JP2005159427A - Projector with automatic trapezoidal distortion correcting means - Google Patents

Projector with automatic trapezoidal distortion correcting means Download PDF

Info

Publication number
JP2005159427A
JP2005159427A JP2003390841A JP2003390841A JP2005159427A JP 2005159427 A JP2005159427 A JP 2005159427A JP 2003390841 A JP2003390841 A JP 2003390841A JP 2003390841 A JP2003390841 A JP 2003390841A JP 2005159427 A JP2005159427 A JP 2005159427A
Authority
JP
Japan
Prior art keywords
light
light intensity
projector
intensity measurement
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003390841A
Other languages
Japanese (ja)
Other versions
JP4339087B2 (en
Inventor
Yoichi Tamura
陽一 田村
Toru Kataoka
亨 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp NEC Display Solutions Ltd
Original Assignee
NEC Viewtechnology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Viewtechnology Ltd filed Critical NEC Viewtechnology Ltd
Priority to JP2003390841A priority Critical patent/JP4339087B2/en
Publication of JP2005159427A publication Critical patent/JP2005159427A/en
Application granted granted Critical
Publication of JP4339087B2 publication Critical patent/JP4339087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projector with an automatic trapezoidal distortion correcting means which can measure the inclination angle of a screen with respect to the projection optical axis of the projector for trapezoidal distortion correction of a video image, irrespective of the type of screen. <P>SOLUTION: A light of uniform luminance is projected from the projection lens 21 of a projection apparatus 20 on the screen, an optical intensity measuring sensors 52 at five points aligned in the inside receives a reflection light through a single pinhole 51 provided on the front wall surface of the projector 10. A reception light intensity analysis inclination angle calculator 53 calculates a secondary curve obtained by connecting ends of bars of optical intensity measurement values at respective positions in a bar graph from optical intensity measurement results of three points selected in a strong order, acquires the distance between a position on a datum line 29 on the top point of the secondary curve and a point of the vertical upper portion of the projection optical axis 27 of the datum line 29, and calculates an inclination angle on the datum surface from the previously set correspondence relation between the distance and the inclination angle and outputs the calculated angle to an image control unit 23. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はプロジェクタに関し、特に使用するプロジェクタの投影装置の投射光軸とスクリーンとの傾斜角度を算定して映像の台形歪を自動的に補正するための自動台形歪補正手段を備えたプロジェクタに関する。   The present invention relates to a projector, and more particularly to a projector having an automatic trapezoidal distortion correcting means for automatically correcting a trapezoidal distortion of an image by calculating an inclination angle between a projection optical axis of a projection device of a projector to be used and a screen.

液晶技術やDLP(登録商標)(デジタルライトプロセッシング)技術の急速な進展に伴うプロジェクタの小型化・高性能化により、画像投射を目的とするプロジェクタの用途も拡大し、家庭内でのディスプレイ型テレビに代わる大型の表示装置としても注目されている。   With the rapid development of liquid crystal technology and DLP (registered trademark) (digital light processing) technology, miniaturization and high performance of projectors have expanded the use of projectors for image projection, and display televisions at home. It is also attracting attention as a large-sized display device that can replace this.

しかし、プロジェクタはディスプレイ型テレビと違って映像面がスクリーンであったり壁であったりするためにプロジェクタの投射光軸とスクリーンとの相対関係によって映像に歪を生ずるという問題点がある。液晶プロジェクタの据付角度の検出手段と液晶プロジェクタと投射対象との間の距離を検出する距離検出手段を有し、両検出結果から算出された角度によって液晶表示ユニットの角度を調整する方法が開示されている(特許文献1参照)。この場合液晶表示ユニットの角度を機械的に調整する必要がある。   However, unlike a display-type television, a projector has a problem that a video image is distorted due to the relative relationship between the projection optical axis of the projector and the screen because the screen is a screen or a wall. Disclosed is a method for adjusting the angle of a liquid crystal display unit according to an angle calculated from both detection results, having a detecting means for detecting an installation angle of a liquid crystal projector and a distance detecting means for detecting a distance between the liquid crystal projector and a projection target. (See Patent Document 1). In this case, it is necessary to mechanically adjust the angle of the liquid crystal display unit.

一方、スクリーンのプロジェクタの投射光軸に対する垂直方向および水平方向の傾斜がわかればプロジェクタのフレームメモリの座標を変換したりすることによって歪のない映像をスクリーンに投影する技術は実用化されている。このため特に歪みの原因となりやすい垂直方向の傾斜を測定するために、スクリーンが垂直に設置されているという前提でプロジェクタの垂直の傾きを重力センサで検知し、その傾きに見合った歪補正を行うプロジェクタは既に開示されて発売されている(特許文献2参照)。
特開平9−281597号公報 特開2003−5278号公報
On the other hand, when the vertical and horizontal inclinations of the screen with respect to the projection optical axis of the projector are known, a technique for projecting a distortion-free image on the screen by converting the coordinates of the frame memory of the projector has been put into practical use. Therefore, in order to measure the vertical tilt that is likely to cause distortion, the vertical tilt of the projector is detected by the gravity sensor on the assumption that the screen is installed vertically, and distortion correction corresponding to the tilt is performed. Projectors have already been disclosed and sold (see Patent Document 2).
Japanese Patent Laid-Open No. 9-281597 JP 2003-5278 A

しかし、特許文献2に記載の方法はスクリーンが垂直に設置されているという前提であり、スクリーンが垂直に設置されていない場合やプロジェクタの投射光軸に対し水平方向に傾斜している場合には正確な歪補正を行うことができないという問題がある。本発明者は、映像の歪補正のためにスクリーンのプロジェクタの投射光軸に対する垂直方向および水平方向の傾斜角度をレーザポインタと撮像素子を有するデジタルカメラとを用いて正確に測定できる傾斜角度測定装置を有するプロジェクタを発明して特願平2003−143501号で出願した。特願平2003−143501号の傾斜角度測定装置はスクリーンに対するプロジェクタの角度を正確に取得する手段としては非常に優れているが、その構成機器に撮像素子を有するデジタルカメラを用いるためにコストが高くなっている。   However, the method described in Patent Document 2 is based on the premise that the screen is installed vertically, and when the screen is not installed vertically or is inclined in the horizontal direction with respect to the projection optical axis of the projector. There is a problem that accurate distortion correction cannot be performed. The inventor of the present invention can accurately measure tilt angles in a vertical direction and a horizontal direction with respect to a projection optical axis of a screen projector using a laser pointer and a digital camera having an image sensor to correct image distortion. Was filed in Japanese Patent Application No. 2003-143501. Although the tilt angle measuring device of Japanese Patent Application No. 2003-143501 is very excellent as a means for accurately obtaining the angle of the projector with respect to the screen, the cost is high because a digital camera having an image sensor is used as its constituent equipment. It has become.

さらにプロジェクタの用途の拡大に伴って台形補正が低コストでかつ自動的に行われることに対する要求が高まっている。   Furthermore, with the expansion of the use of projectors, there is an increasing demand for keystone correction to be automatically performed at a low cost.

投影装置の投射レンズから均一輝度光をスクリーンに投射し、スクリーンからの反射光をプロジェクタ筐体の前面に設けた1個の導光部を経由して筐体内部に傾斜角度を計測する基準面に平行な基準線上に設けられた3個の光強度測定センサで受光し、3箇所の光強度測定センサの光強度測定結果から、基準線を横軸とし光強度を縦軸としたときの測定された各位置における光強度測定値の棒グラフの先端を結ぶ近似二次曲線を算出し、その二次曲線の頂点の横軸上の位置と基準線の投射光軸を含み基準面に垂直な面との交点との間の距離を求め、その距離と傾斜角度との間の予め設定された相関関係から、基準面上での傾斜角度を算定して表示部の出力映像を制御する方法が検討されている。   A reference plane for projecting uniform luminance light from the projection lens of the projection device onto the screen, and measuring the tilt angle inside the housing via a single light guide provided on the front surface of the projector housing for the reflected light from the screen Light received by three light intensity measurement sensors provided on a reference line parallel to the light, and measured from the light intensity measurement results of the three light intensity measurement sensors when the reference line is the horizontal axis and the light intensity is the vertical axis. Calculate the approximate quadratic curve connecting the tips of the bar graphs of the measured light intensity values at each position, and include the position on the horizontal axis of the vertex of the quadratic curve and the projection optical axis of the reference line, and a plane perpendicular to the reference plane A method to calculate the tilt angle on the reference plane and control the output video of the display unit from the preset correlation between the distance and the tilt angle is determined. Has been.

この方法は、安いコストで自動台形歪補正ができる方法として実用化も進んでいるが、アルミ蒸着スクリーンなどの高ゲインスクリーンに対しては傾斜角度が大きい場合に近似二次曲線の頂点が計測範囲内で求められずスクリーンに対する投射光軸の角度を求めることができないことがある。   This method has been put into practical use as a method that can automatically correct trapezoidal distortion at a low cost, but for high gain screens such as aluminum vapor deposition screens, the apex of the approximate quadratic curve is measured when the tilt angle is large. In some cases, the angle of the projection optical axis with respect to the screen cannot be obtained.

図10は従来例の投影装置からスクリーンに投射された均一輝度光の反射光の状態を示す模式図であり、(a)は投射光軸とスクリーンとの傾斜角度が90°の状態であり、(b)は第1の傾斜角の場合であり、(c)は第1の傾斜角よりも小さい第2の傾斜角の場合である。   FIG. 10 is a schematic diagram showing a state of reflected light of uniform brightness light projected on a screen from a projection apparatus of a conventional example, (a) is a state where the tilt angle between the projection optical axis and the screen is 90 °, (B) is the case of the first inclination angle, and (c) is the case of the second inclination angle smaller than the first inclination angle.

図11は、従来例の横軸を基準線として示した光強度測定センサの位置と、縦軸を光強度測定センサの計測した光強度測定値としたときの光強度測定値の棒グラフの先端を結ぶ二次曲線を示す模式図であり、(a)は投射光軸とスクリーンとの傾斜角度が90°の状態であり、(b)は第1の傾斜角の場合であり、(c)は第2の傾斜角の場合であり、(d)は第2の傾斜角でスクリーンが高ゲインスクリーンの場合である。   FIG. 11 shows the position of the light intensity measurement sensor with the horizontal axis of the conventional example shown as a reference line, and the tip of the bar graph of the light intensity measurement value when the vertical axis is the light intensity measurement value measured by the light intensity measurement sensor. It is a schematic diagram showing a connecting quadratic curve, (a) is a state in which the tilt angle between the projection optical axis and the screen is 90 °, (b) is a case of the first tilt angle, (c) is This is the case of the second inclination angle, and (d) is the case of the second inclination angle and the screen is a high gain screen.

プロジェクタの投射レンズ121から投射された均一輝度光はスクリーン70で反射され投射レンズ121の上方に設けられたピンホール151を経由してプロジェクタ内に一列に設けられた3個の光強度測定センサ152L、152C、152Rに入射する。   The uniform luminance light projected from the projection lens 121 of the projector is reflected by the screen 70 and passes through a pinhole 151 provided above the projection lens 121, so that three light intensity measurement sensors 152L provided in a row in the projector. , 152C, and 152R.

通常のスクリーンの場合、図10(a)に示すように投射光軸37がスクリーン70と直交していれば、中央の光強度測定センサ152Cの光強度が最も強くなり、左右の光強度測定センサ152L、152Rが中央の光強度測定センサ152Cを中心に対称に配置されているとすれば、左右の光強度測定センサ152L、152Rの光強度測定値は同じ値で中央の光強度測定センサ152Cよりも弱くなる。基準線29を横軸としそれぞれの光強度測定値を縦軸として表示すると図11(a)となる。   In the case of a normal screen, if the projection optical axis 37 is orthogonal to the screen 70 as shown in FIG. 10A, the light intensity of the center light intensity measurement sensor 152C is the strongest, and the left and right light intensity measurement sensors. Assuming that 152L and 152R are arranged symmetrically with respect to the center light intensity measurement sensor 152C, the light intensity measurement values of the left and right light intensity measurement sensors 152L and 152R are the same and are the same as those of the center light intensity measurement sensor 152C. Also become weaker. When the reference line 29 is displayed on the horizontal axis and each light intensity measurement value is displayed on the vertical axis, FIG. 11A is obtained.

図10(b)に示すように投射光軸37がスクリーン70と第1の角度αで交差しており、仮に左の光強度測定センサ152Lとピンホール151を結ぶ反射光32とスクリーン70とのなす角度と中央の光強度測定センサ152Cとピンホール151を結ぶ反射光32とスクリーン70とのなす角度とが同じと仮定すれば、中央の光強度測定センサ152Cの光強度測定値と左の光強度測定センサ152Lの光強度測定値が同じとなり、右の光強度測定センサ152Rの光強度測定値がそれよりも弱くなる。基準線29を横軸としそれぞれの光強度測定値を縦軸として表示すると図11(b)となる。   As shown in FIG. 10B, the projection optical axis 37 intersects the screen 70 at the first angle α, and the reflected light 32 connecting the left light intensity measurement sensor 152L and the pinhole 151 and the screen 70 are assumed. If it is assumed that the angle formed between the reflected light 32 connecting the light intensity measurement sensor 152C in the center and the pinhole 151 and the angle between the screen 70 and the light intensity measurement value of the center light intensity measurement sensor 152C and the left light are the same. The light intensity measurement value of the intensity measurement sensor 152L becomes the same, and the light intensity measurement value of the right light intensity measurement sensor 152R becomes weaker. When the reference line 29 is displayed on the horizontal axis and each light intensity measurement value is displayed on the vertical axis, FIG. 11B is obtained.

図10(c)に示すように投射光軸37がスクリーン70と第1の角度αよりも少ない第2の角度βで交差し、左の光強度測定センサ152Lにスクリーン70からの主反射光33が入射しているとすれば、左の光強度測定センサ152Lの光強度測定値が最も強く、中央の光強度測定センサ152Cの光強度測定値がそれよりも弱く、右の光強度測定センサ152Rの光強度測定値がそれよりもさらに弱くなる。基準線29を横軸としそれぞれの光強度測定値を縦軸として表示すると図11(c)となる。   As shown in FIG. 10C, the projection optical axis 37 intersects the screen 70 at a second angle β smaller than the first angle α, and the main reflected light 33 from the screen 70 is passed to the left light intensity measurement sensor 152L. , The light intensity measurement value of the left light intensity measurement sensor 152L is the strongest, the light intensity measurement value of the center light intensity measurement sensor 152C is weaker, and the right light intensity measurement sensor 152R. The measured light intensity is even weaker than that. When the reference line 29 is displayed on the horizontal axis and each light intensity measurement value is displayed on the vertical axis, FIG. 11C is obtained.

中央と両端との3箇所の光強度測定センサ152の光強度測定結果から、例えばラグランジュの補完公式により図11に示すように基準線29を横軸とし光強度測定値を縦軸としたときの測定された各位置の光強度測定値の棒グラフの先端を結ぶ二次曲線181を算出すると、その二次曲線181の頂点182の横軸上の位置が求められ、頂点182の横軸、即ち基準線29上の位置からそれぞれのスクリーンと投射光軸との傾斜角度が算出できる。   From the light intensity measurement results of the light intensity measurement sensors 152 at the center and at both ends, for example, when the reference line 29 is set on the horizontal axis and the light intensity measurement value is set on the vertical axis as shown in FIG. When the quadratic curve 181 connecting the tips of the bar graphs of the measured light intensity values at the respective positions is calculated, the position on the horizontal axis of the vertex 182 of the quadratic curve 181 is obtained, and the horizontal axis of the vertex 182, that is, the reference The inclination angle between each screen and the projection optical axis can be calculated from the position on the line 29.

しかしスクリーンがアルミ蒸着スクリーンなどの高ゲインスクリーンの場合には、図10(a)、図10(b)のようにスクリーンと投射光軸との傾斜角度が小さい場合は通常のスクリーンと余り違わないが、図10(c)のように傾斜角度が大きい場合は図10(d)に示すように実光強度183は点線で示した値となり各位置の光強度測定値の棒グラフの先端を結ぶ二次曲線181の頂点182は求められずスクリーンに対するプロジェクタの投射光軸との傾斜角度を求めることができなくなる。   However, when the screen is a high gain screen such as an aluminum vapor deposition screen, when the inclination angle between the screen and the projection optical axis is small as shown in FIGS. 10A and 10B, it is not much different from a normal screen. However, when the tilt angle is large as shown in FIG. 10 (c), the actual light intensity 183 becomes a value indicated by a dotted line as shown in FIG. 10 (d). The vertex 182 of the next curve 181 cannot be obtained, and the inclination angle with respect to the projection optical axis of the projector with respect to the screen cannot be obtained.

本発明の目的は、スクリーンの種類に拘らず映像の台形歪補正のためにプロジェクタの投射光軸に対するスクリーンの垂直方向および/または水平方向の傾斜角度を低コストで測定できる自動台形歪補正手段を備えたプロジェクタを提供することにある。   An object of the present invention is to provide an automatic trapezoidal distortion correction means that can measure the tilt angle of the screen in the vertical direction and / or the horizontal direction with respect to the projection optical axis of the projector at a low cost for correcting the trapezoidal distortion of the image regardless of the type of the screen. It is to provide a projector provided.

本発明の自動台形歪補正手段を備えたプロジェクタは、
表示部と投射レンズとを有しスクリーンに映像を投射する投影装置を備え、その投影装置の投射光軸のスクリーンに対する傾斜角度を算定する傾斜角度測定装置および算定された傾斜角度に従って表示部の出力映像を制御することによりスクリーンに投射された映像の台形の歪を補正する画像制御部とからなる自動台形歪補正手段を備えたプロジェクタである。
A projector provided with the automatic trapezoidal distortion correcting means of the present invention,
A projection device having a display unit and a projection lens and projecting an image on a screen, an inclination angle measuring device for calculating an inclination angle of the projection optical axis of the projection device with respect to the screen, and an output of the display unit according to the calculated inclination angle The projector includes an automatic trapezoidal distortion correction unit including an image control unit that corrects the trapezoidal distortion of the video projected on the screen by controlling the video.

投影装置は、該投影装置の投射レンズから均一な輝度の光である均一輝度光をスクリーンに投射する均一輝度光出力手段を有し、
傾斜角度測定装置は、プロジェクタの筐体壁面に、傾斜角度が算定される面である投射光軸を含む基準面に対してその投射光軸から垂直方向に所定の間隔をおいて設けられた1個の導光部と、プロジェクタの筐体内部に、導光部を通過する均一輝度光のスクリーンからの反射光を受光するように、基準面に平行な面と投射光軸に垂直な面との交線である基準線上に一列に設けられ、受光している反射光の光強度を測定する少なくとも4個の光強度測定センサと、少なくとも4個の光強度測定センサの光強度測定結果から、光強度測定値の大きい順に3個の光強度測定値を選択し、選択された3個の光強度測定値の基準線上の位置を横軸とし、その位置における光強度を縦軸としたときの、各位置で測定された光強度の棒グラフの先端を結ぶ近似二次曲線を算出し、その二次曲線の頂点の基準線上の位置とその基準線の投射光軸を含み基準面に垂直な面との交点との間の距離を求め、その距離と傾斜角度との間の予め設定された相関関係から、基準面上での傾斜角度を算定して画像制御部に出力する受光強度解析傾斜角度算定部と、を有することを特徴とする。
The projection device has uniform luminance light output means for projecting uniform luminance light, which is light of uniform luminance, from the projection lens of the projection device onto the screen,
The tilt angle measuring device is provided on the housing wall surface of the projector with a predetermined interval in a direction perpendicular to the projection optical axis with respect to a reference plane including the projection optical axis, which is a plane on which the tilt angle is calculated. And a plane parallel to the reference plane and a plane perpendicular to the projection optical axis so as to receive the reflected light from the screen of uniform luminance light passing through the light guide in the housing of the projector. From the light intensity measurement results of at least four light intensity measurement sensors that are provided in a line on a reference line that is an intersection of the light and that measures the light intensity of the received reflected light, and at least four light intensity measurement sensors, When three light intensity measurement values are selected in descending order of the light intensity measurement values, the position on the reference line of the selected three light intensity measurement values is taken as the horizontal axis, and the light intensity at that position is taken as the vertical axis. , Near the tip of the bar graph of the light intensity measured at each position Calculate a quadratic curve, find the distance between the position of the vertex of the quadratic curve on the reference line and the intersection of the reference line and the plane that includes the projection optical axis and is perpendicular to the reference plane, and the distance and tilt angle And a received light intensity analysis inclination angle calculation unit that calculates an inclination angle on the reference plane and outputs the inclination angle to the image control unit from a preset correlation between and.

基準面が水平方向の面であり、導光部が投射光軸に対し垂直方向に配置されていてもよく、さらに、傾斜角度測定装置はプロジェクタの投射光軸を含む垂直面上における投射光軸の傾斜角度を検出する垂直方向傾斜センサを有し、その垂直方向傾斜センサで検出された垂直面上の傾斜角度と光強度測定センサを用いて算定された水平面上の傾斜角度とを組み合わせて表示部の出力映像が制御されてもよい。   The reference plane may be a horizontal plane, the light guide unit may be arranged in a direction perpendicular to the projection optical axis, and the tilt angle measuring device may project the projection optical axis on the vertical plane including the projection optical axis of the projector. A vertical inclination sensor that detects the inclination angle of the vertical direction, and the inclination angle on the vertical plane detected by the vertical inclination sensor and the inclination angle on the horizontal plane calculated by using the light intensity measurement sensor are combined and displayed. The output video of the unit may be controlled.

基準面が垂直方向の面であり、導光部は、投射光軸から水平方向に配置されていてもよく、基準面が水平方向および垂直方向の面であり、導光部が投射光軸に対し垂直方向および水平方向にそれぞれ配置され、それぞれに対して光強度測定センサが設けられていてもよい。   The reference plane may be a vertical plane, the light guide may be arranged horizontally from the projection optical axis, the reference plane is a horizontal and vertical plane, and the light guide is on the projection optical axis. On the other hand, they may be arranged in the vertical direction and the horizontal direction, and a light intensity measurement sensor may be provided for each.

均一輝度光出力手段は、投影装置の表示部の光源とライトバルブであり、均一輝度光は投射映像光であっても、赤外線であってもよい。   The uniform luminance light output means is a light source and a light valve of the display unit of the projection device, and the uniform luminance light may be projection image light or infrared light.

均一輝度光の光源は高圧水銀灯であっても、LEDであってもよく、光強度測定センサがフォトトランジスタであってもよく、導光部が投射装置の壁面に設けられたピンホールであっても、光学レンズであってもよい。   The light source of the uniform luminance light may be a high-pressure mercury lamp or LED, the light intensity measurement sensor may be a phototransistor, and the light guide unit is a pinhole provided on the wall surface of the projection device. Or an optical lens.

本発明は、スクリーンの種類に拘わらず容易に投影装置の投射光軸とスクリーンとの垂直方向および/または水平方向の傾斜角度を算出できるので、表示部の映像の画素への配置を移動させることによって台形歪を補正し、スクリーンに投射された画像を正しい状態に修正することができるという効果がある。   Since the present invention can easily calculate the vertical and / or horizontal inclination angles between the projection optical axis of the projection apparatus and the screen regardless of the type of the screen, the arrangement of the display unit on the pixels of the image can be moved. Thus, the trapezoidal distortion can be corrected and the image projected on the screen can be corrected to the correct state.

これは、投影装置の投射レンズから均一な輝度の光をスクリーンに投射し、傾斜角度が測定される投射光軸を含む基準面に垂直方向に投射光軸から所定の間隔をおいてプロジェクタの前壁面に設けられた1個の導光部を通して、プロジェクタ内部の基準面に平行な基準線上に一列に配置された少なくとも4箇所の光強度測定センサで反射光を受光し、受光強度解析傾斜角度算定部が光強度測定値の強い順に3箇所を選択し、3箇所の光強度測定センサの光強度測定結果から、基準線を横軸とし光強度測定値を縦軸としたときの測定された各位置の光強度測定値の棒グラフの先端を結ぶ近似二次曲線を算出し、その二次曲線の頂点の基準線上の位置とその基準線の投射光軸を含み基準面に垂直な面との交点との間の距離を求め、その距離と傾斜角度との間の予め設定された相関関係から、基準面上での傾斜角度を算定して画面の歪をなくするように表示部を制御できるからであり、光強度測定値の強い順に3箇所を選択することによって傾斜角度とスクリーンの種類に関わらず二次曲線の頂点と光強度の最も強い位置との誤差を少なくすることができるからである。   This is because light of uniform brightness is projected onto the screen from the projection lens of the projection device, and is placed in front of the projector at a predetermined interval from the projection optical axis in a direction perpendicular to the reference plane including the projection optical axis whose inclination angle is measured. The reflected light is received by at least four light intensity measurement sensors arranged in a line on a reference line parallel to the reference plane inside the projector through one light guide provided on the wall surface, and the inclination angle calculation of the received light intensity is calculated. 3 parts were selected in order of strong light intensity measurement values, and each of the measured light intensity measurement results from the light intensity measurement results of the three light intensity measurement sensors with the reference line as the horizontal axis and the light intensity measurement value as the vertical axis Calculate the approximate quadratic curve connecting the tips of the bar graphs of the measured light intensity at the position, and the intersection of the position of the vertex of the quadratic curve on the reference line and the plane that includes the projected optical axis of the reference line and is perpendicular to the reference plane Find the distance between and the distance and slope This is because the display unit can be controlled so as to eliminate the distortion of the screen by calculating the tilt angle on the reference plane from the preset correlation with the degree, and in order of increasing the light intensity measurement value, there are three places. This is because the error between the vertex of the quadratic curve and the position where the light intensity is the strongest can be reduced regardless of the inclination angle and the screen type.

また、本発明の傾斜角度測定装置は低いコストで構成できるという効果がある。これはコストの高い撮像素子を有するデジタルカメラを使用せずコストの安い光強度測定センサを4個以上使用すれば測定可能な構成となっているからである。   In addition, the tilt angle measuring device of the present invention can be configured at low cost. This is because the measurement can be performed by using four or more light intensity measurement sensors at low cost without using a high-cost digital camera having an image sensor.

次に、本発明の第1の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式的ブロック構成図であり、図2は本発明の第1の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式図であり(a)は正面図、(b)は側面図、(c)は上面図であり、図3は投影装置からスクリーンに投射された均一な輝度の光の反射光の状態を示す模式図であり(a)は投射光軸とスクリーンとの傾斜角度が90°の状態、(b)は第1の傾斜角αの場合、(c)は第1の傾斜角よりも小さい第2の傾斜角βの場合であり、(d)はスクリーンに対する光線の入射角度と反射光線の反射角度による光強度の分布であり、図4はスクリーンが高ゲインスクリーンの場合の横軸を基準線として示した光強度測定センサの位置と、縦軸を光強度測定センサの計測した光強度測定値としたときの選択された光強度測定値の棒グラフの先端を結ぶ二次曲線を示す模式図であり、(a)は投射光軸とスクリーンとの傾斜角度が90°の状態、(b)は第1の傾斜角の場合、(c)は第2の傾斜角の場合である。ここでは導光部をピンホールとして説明するが、後述のように光学レンズであってもよい。   Next, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic block diagram of a projector equipped with an automatic trapezoidal distortion correction unit according to the first embodiment of the present invention. FIG. 2 shows an automatic trapezoidal distortion correction unit according to the first embodiment of the present invention. FIG. 3A is a front view, FIG. 3B is a side view, FIG. 3C is a top view, and FIG. 3 is a reflected light of light having a uniform luminance projected from the projector onto the screen. (A) is a state in which the tilt angle between the projection optical axis and the screen is 90 °, (b) is the first tilt angle α, and (c) is from the first tilt angle. (D) is the distribution of light intensity depending on the incident angle of the light beam on the screen and the reflection angle of the reflected light beam, and FIG. 4 shows the horizontal axis when the screen is a high gain screen. The light intensity measurement sensor position with the reference line as the reference line and the vertical axis the light intensity measurement sensor It is a schematic diagram which shows the quadratic curve which connects the front-end | tip of the bar graph of the selected light intensity measurement value when it is set as the light intensity measurement value which S measured, (a) is 90 degrees of inclination angles of a projection optical axis and a screen. The state of °, (b) is the case of the first inclination angle, and (c) is the case of the second inclination angle. Here, the light guide is described as a pinhole, but an optical lens may be used as described later.

図1に示されるように、プロジェクタ10は投射レンズ21と表示部22を有する投影装置20と、表示部22の映像を制御する画像制御部23と、傾斜角度測定装置30と、全体の動作を制御する中央処理装置60とを備え、傾斜角度測定装置30が算定した傾斜角度に従って表示部22の出力映像を制御することによりスクリーン70の映像の歪が補正される。映像の歪の補正は中央処理装置60によって所定の手順で自動的に行われる。   As shown in FIG. 1, the projector 10 performs the overall operation of the projection device 20 having the projection lens 21 and the display unit 22, the image control unit 23 that controls the image of the display unit 22, and the tilt angle measuring device 30. A central processing unit 60 that controls the image, and the distortion of the image on the screen 70 is corrected by controlling the output image of the display unit 22 according to the inclination angle calculated by the inclination angle measuring device 30. Image distortion correction is automatically performed by the central processing unit 60 in a predetermined procedure.

投影装置20は、傾斜角度測定時に投射レンズ21から最高輝度の白となるような均一な輝度の光である均一輝度光を映像としてスクリーン70に投射する均一輝度光出力手段を有している。均一輝度光は通常光源となる高圧水銀ランプの出力光をライトバルブで制御することによって均一輝度光として投射されるが、光源はLED(発光ダイオード)であってもよい。また均一輝度光は可視光をカットした赤外線であってもよく、この場合スクリーン面自体を高輝度とすることなく光強度重心位置を計測することができる。   The projection device 20 has uniform luminance light output means for projecting uniform luminance light, which is light of uniform luminance such that the maximum luminance is white from the projection lens 21 when measuring the tilt angle, onto the screen 70 as an image. The uniform luminance light is projected as uniform luminance light by controlling the output light of a high-pressure mercury lamp, which is a normal light source, with a light valve, but the light source may be an LED (light emitting diode). The uniform luminance light may be an infrared ray obtained by cutting visible light. In this case, the light intensity barycentric position can be measured without increasing the luminance of the screen surface itself.

傾斜角度測定装置30は、傾斜角度が算定される面である投射光軸27を含む基準面28から垂直方向に所定の間隔をおいてプロジェクタ10の筐体の前面に設けられたピンホール51と、そのピンホール51を通過するスクリーン70からの均一輝度光の反射光32を受光するようにプロジェクタ10の内部に基準面28に平行で投射光軸27に垂直な面との交線である基準線29上に一列に設けられ、基準面28に対し投射光軸27の垂直上方にある中央、並びに両側各2個所の5箇所に配置された光強度測定センサ52(52C、52R1、52R2、52L1、52L2)と、受光強度解析傾斜角度算定部53とを備えている。   The tilt angle measuring device 30 includes a pinhole 51 provided on the front surface of the casing of the projector 10 at a predetermined interval in a vertical direction from a reference plane 28 including the projection optical axis 27 that is a plane on which the tilt angle is calculated. A reference line which is an intersection line with a plane parallel to the reference plane 28 and perpendicular to the projection optical axis 27 inside the projector 10 so as to receive the reflected light 32 of the uniform luminance light from the screen 70 passing through the pinhole 51. Light intensity measurement sensors 52 (52C, 52R1, 52R2, 52L1) provided in a line on the line 29 and disposed at the center vertically above the projection optical axis 27 with respect to the reference plane 28 and at two locations on both sides. , 52L2) and a received light intensity analysis inclination angle calculation unit 53.

受光強度解析傾斜角度算定部53は、5箇所の光強度測定センサ52の光強度測定結果から、光強度測定値の大きい順に3個の光強度測定値を選択し、選択された3個の光強度測定値の光強度測定センサ52について、基準線29を横軸とし光強度測定値を縦軸としたときの測定された各位置の光強度測定値の棒グラフの先端を結ぶ近似二次曲線81を算出し、その二次曲線81の頂点82の基準線29上の位置とその基準線29上の投射光軸27を含み基準面28に垂直な面との交点との間の距離を求め、その距離と傾斜角度との間の予め設定された相関関係から、基準面上での傾斜角度を算定して画面の歪をなくするように表示部22の出力映像を制御する。   The received light intensity analysis inclination angle calculation unit 53 selects three light intensity measurement values in the descending order of the light intensity measurement values from the light intensity measurement results of the five light intensity measurement sensors 52, and selects the selected three light beams. For the light intensity measurement sensor 52 of the intensity measurement value, an approximate quadratic curve 81 connecting the tips of the bar graphs of the light intensity measurement values at each position measured with the reference line 29 as the horizontal axis and the light intensity measurement value as the vertical axis. And calculating the distance between the position of the apex 82 of the quadratic curve 81 on the reference line 29 and the intersection of the plane including the projection optical axis 27 on the reference line 29 and perpendicular to the reference plane 28, Based on a predetermined correlation between the distance and the tilt angle, the tilt angle on the reference plane is calculated to control the output video of the display unit 22 so as to eliminate screen distortion.

その二次曲線81の頂点82の基準線29上の位置とピンホール51とを結ぶ直線と基準線に直角にピンホール51とを結ぶ直線とのなす角度は、基準面28上でのスクリーン70と投射光軸27に垂直な面との傾斜角度と近似するので計算で傾斜角度を算定してもよく、あるいは実測値に基づいてテーブルを作成しテーブルを参照して傾斜角度を算定してもよい。光強度測定センサ52としては例えばフォトトランジスタが使用される。   The angle between the straight line connecting the position of the apex 82 of the quadratic curve 81 on the reference line 29 and the pinhole 51 and the straight line connecting the pinhole 51 perpendicular to the reference line is the screen 70 on the reference plane 28. Therefore, the tilt angle may be calculated by calculation, or a table may be created based on actual measurement values and the tilt angle calculated by referring to the table. Good. For example, a phototransistor is used as the light intensity measurement sensor 52.

プロジェクタ10は液晶プロジェクタでもDLP(登録商標)(デジタルライトプロセッシング)方式のプロジェクタであっても本発明は適用でき、液晶プロジェクタの場合の表示部22は液晶表示部となり、DLP方式のプロジェクタの場合の表示部22はDMD(デジタルマイクロミラーデバイス)表示部、カラーホイール、光源を備える。   The present invention can be applied to the projector 10 regardless of whether it is a liquid crystal projector or a DLP (registered trademark) (digital light processing) type projector. The display unit 22 in the case of a liquid crystal projector is a liquid crystal display unit. The display unit 22 includes a DMD (digital micromirror device) display unit, a color wheel, and a light source.

図2に示されるようにピンホール51は、傾斜角度が算定される面である投射光軸27を含む基準面28に対して垂直方向に投射光軸27から所定の間隔をおいてプロジェクタ10の筐体の前壁面に設けられ、光強度測定センサ52は、プロジェクタ10の筐体の内部に、ピンホール51を通過する高輝度の投射光31のスクリーン70からの反射光32を受光するように、基準面28に平行な面と投射光軸27に垂直な面との交線である基準線29上に一列に設けられ、基準面28に対し投射光軸27の垂直上方にある中央、並びに左右両側の各2箇所の計5箇所に配置されている。この実施の形態では光強度測定センサ52を5個として説明するが、4個以上であればよく、多いほど精度は向上するがコストも増加する。また、光強度測定センサ52は基準線29上の位置が確定されていればよい。   As shown in FIG. 2, the pinhole 51 is arranged at a predetermined interval from the projection optical axis 27 in a direction perpendicular to the reference plane 28 including the projection optical axis 27 that is a plane whose inclination angle is calculated. The light intensity measurement sensor 52 provided on the front wall surface of the housing receives the reflected light 32 from the screen 70 of the high-intensity projection light 31 that passes through the pinhole 51 inside the housing of the projector 10. , Provided in a line on a reference line 29 that is a line of intersection between a plane parallel to the reference plane 28 and a plane perpendicular to the projection optical axis 27, a center vertically above the projection optical axis 27 with respect to the reference plane 28, and It is arranged at a total of five locations, two on each of the left and right sides. In this embodiment, the description will be made assuming that the number of the light intensity measurement sensors 52 is five, but it is sufficient that the number is four or more. As the number is increased, the accuracy is improved but the cost is also increased. Further, the light intensity measurement sensor 52 only needs to have a fixed position on the reference line 29.

図3(d)の左側に示すように、投射光31の方向とスクリーン70とが直交していれば入射方向で最も強い反射光32が得られ、反射角度に対応して光強度は減少する。図3(d)の右側に示すように、投射光31の方向とスクリーン70とが傾斜していればスクリーン70に対しスクリーン70に垂直な方向に対して投射光31と対称な方向で最も強い主反射光33が得られこの方向からの乖離に対応して光強度は減少する。従って光軸27の方向と主反射光33の方向との間の角度が特定できれば、この角度が基準面28上の光軸27に垂直な面とスクリーン70と間の傾斜角となる。   As shown on the left side of FIG. 3D, when the direction of the projection light 31 and the screen 70 are orthogonal to each other, the strongest reflected light 32 is obtained in the incident direction, and the light intensity decreases corresponding to the reflection angle. . As shown on the right side of FIG. 3D, if the direction of the projection light 31 and the screen 70 are inclined, the screen 70 is the strongest in the direction symmetrical to the projection light 31 with respect to the direction perpendicular to the screen 70. The main reflected light 33 is obtained, and the light intensity decreases corresponding to the deviation from this direction. Therefore, if the angle between the direction of the optical axis 27 and the direction of the main reflected light 33 can be specified, this angle becomes the inclination angle between the plane perpendicular to the optical axis 27 on the reference plane 28 and the screen 70.

従って、図3(a)に示すように投射光軸37がスクリーン70と直交していれば、中央の光強度測定センサ52Cの光強度測定値が最も強くなり、左の光強度測定センサ52L1、52L2と右の光強度測定センサ52R1、52R2とが中央の光強度測定センサ52Cを中心に対称に配置されているとすれば、左右の光強度測定センサ52L1、52R1の光強度測定値および52L2、52R2の光強度測定値はそれぞれ同じ値で中央の光強度測定センサ52Cよりも離れるに従って弱くなる。スクリーンが高ゲインスクリーンの場合について基準線29を横軸としそれぞれの光強度測定値を縦軸として表示すると図4(a)となる。ここで光強度測定値の強い順に選択すると実線で示される52C、52L2、52R2となり、二次曲線81はこの3点の光強度測定値を経由する二次曲線である。ここで点線は基準線29上の実光強度83であるが両端部を除いては二次曲線81と一致しており、頂点82の位置も一致している。   Therefore, if the projection optical axis 37 is orthogonal to the screen 70 as shown in FIG. 3A, the light intensity measurement value of the center light intensity measurement sensor 52C is the strongest, and the left light intensity measurement sensor 52L1, If the light intensity measurement sensor 52R1 and the right light intensity measurement sensor 52R1, 52R2 are arranged symmetrically about the center light intensity measurement sensor 52C, the light intensity measurement values of the left and right light intensity measurement sensors 52L1, 52R1 and 52L2, The light intensity measurement values of 52R2 are the same values, and become weaker as they move away from the central light intensity measurement sensor 52C. When the screen is a high gain screen, when the reference line 29 is displayed on the horizontal axis and the respective light intensity measurement values are displayed on the vertical axis, FIG. 4A is obtained. When the light intensity measurement values are selected in the descending order, 52C, 52L2, and 52R2 indicated by solid lines are obtained, and the quadratic curve 81 is a quadratic curve that passes through these three light intensity measurement values. Here, the dotted line is the actual light intensity 83 on the reference line 29, but it coincides with the quadratic curve 81 except for both ends, and the position of the vertex 82 also coincides.

図3(b)に示すように投射光軸37がスクリーン70と第1の角度αで交差しており、仮に左端の光強度測定センサ52L1とピンホール51を結ぶ反射光32とスクリーン70とのなす角度と中央の光強度測定センサ52Cとピンホール51を結ぶ反射光32とスクリーン70とのなす角度とが同じと仮定すれば、中央の光強度測定センサ52Cの光強度測定値と左端の光強度測定センサ52L1の光強度測定値が同じとなり、光強度測定センサ52L2の光強度測定値はそれよりも強くなる。右の光強度測定センサ52R2、R1の光強度測定値がそれよりも順に弱くなる。スクリーンが高ゲインスクリーンの場合について基準線29を横軸としそれぞれの光強度測定値を縦軸として表示すると図4(b)となる。ここで光強度測定値の強い順に選択すると光強度測定センサ52L2、52C、52L1となり、二次曲線81はこの3点を経由する二次曲線である。ここで点線は基準線29上の実光強度であるが右側を除いては二次曲線81と一致しており、頂点82の位置も一致している。   As shown in FIG. 3B, the projection optical axis 37 intersects the screen 70 at the first angle α, and it is assumed that the reflected light 32 connecting the left end light intensity measurement sensor 52 </ b> L <b> 1 and the pinhole 51 and the screen 70. Assuming that the angle formed between the reflected light 32 connecting the pinhole 51 and the central light intensity measurement sensor 52C and the screen 70 is the same, the light intensity measurement value of the central light intensity measurement sensor 52C and the light at the left end The light intensity measurement value of the intensity measurement sensor 52L1 becomes the same, and the light intensity measurement value of the light intensity measurement sensor 52L2 becomes stronger than that. The light intensity measurement values of the right light intensity measurement sensors 52R2 and R1 become weaker in order. When the screen is a high gain screen, when the reference line 29 is displayed on the horizontal axis and the respective light intensity measurement values are displayed on the vertical axis, FIG. 4B is obtained. If the light intensity measurement values are selected in descending order, the light intensity measurement sensors 52L2, 52C, and 52L1 are obtained, and the quadratic curve 81 is a quadratic curve that passes through these three points. Here, the dotted line is the actual light intensity on the reference line 29, but it coincides with the quadratic curve 81 except for the right side, and the position of the vertex 82 also coincides.

図3(c)に示すように投射光軸37がスクリーン70と第1の角度αよりも少ない第2の角度βで交差し、左端の光強度測定センサ52L1にスクリーン70からの主反射光33が入射しているとすれば、左端の光強度測定センサ52L1の光強度測定値が最も強く、光強度測定センサ52L2がそれに次ぎ、中央の光強度測定センサ52Cの光強度測定値がそれよりも弱く、右の光強度測定センサ52R2、52R1の光強度測定値がそれよりも順に弱くなる。スクリーンが高ゲインスクリーンの場合について基準線29を横軸としそれぞれの光強度測定値を縦軸として表示すると図4(c)となる。ここで光強度測定値の強い順に選択すると52L2、52L1、52Cとなり、二次曲線81はこの3点を経由する二次曲線である。ここで点線は基準線29上の実光強度であるが中央より右側では二次曲線81と乖離しており、これが従来例の場合に問題を生じた原因であるが、本発明では傾斜角との相関性の高い3箇所を選択して頂点を求めるので高ゲインスクリーンで傾斜の大きい場合にも正しい頂点82、即ち実光強度83の最も強い点を求めることができる。   As shown in FIG. 3C, the projection optical axis 37 intersects the screen 70 at a second angle β smaller than the first angle α, and the main reflected light 33 from the screen 70 is passed to the light intensity measurement sensor 52L1 at the left end. , The light intensity measurement value of the left end light intensity measurement sensor 52L1 is the strongest, the light intensity measurement sensor 52L2 follows, and the light intensity measurement value of the central light intensity measurement sensor 52C is higher than that. The light intensity measurement values of the right light intensity measurement sensors 52R2 and 52R1 are weaker in order. When the screen is a high gain screen, when the reference line 29 is displayed on the horizontal axis and the respective light intensity measurement values are displayed on the vertical axis, FIG. 4C is obtained. Here, when the light intensity measurement values are selected in descending order, 52L2, 52L1, and 52C are obtained, and the quadratic curve 81 is a quadratic curve that passes through these three points. Here, the dotted line is the actual light intensity on the reference line 29, but is deviated from the quadratic curve 81 on the right side from the center, which is the cause of the problem in the conventional example. Therefore, the correct vertex 82, that is, the strongest point of the actual light intensity 83 can be obtained even when the slope is large on the high gain screen.

受光強度解析傾斜角度算定部53は、光強度測定値の強い順に選択した3箇所の光強度測定センサ52の光強度測定結果から、例えばラグランジュの補完公式により図4に示すように基準線29を横軸とし光強度測定値を縦軸としたときの測定された各位置の光強度測定値の棒グラフの先端を結ぶ二次曲線81を算出し、その二次曲線81の頂点82の横軸上の位置を求める。図3に示されるようにピンホール51を経由する反射光32が投射光31と一致する、即ち投射光31とスクリーン70とが直交するときに反射光32は最大になる。従って二次曲線81の頂点82の横軸、すなわち基準線29上の位置とピンホール51とを結ぶ反射光32、即ち投射光31とスクリーン70とが直交しているので、横軸、すなわち基準線29上の頂点82の位置とピンホール51とを結ぶ直線と基準線29に直角にピンホール51とを結ぶ直線とのなす角度は基準面28上でのスクリーン70と投射光軸27に垂直な面との傾斜角度と近似するので計算で傾斜角度を算定するか、あるいは実測値に基づいてテーブルを作成しテーブルを参照して傾斜角度を算定して、画像制御部23によって表示部22の出力映像を制御する。   The received light intensity analysis inclination angle calculation unit 53 calculates the reference line 29 from the light intensity measurement results of the three light intensity measurement sensors 52 selected in descending order of the light intensity measurement values, for example, as shown in FIG. A quadratic curve 81 connecting the tips of the bar graphs of the measured light intensity values at the respective positions when the horizontal axis is the light intensity measurement value and the vertical axis is the vertical axis is calculated. Find the position of. As shown in FIG. 3, the reflected light 32 passing through the pinhole 51 coincides with the projected light 31, that is, the reflected light 32 becomes maximum when the projected light 31 and the screen 70 are orthogonal to each other. Accordingly, since the reflected light 32 that connects the position of the apex 82 of the quadratic curve 81, that is, the position on the reference line 29, and the pinhole 51, that is, the projection light 31 and the screen 70 are orthogonal, the horizontal axis, that is, the reference The angle formed by the straight line connecting the position of the vertex 82 on the line 29 and the pinhole 51 and the straight line connecting the pinhole 51 perpendicular to the reference line 29 is perpendicular to the screen 70 and the projection optical axis 27 on the reference plane 28. The tilt angle is approximated to the tilt angle with a smooth surface, or the tilt angle is calculated by calculation, or a table is created based on the actually measured values and the tilt angle is calculated with reference to the table. Control the output video.

図5は複数の光強度測定センサ52の光強度測定値から表示部22の出力映像を修正する過程を示す模式的流れ図である。受光強度解析傾斜角度算定部53が、5点の光強度測定センサ52の光強度測定値から光強度測定値の大きい順に3点を選択し(ステップS1)、選択した3点の光強度測定値を通る二次曲線を生成し(ステップS2)、中央の光強度測定センサ52Cの位置、即ち投射光軸27の上方の位置と二次曲線の頂点の位置とのずれを算出し(ステップS3)、これを基に演算またはテーブル参照により投影装置20の光軸とスクリーン70との傾斜角度を生成し(ステップS4)、生成した傾斜角度を受けて画像制御部23はLSI制御パラメータを生成し(ステップS5)、プロジェクタ用画像処理LSIを制御することにより(ステップS6)、入力映像24が修正されて表示部22で出力映像25となる。この出力映像25はスクリーン70に投射されると入力映像24と相似の映像となる。この方法はスクリーン70が均一な明るさで照射されていることが望ましいが、実際には中心部ほど明るく照射される傾向にあるので、その分の補正も含めてステップS4では演算による角度算出よりもテーブルによる角度算出が望ましい。   FIG. 5 is a schematic flowchart showing a process of correcting the output image of the display unit 22 from the light intensity measurement values of the plurality of light intensity measurement sensors 52. The received light intensity analysis inclination angle calculation unit 53 selects three points in descending order of the light intensity measurement values from the light intensity measurement values of the five light intensity measurement sensors 52 (step S1), and the selected three light intensity measurement values. Is generated (step S2), and the deviation between the position of the central light intensity measurement sensor 52C, that is, the position above the projection optical axis 27 and the position of the apex of the quadratic curve is calculated (step S3). Based on this, an inclination angle between the optical axis of the projection device 20 and the screen 70 is generated by calculation or table reference (step S4), and the image control unit 23 generates an LSI control parameter in response to the generated inclination angle ( In step S5), by controlling the projector image processing LSI (step S6), the input video 24 is modified to become an output video 25 on the display unit 22. When the output video 25 is projected onto the screen 70, it becomes a video similar to the input video 24. In this method, it is desirable that the screen 70 is irradiated with uniform brightness. However, since the center portion tends to be irradiated more brightly in practice, in step S4 including the correction, the angle is calculated by calculation. It is also desirable to calculate the angle using a table.

これまでの説明では、水平方向の傾斜角度を測定することで説明してきたが、ピンホール51ならびに光強度測定センサ52の位置を投射光軸27を中心に90°回転させることにより垂直方向の傾斜角度を測定することが可能である。   In the description so far, the horizontal inclination angle has been measured, but the vertical inclination is obtained by rotating the positions of the pinhole 51 and the light intensity measurement sensor 52 about the projection optical axis 27 by 90 °. It is possible to measure the angle.

また、ここでは導光部をピンホールとして説明したが、光学レンズであっても同様の測定を行うことができる。図6は導光部として凸レンズ56を使用した場合のスクリーン70からの反射光32の光強度測定センサ52への入光状態を示す模式図である。凸レンズ56を使用した場合においても、スクリーン70からの反射光32はピンホール51を使用した場合のスクリーン70からの反射光32と同じに光強度測定センサ52に入力する。   Although the light guide is described as a pinhole here, the same measurement can be performed even with an optical lens. FIG. 6 is a schematic diagram showing a light incident state of the reflected light 32 from the screen 70 to the light intensity measurement sensor 52 when the convex lens 56 is used as the light guide unit. Even when the convex lens 56 is used, the reflected light 32 from the screen 70 is input to the light intensity measurement sensor 52 in the same manner as the reflected light 32 from the screen 70 when the pinhole 51 is used.

次に本発明の第2の実施の形態について説明する。図7は本発明の第2の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式的ブロック構成図である。第2の実施の形態では傾斜角度測定装置30に、機械の据付の心出しなどにも利用されている加速度検出素子を用いた傾斜センサ(Gセンサ)であって、重力の方向に対する傾斜角度を精密に測定し数値データとして出力する垂直方向傾斜センサ54が設けられている以外は第1の実施の形態と構成も動作も同じなので、同じ構成要素には同じ符号を付し同一の部分についての説明を省略する。   Next, a second embodiment of the present invention will be described. FIG. 7 is a schematic block diagram of a projector provided with automatic trapezoidal distortion correcting means according to the second embodiment of the present invention. In the second embodiment, the inclination angle measuring device 30 is an inclination sensor (G sensor) using an acceleration detection element that is also used for centering of machine installation, and the inclination angle with respect to the direction of gravity is set. Since the configuration and operation are the same as those of the first embodiment except that a vertical inclination sensor 54 that precisely measures and outputs numerical data is provided, the same components are denoted by the same reference numerals and the same parts are designated. Description is omitted.

垂直方向傾斜センサ54が検出した垂直方向の傾斜角度は受光強度解析傾斜角度算定部53に入力され、受光強度解析傾斜角度算定部53では光強度測定センサ52で測定された光強度測定値により水平方向の傾斜角度を算出するとともに、垂直方向傾斜センサ54が検出した垂直方向の傾斜角度と合わせて画像制御部23に出力し、画像制御部23は水平方向と垂直方向の傾斜を加味してLSI制御パラメータを生成する。この場合も受光部がピンホール51に代えて凸レンズ56であっても第1の実施の形態で説明したように同様の処理が行われる。   The vertical inclination angle detected by the vertical inclination sensor 54 is input to the received light intensity analysis inclination angle calculation section 53, and the received light intensity analysis inclination angle calculation section 53 uses the light intensity measurement value measured by the light intensity measurement sensor 52 to determine the horizontal angle. In addition to calculating the tilt angle in the direction, the tilt angle in the vertical direction detected by the vertical tilt sensor 54 is output to the image control unit 23, and the image control unit 23 takes into account the tilt in the horizontal and vertical directions. Generate control parameters. In this case, the same processing is performed as described in the first embodiment even if the light receiving unit is a convex lens 56 instead of the pinhole 51.

次に本発明の第3の実施の形態について説明する。図8は本発明の第3の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式的ブロック構成図であり、図9は本発明の第3の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式図であり(a)は正面図、(b)は側面図、(c)は上面図である。   Next, a third embodiment of the present invention will be described. FIG. 8 is a schematic block diagram of a projector provided with the automatic trapezoidal distortion correcting means of the third embodiment of the present invention, and FIG. 9 shows the automatic trapezoidal distortion correcting means of the third embodiment of the present invention. It is a schematic diagram of the projector provided, (a) is a front view, (b) is a side view, (c) is a top view.

第3の実施の形態では、第1の実施の形態では水平方向の傾斜角度測定用のみであったピンホール51、5個の光強度測定センサ52に加えて、垂直方向の傾斜角度測定用のピンホール51’、5個の光強度測定センサ52’を有し、それぞれが受光強度解析傾斜角度算定部53に接続されている以外は第1の実施の形態と構成も動作も同じなので、同じ構成要素には同じ符号を付し同一の部分についての説明を省略する。   In the third embodiment, in addition to the pinhole 51 and the five light intensity measurement sensors 52 that are only used for measuring the tilt angle in the horizontal direction in the first embodiment, it is used for measuring the tilt angle in the vertical direction. Since the configuration and the operation are the same as those of the first embodiment except that the pinhole 51 ′ and the five light intensity measurement sensors 52 ′ are provided and connected to the received light intensity analysis inclination angle calculation unit 53, the same. Constituent elements are denoted by the same reference numerals, and descriptions of the same parts are omitted.

垂直方向の傾斜角度測定用の5個の光強度測定センサ52’が測定した光強度測定値も受光強度解析傾斜角度算定部53に入力され、受光強度解析傾斜角度算定部53では光強度測定センサ54で測定された光強度測定値より水平方向の傾斜角度を算出するとともに、光強度測定センサ54’で測定された光強度測定値より垂直方向の傾斜角度を算出し、水平方向の傾斜角度と垂直方向の傾斜角度とを合わせて画像制御部23に出力し、画像制御部23は水平方向と垂直方向の傾斜を加味してLSI制御パラメータを生成する。この場合も受光部がピンホール51に代えて凸レンズ56であっても第1の実施の形態で説明したように同様の処理が行われる。   The light intensity measurement values measured by the five light intensity measurement sensors 52 ′ for measuring the inclination angle in the vertical direction are also input to the received light intensity analysis inclination angle calculation unit 53, and the received light intensity analysis inclination angle calculation unit 53 performs the light intensity measurement sensor. The horizontal inclination angle is calculated from the light intensity measurement value measured at 54, and the vertical inclination angle is calculated from the light intensity measurement value measured by the light intensity measurement sensor 54 ′. The tilt angle in the vertical direction is combined and output to the image control unit 23, and the image control unit 23 generates LSI control parameters in consideration of the tilt in the horizontal direction and the vertical direction. In this case, the same processing is performed as described in the first embodiment even if the light receiving unit is a convex lens 56 instead of the pinhole 51.

本発明の第1の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式的ブロック構成図である。1 is a schematic block configuration diagram of a projector including an automatic trapezoidal distortion correcting unit according to a first embodiment of the present invention. 本発明の第1の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式図である。(a)は正面図である。(b)は側面図である。(c)は上面図である。It is a schematic diagram of the projector provided with the automatic trapezoid distortion correction means of the 1st Embodiment of this invention. (A) is a front view. (B) is a side view. (C) is a top view. 投影装置からスクリーンに投射された均一輝度光の反射光の状態を示す模式図である。(a)は投射光軸とスクリーンとの傾斜角度が90°の状態である。(b)は第1の傾斜角の場合である。(c)は第1の傾斜角よりも小さい第2の傾斜角の場合である。(d)はスクリーンに対する光線の入射角度と反射光線の反射角度による光強度測定値の分布である。It is a schematic diagram which shows the state of the reflected light of the uniform luminance light projected on the screen from the projection apparatus. (A) is a state in which the inclination angle between the projection optical axis and the screen is 90 °. (B) is the case of the first tilt angle. (C) is a case of the 2nd inclination angle smaller than the 1st inclination angle. (D) is a distribution of light intensity measurement values according to the incident angle of the light beam on the screen and the reflection angle of the reflected light beam. スクリーンが高ゲインスクリーンの場合の横軸を基準線として示した光強度測定センサの位置と、縦軸を光強度測定センサの計測した光強度測定値としたときの選択された光強度測定値の棒グラフの先端を結ぶ二次曲線を示す模式図である。(a)は投射光軸とスクリーンとの傾斜角度が90°の状態である。(b)は第1の傾斜角の場合である。(c)は第2の傾斜角の場合である。When the screen is a high gain screen, the position of the light intensity measurement sensor shown with the horizontal axis as the reference line, and the light intensity measurement value selected when the vertical axis is the light intensity measurement value measured by the light intensity measurement sensor. It is a schematic diagram which shows the quadratic curve which connects the front-end | tip of a bar graph. (A) is a state in which the inclination angle between the projection optical axis and the screen is 90 °. (B) is the case of the first tilt angle. (C) is the case of the second tilt angle. 複数の光強度測定センサの光強度測定値から表示部の出力映像を修正する過程を示す模式的流れ図である。It is a typical flowchart which shows the process which corrects the output image of a display part from the light intensity measurement value of a some light intensity measurement sensor. 導光部として凸レンズを使用した場合のスクリーンからの反射光の光強度測定センサへの入光状態を示す模式図である。It is a schematic diagram which shows the light-incidence state to the light intensity measurement sensor of the reflected light from a screen at the time of using a convex lens as a light guide part. 本発明の第2の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式的ブロック構成図である。It is a typical block block diagram of the projector provided with the automatic trapezoid distortion correction means of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式的ブロック構成図である。It is a typical block block diagram of the projector provided with the automatic trapezoid distortion correction means of the 3rd Embodiment of this invention. は本発明の第3の実施の形態の自動台形歪補正手段を備えたプロジェクタの模式図である。(a)は正面図である。(b)は側面図である。(c)は上面図である。These are the schematic diagrams of the projector provided with the automatic trapezoid distortion correction means of the 3rd Embodiment of this invention. (A) is a front view. (B) is a side view. (C) is a top view. 従来例の投影装置からスクリーンに投射された均一輝度光の反射光の状態を示す模式図である。(a)は投射光軸とスクリーンとの傾斜角度が90°の状態である。(b)は第1の傾斜角の場合である。(c)は第1の傾斜角よりも小さい第2の傾斜角の場合である。It is a schematic diagram which shows the state of the reflected light of the uniform luminance light projected on the screen from the projector of the prior art example. (A) is a state in which the inclination angle between the projection optical axis and the screen is 90 °. (B) is the case of the first tilt angle. (C) is a case of the 2nd inclination angle smaller than the 1st inclination angle. 従来例の横軸を基準線として示した光強度測定センサの位置と、縦軸を光強度測定センサの計測した光強度測定値としたときの光強度測定値の棒グラフの先端を結ぶ二次曲線を示す模式図である。(a)は投射光軸とスクリーンとの傾斜角度が90°の状態である。(b)は第1の傾斜角の場合である。(c)は第2の傾斜角の場合である。(d)は第2の傾斜角でスクリーンが高ゲインスクリーンの場合である。A quadratic curve connecting the position of the light intensity measurement sensor with the horizontal axis of the conventional example as the reference line and the tip of the bar graph of the light intensity measurement value when the vertical axis is the light intensity measurement value measured by the light intensity measurement sensor It is a schematic diagram which shows. (A) is a state in which the inclination angle between the projection optical axis and the screen is 90 °. (B) is the case of the first tilt angle. (C) is the case of the second tilt angle. (D) is a case where the screen is a high gain screen at the second tilt angle.

符号の説明Explanation of symbols

10 プロジェクタ
20 投影装置
21、121 投射レンズ
22 表示部
23 画像制御部
24 入力映像
25 出力映像
27 投射光軸
28 基準面
29 基準線
30 傾斜角度測定装置
31 投射光
32 反射光
33 主反射光
51、51’、151 ピンホール
52、52L1、52L2、52C、52R1、52R2、52’、52’L、52’C、52’R、152、152L、152C、152R 光強度測定センサ
53 受光強度解析傾斜角度算定部
54 垂直方向傾斜センサ
56 凸レンズ
60 中央処理装置
70 スクリーン
81 二次曲線
82 頂点
83 実光強度
S1〜S6 ステップ
DESCRIPTION OF SYMBOLS 10 Projector 20 Projector 21, 121 Projection lens 22 Display part 23 Image control part 24 Input image 25 Output image 27 Projection optical axis 28 Reference surface 29 Reference line 30 Inclination angle measuring device 31 Projection light 32 Reflected light 33 Main reflected light 51, 51 ′, 151 Pinhole 52, 52L1, 52L2, 52C, 52R1, 52R2, 52 ′, 52′L, 52′C, 52′R, 152, 152L, 152C, 152R Light intensity measurement sensor 53 Light reception intensity analysis inclination angle Calculation unit 54 Vertical inclination sensor 56 Convex lens 60 Central processing unit 70 Screen 81 Quadratic curve 82 Vertex 83 Actual light intensity S1 to S6 Steps

Claims (12)

表示部と投射レンズとを有しスクリーンに映像を投射する投影装置を備え、該投影装置の投射光軸の前記スクリーンに対する傾斜角度を算定する傾斜角度測定装置および算定された傾斜角度に従って前記表示部の出力映像を制御することにより前記スクリーンに投射された映像の台形の歪を補正する画像制御部とからなる自動台形歪補正手段を備えたプロジェクタにおいて、
前記投影装置は、該投影装置の投射レンズから均一な輝度の光である均一輝度光を前記スクリーンに投射する均一輝度光出力手段を有し、
前記傾斜角度測定装置は、
前記プロジェクタの筐体壁面に、前記傾斜角度が算定される面である前記投射光軸を含む基準面に対して該投射光軸から垂直方向に所定の間隔をおいて設けられた1個の導光部と、
前記プロジェクタの筐体内部に、前記導光部を通過する前記均一輝度光の前記スクリーンからの反射光を受光するように、前記基準面に平行な面と前記投射光軸に垂直な面との交線である基準線上に一列に設けられ、受光している前記反射光の光強度を測定する少なくとも4個の光強度測定センサと、
少なくとも4個の前記光強度測定センサの光強度測定結果から、光強度測定値の大きい順に3個の光強度測定値を選択し、選択された3個の光強度測定値の前記基準線上の位置を横軸とし、その位置における光強度を縦軸としたときの、各位置で測定された光強度の棒グラフの先端を結ぶ近似二次曲線を算出し、該二次曲線の頂点の前記基準線上の位置と該基準線の前記投射光軸を含み前記基準面に垂直な面との交点との間の距離を求め、該距離と前記傾斜角度との間の予め設定された相関関係から、前記基準面上での前記傾斜角度を算定して前記画像制御部に出力する受光強度解析傾斜角度算定部と、を有することを特徴とする自動台形歪補正手段を備えたプロジェクタ。
A projection device having a display unit and a projection lens and projecting an image on a screen, an inclination angle measuring device for calculating an inclination angle of the projection optical axis of the projection device with respect to the screen, and the display unit according to the calculated inclination angle In a projector provided with an automatic trapezoidal distortion correcting means composed of an image control unit that corrects the trapezoidal distortion of the video projected on the screen by controlling the output video of
The projection device has uniform luminance light output means for projecting uniform luminance light, which is light of uniform luminance, from the projection lens of the projection device onto the screen,
The tilt angle measuring device includes:
One guide provided on the housing wall surface of the projector at a predetermined interval in a direction perpendicular to the projection optical axis with respect to a reference plane including the projection optical axis, which is a plane on which the tilt angle is calculated. Hikari and
A plane parallel to the reference plane and a plane perpendicular to the projection optical axis so as to receive the reflected light from the screen of the uniform luminance light passing through the light guide unit inside the projector housing. At least four light intensity measuring sensors that are provided in a line on a reference line that is an intersecting line and that measure the light intensity of the reflected light received;
From the light intensity measurement results of at least four light intensity measurement sensors, three light intensity measurement values are selected in descending order of the light intensity measurement values, and the positions of the selected three light intensity measurement values on the reference line are selected. Is the horizontal axis, and the vertical axis is the light intensity at that position, an approximate quadratic curve connecting the tip of the bar graph of the light intensity measured at each position is calculated, And the intersection between the reference line and the plane perpendicular to the reference plane including the projection optical axis of the reference line, and from a preset correlation between the distance and the tilt angle, A projector including an automatic trapezoidal distortion correction unit, comprising: a received light intensity analysis inclination angle calculation unit that calculates the inclination angle on a reference plane and outputs the calculated inclination angle to the image control unit.
前記基準面が水平方向の面であり、前記導光部が前記投射光軸に対し垂直方向に配置されている、請求項1に記載の自動台形歪補正手段を備えたプロジェクタ。   The projector with automatic trapezoidal distortion correction means according to claim 1, wherein the reference plane is a horizontal plane, and the light guide section is arranged in a direction perpendicular to the projection optical axis. さらに、前記傾斜角度測定装置は前記プロジェクタの前記投射光軸を含む垂直面上における前記投射光軸の傾斜角度を検出する垂直方向傾斜センサを有し、該垂直方向傾斜センサで検出された垂直面上の傾斜角度と、前記光強度測定センサを用いて算定された水平面上の傾斜角度とを組み合わせて前記表示部の出力映像が制御される、請求項2に記載の自動台形歪補正手段を備えたプロジェクタ。   The tilt angle measuring device further includes a vertical tilt sensor that detects a tilt angle of the projection optical axis on a vertical plane including the projection optical axis of the projector, and the vertical plane detected by the vertical tilt sensor. 3. The automatic trapezoidal distortion correction unit according to claim 2, wherein the output image of the display unit is controlled by combining the upper inclination angle and the inclination angle on the horizontal plane calculated using the light intensity measurement sensor. Projector. 前記基準面が垂直方向の面であり、前記導光部は、前記投射光軸から水平方向に配置されている、請求項1に記載の自動台形歪補正手段を備えたプロジェクタ。   The projector with automatic trapezoidal distortion correction means according to claim 1, wherein the reference plane is a vertical plane, and the light guide section is arranged in a horizontal direction from the projection optical axis. 前記基準面が水平方向および垂直方向の面であり、
前記導光部が前記投射光軸に対し垂直方向および水平方向にそれぞれ配置され、それぞれに対して前記光強度測定センサが設けられている、請求項1に記載の自動台形歪補正手段を備えたプロジェクタ。
The reference planes are horizontal and vertical planes;
2. The automatic trapezoidal distortion correcting means according to claim 1, wherein the light guide unit is arranged in a vertical direction and a horizontal direction with respect to the projection optical axis, and the light intensity measurement sensor is provided for each. projector.
前記均一輝度光出力手段は、前記投影装置の表示部の光源とライトバルブであり、前記均一輝度光は投射映像光である、請求項1から請求項5のいずれか1項に記載の自動台形歪補正手段を備えたプロジェクタ。   The automatic trapezoid according to any one of claims 1 to 5, wherein the uniform luminance light output means is a light source and a light valve of a display unit of the projection device, and the uniform luminance light is projection image light. A projector provided with distortion correction means. 前記均一輝度光出力手段は、前記投影装置の表示部の光源とライトバルブであり、前記均一輝度光は赤外線である、請求項1から請求項5のいずれか1項に記載の自動台形歪補正手段を備えたプロジェクタ。   The automatic trapezoidal distortion correction according to any one of claims 1 to 5, wherein the uniform luminance light output means is a light source and a light valve of a display unit of the projection device, and the uniform luminance light is infrared rays. A projector provided with means. 前記均一輝度光の光源は高圧水銀灯である、請求項6または請求項7に記載の自動台形歪補正手段を備えたプロジェクタ。   The projector having the automatic trapezoidal distortion correcting means according to claim 6 or 7, wherein the light source of the uniform luminance light is a high-pressure mercury lamp. 前記均一輝度光の光源はLEDである、請求項6または請求項7に記載の自動台形歪補正手段を備えたプロジェクタ。   The projector provided with the automatic trapezoidal distortion correction means according to claim 6 or 7, wherein the light source of the uniform luminance light is an LED. 前記光強度測定センサがフォトトランジスタである、請求項1から請求項9の何れか1項に記載の自動台形歪補正手段を備えたプロジェクタ。   The projector provided with the automatic trapezoid distortion correction means according to any one of claims 1 to 9, wherein the light intensity measurement sensor is a phototransistor. 前記導光部が投射装置の壁面に設けられたピンホールである、請求項1から請求項10の何れか1項に記載の自動台形歪補正手段を備えたプロジェクタ。   The projector provided with the automatic trapezoid distortion correction means according to any one of claims 1 to 10, wherein the light guide portion is a pinhole provided on a wall surface of the projection device. 前記導光部が投射装置の壁面に設けられた光学レンズである、請求項1から請求項10の何れか1項に記載の自動台形歪補正手段を備えたプロジェクタ。   The projector provided with the automatic trapezoid distortion correction means according to any one of claims 1 to 10, wherein the light guide unit is an optical lens provided on a wall surface of the projection device.
JP2003390841A 2003-11-20 2003-11-20 Projector with automatic trapezoidal distortion correction means Expired - Fee Related JP4339087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390841A JP4339087B2 (en) 2003-11-20 2003-11-20 Projector with automatic trapezoidal distortion correction means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390841A JP4339087B2 (en) 2003-11-20 2003-11-20 Projector with automatic trapezoidal distortion correction means

Publications (2)

Publication Number Publication Date
JP2005159427A true JP2005159427A (en) 2005-06-16
JP4339087B2 JP4339087B2 (en) 2009-10-07

Family

ID=34718088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390841A Expired - Fee Related JP4339087B2 (en) 2003-11-20 2003-11-20 Projector with automatic trapezoidal distortion correction means

Country Status (1)

Country Link
JP (1) JP4339087B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035041A1 (en) * 2007-09-13 2009-03-19 Nec Corporation Image display device, image display method, and direction calculation program
KR101295240B1 (en) * 2006-06-27 2013-08-09 삼성전자주식회사 Method for correcting keystone and apparatus therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295240B1 (en) * 2006-06-27 2013-08-09 삼성전자주식회사 Method for correcting keystone and apparatus therefor
WO2009035041A1 (en) * 2007-09-13 2009-03-19 Nec Corporation Image display device, image display method, and direction calculation program
JP5233999B2 (en) * 2007-09-13 2013-07-10 日本電気株式会社 Image display device, image display method, and direction calculation program

Also Published As

Publication number Publication date
JP4339087B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
EP1517550B1 (en) Projector with tilt angle measuring device
JP2006313116A (en) Distance tilt angle detection device, and projector with detection device
JP4131214B2 (en) Inclination angle detection apparatus and inclination angle detection method
JP5504781B2 (en) projector
JP2007093246A (en) Ranging apparatus and method
US20230102878A1 (en) Projector and projection method
JP3742085B2 (en) Projector having tilt angle measuring device
WO2012085990A1 (en) Projection display device and method for instructing installation attitude
JP3926311B2 (en) Projector having tilt angle measuring device
JP2005331585A (en) Projector having device for measuring distance and tilt angle
JP4689948B2 (en) projector
JP4339087B2 (en) Projector with automatic trapezoidal distortion correction means
JP3730982B2 (en) projector
JP2005159426A (en) Projector with automatic trapezoidal distortion correcting means
JP3709405B2 (en) Projector having tilt angle measuring device
KR20150116617A (en) Method for calibrating image distortion and apparatus thereof
JP3757224B2 (en) Projector having tilt angle measuring device
JP3730979B2 (en) Projector having tilt angle measuring device
JP3709406B2 (en) Projector having automatic trapezoidal distortion correction means
JP4535749B2 (en) Projector having distance inclination angle measuring device
JP4535769B2 (en) Projector with tilt angle measuring device
JP2005024618A (en) Projector having tilt angle measuring instrument
JP5150986B2 (en) projector
JP2005070412A (en) Image projector and its focus adjustment method
JP3742086B2 (en) Projector having tilt angle measuring device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees