JP2005159332A5 - - Google Patents

Download PDF

Info

Publication number
JP2005159332A5
JP2005159332A5 JP2004312684A JP2004312684A JP2005159332A5 JP 2005159332 A5 JP2005159332 A5 JP 2005159332A5 JP 2004312684 A JP2004312684 A JP 2004312684A JP 2004312684 A JP2004312684 A JP 2004312684A JP 2005159332 A5 JP2005159332 A5 JP 2005159332A5
Authority
JP
Japan
Prior art keywords
region
ultrafine carbon
channel formation
semiconductor device
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004312684A
Other languages
Japanese (ja)
Other versions
JP4762522B2 (en
JP2005159332A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004312684A priority Critical patent/JP4762522B2/en
Priority claimed from JP2004312684A external-priority patent/JP4762522B2/en
Publication of JP2005159332A publication Critical patent/JP2005159332A/en
Publication of JP2005159332A5 publication Critical patent/JP2005159332A5/ja
Application granted granted Critical
Publication of JP4762522B2 publication Critical patent/JP4762522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (15)

基板の厚さ方向に積層されたソース領域、チャネル形成領域、及びドレイン領域と、前記チャネル形成領域を包囲するゲート絶縁膜と、前記ゲート絶縁膜を介して前記チャネル形成領域と少なくとも一部が重なるゲート電極とを有し、
前記チャネル形成領域は、極細炭素繊維で形成され
前記極細炭素繊維の間には、前記極細炭素繊維の間を充填する部材が形成されていることを特徴とする半導体装置。
A source region, a channel formation region, and a drain region stacked in the thickness direction of the substrate, a gate insulating film surrounding the channel formation region, and at least a portion of the channel formation region overlap with each other with the gate insulating film interposed therebetween. It has a gate electrode,
The channel forming region is formed of ultra fine carbon fiber ,
A member filling the space between the ultrafine carbon fibers is formed between the ultrafine carbon fibers .
請求項において、
前記極細炭素繊維の間を充填する部材は、半導体材料で形成されていることを特徴とする半導体装置。
In claim 1 ,
Member for filling between the ultrafine carbon fibers, wherein a that is formed of a semi-conductor material.
請求項において、
前記極細炭素繊維の間を充填する部材は、絶縁材料で形成されていることを特徴とする半導体装置。
In claim 1 ,
The member filling the space between the ultrafine carbon fibers is made of an insulating material.
請求項1乃至請求項のいずれか一項において、
前記チャネル形成領域は、一本の極細炭素繊維で形成されていることを特徴とする半導体装置。
In any one of Claims 1 thru | or 3 ,
The channel formation region is formed of a single ultrafine carbon fiber.
請求項1乃至請求項のいずれか一項において、
前記チャネル形成領域は、複数の極細炭素繊維で形成されていることを特徴とする半導体装置。
In any one of Claims 1 thru | or 3 ,
The channel formation region is formed of a plurality of ultrafine carbon fibers.
求項1乃至請求項のいずれか一項において、
前記基板の厚さ方向に積層されたソース領域、チャネル形成領域、及びドレイン領域は柱状形状であり、
柱状形状である前記チャネル形成領域、複数有することを特徴とする半導体装置。
In any one of Motomeko 1 to claim 5,
The source region, the channel formation region, and the drain region stacked in the thickness direction of the substrate have a columnar shape,
It said channel formation region is a columnar shape, a semiconductor device characterized by a plurality.
請求項6において、In claim 6,
前記ゲート電極は、柱状形状である複数の前記チャネル形成領域で共通することを特徴とする半導体装置。The semiconductor device according to claim 1, wherein the gate electrode is common to the plurality of channel formation regions having a columnar shape.
請求項1乃至請求項のいずれか一項において、
前記基板の厚さ方向に積層されたソース領域、チャネル形成領域、及びドレイン領域は柱状形状であり、
前記ゲート電極は、柱状形状である前記チャネル形成領域の両サイドに形成されることを特徴とする半導体装置。
In any one of Claims 1 thru | or 5 ,
The source region, the channel formation region, and the drain region stacked in the thickness direction of the substrate have a columnar shape,
The gate electrode is formed on both sides of the channel formation region having a columnar shape .
請求項1乃至請求項のいずれか一項において、
前記極細炭素繊維は、グラファイトナノファイバ、カーボンナノファイバ、カーボンナノチューブ、チューブ状グラファイト、カーボンナノコーン、又はコーン状グラファイトであることを特徴とする半導体装置。
In any one of Claims 1 thru | or 8 ,
The ultrafine carbon fiber is a graphite nanofiber, a carbon nanofiber, a carbon nanotube, a tube-like graphite, a carbon nanocone, or a cone-like graphite.
導電性を有する第1の領域上に、選択的に金属元素を含む領域を形成し、
前記金属元素を含む領域上に極細炭素繊維を形成し、
前記極細炭素繊維の間を充填する部材を形成し、
前記極細炭素繊維を包囲するゲート絶縁膜を形成し、
前記ゲート絶縁膜に接するゲート電極を形成し、
前記極細炭素繊維と接続する導電性を有する第2の領域を形成することを特徴とする半導体装置の作製方法。
A region including a metal element is selectively formed over the first region having conductivity,
Forming an ultrafine carbon fiber on the region containing the metal element;
Forming a member filling the space between the ultrafine carbon fibers;
Forming a gate insulating film surrounding the ultrafine carbon fiber;
Forming a gate electrode in contact with the gate insulating film;
A method for manufacturing a semiconductor device, wherein the second region having conductivity connected to the ultrafine carbon fiber is formed.
導電性を有する第1の領域上に、選択的に金属元素を含む領域を形成し、
前記金属元素を含む領域上に極細炭素繊維を形成した後、半導体材料形成し、
前記半導体材料に、レーザ光を照射して前記極細炭素繊維の間を半導体材料で充填し、
前記半導体材料の一部を除去した後、
前記極細炭素繊維を包囲するゲート絶縁膜を形成し、
前記ゲート絶縁膜に接するゲート電極を形成し、
前記極細炭素繊維と接続する導電性を有する第2の領域を形成することを特徴とする半導体装置の作製方法。
A region including a metal element is selectively formed over the first region having conductivity,
After the formation of ultrafine carbon fibers on a region including the metal element to form a semiconductor material,
Wherein the semiconductor material is irradiated with laser light by filling between the ultrafine carbon fibers semiconductor materials,
After removing a portion of the semiconductor materials,
Forming a gate insulating film surrounding the ultrafine carbon fiber;
Forming a gate electrode in contact with the gate insulating film;
A method for manufacturing a semiconductor device, comprising forming a second region having conductivity connected to the ultrafine carbon fiber.
請求項11において、
前記レーザ光は、連続発振のレーザから照射されるレーザ光であることを特徴とする半導体装置の作製方法。
In claim 11 ,
The method for manufacturing a semiconductor device, wherein the laser light is laser light emitted from a continuous wave laser.
請求項10乃至請求項12のいずれか一項において、
前記金属元素は、ニッケル、鉄、コバルト、白金、ゲルマニウム、チタン、又はパラジウムから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物であることを特徴とする半導体装置の作製方法
In any one of Claims 10 to 12 ,
The metal elemental a method for manufacturing a semiconductor device comprising nickel, iron, cobalt, platinum, germanium, titanium, or an element selected from palladium, or that an alloy material or a compound mainly containing the element .
請求項10乃至請求項13のいずれか一項において、
前記導電性を有する第1の領域及び前記導電性を有する第2の領域は、ソース領域及びドレイン領域であることを特徴とする半導体装置の作製方法。
In any one of Claims 10 to 13 ,
The method for manufacturing a semiconductor device, wherein the first region having conductivity and the second region having conductivity are a source region and a drain region.
請求項10乃至請求項14のいずれか一項において、
前記極細炭素繊維は、グラファイトナノファイバ、カーボンナノファイバ、カーボンナノチューブ、チューブ状グラファイト、カーボンナノコーン、又はコーン状グラファイトであることを特徴とする半導体装置の作製方法
In any one of Claims 10 to 14 ,
The ultrafine carbon fibers, a method for manufacturing a semiconductor device comprising graphite nanofibers, carbon nanofibers, carbon nanotubes, tubular graphite, that the carbon nano cone or cone-like graphite.
JP2004312684A 2003-10-28 2004-10-27 Method for manufacturing semiconductor device Expired - Fee Related JP4762522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312684A JP4762522B2 (en) 2003-10-28 2004-10-27 Method for manufacturing semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003368159 2003-10-28
JP2003368159 2003-10-28
JP2004312684A JP4762522B2 (en) 2003-10-28 2004-10-27 Method for manufacturing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010271734A Division JP5250615B2 (en) 2003-10-28 2010-12-06 Semiconductor device

Publications (3)

Publication Number Publication Date
JP2005159332A JP2005159332A (en) 2005-06-16
JP2005159332A5 true JP2005159332A5 (en) 2007-11-22
JP4762522B2 JP4762522B2 (en) 2011-08-31

Family

ID=34741101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312684A Expired - Fee Related JP4762522B2 (en) 2003-10-28 2004-10-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP4762522B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829883B2 (en) * 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays
US7135773B2 (en) * 2004-02-26 2006-11-14 International Business Machines Corporation Integrated circuit chip utilizing carbon nanotube composite interconnection vias
WO2006038504A1 (en) * 2004-10-04 2006-04-13 Matsushita Electric Industrial Co., Ltd. Vertical field effect transistor and method for making the same
CN101687631A (en) * 2007-03-28 2010-03-31 昆南诺股份有限公司 Nanowire circuit architecture
WO2009004793A1 (en) * 2007-07-03 2009-01-08 Panasonic Corporation Semiconductor device, semiconductor device manufacturing method and image display device
WO2009137222A2 (en) * 2008-04-11 2009-11-12 Sandisk 3D, Llc Memory cell that includes a carbon nano-tube reversible resistance-switching element and methods of forming the same
JP2011187901A (en) * 2010-03-11 2011-09-22 Canon Inc Method of manufacturing semiconductor device
JP6250210B2 (en) * 2017-04-11 2017-12-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device
CN113471298A (en) * 2021-06-23 2021-10-01 Tcl华星光电技术有限公司 Thin film transistor, display panel and electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360476B1 (en) * 2000-06-27 2002-11-08 삼성전자 주식회사 Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2005109465A5 (en)
Xu et al. Nanometer‐scale modification and welding of silicon and metallic nanowires with a high‐intensity electron beam
Si et al. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors
JP5174101B2 (en) Thin film transistor
JP5967894B2 (en) Graphene electronic device
Kang et al. A robust highly aligned DNA nanowire array-enabled lithography for graphene nanoribbon transistors
TWI508228B (en) Thin film transistor
KR20110057989A (en) Composite structure of graphene and nanostructure and method of manufacturing the same
JP2011105583A (en) Composite structure of graphene and nanostructure and method for manufacturing the same
CN104681688B (en) A kind of microstructured layers and light emitting diode
JP2009164432A (en) Method of manufacturing semiconductor apparatus, semiconductor apparatus, and wiring structure
CN104795291B (en) Electron emission device, manufacturing method thereof and display
JP6052537B2 (en) Graphene structure, semiconductor device using the same, and manufacturing method thereof
JP2005159332A5 (en)
JP2013012736A (en) Graphene structure, manufacturing method for graphene structure, graphene element and manufacturing method for graphene element
Inoue et al. Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates
Singha et al. Performance analysis of nanostructured Peltier coolers
WO2004047183A1 (en) Electronic device and its manufacturing method
Wang et al. Quantum dot behavior in bilayer graphene nanoribbons
Zheng et al. Reversible n-type doping of graphene by H2O-based atomic-layer deposition and its doping mechanism
Otsuka et al. On-chip sorting of long semiconducting carbon nanotubes for multiple transistors along an identical array
JP2007158116A (en) Method of controlling orientations of linear structures, electrical element, and field effect transistor
TWI543929B (en) A method of making nanoscale microstructure
JP2006339110A (en) Electronic element using nanostructure group and method of manufacturing same
Zhang et al. Substrate engineering-tailored fabrication of aligned graphene nanoribbon arrays: Implications for graphene electronic devices