JP2005161200A - Filter member for semiconductor gas, and filter apparatus using it - Google Patents

Filter member for semiconductor gas, and filter apparatus using it Download PDF

Info

Publication number
JP2005161200A
JP2005161200A JP2003403379A JP2003403379A JP2005161200A JP 2005161200 A JP2005161200 A JP 2005161200A JP 2003403379 A JP2003403379 A JP 2003403379A JP 2003403379 A JP2003403379 A JP 2003403379A JP 2005161200 A JP2005161200 A JP 2005161200A
Authority
JP
Japan
Prior art keywords
filter
filter member
filtration
laminated
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003403379A
Other languages
Japanese (ja)
Other versions
JP4414741B2 (en
Inventor
Hideomi Ishibe
英臣 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2003403379A priority Critical patent/JP4414741B2/en
Publication of JP2005161200A publication Critical patent/JP2005161200A/en
Application granted granted Critical
Publication of JP4414741B2 publication Critical patent/JP4414741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter member with superior filtering performance, heat resistance and corrosion resistance, and suitably used for filtration of semiconductor manufacturing gases, in particular, process gases with activity, and a filter apparatus using it. <P>SOLUTION: This filter member for semiconductor gas is formed in a disk-like body having a laminated filter medium containing a membrane-like filtration layer consisting of fine porous polytetrafluoroethylene (PTFE), and protective layers laminated on both sides of the filtration layer and protecting the filtration layer and consisting of PTFE for primary filtration, and having a mesh-like and formable form-keeping body arranged on both sides of the laminated filter medium. The laminated filter medium has a corrugated part having pleats formed by pleating, and its outer periphery part has a flange part compacted by force causing no return of the thickness by plastic deformation of the form-keeping body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、濾過性能、耐熱性、耐腐食性に優れ、半導体製造用ガス、特に活性を有するプロセスガスの濾過に好適に使用しうる半導体ガス用のフィルター部材、及びそれを用いたフィルター装置に関する。   The present invention relates to a filter member for semiconductor gas, which is excellent in filtration performance, heat resistance and corrosion resistance, and can be suitably used for filtration of semiconductor manufacturing gas, particularly active process gas, and a filter device using the same. .

半導体製造分野で用いられるフィルター装置は、半導体の微細化、集積化に伴なって、不純微細粒子、水分などの微小パーティクルを例えばPPTレベルにまで除去する高い濾過性能、使用ガスに耐え得る耐腐食性、ベーキング処理での耐熱性が求められ、又装置効率の向上のために小型化により設置スペースを減じること、かつ取り扱い性の良好なものが求められている。   Filter devices used in the field of semiconductor manufacturing have high filtration performance that removes fine particles such as impure fine particles and moisture to the PPT level as semiconductors become finer and more integrated. And heat resistance in the baking process are required, and in order to improve the efficiency of the apparatus, it is required to reduce the installation space by reducing the size and to have good handleability.

したがってこれに用いるフィルター部材についても一般的に次の特性が必要となる。
(1)材質的に、処理ガスに対する十分な耐食性と、ベーキング処理に耐える耐熱性を備えるものであること。
(2)圧力損失が小さく、また小径でありながらも実質濾過面積が大きく、多量のガス流体を効率よく濾過処理できること。
(3)高い耐圧性を備えて、正、逆いずれの方向にも同等の強度を有するものであること。 (4)取扱によって容易に変形や破損などせず、ハウジングへの装着も簡単かつ確実に行い得る構造であること。
Therefore, the filter member used for this generally requires the following characteristics.
(1) The material shall have sufficient corrosion resistance against the processing gas and heat resistance that can withstand baking treatment.
(2) The pressure loss is small and the filtration area is large and the large filtration area can be efficiently filtered.
(3) High pressure resistance and equivalent strength in both forward and reverse directions. (4) The structure shall not be easily deformed or damaged by handling, and can be easily and reliably mounted on the housing.

前記(1) は前記したように対象ガスに対する耐食性とともに、その使用途上で例えば水分や、ハイドロカーボン類の不純物除去の為のベーキング加熱処理に耐える耐熱性を備える特性はその前提条件であり、また(2) については、フィルター装置自体を限られた容積内で用いる為には、濾過効率に優れ安定的に濾過処理でき、しかもフィルター部材はできるだけ小径で、かつ単位面積中での実質的な濾過面積を増大できるものが望まれ、小容積でありながらも大容量の処理流体を濾過できるフィルター部材が期待されている。   The above (1) is a prerequisite for the corrosion resistance to the target gas as described above, as well as the characteristics of having heat resistance that can withstand baking heat treatment for removing impurities such as moisture and hydrocarbons during use. With regard to (2), in order to use the filter device itself within a limited volume, it is possible to perform filtration with excellent filtration efficiency and stability, and the filter member has a diameter as small as possible and can be substantially filtered within a unit area. A filter member capable of increasing the area is desired, and a filter member capable of filtering a large volume of processing fluid while having a small volume is expected.

さらに、(3) 及び(4) については、前記フィルター装置に実際に組込み使用する際に求められるものであって、前者(3) では、構造体として所定の濾過圧に耐え得る耐圧強度を備えること、またこれをハウジングに装着する場合などにおいても特に方向性などを気にすることがなく、いずれの方向にも適用可能な汎用性に富んだものとする為のものである。また後者(4) についても、フィルター部材が簡単に型崩れしたり、装着に必要以上の注意や慎重さを必要とせず、作業者への負担を軽減して製品歩留まりを向上するものである。   Further, (3) and (4) are required when actually incorporated and used in the filter device, and the former (3) has a pressure resistance that can withstand a predetermined filtration pressure as a structure. In addition, even when this is mounted on the housing, the directionality is not particularly concerned, and the versatility applicable to any direction is rich. In the latter case (4), the filter member does not easily lose its shape or requires more care and care than is necessary for mounting, reducing the burden on the operator and improving the product yield.

他方、半導体製造用ガス(ときに半導体ガスという)としては、N2,Ar,He,H2などの不活性ガスからなるキャリアーガスと、活性、即ち腐食性を有する例えばCl2 、Hcl、HF等のプロセスガスとが用いられ、このキャリヤーガス用のフィルター装置としては、例えば特開平6−63329号公報のものが提案されている。この提案のものは、図7に示すように、配管などに直接接続できるようその両端にネジ部Sを設けてインライン型として形成され、内部流路R内にディスク状の金属繊維、粉末材料等をディスク状に焼結した金属焼結体金属のフィルター部材Fを配置し、これをインロー嵌合する1組のハウジング片H,H間に配している。なお、フィルター部材Fとは隔てる合わせ面位置を溶接し外周溶接部Wの形成後の熱収縮によって予め押圧されたフィルター部材Fをより気密にハウジング片H,H間で挟持し取付けており、又フィルター部材Fと溶接部Wとは軸方向に隔てるため、フィルター部材Fへの溶接時の熱影響を低減できる。 On the other hand, the semiconductor as the production gas (referred to as a semiconductor gas when), N2, Ar, the He, and a carrier gas comprising an inert gas such as H2, activity, i.e., for example, Cl 2 with a corrosive, Hcl, such as HF For example, Japanese Patent Application Laid-Open No. 6-63329 has been proposed as a filter device for the carrier gas. As shown in FIG. 7, this proposal is formed as an in-line type by providing threaded portions S at both ends so that it can be directly connected to a pipe or the like. The filter member F of the metal sintered compact which sintered the disk in the shape of a disk is arrange | positioned, and this is distribute | arranged between 1 set of housing pieces H and H which carry out inlay fitting. The filter member F is welded between the housing pieces H and H in a more airtight manner, and the filter member F pressed in advance by heat shrinkage after the formation of the outer peripheral welded portion W is welded. Since the filter member F and the welded portion W are separated from each other in the axial direction, the thermal influence at the time of welding to the filter member F can be reduced.

しかしながら、前記金属製のフィルター部材Fを用いる場合、仮に高耐食性のステンレス鋼で構成した焼結体を用いるとしても、半導体ガスが前記強腐食性のプロセスガスであるときには、フィルター部材Fとして使用するための微細化、粉末化あるいは焼結等、種々な加工を施すに際し、また比表面積も大きいことと相まって、材料中には種々不純物が混入して金属内に偏析が生じるなどによって耐食性は十分ではない。又そのために頻繁に取り換えることはコストアップとなるなど、金属製のフィルター部材をプロセスガスでの使用する場合、制限が伴う。また耐食性の観点では、ニッケルをフィルター部材Fの材料として用いることも考えうるが、微粉末、乃至数十μmの繊維、短繊維とするには、やはり不純物が混入しやすく、高価でもあることから希望の耐食性を安価にうることは困難である。   However, when the metal filter member F is used, even if a sintered body made of stainless steel having high corrosion resistance is used, it is used as the filter member F when the semiconductor gas is the highly corrosive process gas. Corrosion resistance is not sufficient because various impurities are mixed into the material and segregation occurs in the metal when various processing such as miniaturization, pulverization or sintering is performed, and the specific surface area is large. Absent. For this reason, frequent replacement may increase costs, and there are limitations when using metal filter members with process gas. From the viewpoint of corrosion resistance, it is possible to use nickel as a material for the filter member F. However, since fine powder, fibers of several tens of micrometers, and short fibers are easily mixed with impurities and expensive. It is difficult to obtain the desired corrosion resistance at low cost.

このため、活性のプロセスガス用のフィルター装置のフィルター部材Fとして、ポリテトラフルオロエチレン(PTFE)が用いられており、かつPTFEのフィルター部材Fを用いる場合のフィルター装置としては、従来、図9に示すような軸方向に長い筒状に形成され、従ってこのフィルター部材Fも縦長の筒状体として構成されている。   For this reason, polytetrafluoroethylene (PTFE) is used as the filter member F of the filter device for the active process gas, and as a filter device when using the PTFE filter member F, FIG. The filter member F is also formed as a vertically long cylindrical body.

従来のこのようなフィルター装置のフィルター部材Fは、その濾過層自体は円筒状しかも空孔調整のために1軸、2軸の延伸加工状態にある薄肉体であり、それ自身では濾過圧に耐ええず、従って、射出成形しうる弗素樹脂、例えばパーフロロアルコキシポリマーからなる通気性筒状の支持体(リナーナ)に、PTFEからなる濾過層を添設するものが提案されている(先行文献2)。   In the filter member F of such a conventional filter device, the filtration layer itself is a cylindrical body and is a thin-walled body in a uniaxial and biaxially stretched state for adjusting pores, and itself withstands the filtration pressure. Therefore, therefore, there has been proposed one in which a filtration layer made of PTFE is attached to a breathable cylindrical support (linner) made of a fluororesin that can be injection-molded, for example, perfluoroalkoxy polymer (Prior Document 2). ).

しかし延伸加工状態にある薄肉体を用いるものでは、筒状の長尺体かつ大型であることと相俟って、高温域では熱収縮によりリナーナに収縮固着しているがリテーナーが樹脂製である為軟化しやすく連続使用可能温度が120゜C程度に制限される。又リナーナで支持されているため、流れ方向がリテーナ側からフィルター部材F側となるとき、耐圧強度が1/5程度に低下する。しかも大型であるため、装置スペース効率が低下する。   However, in the case of using a thin-walled body that is in a stretched state, coupled with the fact that it is a cylindrical long body and large-sized, it shrinks and adheres to the liner by heat shrinkage in a high temperature range, but the retainer is made of resin. Therefore, it is easy to soften and the continuous usable temperature is limited to about 120 ° C. Further, since it is supported by the retainer, when the flow direction changes from the retainer side to the filter member F side, the pressure resistance strength is reduced to about 1/5. And since it is large sized, device space efficiency falls.

又フィルター部材Fをプリーツ加工し濾過面積を増大するもの(先行文献3)も提案されているが、波付け成形は、PTFEのような有機材料体では塑性変形を行い難く、容易にスプリングバックして希望の型付けがなしにくい。   A filter member F that pleats the filter member F to increase the filtration area has also been proposed (Prior Document 3). However, corrugated forming is difficult to plastically deform with an organic material such as PTFE, and can easily be spring-backed. It is difficult to achieve the desired typing.

特開平6−63329号公報JP-A-6-63329 特開2001−170424号公報JP 2001-170424 A 特表平9−504737号公報JP 9-504737 A

本発明は、このような状況に鑑み、処理ガスに対する十分な耐食性と、ベーキング処理に耐える耐熱性を備え、かつ圧力損失が小で実質濾過面積が大きく、多量のガス流体を効率よく濾過処理できることで前記課題を解決し、前記半導体ガス、特にプロセスガスの濾過にも好適に採用しうる半導体ガス用フィルター部材、及びそれを用いたフィルター装置の提供を課題としている。   In view of such a situation, the present invention has sufficient corrosion resistance to a processing gas and heat resistance that can withstand baking treatment, and has a small pressure loss, a large substantial filtration area, and can efficiently filter a large amount of gas fluid. Therefore, it is an object of the present invention to provide a semiconductor gas filter member that can be suitably used for filtering the semiconductor gas, particularly, a process gas, and a filter device using the same.

前記目的を達成するために、請求項1に係る発明は、微細多孔性のポリテトラフルオロエチレン(PTFE)からなる膜状の濾過層と、該濾過層の両面に積層されかつ該濾過層を保護しかつ一次濾過するためのPTFEからなる保護層とを含む積層濾材、及びその積層濾材の両面に配置したメッシュ状かつ型付け可能な保形体を有するディスク状体をなし、かつ前記積層濾材は、前記保形体の塑性変形によりヒダ付けにより生じるヒダが並ぶ波付け部と、その外周縁部に、厚さの戻りを生じない強さで縮厚されたフランジ部とを有することを特徴とする。   In order to achieve the above object, the invention according to claim 1 is a membrane-like filtration layer made of microporous polytetrafluoroethylene (PTFE), and is laminated on both sides of the filtration layer and protects the filtration layer. And a laminated filter medium comprising a protective layer made of PTFE for primary filtration, and a disk-shaped body having a mesh-like and moldable shape-retaining material disposed on both sides of the laminated filter medium, and the laminated filter medium is It has a corrugated portion in which creases caused by crease due to plastic deformation of the shape-retaining body are arranged, and a flange portion reduced in thickness at a strength that does not cause a return of thickness at the outer peripheral edge portion.

請求項2に係る発明は、前記保形体が、線径30〜120μm、耐力比15〜45%(耐力/引張強さ×100)のニッケル軟質細線で製織されたメッシュからなること、請求項3に係る発明は、前記フランジ部が、外縁端面、両面を含めてテープ状のシール材料で密着被包されたこと、請求項4に係る発明は、前記波付け部が、前記外周縁部の縮厚によって、隣り合うヒダ間に生じる非平行部を具え濾過効率を向上することを特徴とする。   According to a second aspect of the present invention, the shape-retaining body is made of a mesh woven with nickel soft fine wires having a wire diameter of 30 to 120 μm and a proof stress ratio of 15 to 45% (proof strength / tensile strength × 100). The invention according to claim 4 is characterized in that the flange portion is tightly encapsulated with a tape-like sealing material including the outer edge and both surfaces, and the corrugated portion is formed by shrinking the outer peripheral edge portion. According to the thickness, it has a non-parallel portion generated between adjacent folds, and is characterized by improving filtration efficiency.

又請求項5に係る発明は、請求項1〜4のいずれかに記載のフィルター部材が、内部流路を形成しかつインロー嵌合する一組のハウジング片の対向面間でフランジ部が気密に挟持されることにより前記内部流路を遮断することを特徴とし、かつ請求項6に係る発明は、前記フランジ部が、対向面間で、インロー嵌合部の外周溶接後の熱収縮により気密に挟持されたことを特徴とする。   According to a fifth aspect of the present invention, in the filter member according to any one of the first to fourth aspects, the flange portion is hermetically sealed between the opposing surfaces of a pair of housing pieces that form an internal flow path and are fitted with a spigot. The internal flow path is blocked by being sandwiched, and the invention according to claim 6 is characterized in that the flange portion is hermetically sealed between the opposing surfaces by heat shrinkage after the outer periphery welding of the spigot fitting portion. It is characterized by being pinched.

このように、請求項1に係る発明は、PTFEで形成されているため、半導体ガスがプロセスガスであるときにも、濾過層は耐食性を有し、かつディスク状であることにより、円筒状に比して取扱性、組立性を高め小型化でき、しかもヒダ付け形状であることにより実質的に増大した濾過面積を保持するとともに、圧力損失を減じつつガス透過量を増大できる。さらに前記ヒダによって耐圧性を増大でき、正、逆いずれの方向にも同等の強度を有するものとなり、装着時の方向性を無視しうるなど優れた効果を有する。又前記のように、ディスク状としかつ外周に強固に一体化するフランジを形成して均等に張設しているので、使用時における濾過層の変形を従来品に比して向上できる。   Thus, since the invention according to claim 1 is formed of PTFE, even when the semiconductor gas is a process gas, the filtration layer has a corrosion resistance and has a disk shape, thereby forming a cylindrical shape. As compared with handling and assembly, the size can be reduced and the crease shape can maintain a substantially increased filtration area and increase the gas permeation amount while reducing pressure loss. Further, the pressure resistance can be increased by the folds, and the strength is equivalent in both the forward and reverse directions, and the excellent effect is obtained such that the directionality during mounting can be ignored. Further, as described above, since the flange is formed in a disk shape and firmly integrated on the outer periphery and is uniformly stretched, the deformation of the filtration layer at the time of use can be improved as compared with the conventional product.

また請求項2に係る発明において、前記保形体が、線径30〜120μm、耐力比15〜45%のニッケル軟質細線で製織されたメッシュからなることにより、ニッケル細線は、微粒体に比して不純物の混入を防いで耐食性を維持でき、フィルター部材の耐食性を保つとともに、軟質であることにより塑性変形が容易かつ塑性変形による保形性が向上し、フィルター部材の波付け部の形状を保持して濾過性能を向上する。   In the invention according to claim 2, the shape-retaining body is made of a mesh woven with nickel soft fine wires having a wire diameter of 30 to 120 μm and a proof stress ratio of 15 to 45%. Prevents impurities from being mixed to maintain corrosion resistance, maintains the corrosion resistance of the filter member, and is soft so that plastic deformation is easy and shape retention by plastic deformation is improved, maintaining the shape of the corrugated part of the filter member. Improve filtration performance.

又請求項3に係る発明は、前記フランジ部が、外縁端面、両面を含めてテープ状のシール材料で密着被包されていることによりハウジングとの気密性を高め、請求項4に係る発明は、前記波付け部が、前記外周縁部の縮厚によって、隣り合うヒダ間に生じる非平行部を具えることで、無理な保形のための負荷を減じてフィルター部材の耐久性の維持に役立つ。   According to a third aspect of the invention, the flange portion is tightly encapsulated with a tape-like sealing material including the outer edge and both surfaces, thereby improving the airtightness with the housing. The corrugated portion includes a non-parallel portion generated between adjacent folds due to the reduced thickness of the outer peripheral edge portion, thereby reducing the load for excessive shape retention and maintaining the durability of the filter member. Useful.

又請求項5に係る発明により、フィルター部材の取付けを容易とし、かつ請求項6に係る発明は、前記フランジ部が、対向面間で、インロー嵌合部の外周溶接後の熱収縮により気密に挟持されたことにより、気密、かつ組み込みを容易、確実とする。   Further, the invention according to claim 5 facilitates the mounting of the filter member, and the invention according to claim 6 is characterized in that the flange portion is hermetically sealed between the opposing surfaces by heat shrinkage after the outer periphery welding of the spigot fitting portion. By being pinched, it is airtight and easy and reliable to incorporate.

以下、本発明の好ましい実施形態の一例を図面に基づき説明する。
本発明のフィルター部材2は、薄膜状の濾過層3と、該濾過層3の両面に積層される保護層4とを含む積層濾材5、及びその積層濾材5の両面に配置したメッシュ状かつ型付け可能な保形体7を有する、例えば円板からなるディスク状体をなし、かつヒダ9が並ぶ波付け部10と、その外周縁部は、前記保形体7の塑性変形によって厚さの戻りを生じない強さで縮厚されたフランジ部12とを有する。
Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings.
The filter member 2 of the present invention includes a laminated filter medium 5 including a thin-film filtration layer 3 and a protective layer 4 laminated on both sides of the filtration layer 3, and a mesh-like and typed arrangement disposed on both sides of the laminated filter medium 5. The corrugated portion 10 having a shape-retaining body 7, for example, a disk-shaped body made of a disk and having pleats 9 arranged therein, and the outer peripheral edge portion thereof are returned to their thickness due to plastic deformation of the shape-retaining body 7. The flange portion 12 is reduced in thickness with no strength.

前記濾過層3は、活性の半導体用ガスであるプロセスガスに耐えうるポリテトラフルオロエチレン(PTFE)からなり、かつ例えば特開平10−323923号公報などが提案した、粉末成形法などにより成形されたシート材料を1軸あるいは2軸方向に延伸したものを用いている。このものは、結合したPTFE粉末が繊維状に引き伸ばされその内部に前記各繊維間で区画された微小空孔が形成されるとともに、その空孔率も例えば50%以上と非常に高く、またその厚さも非常に薄い膜体であって、その1例を3000倍して図5に示している。濾過層3として、この膜体の1枚、又は複数枚を必要に応じて重ねて使用し、又各空孔の分布、空孔径などが異なる異種特性の1以上の枚数を重ねて合せた複合の濾過層3Aとして形成するのもよい。従って、例えば1枚当たりでは精度的にやや低いものであっても、これを多数枚用いることで深層濾過とし、全体として圧損を抑制することが好ましく、またこの場合、各濾過層は空孔特性が異なるものであってもよい。   The filtration layer 3 is made of polytetrafluoroethylene (PTFE) that can withstand a process gas, which is an active semiconductor gas, and is formed by, for example, a powder forming method proposed by JP-A-10-323923. A sheet material that is stretched in a uniaxial or biaxial direction is used. This is because the combined PTFE powder is stretched into a fiber to form micropores partitioned between the fibers, and the porosity is very high, for example, 50% or more. FIG. 5 shows an example of a very thin film body that is 3000 times larger. As the filtration layer 3, one or more of these membranes are used as necessary, and a composite in which one or more sheets having different characteristics with different hole distributions, hole diameters, and the like are stacked. It may be formed as a filtration layer 3A. Therefore, for example, even if the accuracy is slightly low per sheet, it is preferable to reduce the pressure loss as a whole by using a large number of sheets, and in this case, each filtration layer has pore characteristics. May be different.

又この濾過層3は、複数枚の膜体を用いるときにも、その厚さがその厚さが例えば数十〜数百μm程度の薄い膜状である為、単体では濾過圧に耐えることができず、したがって、その両面に前記保護層4,4を配して前記積層濾材5を構成する。この保護層4は、好ましくは前記濾過層3と同様にPTFE製とし、かつ前記濾過層3より粗大な空孔と比較的厚いかつそれ自身で形状維持可能な十分な強度を有する、例えばPTFEの短繊維を抄紙した多孔性のPTFE抄紙シートを用いうる。   Further, even when a plurality of membranes are used, the filtration layer 3 is a thin membrane having a thickness of, for example, several tens to several hundreds of μm, so that the filtration layer 3 alone can withstand filtration pressure. Therefore, the laminated filter medium 5 is formed by arranging the protective layers 4 and 4 on both sides thereof. This protective layer 4 is preferably made of PTFE, like the filtration layer 3, and has a pore that is coarser than the filtration layer 3 and a relatively thick and sufficient strength that can maintain its own shape, such as PTFE. Porous PTFE papermaking sheets made of short fibers can be used.

この積層濾材5の好ましい各層の構成として、例えば前記濾過層3の厚さを10〜500μm程度、好ましくは50〜200μm程度、所定の濾過精度を保証する空孔径0.05〜3μm程度、好ましくは0.1〜1μmの微細空孔を備える膜体の1枚又は複数枚の重ね体とし、又保護層4としては、例えば厚さを0.1〜1mm(好ましくは0.15〜0.7mm、さらに好ましくは0.2〜0.5mm)と濾過層3に比しては厚く、また空孔径についても前記濾過層3の空孔径より大きく、例えば5〜100μm程度(好ましくは10〜60μm程度)とする。これにより、積層濾材5は全体的な強度アップしかつ保護層4は、前記濾過層3に先立つプレ濾過(予備濾過)することにより、被処理流体中の不純物を予め減少し濾過寿命を延長できる。なお、その仕様は被処理ガスの純度、供給状態あるいはフィルター装置の寸法や構造などにより適宜調整される。   As a preferable configuration of each layer of the laminated filter medium 5, for example, the thickness of the filtration layer 3 is about 10 to 500 μm, preferably about 50 to 200 μm, and a pore diameter of about 0.05 to 3 μm to guarantee a predetermined filtration accuracy, preferably One or a plurality of laminated bodies having a fine pore of 0.1 to 1 μm, and the protective layer 4 has a thickness of, for example, 0.1 to 1 mm (preferably 0.15 to 0.7 mm). And more preferably 0.2 to 0.5 mm), which is thicker than the filtration layer 3, and the pore diameter is larger than the pore diameter of the filtration layer 3, for example, about 5 to 100 μm (preferably about 10 to 60 μm). ). As a result, the overall strength of the laminated filter medium 5 is increased, and the protective layer 4 is pre-filtered (preliminary filtration) prior to the filter layer 3, thereby reducing impurities in the fluid to be treated in advance and extending the filter life. . The specifications are appropriately adjusted depending on the purity of the gas to be processed, the supply state, the size and structure of the filter device, and the like.

フィルター部材2は、前記のように、積層濾材5の両面にはこの積層濾材5を型付けし保形する保形体7が配置される。前記保形体7は、本形態では、高い耐食性と所定強度を持ち塑性加工の状態を保形しうる、例えば腐耐食性ステンレス鋼やニッケル、又はニッケル合金などの軟質細線、好ましくは線径50〜300μm、(より好ましくは100〜200μm)のメッシュからなり、耐力比15〜45%(耐力/引張強さ×100)とした平織り体を用いている。なお、平織り体の他、積層濾材5の表面保護と保形性を発揮しうるものであれば、種々な編成、織成体、例えば#10〜100程度の目付けのものを用いうる。なお、耐力とは、0.2%の伸びが生じるまでの応力をいい、JISZ2241の降伏応力として測定する。   As described above, in the filter member 2, the shape retaining body 7 that molds and retains the multilayer filter medium 5 is disposed on both surfaces of the multilayer filter medium 5. In this embodiment, the shape-retaining body 7 has a high corrosion resistance and a predetermined strength, and can keep the shape of plastic working, for example, a soft thin wire such as a corrosion-resistant stainless steel, nickel, or a nickel alloy, preferably a wire diameter of 50 to 300 μm. , (More preferably 100 to 200 μm), and a plain weave body having a yield strength ratio of 15 to 45% (proof strength / tensile strength × 100) is used. In addition to the plain weave body, various knitted and woven bodies, for example, those having a basis weight of about # 10 to 100, can be used as long as they can exhibit surface protection and shape retention of the laminated filter medium 5. Yield strength refers to stress until 0.2% elongation occurs and is measured as the yield stress of JISZ2241.

なお、この保形体7に用いるメッシュとして、前記ニッケルは耐食性に優れ、また軟質状態でも、引張強さ200〜600MPa,好ましくは350〜600MPa、例えば450MPa、耐力80〜250MPa、好ましくは100〜200MPa、例えば151MPa、伸び25〜55%,好ましくは35〜50%、例えば42%の特性を有し、また耐力比(耐力/引張強さ×100)は25〜55%、例えば33.5%の特性が容易に得られ、曲げ変形性、変形後の形状の戻り現象(スプリングバック)の抑止のために好適する。   As the mesh used for the shape retaining body 7, the nickel is excellent in corrosion resistance, and even in a soft state, the tensile strength is 200 to 600 MPa, preferably 350 to 600 MPa, for example 450 MPa, the proof strength 80 to 250 MPa, preferably 100 to 200 MPa, For example, it has a characteristic of 151 MPa, an elongation of 25 to 55%, preferably 35 to 50%, for example 42%, and a proof stress ratio (proof stress / tensile strength × 100) of 25 to 55%, for example 33.5%. Is easily obtained, and is suitable for suppressing bending deformation and the phenomenon of shape return after deformation (spring back).

この結果、図3に示すごとく、前記濾過層3とその両面の保護層4,4とがなす積層濾材5の両面に、メッシュの保形体7,7を配することにより積層体14を形成し、かつ波付け、外周縁部の縮厚、打ち抜きにより、ヒダ9が並ぶ波付け部10と、その外周縁部の縮厚されたフランジ部12とを有するディスク状のフィルター部材2が形成される。   As a result, as shown in FIG. 3, a laminated body 14 is formed by disposing mesh shape-retaining bodies 7 and 7 on both sides of the laminated filter medium 5 formed by the filtration layer 3 and the protective layers 4 and 4 on both sides thereof. And the disk-shaped filter member 2 which has the corrugated part 10 in which the pleats 9 are arranged, and the flange part 12 whose outer peripheral edge part is reduced is formed by corrugation, thickness reduction and punching of the outer peripheral edge part. .

前記ヒダ9は、図4に外周縁部を含む小範囲を拡大断面により示すように、前記積層体14を、型付けにより山谷に連続して折畳むことにより並んで形成され、かつこのヒダ9により単位面積当たりにおける実質濾過面積が増大でき、したがって、大容量の被処理流体に対する濾過処理効率を高め、前記ヒダの各表面は、被処理流体の流下方向に対してこれを支持する方向に配向されることから、耐圧性が向上する。   The folds 9 are formed side by side by folding the laminated body 14 continuously in a mountain valley by molding, as shown in an enlarged cross section of a small range including the outer peripheral edge in FIG. The substantial filtration area per unit area can be increased, thus increasing the filtration efficiency for a large volume of fluid to be treated, and each surface of the pleat is oriented in the direction to support the fluid flow direction. Therefore, the pressure resistance is improved.

なお、前記ヒダ9は、例えば用いる積層濾材5の厚さ、フィルター部材2の大きさなどによって設定され、通常は積層体14の厚さtの2〜15倍、好ましくは4〜8倍のピッチ(P)で、かつヒダ深さdを例えば3〜15mm程度の大きさとするのがよく、極端に狭い間隔でしかも深さを深くした場合、すなわちヒダ同士を狭い間隔で密着させたものでは、被処理流体が谷深部まで十分に侵入しにくく濾過特性を高めることが困難となる。   The pleat 9 is set depending on, for example, the thickness of the laminated filter medium 5 to be used, the size of the filter member 2, and the like, and usually has a pitch of 2 to 15 times, preferably 4 to 8 times the thickness t of the laminated body 14. (P) and the fold depth d is preferably about 3 to 15 mm, for example, when the depth is extremely narrow and deep, that is, the folds are closely contacted with each other at a narrow interval. It is difficult for the fluid to be processed to sufficiently penetrate into the deep part of the valley, and it is difficult to improve the filtration characteristics.

前記保形体7は、前記積層濾材5の折曲げ形状と同形状に、塑性変形して型付けされてこの折曲げ形状を強固に保持しヒダ付きシートを構成するとともに、形成しようとするディスク形状に併せてその外周縁となる部分を、加工後のスプリングバックをなくす程度に上下型間に配置して加圧し縮厚し、これにより挟肉化した周縁縮厚部分15を構成する。この縮圧によって保形体7のメッシュの一部は前記保護層4内に埋入するなど、該メッシュ自体の剛性とともに周縁縮厚部分15が強固に接合されることにより安定して固定でき保形性が高められるとともに、その周囲で例えば円形に打ち抜くことにより、フランジ12を有するディスク状の前記フィルター部材2が形成される。   The shape-retaining body 7 is plastically deformed and molded in the same shape as the folded shape of the laminated filter medium 5 to firmly hold the folded shape to form a pleated sheet, and to form a disk shape to be formed. At the same time, the outer peripheral edge portion is disposed between the upper and lower molds so as to eliminate the processed spring back, and is pressed and reduced in thickness, thereby forming the peripheral reduced thickness portion 15 which is narrowed. A part of the mesh of the shape-retaining body 7 is embedded in the protective layer 4 by this pressure reduction. For example, the peripheral thickness-reduced portion 15 is firmly joined together with the rigidity of the mesh itself, so that the shape can be stably fixed. The disc-shaped filter member 2 having the flange 12 is formed by punching, for example, a circle around the periphery of the filter member.

これにより、フィルター部材2は、ヒダ9が並ぶ波付け部10と、その外周縁部が、前記保形体7の塑性変形により、厚さの戻りを生じない強さで縮厚されたフランジ部12とを有することとなる。又周縁縮厚部分15の形成とともに、前記波付け部10のヒダ9が傾動し傾く(周縁縮厚部分15ではヒダ9は完全に倒れて平坦化する)。又波付け部10とフランジ部12での縮厚の差異により、波付け部10においても、ヒダ9,9の両端部には、縮圧によって延び、周縁に向かって傾きを増すことにより縁中央部分の比較的平行なヒダ9の部分と異なる向きに折れ曲がり又は湾曲する非平行部17を形成する。これにより、ヒダ9の配置隙間が増大し、被処理流体がヒダ9の谷部にまで十分に侵入して濾過効率も向上される。また、前記縮厚工に伴う傾動により、前記ヒダ9の高さが減少する。なお中央部では、倒れのない直でつながる山谷のヒダ9とするのもよい。   As a result, the filter member 2 includes the corrugated portion 10 in which the folds 9 are arranged, and the flange portion 12 in which the outer peripheral edge portion is reduced with a strength that does not cause a return of thickness due to plastic deformation of the shape retaining body 7. Will be included. Further, as the peripheral reduced portion 15 is formed, the crease 9 of the corrugated portion 10 tilts and tilts (the crease 9 is completely tilted and flattened at the peripheral reduced portion 15). Also, due to the difference in thickness reduction between the corrugated portion 10 and the flange portion 12, the corrugated portion 10 also extends to both ends of the pleats 9 and 9 due to the contraction pressure, and increases the inclination toward the periphery to increase the center of the edge. A non-parallel portion 17 that bends or curves in a different direction from the portion of the fold 9 that is relatively parallel to the portion is formed. Thereby, the arrangement | positioning clearance gap of the pleat 9 increases, a to-be-processed fluid fully penetrate | invades even into the trough part of the pleat 9, and filtration efficiency is also improved. Moreover, the height of the pleat 9 is reduced by the tilt accompanying the thickness reduction. In addition, it is good also as the fold 9 of the mountain valley connected in the center part without the fall.

また、図1、4に示すように、フランジ部12は、外縁端面、両面を前記周縁縮厚部分15を含めて囲んで覆うテープ状のシール材料20を密着被包しており、これによって、フランジ部12表面でのメッシュ状の保形体7における線間の空隙を封止している。なおシール材料20としては、例えばテープ状のPTEE膜材や多孔質テープ材料が用いられる。   As shown in FIGS. 1 and 4, the flange portion 12 tightly encapsulates a tape-like sealing material 20 that covers and surrounds the outer edge end surface and both surfaces including the peripheral reduced thickness portion 15. A gap between lines in the mesh-shaped shape retaining body 7 on the surface of the flange portion 12 is sealed. As the sealing material 20, for example, a tape-shaped PTEE film material or a porous tape material is used.

なお、フィルター部材2は、例えば、外径、波付け形状などの各種仕様は濾過性能に併せて自在に設定でき、しかも構造的にも表裏両方向共実質的に同じ構成であることから、正・逆の方向性に関形なく用いることができる。   The filter member 2, for example, various specifications such as outer diameter and corrugated shape can be freely set according to the filtration performance, and the structure is substantially the same in both the front and back directions. It can be used regardless of the reverse direction.

次に、かかるフィルター部材2を用いたフィルター装置1を、図7に示したインライン型のフィルター装置である場合を例にとり説明する。なお、右図8に示す、特開平11−165012号が提案する集積型装置用のフィルター装置1としても用いうるなどと種々なディスク状のフィルター部材を用いるフィルター装置に採用できる。   Next, the filter device 1 using the filter member 2 will be described by taking as an example the case of the inline type filter device shown in FIG. It can be used as a filter device using various disk-shaped filter members, as shown in FIG. 8 and can be used as the filter device 1 for an integrated device proposed by JP-A-11-165012.

フィルター装置1は、図7に示すように内部流路Rを形成しかつインロー嵌合される割面を有する1組の金属製ハウジング片H、Hの対抗面間で、フィルター部材2のフランジ部12を、前記割面とは隔てた位置で挟圧した状態で、前記割面を溶接し外周溶接部Wを形成するその溶接熱の放散に伴う冷却による熱収縮によって、さらに強固にシールされ、前記内部流路Rを閉じるように構成されている。   As shown in FIG. 7, the filter device 1 has a flange portion of the filter member 2 between the opposing surfaces of a pair of metal housing pieces H, H that form an internal flow path R and have a split surface that is fitted with an inlay. 12 in a state of being clamped at a position separated from the split surface, the split surface is welded to form the outer peripheral welded portion W, which is further strongly sealed by thermal contraction due to cooling accompanying the dissipation of the welding heat, The internal flow path R is configured to be closed.

押圧は、例えば10〜100MPa程度の圧力を付加し、かつフランジ部12を装着する間隙を、前記圧力となる程度に長さを調節するとともに外周溶接部Wがフィルター部材2に熱影響を生じないように軸方向に5mm以上ずらした位置に設け、前記溶接は、必要に応じて加熱部が酸化しないようアルゴンガスを供給しつつ、電子ビーム溶接など局部加熱できる方法で行うのが良い。これによってフィルター部材2の加熱による空孔特性の変化や変性が防止できる。   For the pressing, for example, a pressure of about 10 to 100 MPa is applied, the length of the gap for mounting the flange portion 12 is adjusted to such an extent that the pressure is reached, and the outer peripheral weld W does not affect the filter member 2 thermally. Thus, the welding is preferably performed by a method capable of local heating such as electron beam welding while supplying argon gas so that the heating part is not oxidized if necessary. As a result, it is possible to prevent the pore characteristics from being changed or modified by heating the filter member 2.

このようなフィルター装置1において、前記フィルター部材2として次の3種類の濾過材を試作し、そのフィルター性能を比較した。   In such a filter device 1, the following three types of filter media were produced as the filter member 2 and the filter performance was compared.

実施例として住友電工(株)製の商品名ポアフロン(平均空孔径0.3μm、厚さ25μm)のPTFE製膜材からなる濾過層3と、その両面に配した厚さ0.4mm、空孔径30μmのPTFE製の保護層4とを積層した積層濾材5とし、さらにその表面に線径0.08mmの軟質Ni細線を60#に織製してなるメッシュからなる保形体7を重ねて、これを金型により6mm間隔で折り曲げて波付けし、最終的にヒダの形成間隔が2.5mmになるように成形し、前記濾過層3を3層のもの(実施例1)と空孔径0.1μm、厚さ30μmの1層を積層したもの(実施例2)を用いた。   As an example, a filtration layer 3 made of PTFE film material having a pore name (average pore diameter of 0.3 μm, thickness of 25 μm) manufactured by Sumitomo Electric Co., Ltd., and a thickness of 0.4 mm and a pore diameter disposed on both sides thereof are used. A laminated filter medium 5 in which a 30 μm PTFE protective layer 4 is laminated, and a shape retaining body 7 made of a mesh formed by weaving a soft Ni fine wire having a wire diameter of 0.08 mm in 60 # on the surface, Is bent with a mold at an interval of 6 mm and waved, and finally formed so that the crease formation interval is 2.5 mm. The filtration layer 3 has three layers (Example 1) and a pore diameter of 0. A layer (Example 2) in which one layer having a thickness of 1 μm and a thickness of 30 μm was laminated was used.

なお、この保形体7に用いたニッケル細線は、引張強さ450MPa、耐力151MPa、伸び42%の特性を有し、また耐力比(耐力/引張強さ×100)は33.5%のもので容易に曲げ変形でき、変形後の形状の戻り現象は皆無であった。   The nickel wire used for the shape retaining body 7 has the characteristics of tensile strength 450 MPa, yield strength 151 MPa, elongation 42%, and yield strength ratio (proof strength / tensile strength × 100) of 33.5%. It could be easily bent and deformed, and there was no shape return phenomenon after deformation.

こうした積層濾材5と、保形体7とのヒダ付き積層材のシートを、外径45mm、内径38mmのリング状押具間にセットして上下両方向から外周縁部を戻り変形不能に押圧することにより、波付け部10の周囲に周縁縮厚部分15を有するフランジ部12を形成したフィルター部材2を形成した。またこの場合、内部を押圧し、その押圧面に位置するヒダを押し潰して全体厚さ0.75mmの平面状態にした。その結果、その押圧部では前記保形メッシュの交織部(縦線と横線との交差部)の一部が前記保護層内に潜入して強固な成形性をもたらし、また前記保形メッシュ自体の剛性によってその厚さの戻り現象を拘束させることができた。   By setting a sheet of laminated material with creases between the laminated filter medium 5 and the shape retaining body 7 between ring-shaped pressing tools having an outer diameter of 45 mm and an inner diameter of 38 mm, the outer peripheral edge is returned from both the upper and lower directions and pressed so as not to be deformed. The filter member 2 in which the flange portion 12 having the peripheral reduced portion 15 was formed around the corrugated portion 10 was formed. Further, in this case, the inside was pressed, and the fold located on the pressing surface was crushed into a flat state with a total thickness of 0.75 mm. As a result, in the pressing portion, a part of the woven portion (intersection portion of the vertical line and the horizontal line) of the shape retaining mesh infiltrates into the protective layer to provide strong formability, and the shape retaining mesh itself The return phenomenon of the thickness could be restrained by the rigidity.

したがって、前記押圧によってフィルター部材のヒダ形状は固定され、手で取り扱ったり所定寸法に切除しても一体性が維持されたものとなり、しかも前記ヒダによって単位面積当たりの高い濾過面積が得られ、また、その耐圧性も前記ヒダを形成しない平板状態のものと比べて数倍以上にまで高め得るものとなり、250℃以上の耐熱性と優れた耐食性も備えて使用上は何ら問題は見られなかった。   Therefore, the pleated shape of the filter member is fixed by the pressing, and the integrity is maintained even if the filter member is handled by hand or cut to a predetermined size, and the fold provides a high filtration area per unit area. In addition, the pressure resistance can be increased to several times or more compared with the flat plate state that does not form the folds, and there is no problem in use with a heat resistance of 250 ° C. or more and excellent corrosion resistance. .

また実施例品2のフィルター部材では、濾過抵抗の低減の為に比較的粗な空孔径を持つ前記濾過層を3枚重ねしたものであり、精度を維持しながら単位面積当たりの処理流量が大巾に向上し、より小型化が可能になった。   In addition, the filter member of Example Product 2 is obtained by stacking three filtration layers having a relatively coarse pore diameter in order to reduce filtration resistance, and the processing flow rate per unit area is large while maintaining accuracy. The width has been improved, enabling further miniaturization.

他方、比較例品1は、ミリポア製(品番WGMXMSRR−4)で図9に示すように筒型のフィルター部材(D:26mm×L:55mm)で空孔径0.5μmのPTFE膜材1層に同種のメッシュを積層して巾5mmのヒダ付けしたものを用い、比較例品2は従来のステンレス鋼平板状焼結体によるフィルター部材を用いて構成したものである。   On the other hand, the comparative product 1 is manufactured by Millipore (product number WGMXMSRR-4) and is formed of a tubular filter member (D: 26 mm × L: 55 mm) as shown in FIG. A comparative example product 2 is constructed by using a filter member made of a conventional stainless steel flat plate-like sintered body, using the same kind of mesh laminated and creased with a width of 5 mm.

これらの各フィルター部位は、図7に示すインライン形のフィルター装置用のフィルター部材として外径40mmの円形に各々切除され、さらにその外周端面を含めて幅5mmのシール材料を巻き付け前記保護層と加圧融着させた。かくして、周縁端部は前記シール材料によって完全にシールしたものが得られた。   Each of these filter parts is cut into a circular shape having an outer diameter of 40 mm as a filter member for the in-line type filter device shown in FIG. 7, and further, a sealing material having a width of 5 mm including the outer peripheral end surface is wound around and added to the protective layer. Pressure fusion was performed. Thus, the peripheral edge was completely sealed with the sealing material.

その試験結果は図6に示されており、この測定は各フィルター装置をガス供給配管に接続して、試験ガスを所定流量で順次流した時の圧力損失との関係を調べた結果であり、各々単位面積当たりに換算したものである。   The test results are shown in FIG. 6, and this measurement is the result of examining the relationship with the pressure loss when each filter device is connected to the gas supply pipe and the test gas is sequentially flowed at a predetermined flow rate. Each is converted per unit area.

この結果に見られるように、実施権品1のフィルターは他の比較品に比して数倍の流量処理がほぼ比例的に可能であることが分かり、その効果は前記複数の濾過層を用いて深層濾過したことによるものと思われる。また、本発明では、濾過層と保形体との間に保護層を介在させ、プレ濾過とともに押圧した場合の濾過層への影響が緩和できる。したがって、比較品1のフィルター部材では、保護メッシュを含めてプリーツ成形したものではあるものの、内部を分解してみると該メッシュの凸部が隣接の濾過層を直接押圧して圧痕が形成されており、このような問題が改善され、品質的安定にも好ましいものであった。   As can be seen from this result, it can be seen that the filter of the licensed product 1 is capable of processing the flow rate several times as large as that of other comparative products, and the effect is obtained by using the plurality of filtration layers. This is probably due to the depth filtration. Moreover, in this invention, the influence on the filtration layer at the time of pressing together with a pre-filtration by interposing a protective layer between a filtration layer and a shape-retaining body can be relieved. Therefore, although the filter member of the comparative product 1 is pleated with the protective mesh, when the inner part is disassembled, the convex portion of the mesh directly presses the adjacent filtration layer to form an indentation. Such problems have been improved, and this is favorable for quality stability.

しかも、前記実施例では、1枚当たりの濾過層は空孔精度をやや低くしながらも、全体として深層濾過となるよう数枚を積層したことで圧損を抑制し、単位面積当たりの濾過特性を高めており、例えば所定の処理流量を得る場合の濾過面積で比較して、比較品1のフィルターが250m2 であるのに対し、本発明品では60cm2 で可能であり、約1/4程度の大きさにコンパクト化できる利点がある。 In addition, in the above-described embodiment, the filtration layer per sheet has a slightly lower porosity, but the pressure loss is suppressed by laminating several sheets so as to be a depth filtration as a whole, and the filtration characteristics per unit area are improved. Compared with the filtration area when obtaining a predetermined treatment flow rate, for example, the filter of the comparative product 1 is 250 m 2 , whereas the product of the present invention can be 60 cm 2 , and is about ¼. There is an advantage that can be made compact in size.

保形体を一部のみ示したフィルター部材の実施の形態を例示する一部破断平面図である。It is a partially broken top view which illustrates embodiment of the filter member which showed only a part of shape retaining body. その正面図である。It is the front view. 積層濾材を例示する断面図である。It is sectional drawing which illustrates a laminated filter medium. 波付け状態の積層濾材を例示する断面図である。It is sectional drawing which illustrates the laminated filter medium of a waved state. 濾過層を例示する3000倍拡大平面図である。It is 3000 times enlarged plan views which illustrate a filtration layer. 流量特性結果を例示する線図である。It is a diagram which illustrates a flow characteristic result. フィルター装置の一例を示す一部断面図である。It is a partial sectional view showing an example of a filter device. フィルター装置の他の例を示す断面図である。It is sectional drawing which shows the other example of a filter apparatus. 従来のフィルター部材を例示する断面図である。It is sectional drawing which illustrates the conventional filter member.

符号の説明Explanation of symbols

1 フィルター装置
2 フィルター部材
3 濾過層
4 保護層
5 積層濾材
7 保形体
9 ヒダ
10 波付け部
12 フランジ部
14 積層体
15 周縁縮厚部分
17 非平行部
20 シール材料
DESCRIPTION OF SYMBOLS 1 Filter apparatus 2 Filter member 3 Filtration layer 4 Protective layer 5 Laminated filter media 7 Shaped body 9 Folding 10 Corrugated part 12 Flange part 14 Laminated body 15 Reduced peripheral edge part 17 Non-parallel part 20 Seal material

Claims (6)

微細多孔性のポリテトラフルオロエチレン(PTFE)からなる膜状の濾過層と、該濾過層の両面に積層されかつ該濾過層を保護しかつ一次濾過するためのPTFEからなる保護層とを含む積層濾材、及びその積層濾材の両面に配置したメッシュ状かつ型付け可能な保形体を有するディスク状体をなし、
かつ前記積層濾材は、ヒダ付けによりヒダが並ぶ波付け部と、その外周縁部は、前記保形体の塑性変形により厚さの戻りを生じない強さで縮厚されたフランジ部とを有することを特徴とする半導体ガス用のフィルター部材。
Lamination comprising a membrane-like filtration layer made of microporous polytetrafluoroethylene (PTFE) and a protective layer made of PTFE laminated on both sides of the filtration layer and protecting the filtration layer and performing primary filtration A disk-shaped body having a mesh-shaped and moldable shape-retaining body disposed on both sides of the filter medium and the laminated filter medium,
The laminated filter medium has a corrugated portion in which creases are arranged by crease, and an outer peripheral edge portion thereof has a flange portion reduced in thickness so as not to cause a return of thickness due to plastic deformation of the shape retaining body. A filter member for semiconductor gas.
前記保形体は、線径30〜120μm、耐力比15〜45%のニッケル軟質細線で製織されたメッシュからなることを特徴とする請求項1に記載の半導体ガス用のフィルター部材。   2. The filter member for semiconductor gas according to claim 1, wherein the shape-retaining body is made of a mesh woven of nickel soft fine wires having a wire diameter of 30 to 120 μm and a proof stress ratio of 15 to 45%. 前記フランジ部は、外縁端面、それに連なる両面を含めてテープ状のシール材料で密着被包されたことを特徴とする請求項1又は2記載の半導体ガス用のフィルター部材。   The filter member for semiconductor gas according to claim 1 or 2, wherein the flange portion is tightly encapsulated with a tape-like sealing material including an outer edge end surface and both surfaces continuous therewith. 前記波付け部は、前記外周縁部の縮厚によって、隣り合うヒダ間に生じる非平行部を具えることを特徴とする請求項1〜3のいずれかに記載の半導体ガス用のフィルター部材。   The semiconductor corrugated filter member according to claim 1, wherein the corrugated portion includes a non-parallel portion generated between adjacent folds due to a reduction in thickness of the outer peripheral edge portion. 請求項1〜4のいづれかに記載のフィルター部材が、内部流路を形成しかつインロー嵌合する一組のハウジング片の対向面間でフランジ部が気密に挟持されることにより前記内部流路を遮断することを特徴とする半導体ガス用のフィルター装置。   The filter member according to any one of claims 1 to 4, wherein the flange portion is airtightly sandwiched between opposing faces of a pair of housing pieces that form an internal flow path and are fitted with a spigot. A filter device for semiconductor gas, which is cut off. 前記フランジ部は、対向面間で、インロー嵌合部の外周溶接後の熱収縮により気密に挟持されたことを特徴とする請求項5記載の半導体ガス用のフィルター装置。   6. The semiconductor gas filter device according to claim 5, wherein the flange portion is sandwiched between the opposing surfaces in an airtight manner by heat shrinkage after the outer periphery welding of the spigot fitting portion.
JP2003403379A 2003-12-02 2003-12-02 Semiconductor gas filter member and filter device using the same Expired - Lifetime JP4414741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003403379A JP4414741B2 (en) 2003-12-02 2003-12-02 Semiconductor gas filter member and filter device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003403379A JP4414741B2 (en) 2003-12-02 2003-12-02 Semiconductor gas filter member and filter device using the same

Publications (2)

Publication Number Publication Date
JP2005161200A true JP2005161200A (en) 2005-06-23
JP4414741B2 JP4414741B2 (en) 2010-02-10

Family

ID=34726701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403379A Expired - Lifetime JP4414741B2 (en) 2003-12-02 2003-12-02 Semiconductor gas filter member and filter device using the same

Country Status (1)

Country Link
JP (1) JP4414741B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075739A (en) * 2005-09-14 2007-03-29 Nitto Denko Corp Filter unit and method for use of filter medium
JP2008126097A (en) * 2006-11-16 2008-06-05 Nitto Denko Corp Filter unit, manufacturing method thereof, and filter medium
KR101752162B1 (en) 2015-12-15 2017-06-29 (주) 한창엔프라 Injection molding apparatus for inlet type filter
CN113272038A (en) * 2018-12-28 2021-08-17 日东电工株式会社 Filter pleat assembly and air filter unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075739A (en) * 2005-09-14 2007-03-29 Nitto Denko Corp Filter unit and method for use of filter medium
JP2008126097A (en) * 2006-11-16 2008-06-05 Nitto Denko Corp Filter unit, manufacturing method thereof, and filter medium
JP4699340B2 (en) * 2006-11-16 2011-06-08 日東電工株式会社 Filter unit
KR101752162B1 (en) 2015-12-15 2017-06-29 (주) 한창엔프라 Injection molding apparatus for inlet type filter
CN113272038A (en) * 2018-12-28 2021-08-17 日东电工株式会社 Filter pleat assembly and air filter unit
CN113272038B (en) * 2018-12-28 2023-06-06 日东电工株式会社 Filter pleat pack and air filter unit

Also Published As

Publication number Publication date
JP4414741B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP5133039B2 (en) Polytetrafluoroethylene porous membrane, method for producing the same, and waterproof air-permeable filter
JP5395322B2 (en) Hydrogen separation element
US5154827A (en) Laminated microporous fluorocarbon membrane and fluorocarbon filter cartridge using same
KR20050044679A (en) Elastic current collector
US8202383B2 (en) Method for forming porous PTFE layer
GB1576960A (en) Filter assemblies
JP4414741B2 (en) Semiconductor gas filter member and filter device using the same
CA1238866A (en) Diffusion cell
JP2008155118A (en) Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane
JPH05154355A (en) Method for welding fine-porous membrane of polytetrafluoroethylene
JPS6061018A (en) Filtering apparatus
JP6120132B2 (en) Method for producing metal tubular filter for high purity gas
JP4792598B2 (en) Hydrogen permeation module and method of use thereof
JP3617942B2 (en) Method for assembling porous ceramic pipe membrane, assembly thereof and microfiltration device
JPH0671536B2 (en) Fluorine resin pleated filter member
JP2004074086A (en) Filter assembly
JP2004305964A (en) Filter device
JP4437933B2 (en) Cartridge filter for microfiltration
JPS6014902A (en) Filtration apparatus
KR101613132B1 (en) Metal Filter Combined with Metal Cap by Welding
JP5569238B2 (en) Zeolite membrane element
JPH0660408U (en) Filter element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4414741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250