので、アルミニウムと金属酸化物の組成に大きな成約はない。しかし、アルミニウムの比率が低いと生成する水素ガスの発生量は少なくなり、一方、アルミニウムの比率があまり高過ぎると、未反応のアルミニウムが残存したり、水素ガスの発生速度が遅くなる。この出願のアルミニウム系複合材中の金属酸化物の含有量は1ないし99体積%において本発明の効果を確認することができる。実用的な観点から好ましい範囲は、製造条件あるいは応用分野にもよるが、5ないし95%、より好ましくは、10ないし90%、さらには
40ナイシ90%である。
In any form, in the composite material for hydrogen generation of the invention of this application, by adding a very small amount of metal oxide to aluminum, the hydrogen gas generation amount is improved as compared with aluminum alone. There is no big deal in the composition. However, if the aluminum ratio is low, the amount of hydrogen gas generated is reduced. On the other hand, if the aluminum ratio is too high, unreacted aluminum remains or the hydrogen gas generation rate is slow. The effect of the present invention can be confirmed when the content of the metal oxide in the aluminum-based composite material of this application is 1 to 99% by volume. From a practical viewpoint, the preferable range is 5 to 95%, more preferably 10 to 90%, and further 40% 90%, although it depends on manufacturing conditions and application fields.

アルミニウム金属粒子(A)と金属酸化物(B)の体積割合や、アルミニウム金属粒子(A)の粒径、そしてその種類を選択、調整することによって、水素発生の速度や発生量、その持続時間を制御することができる。   By selecting and adjusting the volume ratio of the aluminum metal particles (A) and the metal oxide (B), the particle size of the aluminum metal particles (A), and their types, the rate and amount of hydrogen generation, and the duration Can be controlled.

そして、より粒径の大きなアルミニウム金属粒子(A)の表面に、より粒径の小さな金属酸化物(B)が粒状、あるいは箔片状で接触ないし付着している構造のものが好適である。   And the thing of the structure where the metal oxide (B) with a smaller particle diameter contacts or adheres to the surface of the aluminum metal particle (A) with a larger particle diameter in a granular form or a foil piece shape is suitable.

すなわち、この出願の発明においては、アルミニウム金属の界面に金属酸化物を均一に分散させて、アルミニウム金属と金属酸化物の複合体を生成させ、これを水に接触させて水素ガスを発生させる。先に述べたように、通常アルミニウム金属は水・水蒸気の存在下で界面に容易に界面に不動膜を形成してアルミニウムと水との反応が進行しなくなるが、この出願の新しい材料を用いることによって、穏和な条件で効率的に水素ガスを連続的に製造することが可能となる。   That is, in the invention of this application, a metal oxide is uniformly dispersed at the interface of aluminum metal to form a composite of aluminum metal and metal oxide, which is brought into contact with water to generate hydrogen gas. As mentioned earlier, aluminum metal usually forms a passive film at the interface in the presence of water and water vapor, and the reaction between aluminum and water does not proceed, but the new material of this application should be used. Thus, hydrogen gas can be produced continuously and efficiently under mild conditions.

具体的な一例としてアルミニウム金属とガンマーアルミナとの複合体を例示することができる。アルミニウムの微粉末と水酸化アルミニウムを一定の混合比で混ぜ合い、一定の圧力を加えて予備焼結体をつくり、これを約600℃の真空中に焼結したものがその一例である。この場合、焼結の過程で水酸化アルミニウムが微粒子のγ・Al23に変化し、多孔体で高表面積のγ・Al23がアルミニウム金属粒子の表面全体に存在するような複合体が生成する。この複合体はアルミナ粒子で覆われているので、空気中においてもアルミニウムはかなり安定で、アルミニウムの酸化は起こりにくくなっている。焼結温度が低く、水酸化アルミニウムが無水あるいはベーマイトの常態の複合体であってもよい。また、水素を発生させるアルミニウム系複合体は、上記の例に示したような成形体でもよいが、粉末状で用いてもよい。 As a specific example, a composite of aluminum metal and gamma alumina can be exemplified. An example is a mixture of fine aluminum powder and aluminum hydroxide in a constant mixing ratio, a constant pressure applied to prepare a pre-sintered body, and sintered in a vacuum of about 600 ° C. In this case, a composite in which aluminum hydroxide is changed to fine particles of γ · Al 2 O 3 during the sintering process, and porous and high surface area γ · Al 2 O 3 is present on the entire surface of the aluminum metal particles. Produces. Since this composite is covered with alumina particles, aluminum is quite stable even in the air, and oxidation of aluminum hardly occurs. The sintering temperature may be low, and aluminum hydroxide may be anhydrous or boehmite normal composite. The aluminum-based composite that generates hydrogen may be a molded body as shown in the above example, but may be used in a powder form.

この出願の発明の水素発生用複合材は、たとえば上記のように焼結体として製造することができる。すなわち、アルミニウムおよびアルミニウム合金のうちの少なくとも1種以上のアルミニウム金属粉と金属酸化物もしくは金属酸化物生成材とを混合し、非酸化性雰囲気下に焼結することで前記アルミニウム金属の粒子と金属酸化物とを主として構成され、水との接触により水素を発生させる水素発生用複合材を製造することである。   The composite material for hydrogen generation of the invention of this application can be manufactured as a sintered body as described above, for example. That is, at least one kind of aluminum metal powder of aluminum and aluminum alloy and a metal oxide or a metal oxide generating material are mixed, and sintered in a non-oxidizing atmosphere, whereby the particles of the aluminum metal and the metal are mixed. It is to produce a composite material for hydrogen generation that is mainly composed of oxides and generates hydrogen by contact with water.

この方法においては、仮焼成体とした後に焼結することや、不活性ガス中、あるいは真空排気による非酸化性雰囲気下に焼結することが好ましい形態の一つとして考慮される。   In this method, it is considered as one of preferable modes that sintering is performed after forming a pre-fired body, or sintering is performed in an inert gas or in a non-oxidizing atmosphere by vacuum exhaust.

また、この出願の発明の水素発生用複合材の製造方法としては、上記の方法以外にアルミニウム金属粉末と金属酸化物あるいはその前駆体を粉末状で機械的に充分混合したもの、塊状のアルミニウム金属と金属酸化物をボールミル中で粉砕したもの、さらには溶解したアルミニウムに金属酸化物部粉末を分散させておき、その複合体を粉砕処理したものなど金属酸化物がアルミニウム金属の表面にある程度以上緊密かつ均一に付着した複合体を形成できる方法であればよい。ある程度高い表面積を持つ粉末状のアルミニウム金属の表面に金属酸化物を均一かつ全体的に分散させことが、水素ガスの効率的な発生に望ましい方法と考えられる。また、いずれの方法においても、アルミニウム金属の表面酸化の進行は望ましくないので、製造方法の過程で極力酸化を防止する方法を採用することが好ましい。   In addition to the above method, the method for producing the composite material for hydrogen generation according to the invention of this application may be a mixture of aluminum metal powder and metal oxide or precursor thereof in a powder form and mechanically mixed, or a massive aluminum metal. And metal oxide pulverized in a ball mill, or metal oxide part powder dispersed in dissolved aluminum, and the composite was pulverized. Any method can be used as long as it can form a uniformly attached complex. It is considered that a uniform and overall dispersion of the metal oxide on the surface of powdered aluminum metal having a certain high surface area is a desirable method for the efficient generation of hydrogen gas. In any of the methods, since the progress of surface oxidation of the aluminum metal is not desirable, it is preferable to employ a method for preventing oxidation as much as possible in the course of the manufacturing method.

この出願の発明によるアルミニウム系水素発生用複合材の最大の特徴は、純水と接触させることで室温のような穏和な条件においても、容易に水素ガスを発生することであり、
最適な条件でこの反応を行わせると、アルミニウム金属がほとんど消耗されるまで持続的に水素を放出することである。たとえば、ある程度の長い時間水素ガスの発生を行わせたのちに反応した試料をX線回折(XRD)で測定すると、図7に示したように、ガンマーアルミナとともにアルミ酸水化物Boebmite, AlO(OH)が検出される。また、電子顕微鏡で形態の観察を行うと、アルミニウム系複合材の形状は徐々に変化していき、図1、図7そして図8に示したように最終的には全く異なる形態の反応生成物が観測され。このような解析結果から、次式で示されるような反応が起きているものと考えられている。
The greatest feature of the aluminum-based hydrogen generating composite material according to the invention of this application is that hydrogen gas is easily generated even under mild conditions such as room temperature by contacting with pure water.
When this reaction is carried out under optimal conditions, hydrogen is released continuously until the aluminum metal is almost exhausted. For example, when a sample reacted after having generated hydrogen gas for a certain long time is measured by X-ray diffraction (XRD), as shown in FIG. 7, aluminate hydrate Boebmite, AlO (OH) together with gamma alumina is used. ) Is detected. In addition, when the form is observed with an electron microscope, the shape of the aluminum-based composite material gradually changes, and finally the reaction products in completely different forms as shown in FIG. 1, FIG. 7 and FIG. Is observed. From such an analysis result, it is considered that the reaction represented by the following equation occurs.

Al+2H2O→AlO(OH)+3/2H2 (1)
2Al+3H2O→Al23+3H2 (2)
すなわち、アルミニウム金属は水の存在下において水素を発生しながら、一部結晶性を有するベーマイトに変化しているものと考えられる(なお、式(2)のアルミナの生成は金属酸化物としてアルミナを使用する場合にはその生成は確認できない。)理論的にはアルミニウム−原子に対して1.1モルという非常に大量の水素が発生することになるが、室温よりも高められた温度で水と反応することにより、実際に、ほぼ理論的な水素の発生量が確認されている。
Al + 2H 2 O → AlO (OH) + 3 / 2H 2 (1)
2Al + 3H 2 O → Al 2 O 3 + 3H 2 (2)
That is, it is considered that aluminum metal is changed to boehmite having a part of crystallinity while generating hydrogen in the presence of water (in addition, the formation of alumina of the formula (2) uses alumina as a metal oxide. In the case of use, the formation cannot be confirmed.) Theoretically, a very large amount of hydrogen of 1.1 moles per aluminum atom is generated, but water and water are heated at a temperature higher than room temperature. As a result of the reaction, a practically theoretical hydrogen generation amount has been confirmed.

このような水素ガスの発生は、この出願の発明のアルミニウム系複合材を適切な成形体および/あるいは粉体状と水あるいは水蒸気とを接触させるものであれば、どのような方式でも実施可能である。たとえば、水の入った槽型反応器に複合材の粉末あるいは成形体を懸濁させる方式、複合材の粉末あるいは成形体を充填した筒型反応器に水や水蒸気を通過・接触させる方式などを例示することができる。水素ガスの発生に水を用いる場合には、純水でも充分な水素ガスの発生を達成できるが、pH7から酸またはアルカリ側シフトした水溶液を使用することもできる。また、複合材と水を接触させる場合、常温近傍でも水素ガスの発生を行うことができるが、温度が高くすることによって水素ガスの生成速度を高めることができる。水素ガスの発生量は、複合材と水・水蒸気との接触する量、反応温度などを変化させることによって制御することができる。   Such generation of hydrogen gas can be performed by any method as long as the aluminum-based composite material of the invention of this application is brought into contact with a suitable molded body and / or powder and water or water vapor. is there. For example, a method of suspending a composite powder or compact in a tank reactor containing water, a method of passing or contacting water or water vapor to a cylindrical reactor filled with a composite powder or compact, etc. It can be illustrated. When water is used for generation of hydrogen gas, sufficient generation of hydrogen gas can be achieved with pure water, but an aqueous solution shifted from pH 7 to the acid or alkali side can also be used. In addition, when the composite material and water are brought into contact with each other, hydrogen gas can be generated near room temperature, but the generation rate of hydrogen gas can be increased by increasing the temperature. The amount of hydrogen gas generated can be controlled by changing the amount of contact between the composite material and water / steam, the reaction temperature, and the like.

そこで以下に実施例を説明する。もちろん以下の例によって発明が限定されることはない。   Accordingly, examples will be described below. Of course, the invention is not limited by the following examples.

<実施例1>
市販の水酸化アルミニウムAl(OH)3とアルミニウムの粉末(粒径が約3ミクロン
)とをそれぞれ10:0,9:1,8:2,7:3,6:4,5:5,4:6,3:7,2:8,1:9,0:10の体積率比で混ぜ合い、約120Mpa圧力を加え、予備焼結体を作成した。この予備焼結体を約600℃の真空中に焼結したものをアルミの体積含有率に応じ、#0,#1,#2,#3,#4,#5,#6,#7,#8,#9および#10試料と名付けた。試料#0は水酸化アルミニウム100%からのものであり、また、試料番号#10は、アルミニウム100%からのものである。試料番号#0,#1,#2,#3,#4,#5および#6までの試料の表面積はそれぞれ225,214,184,147,119,92,8.4(単位m2/g)であった。#7以降の試料の表面積は#6と
同様以下であった。図1は#4試料の走査型電子顕微鏡(SEM)写真である。図中のAマークのついている粒子はEDX分析(図2)でAl−richとわかり、Alの粒子となっていることがわかる。Alの粒子の周りにγ・Al23が一杯付着していることが確認できる。図3はその拡大写真である。
<Example 1>
Commercially available aluminum hydroxide Al (OH) 3 and aluminum powder (particle size of about 3 microns) are respectively 10: 0, 9: 1, 8: 2, 7: 3, 6: 4, 5: 5, 4 : 6: 3: 7, 2: 8, 1: 9, 0:10, and a pre-sintered body was prepared by applying a pressure of about 120 Mpa. The pre-sintered body sintered in a vacuum of about 600 ° C. is subjected to # 0, # 1, # 2, # 3, # 4, # 5, # 6, # 7, # 7, according to the volume content of aluminum. # 8, # 9 and # 10 samples were named. Sample # 0 is from 100% aluminum hydroxide, and sample number # 10 is from 100% aluminum. The surface areas of the samples up to sample numbers # 0, # 1, # 2, # 3, # 4, # 5 and # 6 are 225, 214, 184, 147, 119, 92, 8.4 (unit m 2 / g, respectively). )Met. The surface area of the samples after # 7 was the same as that of # 6. FIG. 1 is a scanning electron microscope (SEM) photograph of sample # 4. The particles with the A mark in the figure are identified as Al-rich by EDX analysis (FIG. 2), indicating that they are Al particles. It can be confirmed that γ · Al 2 O 3 is fully adhered around the Al particles. FIG. 3 is an enlarged photograph thereof.

図4には、この材料のX線解析結果を示した。Al相(a)とγ・Al23相(b)のピークが存在することがわかる。γ・Al23は加熱途中に約400℃ぐらいで次のような反応で形成されたと思われる。 FIG. 4 shows the result of X-ray analysis of this material. It can be seen that there are peaks of the Al phase (a) and the γ · Al 2 O 3 phase (b). It seems that γ · Al 2 O 3 was formed by the following reaction at about 400 ° C. during heating.

2Al(OH)3→γ・Al23+3H2
これらの試料を室温の純水を大量に入れたビーカー中に0.5g投入したところ、いずれの試料を使用した場合にもガスの発生が認められた。発生したガスには水素ガスであることがガスクロ分析で確認された。図5は、20時間前後までの水素発生量の推移を示したものである。この図5から、試料#1から#9までのものでは、水素ガスの発生量は経時的に増加すること、また、アルミニウム金属の組成が10・40体積%の範囲において水素ガスの発生量が多いことが確認される。なお、#0と#10の試料では0.5gあたりのガス発生量は、それぞれ71時間後および22時間後において4.0μモルおよび17.28μモルであった。以上の結果は、アルミニウム金属とアルミナの複合化によって水素ガスの発生が顕著に促進されることを明確に示している。
2Al (OH) 3 → γ · Al 2 O 3 + 3H 2 O
When 0.5 g of these samples was put into a beaker containing a large amount of pure water at room temperature, gas generation was observed when any of the samples was used. Gas chromatography analysis confirmed that the generated gas was hydrogen gas. FIG. 5 shows the transition of the hydrogen generation amount up to around 20 hours. From FIG. 5, in the samples # 1 to # 9, the amount of hydrogen gas generated increases with time, and the amount of hydrogen gas generated is within a range of 10.40% by volume of the aluminum metal composition. It is confirmed that there are many. In the samples # 0 and # 10, the gas generation amount per 0.5 g was 4.0 μmol and 17.28 μmol after 71 hours and 22 hours, respectively. The above results clearly show that the generation of hydrogen gas is significantly promoted by the composite of aluminum metal and alumina.

図6は、#2の試料と水の反応で水素ガスを約1日間発生させた後の、アルミニウム複合材の反応後のX線回折データを示したものである。図4と比較して、いくつか新しいピークを検出される。このピークの解析結果から、新たにアルミ酸水化物Boehmite,AlO(OH)に生成していることが確認された。図7および図8は、それぞれ水と37時間および20日間反応させた後の#4試料についての走査型電子顕微鏡(SEM)写真である。特に、20日間反応後の複合材(図8)は、反応前(図1及び図3)の形態とは全く異なった羽毛状のものに変化しており、このことから、アルミニウム金属粒子と水との反応は粒子の内部にまで達していることが確認された。
<実施例2>
実施例1と同様にして、アルミニウム金属とアルミナの体積比が30:70の試料を作成した。この試料を常温・常圧において蒸留水と約10日間反応させた。水素ガス発生量の経時変化を図9に示した。最初の4日間は大量の水素の発生が認められたが、それ以降の水素発生量は飽和する傾向をみせた。その後、温度を高めると水素ガスの発生量は増加するが、最初の50時間の水素ガス発生量は約4300マイクロモルであり、仕込んだアルミニウムの約50%が水素ガス発生に使用されていることがわかった。
<実施例3>
出発原料として水酸化アルミニウムの代わりに酸化チタンの粒子を用いた以外は、実施例1と同様にしてアルミニウム金属と酸化チタンの複合材を作成した。作成した試料のアルミニウム金属粉末と酸化チタン粉末の体積比率は30:70とした。この試料0.5gを純水を入れたビーカ中に投入したところ、アルミニウム−アルミナ複合材の場合と同様に、継続的なガス発生が認められた。ガスの発生量はアルミナ−アルミナ複合体の場合よりも若干少ないようにみえるが、発生したガスは水素ガスであることが確認された。
FIG. 6 shows X-ray diffraction data after the reaction of the aluminum composite material after hydrogen gas was generated for about 1 day by the reaction of the sample # 2 and water. Compared to FIG. 4, several new peaks are detected. From the analysis result of this peak, it was confirmed that it was newly generated in the aluminate hydrate Boehmite, AlO (OH). 7 and 8 are scanning electron microscope (SEM) photographs of the # 4 sample after reacting with water for 37 hours and 20 days, respectively. In particular, the composite material after the reaction for 20 days (FIG. 8) has changed to a feather shape completely different from that before the reaction (FIGS. 1 and 3). It was confirmed that the reaction with the liquid reached the inside of the particle.
<Example 2>
In the same manner as in Example 1, a sample having a volume ratio of aluminum metal to alumina of 30:70 was prepared. This sample was reacted with distilled water at room temperature and pressure for about 10 days. The change with time in the amount of hydrogen gas generated is shown in FIG. A large amount of hydrogen was observed during the first 4 days, but the amount of hydrogen generated thereafter tended to saturate. Thereafter, when the temperature is raised, the amount of hydrogen gas generated increases, but the amount of hydrogen gas generated in the first 50 hours is about 4300 micromol, and about 50% of the supplied aluminum is used for hydrogen gas generation. I understood.
<Example 3>
A composite material of aluminum metal and titanium oxide was prepared in the same manner as in Example 1 except that titanium oxide particles were used instead of aluminum hydroxide as a starting material. The volume ratio of the aluminum metal powder and titanium oxide powder of the prepared sample was 30:70. When 0.5 g of this sample was put into a beaker containing pure water, continuous gas generation was observed as in the case of the aluminum-alumina composite material. Although the amount of gas generated seemed to be slightly less than that of the alumina-alumina composite, it was confirmed that the generated gas was hydrogen gas.

未反応の試料#4の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of unreacted sample # 4. EDXによる元素分析の結果(Al−richの粒子を特定)を示した図である。It is the figure which showed the result of the elemental analysis by EDX (The particle | grains of Al-rich were specified). 未反応の試料#4のSEM高倍率写真である。It is a SEM high magnification photograph of unreacted sample # 4. 未反応の試料#4のX線解析結果を示した図である。It is the figure which showed the X-ray-analysis result of unreacted sample # 4. 試料#1から試料#9までの水素放出量の経時的な挙動を示した図である。It is the figure which showed the time-dependent behavior of the hydrogen release amount from sample # 1 to sample # 9. 試料#2の約1日間反応後のX線回折データを示した図である。It is the figure which showed the X-ray-diffraction data after about 1 day reaction of sample # 2. 試料#4を37時間反応させたのちの試料の表面SEM写真である。It is the surface SEM photograph of the sample after making sample # 4 react for 37 hours. 試料#4を約20日間反応させたのちの試料の表面SEM写真である。It is the surface SEM photograph of the sample after making sample # 4 react about 20 days. 試料#3サンプルを約10日間反応させた場合の水素ガス発生量の経時変化を示した図である。It is the figure which showed the time-dependent change of the hydrogen gas generation amount at the time of making sample # 3 sample react for about 10 days.

Claims (8)

アルミニウムおよびアルミニウム合金のうちの少くとも1種以上のアルミニウム金属とその界面に接する金属酸化物とを有する複合材であって、水との接触により水素ガスを発生させる水素発生能を備えていることを特徴とする水素発生用複合材。   It is a composite material having at least one kind of aluminum metal of aluminum and aluminum alloy and a metal oxide in contact with the interface, and has a hydrogen generating ability to generate hydrogen gas by contact with water. A composite material for hydrogen generation. アルミニウム金属の粒子表面に金属酸化物が接触もしくは付着していることを特徴とする請求項1の水素発生用複合材。   2. The composite material for hydrogen generation according to claim 1, wherein a metal oxide contacts or adheres to the surface of the aluminum metal particles. アルミニウムおよびアルミニウム合金のうちの少くとも1種以上のアルミニウム金属とその界面に接する金属酸化物もしくは金属酸化物生成材とを非酸化性雰囲気下に熱処理することで、水との接触により水素ガスを発生させる水素発生能を備えている複合材を形成することを特徴とする水素発生用複合材の製造方法。   By heat-treating at least one kind of aluminum metal of aluminum and aluminum alloy and a metal oxide or metal oxide generating material in contact with the interface in a non-oxidizing atmosphere, hydrogen gas is brought into contact with water. A method for producing a composite material for hydrogen generation, comprising forming a composite material having the ability to generate hydrogen. 焼結することを特徴とする請求項3の水素発生用複合材の製造方法。   4. The method for producing a composite material for hydrogen generation according to claim 3, wherein sintering is performed. 真空排気または不活性ガスによる非酸化雰囲気下に熱処理することを特徴とする請求項3の水素発生用複合材の製造方法。   4. The method for producing a composite material for hydrogen generation according to claim 3, wherein the heat treatment is performed in a non-oxidizing atmosphere by evacuation or inert gas. 請求項1または2の水素発生用複合材を水と接触させることを特徴とする水素ガスの発生方法。   A method for generating hydrogen gas, comprising bringing the hydrogen generating composite material according to claim 1 or 2 into contact with water. 請求項1または2の水素発生用複合材をその構成の少くとも一部としていることを特徴とする水素発生用の部品または装置。   A hydrogen generating component or apparatus comprising the composite material for generating hydrogen of claim 1 or 2 as at least a part of the structure. 請求項7の部品または装置を用いていることを特徴とする水循環型燃料電池。   A water-circulating fuel cell using the component or apparatus according to claim 7.
JP2003405322A 2003-12-04 2003-12-04 Hydrogen generating composite and its production method Expired - Lifetime JP4054877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405322A JP4054877B2 (en) 2003-12-04 2003-12-04 Hydrogen generating composite and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405322A JP4054877B2 (en) 2003-12-04 2003-12-04 Hydrogen generating composite and its production method

Publications (2)

Publication Number Publication Date
JP2005162552A true JP2005162552A (en) 2005-06-23
JP4054877B2 JP4054877B2 (en) 2008-03-05

Family

ID=34728019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405322A Expired - Lifetime JP4054877B2 (en) 2003-12-04 2003-12-04 Hydrogen generating composite and its production method

Country Status (1)

Country Link
JP (1) JP4054877B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073113A1 (en) * 2005-01-07 2006-07-13 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
WO2006103959A1 (en) * 2005-03-25 2006-10-05 Hitachi Maxell, Ltd. Hydrogen generating material, method for producing same, and method for producing hydrogen
WO2007010897A1 (en) * 2005-07-20 2007-01-25 Hitachi Maxell, Ltd. Hydrogen-generating material and process for producing hydrogen-generating material
JP2007076967A (en) * 2005-09-15 2007-03-29 Nitto Denko Corp Hydrogen-generating agent and method for generating hydrogen
JP2007080721A (en) * 2005-09-15 2007-03-29 Nitto Denko Corp Charging device
JP2007238383A (en) * 2006-03-09 2007-09-20 Nitto Denko Corp Hydrogen generator and hydrogen generating method
JP2007254256A (en) * 2005-04-28 2007-10-04 Hitachi Maxell Ltd Hydrogen generating material, method for producing the same, method and apparatus for producing hydrogen, and fuel cell
WO2008004428A1 (en) 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
EP1908729A1 (en) * 2005-08-11 2008-04-09 Hitachi Maxell, Ltd. Hydrogen-generating material and hydrogen generation apparatus
JP2010047442A (en) * 2008-08-21 2010-03-04 Rubycon Corp Hydrogen generation unit
JP2018066034A (en) * 2016-10-18 2018-04-26 株式会社コベルコ科研 Metal mixture for hydrogen generation and hydrogen generation method
CN111774574A (en) * 2020-07-20 2020-10-16 桂林电子科技大学 Preparation and application of Al-Bi-containing compound porous block hydrogen production material
KR20210081870A (en) * 2019-12-24 2021-07-02 주식회사 패트리온 Metal Fuel Manufacturing System for Hydrogen Gas Production
CN114291790A (en) * 2021-12-31 2022-04-08 湖北三江航天红阳机电有限公司 Aluminum water hydrogen production control method and aluminum water hydrogen production control device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883805B2 (en) 2005-01-07 2011-02-08 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
WO2006073113A1 (en) * 2005-01-07 2006-07-13 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
WO2006103959A1 (en) * 2005-03-25 2006-10-05 Hitachi Maxell, Ltd. Hydrogen generating material, method for producing same, and method for producing hydrogen
US7695709B2 (en) 2005-03-25 2010-04-13 Hitachi Maxell, Ltd. Hydrogen generating material and method for producing the same, and method for producing hydrogen
JP2007254256A (en) * 2005-04-28 2007-10-04 Hitachi Maxell Ltd Hydrogen generating material, method for producing the same, method and apparatus for producing hydrogen, and fuel cell
JP4537337B2 (en) * 2005-04-28 2010-09-01 日立マクセル株式会社 Hydrogen generating material, method for producing hydrogen generating material, method for producing hydrogen, hydrogen producing apparatus and fuel cell
KR100934740B1 (en) 2005-07-20 2009-12-30 히다치 막셀 가부시키가이샤 Hydrogen Generating Material and Manufacturing Method of Hydrogen Generating Material
WO2007010897A1 (en) * 2005-07-20 2007-01-25 Hitachi Maxell, Ltd. Hydrogen-generating material and process for producing hydrogen-generating material
JPWO2007010897A1 (en) * 2005-07-20 2009-01-29 日立マクセル株式会社 Hydrogen generating material and method for producing hydrogen generating material
JP4761248B2 (en) * 2005-07-20 2011-08-31 日立マクセルエナジー株式会社 Hydrogen generating material and method for producing hydrogen generating material
EP1908729A1 (en) * 2005-08-11 2008-04-09 Hitachi Maxell, Ltd. Hydrogen-generating material and hydrogen generation apparatus
EP1908729A4 (en) * 2005-08-11 2008-09-10 Hitachi Maxell Hydrogen-generating material and hydrogen generation apparatus
JPWO2007018244A1 (en) * 2005-08-11 2009-02-19 日立マクセル株式会社 Hydrogen generating material and hydrogen generating apparatus
JP4947718B2 (en) * 2005-08-11 2012-06-06 日立マクセルエナジー株式会社 Hydrogen generating material and hydrogen generating apparatus
JP2007076967A (en) * 2005-09-15 2007-03-29 Nitto Denko Corp Hydrogen-generating agent and method for generating hydrogen
JP2007080721A (en) * 2005-09-15 2007-03-29 Nitto Denko Corp Charging device
JP2007238383A (en) * 2006-03-09 2007-09-20 Nitto Denko Corp Hydrogen generator and hydrogen generating method
WO2008004428A1 (en) 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP2010047442A (en) * 2008-08-21 2010-03-04 Rubycon Corp Hydrogen generation unit
JP2018066034A (en) * 2016-10-18 2018-04-26 株式会社コベルコ科研 Metal mixture for hydrogen generation and hydrogen generation method
KR20210081870A (en) * 2019-12-24 2021-07-02 주식회사 패트리온 Metal Fuel Manufacturing System for Hydrogen Gas Production
KR102312293B1 (en) 2019-12-24 2021-10-14 주식회사 패트리온 Metal Fuel Manufacturing System for Hydrogen Gas Production
CN111774574A (en) * 2020-07-20 2020-10-16 桂林电子科技大学 Preparation and application of Al-Bi-containing compound porous block hydrogen production material
CN111774574B (en) * 2020-07-20 2022-08-30 桂林电子科技大学 Preparation and application of Al-Bi-containing compound porous block hydrogen production material
CN114291790A (en) * 2021-12-31 2022-04-08 湖北三江航天红阳机电有限公司 Aluminum water hydrogen production control method and aluminum water hydrogen production control device

Also Published As

Publication number Publication date
JP4054877B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
Yao et al. Facile synthesis of graphene-supported Ni-CeO x nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane
JP4054877B2 (en) Hydrogen generating composite and its production method
Yao et al. High Pt-like activity of the Ni–Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane
Wang et al. Study on catalytic effect and mechanism of MOF (MOF= ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium
Jeong et al. Effect of preparation method on Co–B catalytic activity for hydrogen generation from alkali NaBH4 solution
Luo et al. Improved hydrogen storage of LiBH 4 and NH 3 BH 3 by catalysts
Yue et al. Constructing active sites from atomic‐scale geometrical engineering in spinel oxide solid solutions for efficient and robust oxygen evolution reaction electrocatalysts
Singh et al. Effect of different sized CeO2 nano particles on decomposition and hydrogen absorption kinetics of magnesium hydride
Bai et al. Applications of MXene‐Based Single‐Atom Catalysts
Duan et al. Novel core–shell structured MgH 2/AlH 3@ CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane
Gujral et al. Mesoporous titanium carbonitride derived from mesoporous C3N5 for highly efficient hydrogen evolution reaction
Sazelee et al. Enhanced dehydrogenation performance of NaAlH4 by the addition of spherical SrTiO3
CN113546656A (en) MXene loaded Ni @ C nanoparticle hydrogen storage catalyst and preparation method thereof
JP7313602B2 (en) Method for producing carbon material, method for decomposing carbon dioxide
Kim et al. Ultrahigh‐porosity MgO microparticles for heat‐energy storage
Zhang et al. Approaches to construct high-performance Mg–air batteries: from mechanism to materials design
Rafi et al. An overview of hydrogen generation by hydrolysis of Al and its alloys with the addition of carbon-based materials
JP4681560B2 (en) Reaction medium used for hydrogen production by water decomposition and method for producing the same
Lukashev et al. Effect of mechanical activation on the reaction of magnesium hydride with water
Zhang et al. Three-dimensional architecture of Ag/CeO 2 nanorod composites prepared by dealloying and their electrocatalytic performance
Laishram et al. 2D transition metal carbides (MXenes) for applications in electrocatalysis
Tikhov et al. Design of ceramometal CuFeAlOx/CuFeAl composites and their catalytic potential for water gas shift reaction
Wilcox et al. Solution combustion synthesized lithium cobalt oxide as a catalytic precursor for the hydrolysis of sodium borohydride
Bhosale et al. Solar thermochemical water-splitting for H2 generation using sol-gel derived ferrite nanomaterials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Ref document number: 4054877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term