JP2005159598A - Microwave high power amplifier - Google Patents

Microwave high power amplifier Download PDF

Info

Publication number
JP2005159598A
JP2005159598A JP2003393462A JP2003393462A JP2005159598A JP 2005159598 A JP2005159598 A JP 2005159598A JP 2003393462 A JP2003393462 A JP 2003393462A JP 2003393462 A JP2003393462 A JP 2003393462A JP 2005159598 A JP2005159598 A JP 2005159598A
Authority
JP
Japan
Prior art keywords
high power
power amplifier
input
microwave high
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003393462A
Other languages
Japanese (ja)
Inventor
Hideshi Hanshiyou
秀史 繁昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003393462A priority Critical patent/JP2005159598A/en
Publication of JP2005159598A publication Critical patent/JP2005159598A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of a conventional microwave high power amplifier (microwave high power amplifier adopting three combination processes) employing a Wilkinson asymmetric splitter / combiner circuit that (1) a received RF power is given to the Wilkinson asymmetric splitter / combiner circuit, the power is split into two, and one of the two split powers is split furthermore into two, resulting in that 3 split powers are produced and two combining processes are required, (2) in the case of 3 or more combinations, phase differences are hardly matched and an RF loss such as a combining loss is great, and (3) the line with a length of 1/4 wavelength of an input RF is required for matching every splitting / combining of the power and a considerable space is required not only in the length direction but also in the width direction. <P>SOLUTION: The microwave high power amplifier is realized wherein an input output matching circuit is designed to approximately have one feeding point so that phase differences at splitting / combining of the input RF power are hardly caused to reduce an RF loss such as a combining loss, and a space of the input output matching circuit in both the length and width directions is considerably reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、電力を分配させて複数の大電力用増幅器により電力を増幅させ、その増幅された電力を再び合成することにより大電力を増幅することを可能にするレーダ及び電子戦のハイパワーアンプ部用のマイクロ波大電力用増幅装置に関するものである。   The present invention relates to a radar and an electronic warfare high power amplifier capable of amplifying high power by distributing power, amplifying power by a plurality of high power amplifiers, and synthesizing the amplified power again. The present invention relates to an amplifying device for microwave high power for a part.

従来、マイクロ波大電力用増幅装置の電力の分配や合成には、ウイルキンソン不等分配合成回路が用いられてきた(例えば、特許文献1参照)。ウイルキンソン不等分配合成回路以外の分配による整合回路の大型化を回避するためには、並列配置した能動素子に入力ワイヤを介して共通の入力整合回路に接続し、出力ワイヤを介して共通の出力整合回路に接続する手法がある(例えば、特許文献2参照)。また装置製造時における回路の再現性を向上するために増幅器の位置固定に出力端子を位置決めピンで固定する手法がある(例えば、特許文献3参照)。   Conventionally, Wilkinson's unequal distribution / combination circuit has been used for power distribution and synthesis in a microwave high power amplifier (see, for example, Patent Document 1). In order to avoid an increase in the size of the matching circuit due to distribution other than Wilkinson's unequal distribution / synthesis circuit, the active elements arranged in parallel are connected to a common input matching circuit via an input wire, and a common output via an output wire. There is a method of connecting to a matching circuit (see, for example, Patent Document 2). In order to improve the reproducibility of the circuit at the time of manufacturing the device, there is a method of fixing the output terminal with a positioning pin to fix the position of the amplifier (for example, see Patent Document 3).

特公平11−330813号公報(第1図)Japanese Patent Publication No. 11-330813 (FIG. 1)

特公平2−154501号公報(第1図)Japanese Patent Publication No. 2-154501 (Fig. 1)

実公平3−101016号公報(第1図)Japanese Utility Model Publication No. 3-101016 (FIG. 1)

しかし、ウイルキンソン不等分配合成回路を用いたマイクロ波大電力用増幅装置(以下、本発明は言及がない限り3合成のマイクロ波大電力用増幅装置を用いて説明する)は、入力RF電力がウイルキンソン不等分配回路に入力され、2分配後、分配された片方を、さらに2分配することにより3分配となり、3つの大電力用増幅器にそれぞれ入力され、その出力が入力とは逆の手順で合成される。一般に位相差をΔφ=φ−φとすると2合成損Lは、 However, a microwave high power amplification device using a Wilkinson unequal distribution and synthesis circuit (hereinafter, the present invention will be described using a three-composition microwave high power amplification device unless otherwise stated) has an input RF power of It is input to Wilkinson's unequal distribution circuit, and after 2 distributions, the distributed one is further divided into 2 to be 3 distributions, which are respectively input to the 3 large power amplifiers, and the output is the reverse procedure of the input. Synthesized. In general, when the phase difference is Δφ 1 = φ 1 −φ 2 , 2 combined loss L 1 is

Figure 2005159598
Figure 2005159598

のように表わせる。かりにP=P=Pとすると、 It can be expressed as If P = P 1 = P 2 ,

Figure 2005159598
Figure 2005159598

となり3合成損LはL=L+Lで、出力電力差よりも位相差が合成損失に及ぼす影響が大きいので、仮に入力RF電力が等分に分配合成されるとするとP=P=P、Δφ=φ−φとなり 3 The combination loss L 3 is L 3 = L 1 + L 2 , and the influence of the phase difference on the combination loss is larger than the output power difference. Therefore, if the input RF power is equally divided and combined, P = P 3 = P 4 and Δφ 2 = φ 3 −φ 4

Figure 2005159598
Figure 2005159598

Figure 2005159598
Figure 2005159598

となり、合成損が2回生じることになる。3合成以上の場合は位相差を合わせにくく、合成損失などのRFロスが大きいという課題があった。また電力の分配合成の毎に入力RF信号の4分の1波長で線路長をとり整合する必要があり、長手方向だけでなく幅方向にも大幅にスペースが必要になるとういう課題もあった。 Thus, the composite loss occurs twice. In the case of 3 synthesis or more, there is a problem that it is difficult to match the phase difference and RF loss such as synthesis loss is large. In addition, every time power is distributed and combined, it is necessary to match the line length with a quarter wavelength of the input RF signal, and there is a problem that a large space is required not only in the longitudinal direction but also in the width direction. .

この発明は、上記のような問題点を解消するためになされたもので、入出力整合回路を近似的に給電点を1つに設計して入力RF電力の分配合成の位相差を生じにくくして損失などのRFロスを軽減し、入出力整合回路の長手及び幅方向ともにスペースを大幅に削減したマイクロ波大電力用増幅装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and the input / output matching circuit is designed to be approximately one feeding point so that the phase difference of the distribution synthesis of the input RF power is less likely to occur. An object of the present invention is to provide an amplifying device for high-frequency microwaves that reduces RF loss such as loss and greatly reduces the space in the longitudinal and width directions of the input / output matching circuit.

請求項1の発明に係るマイクロ波大電力用増幅装置は、筐体と、この筐体の表面上に設けられ、長穴部を有する下層誘電体基板と、この下層誘電体基板上の前記長穴部の一方及び他方の側であって、前記長穴部に接近して前記長穴部の長手方向に沿って延在する幅広部を有する入力及び出力パターンと、入力及び出力リード部並びにフランジを具備し、そのフランジを前記長穴部に挿入してその入力及び出力リード部を前記入力及び出力パターンにそれぞれ接続するとともに、前記長穴部の長手方向に近接配列された複数個の大電力用増幅器と、前記入力及び出力パターン上の前記長穴部に接近して設けられ、前記入力及び出力リード部を取り囲む部分に切欠き部をそれぞれ設けた上層誘電体基板と、この上層誘電体基板上に設けられたグランドパターンと、前記筐体の裏面上に設けられた冷却器とを備えたことを特徴とするものである。   A microwave high power amplifying device according to a first aspect of the present invention is a housing, a lower dielectric substrate provided on a surface of the housing and having a long hole portion, and the length on the lower dielectric substrate. An input and output pattern having a wide portion extending along the longitudinal direction of the long hole portion on one side and the other side of the hole portion and extending along the longitudinal direction of the long hole portion, and the input and output lead portions and the flange A plurality of large electric powers inserted in the elongated hole portion and connected to the input and output patterns respectively in the longitudinal direction of the elongated hole portion. Amplifier, an upper dielectric substrate provided close to the slot on the input and output patterns, and provided with a notch in the portion surrounding the input and output lead portions, and the upper dielectric substrate Gras provided above And de pattern, is characterized in that a cooler is provided on the back surface of the housing.

請求項2の発明に係るマイクロ波大電力用増幅装置は、前記フランジを前記筐体に固着したことを特徴とするものである。   According to a second aspect of the present invention, there is provided an amplifying apparatus for high-power microwaves, wherein the flange is fixed to the casing.

請求項3の発明に係るマイクロ波大電力用増幅装置は、前記複数個の大電力用増幅器に共通のフランジを有することを特徴とするものである。   According to a third aspect of the present invention, there is provided a microwave high power amplifying apparatus having a flange common to the plurality of high power amplifiers.

請求項4の発明に係るマイクロ波大電力用増幅装置は、位置決めピンにより前記長穴部に位置決めしたことを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a microwave high power amplifying apparatus which is positioned in the elongated hole portion by a positioning pin.

請求項5の発明に係るマイクロ波大電力用増幅装置は、前記複数個の大電力用増幅器の合成損失及び温度上昇率に基づいて近接させたことを特徴とするものである。   According to a fifth aspect of the present invention, there is provided an amplifying apparatus for microwave high power, which is arranged close to each other based on a combined loss and a temperature increase rate of the plurality of high power amplifiers.

請求項1に係る発明によれば、入力RF信号の給電点を近似的に1つとしているので、4分の1波長整合回路が不要である。従って通常2回に分けて行う3合成が1回で済み、位相差が生じにくく合成損失やRFロスが軽減される。また電力の分配合成の毎に入力RF信号の4分の1波長で線路長をとる必要がなく、長手及び幅方向の回路寸法を小型することができる。従って出力電力差よりも位相差が合成損失に及ぼす影響が大きいので、チップごとの対応電力が異なる場合や大電力用増幅器のチップ選択肢の幅が狭い場合においても既存のチップを使用し所望の性能で設計可能あり、さらに回路構造をトリプレート誘電体基板で構成したことにより、筐体実装時の回路から筐体上部への漏れ電磁界の影響を防ぐために設けた空間を狭めて回路厚方向の回路寸法の減少させたことにより長手、幅及び回路厚方向の回路寸法小型化したマイクロ波大電力用増幅装置を得ることができる。   According to the first aspect of the present invention, since the feeding point of the input RF signal is approximately one, a quarter wavelength matching circuit is unnecessary. Therefore, three synthesis operations that are normally performed in two steps are only required once, and a phase difference hardly occurs, and synthesis loss and RF loss are reduced. Further, it is not necessary to set the line length at a quarter wavelength of the input RF signal every time power is distributed and combined, and the circuit dimensions in the longitudinal and width directions can be reduced. Therefore, the phase difference has a greater effect on the composite loss than the output power difference, so the desired performance can be achieved using the existing chip even when the corresponding power varies from chip to chip or when the range of chip options for high power amplifiers is narrow. In addition, the circuit structure is configured with a triplate dielectric substrate, so that the space provided in order to prevent the influence of leakage electromagnetic fields from the circuit when the housing is mounted to the top of the housing is narrowed in the circuit thickness direction. By reducing the circuit dimensions, it is possible to obtain an amplifying device for microwave high power in which the circuit dimensions in the longitudinal direction, width and circuit thickness direction are reduced.

請求項2に係る発明によれば、チップを実装しているフランジを筐体に固着したことにより、チップから発生する熱を筐体から冷却器へと効率よく伝導させることができるので、熱による位相差が生じにくいマイクロ波大電力用増幅装置を得ることができる。   According to the invention of claim 2, by fixing the flange mounting the chip to the housing, heat generated from the chip can be efficiently conducted from the housing to the cooler. It is possible to obtain an amplifying apparatus for microwave high power that hardly causes a phase difference.

請求項3に係る発明によれば、チップ毎に設けていたフランジを共通の1つのフランジにすることにより、筐体実装の際にネジなどの部品点数が減じることができ、チップ間隔や配置の再現性や自由度が広がったマイクロ波大電力用増幅装置を得ることができる。   According to the invention of claim 3, by using a common flange for each chip, the number of parts such as screws can be reduced when mounting the housing, and the chip spacing and arrangement can be reduced. An amplifying apparatus for high-power microwave can be obtained with wide reproducibility and flexibility.

請求項4に係る発明によれば、位置決めピンにより前記長穴部に複数の大電力用増幅器の位置決めしたことにより、固定方法がネジ止めに比べて取付け位置の精度及び再現性や自由度が向上したマイクロ波大電力用増幅装置を得ることができる。   According to the fourth aspect of the present invention, since a plurality of high power amplifiers are positioned in the elongated hole portion by the positioning pins, the fixing method is improved in accuracy, reproducibility, and flexibility of the mounting position compared to screwing. Thus, an amplifying apparatus for microwave high power can be obtained.

請求項5に係る発明によれば、合成損失及び温度上昇率に基づいてチップを配置したことにより、3合成以上の回路での隣り合うチップ間の熱の重なりが引き起こす両端のチップと内部のチップの温度差がなく、チップを通過するRF信号はチップが等通過位相であるので位相差が生じない。またチップ間隔の上限が合成損失の最悪値以下にしているので合成による位相差も軽減したマイクロ波大電力用増幅装置を得ることができる。   According to the invention of claim 5, by arranging the chips on the basis of the synthesis loss and the temperature rise rate, the chips at both ends and the internal chips caused by heat overlap between adjacent chips in a circuit of three or more synthesis Therefore, the RF signal passing through the chip does not cause a phase difference because the chip has an equipass phase. Further, since the upper limit of the chip interval is set to be equal to or less than the worst value of the synthesis loss, it is possible to obtain an amplifying apparatus for microwave high power in which the phase difference due to the synthesis is reduced.

実施例1.
以下、この発明の実施例1及び5について図1乃至4及び7を用いて説明する。図1乃至4は、実施例1及び5によるマイクロ波大電力用増幅装置の回路構成図であり、図1において1は大電力用増幅器、2は誘電体基板、3は入出力整合回路(内層)パターン、4はネジである。図2は、図1のA‐A´の断面図であり、図2において5,6,7は導体、8,9は誘電体、10は筐体、11は冷却器である。図3は、図1のB‐B´の断面図であり、図3において12は大電力用増幅器のチップであり内部にダイボンドされている。図4おいて14は内層RFパターン部に切り欠かれたトリプレート誘電体基板である。図7において横軸は位相差で、縦軸は合成損失を示し、グラフの線は上から順に分配合成の電力差3,2,1,0dBの位相差による合成損失を表している。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。
Example 1.
Embodiments 1 and 5 of the present invention will be described below with reference to FIGS. 1 to 4 are circuit configuration diagrams of the microwave high power amplifier according to the first and fifth embodiments. In FIG. 1, 1 is a high power amplifier, 2 is a dielectric substrate, and 3 is an input / output matching circuit (inner layer). ) Pattern 4 is a screw. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1. In FIG. 2, 5, 6 and 7 are conductors, 8 and 9 are dielectrics, 10 is a housing, and 11 is a cooler. 3 is a cross-sectional view taken along the line BB ′ of FIG. 1. In FIG. 3, reference numeral 12 denotes a high-power amplifier chip, which is die-bonded inside. In FIG. 4, reference numeral 14 denotes a triplate dielectric substrate cut out in the inner layer RF pattern portion. In FIG. 7, the horizontal axis indicates the phase difference, the vertical axis indicates the combined loss, and the graph line indicates the combined loss due to the phase difference of the distributed combined power difference of 3, 2, 1, 0 dB in order from the top. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

3つの大電力用増幅器1は個々のリード部が切りかかれた誘電体基板2の入出力整合回路(内層)パターン3に接続され、リード部間隔はXの距離で設けて取付け固定はネジ4によって行う(図2)。導体5の1層目は接地導体のパターンを有し、その導体5と誘電体8は、リード部取付け部分が切り欠かれており、トリプレート整合基板を構成する。大電力用増幅器1のリード部は導体6のRFパターンに接続される。導体7は接地導体のパターンを有し、筐体10に接触している。この筐体10の下に設置されて大電力用増幅器を冷却する冷却器11である(図3)。また図4のようにトリプレート整合基板には、トリプレート誘電体基板14のように内層RFパターン部にインピーダンス調整用島パターン持つ、切り欠かれた基板を用いてもよい。 Three large power amplifier 1 is connected to the input-output matching circuit (inner layer) pattern 3 of the dielectric substrate 2 which portion each lead is Kirikakare, attached fixed screw 4 leads interval is provided at a distance of X 1 (FIG. 2). The first layer of the conductor 5 has a ground conductor pattern. The conductor 5 and the dielectric 8 are notched in the lead portion mounting portion, and constitute a triplate matching substrate. The lead portion of the high power amplifier 1 is connected to the RF pattern of the conductor 6. The conductor 7 has a ground conductor pattern and is in contact with the housing 10. The cooler 11 is installed under the casing 10 and cools the high power amplifier (FIG. 3). Further, as shown in FIG. 4, a notched substrate having an island pattern for impedance adjustment in the inner layer RF pattern portion, such as the triplate dielectric substrate 14, may be used as the triplate matching substrate.

大電力用増幅器1の取付け位置Xは、図3に示すように左項は大電力用増幅器のチップ12の位置が近接すると中央の大電力用増幅器のチップ温度が外側の大電力増幅器の温度に比べて上昇し、大電力用増幅器1の内、外側のチップと内側のチップが等通過位相ではなくなり位相差が生じる。図3において大電力用増幅器1の幅をw、大電力用増幅器1のフランジ厚みをt、筐体10の厚みをt、冷却器11は十分冷却されるとし、チップ12の端から45°で熱が拡散するとした場合の延長線が筐体厚の底辺と交わるまでの距離をXとすると、 Mounting position X 1 of the large power amplifier 1, the temperature of the high power amplifier left term chip temperature of the position of the tip 12 is proximate the center of the large power amplifier of the large power amplifier is outside as shown in FIG. 3 As a result, the outer chip and the inner chip in the high-power amplifier 1 are not in an equi-passing phase, and a phase difference occurs. In FIG. 3, the width of the high power amplifier 1 is w, the flange thickness of the high power amplifier 1 is t 1 , the thickness of the housing 10 is t 2 , and the cooler 11 is sufficiently cooled. when extension when heat was diffused in ° is the distance to the intersection with the bottom of the casing thickness and X 2,

Figure 2005159598
Figure 2005159598

取付け位置Xの最小値は、 The minimum value of the mounting position X 1 is

Figure 2005159598
Figure 2005159598

つまり2(t+t)+w<Xで大電力用増幅器のチップ間隔を構成することで、熱の重なりによる中央の大電力用増幅器の温度差を回避して大電力用増幅器の等通過位相を維持できるので、温度差による位相差から生じる合成損失を低減できる。 That is, by configuring the chip interval of the high power amplifier by 2 (t 1 + t 2 ) + w <X 1 , the temperature difference of the central high power amplifier due to heat overlap is avoided, and the high power amplifier is Since the equi-pass phase can be maintained, the composite loss caused by the phase difference due to the temperature difference can be reduced.

しかし取付け位置Xの値が大きくなり、使用周波数の波長λに比べて十分小さくない値になると、3合成は給電点が近似的に1つではなくなり、合成損失が大きくなる。一般的に位相関係は図7で表わされ、合成損失の最悪値は従来の技術と同じく0.4dB程度で、位相差Δφ=36°に相当する。そのときの合成損失は給電点が近似的に1つであるので、従来に比べると1回分の合成損失が少なくなる。つまり取付け位置Xの最大値はX<λ/10となる。上記の条件から取付け位置Xは2(t+t)+w<X<λ/10の範囲で設計する必要がある。 But the value of the mounting position X 1 increases and becomes sufficiently not smaller value than the wavelength lambda g of the used frequency, 3 synthesis feeding point is not one approximately, synthesized loss increases. In general, the phase relationship is represented in FIG. 7, and the worst value of the combined loss is about 0.4 dB as in the prior art, and corresponds to the phase difference Δφ 1 = 36 °. Since the combined loss at that time is approximately one feeding point, the combined loss for one time is reduced as compared with the conventional case. That maximum value of the mounting position X 1 is the X 1 <λ g / 10. From the above conditions, the mounting position X 1 needs to be designed in the range of 2 (t 1 + t 2 ) + w <X 1g / 10.

次に動作について説明する。入力RF信号が入力整合回路パターンにおいて、それぞれのRF信号がリード部によって3分割されるが、大電力用増幅器1の取付け位置Xが2(t+t)+w<X<λ/10の間隔で取付けられているので、その間隔が使用周波数の10分の1以下と小さく、回路を分布定数的取り扱いから集中定数的に取り扱いにでき4分の1波長の線路長をとり整合する必要がなくなる。また先に説明したように大電力用増幅器1の同士の放熱による温度差から生じる位相差も抑えられているため、3つの大電力用増幅器1に接続されて増幅された後に入力側と同じく出力整合回路パターンへのリード部を経由して増幅されたRF信号が取り出される。 Next, the operation will be described. In the input matching circuit pattern of the input RF signal, each RF signal is divided into three by the lead portion, but the attachment position X1 of the high power amplifier 1 is 2 (t 1 + t 2 ) + w <X 1g / 10 intervals, so the interval is as small as 1/10 or less of the operating frequency, and the circuit can be handled from a distributed constant to a lumped constant. There is no need to do it. Further, as described above, since the phase difference caused by the temperature difference due to heat radiation between the high power amplifiers 1 is also suppressed, the output is the same as the input side after being amplified by being connected to the three high power amplifiers 1. The amplified RF signal is taken out via the lead portion to the matching circuit pattern.

実施例2.
この発明の実施例2について説明する。実施例2は、について図1乃至4を用いて説明する。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。構成は、実施例1のマイクロ波大電力用増幅装置における大電力用増幅器1を筐体に固着したものである。
Example 2
A second embodiment of the present invention will be described. The second embodiment will be described with reference to FIGS. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. The configuration is such that the high-power amplifier 1 in the microwave high-power amplifier of Example 1 is fixed to the housing.

実施例3.
この発明の実施例3について図5を用いて説明する。図5において13は共通フランジである。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。構成は、実施例1のマイクロ波大電力用増幅装置における3つの大電力用増幅器1のフランジを1つの共通フランジにしたものである。
Example 3
A third embodiment of the present invention will be described with reference to FIG. In FIG. 5, 13 is a common flange. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. The configuration is such that the flanges of the three high power amplifiers 1 in the microwave high power amplifying device of the first embodiment are made into one common flange.

実施例4.
この発明の実施例4について図6を用いて説明する。図6は、実施例4によるマイクロ波大電力用増幅装置の回路構成図であり、図6において16は位置決めピンである。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。構成は、実施例1のマイクロ波大電力用増幅装置における大電力用増幅器1の固定方法をネジから位置決めピンにより、固定したものである。
Example 4
Embodiment 4 of the present invention will be described with reference to FIG. FIG. 6 is a circuit configuration diagram of the microwave high-power amplifier according to the fourth embodiment. In FIG. 6, reference numeral 16 denotes a positioning pin. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. The configuration is such that the fixing method of the high power amplifier 1 in the microwave high power amplifying device of the first embodiment is fixed from the screw by the positioning pin.

この発明の実施例1によるマイクロ波大電力用増幅装置の回路構成図1 is a circuit configuration diagram of a microwave high power amplifier according to Embodiment 1 of the present invention. この発明の実施例1によるマイクロ波大電力用増幅装置の図1A‐A´の断面図1A-A 'sectional view of the microwave high power amplifier according to Embodiment 1 of the present invention この発明の実施例1によるマイクロ波大電力用増幅装置の図1B‐B´の断面図1B-B 'sectional view of the microwave high power amplifier according to Embodiment 1 of the present invention この発明の実施例3によるマイクロ波大電力用増幅装置の回路構成図Circuit configuration diagram of a microwave high-power amplifier according to Embodiment 3 of the present invention この発明の実施例1による調整用島パターンを設けたマイクロ波大電力用増幅装置の回路構成図1 is a circuit configuration diagram of an amplifying apparatus for microwave high power provided with an adjustment island pattern according to Embodiment 1 of the present invention. この発明の実施例4によるマイクロ波大電力用増幅装置の回路構成図Circuit configuration diagram of a microwave high power amplifier according to Embodiment 4 of the present invention この発明の実施例1乃至4及びウイルキンソン不等分配回路の分配合成おける位相差による合成損失のグラフ図The graph of the synthetic | combination loss by the phase difference in the Example 1 thru | or 4 of this invention and a Wilkinson unequal distribution circuit in the distribution composition

符号の説明Explanation of symbols

1…大電力用増幅器 2…誘電体基板 3a,3b…入出力整合回路パターン 4…ネジ5,6,7…導体 8,9…誘電体 10…筐体 11…冷却器 12…チップ
13…共通フランジ 14…トリプレート誘電体基板 15…調整用島パターン
16…位置決めピン

DESCRIPTION OF SYMBOLS 1 ... High power amplifier 2 ... Dielectric board | substrate 3a, 3b ... Input / output matching circuit pattern 4 ... Screw 5, 6, 7 ... Conductor 8, 9 ... Dielectric 10 ... Housing 11 ... Cooler 12 ... Chip 13 ... Common Flange 14 ... Triplate dielectric substrate 15 ... Adjusting island pattern 16 ... Positioning pin

Claims (5)

筐体と、この筐体の表面上に設けられ、長穴部を有する下層誘電体基板と、この下層誘電体基板上の前記長穴部の一方及び他方の側であって、前記長穴部に接近して前記長穴部の長手方向に沿って延在する幅広部を有する入力及び出力パターンと、入力及び出力リード部並びにフランジを具備し、そのフランジを前記長穴部に挿入してその入力及び出力リード部を前記入力及び出力パターンにそれぞれ接続するとともに、前記長穴部の長手方向に近接配列された複数個の大電力用増幅器と、前記入力及び出力パターン上の前記長穴部に接近して設けられ、前記入力及び出力リード部を取り囲む部分に切欠き部をそれぞれ設けた上層誘電体基板と、この上層誘電体基板上に設けられたグランドパターンと、前記筐体の裏面上に設けられた冷却器とを備えたことを特徴とするマイクロ波大電力用増幅装置。 A casing, a lower layer dielectric substrate provided on the surface of the casing and having a slot, and one of the slots on the lower layer dielectric substrate and the other side of the slot, the slot An input and output pattern having a wide portion extending along the longitudinal direction of the elongated hole portion, an input and output lead portion and a flange, and inserting the flange into the elongated hole portion, The input and output lead portions are connected to the input and output patterns, respectively, and a plurality of high power amplifiers arranged close to each other in the longitudinal direction of the elongated hole portions, and the elongated hole portions on the input and output patterns. An upper dielectric substrate provided close to each other and provided with a notch in a portion surrounding the input and output lead portions, a ground pattern provided on the upper dielectric substrate, and a back surface of the housing Installed cooler Microwave high power amplifier apparatus characterized by comprising a. 前記大電力用増幅器は、前記フランジを前記筐体に固着した請求項1に記載のマイクロ波大電力用増幅装置。 The microwave high-power amplifier according to claim 1, wherein the high-power amplifier has the flange fixed to the housing. 前記複数個の大電力用増幅器は、共通のフランジを有する請求項1に記載のマイクロ波大電力用増幅装置。 The microwave high power amplifier according to claim 1, wherein the plurality of high power amplifiers have a common flange. 前記大電力用増幅器は、位置決めピンにより前記長穴部に位置決めした請求項1に記載のマイクロ波大電力用増幅装置。 The microwave high power amplifier according to claim 1, wherein the high power amplifier is positioned in the elongated hole portion by a positioning pin. 前記複数個の大電力用増幅器は、合成損失及び温度上昇率に基づいて近接させた請求項1に記載のマイクロ波大電力用増幅装置。



The microwave high power amplifier according to claim 1, wherein the plurality of high power amplifiers are arranged close to each other based on a combined loss and a temperature rise rate.



JP2003393462A 2003-11-25 2003-11-25 Microwave high power amplifier Pending JP2005159598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393462A JP2005159598A (en) 2003-11-25 2003-11-25 Microwave high power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393462A JP2005159598A (en) 2003-11-25 2003-11-25 Microwave high power amplifier

Publications (1)

Publication Number Publication Date
JP2005159598A true JP2005159598A (en) 2005-06-16

Family

ID=34719816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393462A Pending JP2005159598A (en) 2003-11-25 2003-11-25 Microwave high power amplifier

Country Status (1)

Country Link
JP (1) JP2005159598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501662A (en) * 2014-01-06 2017-01-12 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Doherty power amplifier, communication device, and system
CN111865235A (en) * 2020-06-30 2020-10-30 成都四威功率电子科技有限公司 Embedded high-power microwave functional module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501662A (en) * 2014-01-06 2017-01-12 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Doherty power amplifier, communication device, and system
US9876474B2 (en) 2014-01-06 2018-01-23 Huawei Technologies Co., Ltd Doherty power amplifier, communications device, and system
CN111865235A (en) * 2020-06-30 2020-10-30 成都四威功率电子科技有限公司 Embedded high-power microwave functional module

Similar Documents

Publication Publication Date Title
US9293801B2 (en) Power combiner
US7215220B1 (en) Broadband power combining device using antipodal finline structure
JP5307242B2 (en) Modular solid state millimeter wave (MMW) RF power source
US11387791B2 (en) Spatial power-combining devices with reduced size
US9406992B2 (en) Microwave arrangement for the transmission of high-frequency signals
CN109616764A (en) Substrate integrates gap waveguide circular polarized antenna
US20180270942A1 (en) High-frequency circuit
JP2006135672A (en) Patch antenna, array antenna and mounting board provided with it
JP2000196344A (en) Antenna device
JP2022552576A (en) high frequency heterodyne mixer
JP2005159598A (en) Microwave high power amplifier
JPH10135749A (en) High frequency amplifier
JP6022136B1 (en) High frequency power amplifier
JP2006156902A (en) Semiconductor device for high frequency
Alekseytsev et al. The novel two-port hybrid ring dipole-like antenna with simultaneous sum and difference radiation patterns
JP2007274182A (en) High frequency circuit
JP2008022235A (en) Microwave power amplifier
JP4830917B2 (en) High frequency module device and transmission / reception module device using the same
JP3015348B1 (en) Large power distribution / combiner
US20230291087A1 (en) Antenna structures for spatial power-combining devices
JP7207562B2 (en) doherty amplifier
US11621469B2 (en) Power-combining devices with increased output power
JP7246583B2 (en) antenna device
Houbloss et al. Design of broadband ka band spatial power amplifiers
JP2005286484A (en) Microstrip antenna

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311