JP2005158955A - Light emitting diode element - Google Patents

Light emitting diode element Download PDF

Info

Publication number
JP2005158955A
JP2005158955A JP2003394391A JP2003394391A JP2005158955A JP 2005158955 A JP2005158955 A JP 2005158955A JP 2003394391 A JP2003394391 A JP 2003394391A JP 2003394391 A JP2003394391 A JP 2003394391A JP 2005158955 A JP2005158955 A JP 2005158955A
Authority
JP
Japan
Prior art keywords
layer
light
type semiconductor
semiconductor crystal
threading dislocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003394391A
Other languages
Japanese (ja)
Other versions
JP4285214B2 (en
Inventor
Takuma Hashimoto
拓磨 橋本
Masaru Sugimoto
勝 杉本
Hideyoshi Kimura
秀吉 木村
Ryoji Yokoya
良二 横谷
Koji Nishioka
浩二 西岡
Yutaka Iwabori
裕 岩堀
Nobuyuki Takakura
信之 高倉
Yukihiro Kondo
行廣 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003394391A priority Critical patent/JP4285214B2/en
Publication of JP2005158955A publication Critical patent/JP2005158955A/en
Application granted granted Critical
Publication of JP4285214B2 publication Critical patent/JP4285214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To endure a use in a high temperature service condition and suppress the deterioration of a lifetime in a light emitting diode element. <P>SOLUTION: On the surface of an opposite side to an active layer 3 of a second conduction type semiconductor crystal layer 4, a penetrating dislocation defective 11 is exposed, the internal surface of the penetrating dislocation defective 11 and its periphery are covered with a material (a coating portion 13) which has non-ohmic contact nature to a second conduction type semiconductor crystal layer 4. A material of ohmic contact nature is not joined to the second conduction type semiconductor crystal layer 4 in the vicinity of the penetrating dislocation defective 11, so that a current does not flow in the vicinity of the penetrating dislocation defective 11. As a result, an increase in leakage current in the vicinity of the penetrating dislocation defective accompanied by an increase in lighting time duration can be suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、照明、表示等に使用される発光ダイオード素子に関する。   The present invention relates to a light emitting diode element used for illumination, display, and the like.

近年、窒化ガリウム(GaN)系の化合物半導体を用いて、可視光(青色〜青緑色)あるいは紫外域の電磁波を放射する発光ダイオード(LED)素子が開発され、従来から在る、AlInGaP系化合物半導体等のLED素子による緑色、赤色と合わせ、LED素子による三原色(RGB)発光の実現をみた。また、GaN系化合物半導体LED素子を、その発光波長の少なくとも一部を吸収し、異なる波長の光に変換する蛍光体と組み合わせることにより、白色を含め、LED素子本来の発光色とは異なる色合いの光を出すことができる発光素子の開発もなされた。   In recent years, light-emitting diode (LED) elements that emit visible light (blue to blue-green) or ultraviolet electromagnetic waves have been developed using gallium nitride (GaN) -based compound semiconductors, and AlInGaP-based compound semiconductors have been conventionally used. In combination with green and red by LED elements such as the above, we realized the realization of three primary color (RGB) emission by LED elements. In addition, by combining a GaN-based compound semiconductor LED element with a phosphor that absorbs at least a part of its emission wavelength and converts it into light of a different wavelength, it has a different hue from the original emission color of the LED element, including white. A light emitting device capable of emitting light has also been developed.

これらのLED素子には、小型、軽量、省電力といった長所があり、信号灯や各種表示用光源、大型ディスプレイ等の用途に用いられている。白色LEDの用途としては小型電球の代替光源、あるいは携帯電話等の液晶パネル用光源等として広く用いられている。   These LED elements have advantages such as small size, light weight, and power saving, and are used for applications such as signal lights, various display light sources, and large displays. The white LED is widely used as an alternative light source for a small light bulb or a light source for a liquid crystal panel such as a mobile phone.

現在流布しているLED素子は、定格電流20〜30mAのものが主流であるが、最近になって、一般照明用途への展開を目指し、LED素子1個あたりの光出力を向上させるため、従来に比べて桁違いに高い電力を素子に注入する試みがなされている。   Currently, LED elements with a rated current of 20 to 30 mA are the mainstream. However, recently, in order to improve the light output per LED element with the aim of expanding into general lighting applications, Attempts have been made to inject power that is orders of magnitude higher into the device.

ところで、特にGaN系化合物半導体LED素子に顕著であるが、一般に化合物半導体結晶中には転位欠陥が存在する。この転位欠陥は、もともと下地の基板結晶の表面にあったものが、半導体結晶層内に引き継がれたり、基板結晶と化合物半導体結晶との格子不整合が原因となって半導体結晶中で新たに発生したものである。この転位欠陥は、半導体結晶層を成長させる過程で自然消滅することはなく、成長を終えた半導体結晶層の最表面まで到達して貫通転位欠陥となる。転位欠陥の内部は、結晶中の非欠陥部位に比べて原子の拡散係数が大きいと推定される。通常、半導体結晶層の表面には金属層を形成させて電極部とするが、そのような金属が半導体層の表面から貫通転位欠陥内部へ拡散していき、リーク電流が増加することが、LED素子劣化の主要な原因と考えられている。   By the way, although it is remarkable especially in a GaN-based compound semiconductor LED element, in general, a dislocation defect exists in the compound semiconductor crystal. This dislocation defect is newly generated in the semiconductor crystal due to the lattice mismatch between the substrate crystal and the compound semiconductor crystal. It is a thing. This dislocation defect does not spontaneously disappear during the process of growing the semiconductor crystal layer, but reaches the outermost surface of the semiconductor crystal layer after the growth and becomes a threading dislocation defect. The inside of the dislocation defect is presumed to have a larger diffusion coefficient of atoms than the non-defect site in the crystal. Usually, a metal layer is formed on the surface of the semiconductor crystal layer to form an electrode part, but such a metal diffuses from the surface of the semiconductor layer into the threading dislocation defect, and the leakage current increases. It is considered to be a major cause of element degradation.

現在のLED素子の主流である、定格電流20〜30mAクラスのものでは、素子自身は4万時間を越える長寿命であると推定されている。しかし、一般照明用途を目指し、従来に比べて桁違いの高電力を素子に注入した場合には、LED素子の放熱を促進する手段を講じない限り、LED素子の温度が大きく上昇する。一般に、原子の拡散速度は温度とともに増加するので、電極部を構成する金属原子の貫通転位欠陥内への拡散速度が増大し、リーク電流が早期に増大することが危惧される。従って、従来に比較して高い電力をLED素子に注入し、高温条件の下に使用した場合には、リーク電流の早期増大による寿命の低下が課題となる。そこで、酸化絶縁層を設けることでリーク電流を抑制することが知られている(特許文献1参照)。
特開平9−293936号公報
In the current LED element of the rated current 20-30 mA class, the element itself is estimated to have a long life of over 40,000 hours. However, when aiming at general lighting applications and injecting an extremely high power into the element compared to the conventional case, the temperature of the LED element greatly increases unless measures are taken to promote heat dissipation of the LED element. In general, since the diffusion rate of atoms increases with temperature, there is a concern that the diffusion rate of the metal atoms constituting the electrode portion into the threading dislocation defects increases and the leakage current increases early. Therefore, when high power is injected into the LED element as compared with the conventional case and used under a high temperature condition, a reduction in life due to an early increase in leakage current becomes a problem. Thus, it is known to suppress leakage current by providing an oxide insulating layer (see Patent Document 1).
Japanese Patent Laid-Open No. 9-293936

しかしながら、上記公報に示された技術においても、依然としてリーク電流防止が十分ではなく、より一層の改善が望まれていた。
本発明は、上記課題に鑑みて成されたもので、従来よりも高温条件での使用に耐えることができ、従来に比べて寿命の低下が生じない発光ダイオード素子を提供することを目的とする。
However, even in the technique disclosed in the above publication, prevention of leakage current is still insufficient, and further improvement has been desired.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting diode element that can withstand use under a higher temperature condition than in the past and does not cause a decrease in lifetime as compared with the prior art. .

請求項1の発明は、基板結晶と、この基板結晶上に形成された第1導電型の半導体結晶層と、この第1導電型の半導体結晶層上に形成された活性層と、この活性層の上に形成された第2導電型の半導体結晶層と、を有する発光ダイオード素子において、前記第2導電型結晶層の活性層とは反対側の表面に貫通転位欠陥が露出し、前記貫通転位欠陥の内表面及びその周囲を、第2導電型半導体結晶層に対して非オーミックコンタクト性の材料で被覆した。   The invention of claim 1 includes a substrate crystal, a first conductivity type semiconductor crystal layer formed on the substrate crystal, an active layer formed on the first conductivity type semiconductor crystal layer, and the active layer. In a light emitting diode device having a second conductivity type semiconductor crystal layer formed thereon, a threading dislocation defect is exposed on a surface opposite to the active layer of the second conductivity type crystal layer, and the threading dislocation The inner surface of the defect and its periphery were covered with a material having a non-ohmic contact property to the second conductivity type semiconductor crystal layer.

請求項2の発明は、請求項1記載の発光ダイオード素子において、非オーミック性材料として絶縁性材料を用いることを特徴とする。   According to a second aspect of the present invention, in the light emitting diode element according to the first aspect, an insulating material is used as the non-ohmic material.

請求項3の発明は、請求項2記載の発光ダイオード素子において、貫通転位欠陥の内表面は、第1導電型半導体層に到達する大きさを有するエッチピットであり、エッチピットの表面上に光透過性を有する絶縁性材料の層が形成され、さらに、前記絶縁性材料の上に金属層が形成されることにより、光反射構造が形成されていることを特徴とする。   According to a third aspect of the present invention, in the light-emitting diode element according to the second aspect, the inner surface of the threading dislocation defect is an etch pit having a size reaching the first conductive type semiconductor layer, and the light is incident on the surface of the etch pit. A light reflection structure is formed by forming a layer of an insulating material having transparency and further forming a metal layer on the insulating material.

請求項4の発明は、請求項3記載の発光ダイオード素子において、貫通転位欠陥の密度が高い領域と低い領域が選択的に形成され、前記密度の高い領域に前記光反射構造が形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the light emitting diode element according to the third aspect, a high density region and a low density region of threading dislocation defects are selectively formed, and the light reflecting structure is formed in the high density region. It is characterized by that.

請求項1の発明によれば、貫通転位欠陥付近の第2導電型半導体結晶層にオーミックコンタクト性の材料が接触していないので、貫通転位欠陥付近を電流が流れない。従って、点灯時間の増加に伴う、貫通転位欠陥付近のリーク電流の増加を抑えることができ、発光素子の寿命を向上させることができる。また、従来よりも高温での使用に耐える発光素子を提供できる。   According to the first aspect of the present invention, since the ohmic contact material is not in contact with the second conductivity type semiconductor crystal layer in the vicinity of the threading dislocation defect, no current flows in the vicinity of the threading dislocation defect. Therefore, an increase in leakage current in the vicinity of threading dislocation defects accompanying an increase in lighting time can be suppressed, and the lifetime of the light emitting element can be improved. In addition, a light-emitting element that can withstand use at a higher temperature than conventional ones can be provided.

請求項2の発明によれば、被覆材料自身が絶縁性であるため、たとえ貫通転位欠陥内に絶縁性材料が拡散してもリーク電流の増加につながることがない。従って、発光素子の寿命を向上させることができる。また、従来よりも高温での使用に耐えるLED素子を提供できる。   According to the invention of claim 2, since the coating material itself is insulative, even if the insulative material diffuses into threading dislocation defects, the leakage current does not increase. Accordingly, the lifetime of the light emitting element can be improved. Moreover, the LED element which can be used at a higher temperature than before can be provided.

請求項3の発明によれば、光反射構造がエッチピット上に形成されていることにより、活性層から放射された光のうち、活性層と平行な方向へ伝播する光が、効率的に光取り出し面側へ反射され、LED素子の光取り出し率が向上する効果がある。   According to the invention of claim 3, since the light reflecting structure is formed on the etch pit, the light propagating in the direction parallel to the active layer out of the light emitted from the active layer is efficiently light. There is an effect that the light extraction rate of the LED element is improved by being reflected toward the extraction surface.

請求項4の発明によれば、貫通転位欠陥密度の小さい領域は、貫通転位欠陥密度の大きい領域に比べて光出力が大きい。そこで、貫通転位欠陥密度の高い領域に光反射構造を形成すれば、貫通転位欠陥密度の低い領域で発生した光が、その近傍にある光反射構造によって、効率的に光取り出し面側へ反射されるので、光効率が大きく向上する。   According to the fourth aspect of the present invention, the region having a low threading dislocation defect density has a higher light output than the region having a high threading dislocation defect density. Therefore, if a light reflecting structure is formed in a region where the threading dislocation defect density is high, light generated in the region where the threading dislocation defect density is low is efficiently reflected to the light extraction surface side by the light reflecting structure in the vicinity thereof. Therefore, the light efficiency is greatly improved.

<実施形態1>
図1に、実施形態1に係る発光ダイオード素子(以下、LED素子という)の概略断面を示す。LED素子は、基板結晶1(サファイアなど)と、基板結晶1上に形成した第1導電型半導体結晶層2(SiをドープしたN型GaNなど)と、第1導電型半導体結晶層2上に形成した活性層3と、この活性層3の上に形成された第2導電型半導体結晶層4(MgをドープしたP型GaNなど)と、導電層6(本実施例ではTi)と、この導電層6上に構成された1層または複数層の金属層からなる第1電極部7(本実施例ではAu層のみ)と、第2導電型半導体結晶層4に対して非オーミックコンタクト性材料の被覆部13(ここでは、Al)と、導電層5(本実施例ではNi)と、この導電層5上に構成された1層または複数の金属層からなる第2電極部8(本実施例ではAu層のみ)とから成る。
<Embodiment 1>
FIG. 1 shows a schematic cross section of a light-emitting diode element (hereinafter referred to as an LED element) according to Embodiment 1. The LED element includes a substrate crystal 1 (such as sapphire), a first conductivity type semiconductor crystal layer 2 (such as Si-doped N-type GaN) formed on the substrate crystal 1, and a first conductivity type semiconductor crystal layer 2. The formed active layer 3, the second conductive type semiconductor crystal layer 4 (P-type GaN doped with Mg, etc.) formed on the active layer 3, the conductive layer 6 (Ti in this embodiment), A non-ohmic contact material for the first electrode portion 7 (only Au layer in this embodiment) made of one or more metal layers formed on the conductive layer 6 and the second conductivity type semiconductor crystal layer 4 Covering portion 13 (here, Al), conductive layer 5 (Ni in this embodiment), and second electrode portion 8 (this embodiment) made of one or more metal layers formed on this conductive layer 5 In the example, the Au layer only).

上記活性層3は、例えば、GaN/InGaNを8層積み重ねた多量子井戸構造で成る。導電層6は、第2導電型半導体結晶層4、及びその下地の活性層3の一部が除去されて露出した第1導電型半導体結晶層2の表面に、第1導電型半導体結晶層2に対してオーミックコンタクト性がある材料で形成されている。被覆部13は、本発明の特徴とする構成であり、第2導電型半導体結晶層4の貫通転位欠陥11の内表面12及びその周囲を被覆する、第2導電型半導体結晶層4に対して非オーミックコンタクト性材料でなるものである。導電層5は、Al上、及びAlで被覆されていない第2導電型半導体結晶層4上に形成され、第2導電型半導体結晶層4に対してオーミックコンタクト性がある材料で成る。
以上からなるLED素子
The active layer 3 has, for example, a multi-quantum well structure in which eight layers of GaN / InGaN are stacked. The conductive layer 6 is formed on the surface of the first conductive semiconductor crystal layer 2 exposed by removing a part of the second conductive semiconductor crystal layer 4 and the underlying active layer 3. Is formed of a material having ohmic contact property. The covering portion 13 is a characteristic feature of the present invention, and covers the inner surface 12 of the threading dislocation defect 11 of the second conductivity type semiconductor crystal layer 4 and the periphery thereof and covers the second conductivity type semiconductor crystal layer 4. It is made of a non-ohmic contact material. The conductive layer 5 is formed on Al and on the second conductive type semiconductor crystal layer 4 not covered with Al, and is made of a material having ohmic contact with the second conductive type semiconductor crystal layer 4.
LED element comprising the above

上記LED素子は、次のようにして作製可能である。
(1)GaN系化合物半導体層構造は公知の手段(例えば赤碕勇編著「III族窒化物半導体」(培風館)参照)により、MOVPE法を用いて作製可能である。基板結晶1上にGaN又はAlNを低温で形成させてバッファー層となし、その上にN型GaN層、活性層、P型GaN層の順に積層する。
(2)RIE法により、第2導電型半導体結晶層4、及びその下地の活性層3の一部を除去して、第1導電型半導体結晶層2の表面を露出させる。
(3)露出した第1導電型半導体結晶層2の表面に、第1導電型半導体結晶層2に対してオーミックコンタクト性がある材料(本実施例ではTi)の導電層6を形成する。
(4)導電層6上に第1電極部7を構成するAu層を、EB蒸着法にて形成する。
(5)P型GaN層の表面に電子線(EB)蒸着法により、Al層を形成させる。
(6)RIE法により、斜め方向からAl層の表面をエッチバックする。貫通転位欠陥11の内表面及びその周囲には、RIEのイオンが到達し難いので、それ以外の部位のAl層がすべて除去されても、貫通転位欠陥11の内表面12及びその周囲のAl層は残る。
(7)Alが除去されて露出した第2導電型半導体結晶層4の表面に、新たに、P型GaN層とオーミックコンタクトする金属材料のNiを、EB蒸着法にて層形成させる。
(8)Ni層上に、第2電極部8を構成するAu層を、EB蒸着法にて形成する。
以上の工法により実施形態1の構造が作製可能である。
The LED element can be manufactured as follows.
(1) The GaN-based compound semiconductor layer structure can be manufactured using a MOVPE method by a known means (see, for example, “Group III nitride semiconductor” (Baifukan) written by Isao Akasaki). GaN or AlN is formed on the substrate crystal 1 at a low temperature to form a buffer layer, on which an N-type GaN layer, an active layer, and a P-type GaN layer are stacked in this order.
(2) The second conductive semiconductor crystal layer 4 and a part of the underlying active layer 3 are removed by RIE to expose the surface of the first conductive semiconductor crystal layer 2.
(3) On the exposed surface of the first conductive type semiconductor crystal layer 2, a conductive layer 6 made of a material (Ti in this embodiment) having ohmic contact with the first conductive type semiconductor crystal layer 2 is formed.
(4) An Au layer constituting the first electrode portion 7 is formed on the conductive layer 6 by EB vapor deposition.
(5) An Al layer is formed on the surface of the P-type GaN layer by electron beam (EB) evaporation.
(6) Etch back the surface of the Al layer from an oblique direction by RIE. Since it is difficult for RIE ions to reach the inner surface of the threading dislocation defect 11 and its periphery, the inner surface 12 of the threading dislocation defect 11 and the surrounding Al layer are removed even if the Al layer at all other portions is removed. Remains.
(7) On the surface of the second conductivity type semiconductor crystal layer 4 exposed by removing Al, a new layer of Ni, which is a metal material in ohmic contact with the P-type GaN layer, is formed by EB vapor deposition.
(8) An Au layer constituting the second electrode portion 8 is formed on the Ni layer by EB vapor deposition.
The structure of Embodiment 1 can be manufactured by the above method.

次に、実施形態1の作用効果を説明する。貫通転位欠陥11付近の第2導電型半導体結晶層4にオーミックコンタクト性の材料が接触していないので、貫通転位欠陥11付近を電流が流れ難い。従って、点灯時間の増加に伴う、貫通転位欠陥11付近のリーク電流の増加を抑えることができる。その結果、従来と同程度のLED素子温度条件で使用した場合には、素子の寿命を向上させることができ、また、従来よりも高温で使用にも耐えるLED素子を提供できる。   Next, the effect of Embodiment 1 is demonstrated. Since the ohmic contact material is not in contact with the second conductivity type semiconductor crystal layer 4 in the vicinity of the threading dislocation defect 11, current hardly flows in the vicinity of the threading dislocation defect 11. Therefore, an increase in leakage current in the vicinity of the threading dislocation defect 11 accompanying an increase in the lighting time can be suppressed. As a result, when used under the same LED element temperature conditions as in the past, the lifetime of the element can be improved, and an LED element that can withstand use at a higher temperature than in the past can be provided.

本実施形態では、非オーミックコンタクト性材料としてAlを用いたが、特にAlに限定するものではなく、P型GaN層に対して非オーミックコンタクト性の材料であれば同様の効果が得られる。   In this embodiment, Al is used as the non-ohmic contact material. However, the material is not particularly limited to Al, and the same effect can be obtained if the material is non-ohmic contact with the P-type GaN layer.

<実施形態2>
この実施形態2は、図1の実施形態1と概略同様の構造であり、実施形態1と相違する点は、本実施形態では、図1の貫通転位欠陥11の内表面12及びその周囲が、第2導電型半導体結晶層4に対する非オーミックコンタクト性材料として、絶縁性材料のAlに代えて、SiOで被覆したことである。
<Embodiment 2>
The second embodiment has substantially the same structure as that of the first embodiment shown in FIG. 1. The difference from the first embodiment is that in this embodiment, the inner surface 12 of the threading dislocation defect 11 shown in FIG. The non-ohmic contact material for the second conductivity type semiconductor crystal layer 4 is covered with SiO 2 instead of the insulating material Al.

本実施形態2のLED素子の作製方法については、SiO層の形成を除いて実施形態1と同様である。すなわち、
(1)GaN系化合物半導体層構造は、MOVPE法を用いて作製する。基板結晶上にGaNまたはAlNを低温で形成させてバッファー層となし、その上にN型GaN層、活性層、P型GaN層の順に積層する。
(2)P型GaN層の表面にCVD法により、SiO層を形成させる。
(3)RIE法により、斜め方向からSiO層の表面をエッチバックする。貫通転位欠陥の内表面及びその周囲には、RIEのイオンが到達し難いので、それ以外の部位のSiO層がすべて除去されても、貫通転位欠陥の内表面及びその周囲のSiO層は残る。
(4)SiO層が除去されて露出した第2導電型半導体層の表面に、新たに、P型GaN層とオーミックコンタクトする金属材料のNiを、EB蒸着法にて層形成させる。
(5)Ni層上に、第2電極部を構成するAu層を、EB蒸着法にて形成する。
以上の工法により実施形態2の構造が作製可能である。
The manufacturing method of the LED element of the second embodiment is the same as that of the first embodiment except for the formation of the SiO 2 layer. That is,
(1) The GaN-based compound semiconductor layer structure is produced using the MOVPE method. GaN or AlN is formed on the substrate crystal at a low temperature to form a buffer layer, on which an N-type GaN layer, an active layer, and a P-type GaN layer are stacked in this order.
(2) An SiO 2 layer is formed on the surface of the P-type GaN layer by a CVD method.
(3) Etch back the surface of the SiO 2 layer from an oblique direction by the RIE method. On the inner surface and around the threading dislocation defects, since hardly reach ions RIE, be removed SiO 2 layer of the other sites are all the inner surface and the SiO 2 layer surrounding the threading dislocation defects Remain.
(4) On the surface of the second conductivity type semiconductor layer exposed by removing the SiO 2 layer, a new metal material, Ni, which is in ohmic contact with the P-type GaN layer, is formed by EB vapor deposition.
(5) An Au layer constituting the second electrode portion is formed on the Ni layer by EB vapor deposition.
The structure of Embodiment 2 can be manufactured by the above method.

本実施形態2の作用効果を説明すると、上述実施形態1と同様、貫通転位欠陥付近の第2導電型結晶層にオーミックコンタクト性の材料が接触していない上に、SiOはそれ自身が絶縁性であるため、たとえ貫通転位欠陥内にSiO自身が拡散しても、リーク電流の増加につながることがない。従って、実施例1に比べてさらに発光素子の寿命を向上させることができ、従来よりも高温での使用に耐える発光素子を提供できる。
本実施形態では、絶縁性材料としてSiOを用いたが、特にこれに限定するものではなく、絶縁性材料としては他に例えばSiなどであっても同様の効果が得られる。
The operation and effect of the second embodiment will be described. Like the first embodiment, the second conductive type crystal layer near the threading dislocation defect is not in contact with the ohmic contact material, and the SiO 2 itself is insulated. Therefore, even if SiO 2 itself diffuses into the threading dislocation defect, the leakage current does not increase. Therefore, the lifetime of the light-emitting element can be further improved as compared with Example 1, and a light-emitting element that can withstand use at a higher temperature than conventional can be provided.
In the present embodiment, SiO 2 is used as the insulating material. However, the present invention is not particularly limited to this, and the same effect can be obtained even if the insulating material is, for example, Si 3 N 4 or the like.

<実施形態3>
図2に、実施形態3に係るLED素子の一部拡大断面を示す。実施形態3では、図1の実施形態1における貫通転位欠陥11の内表面及び周囲の構造が相違する。実施形態3では、貫通転位欠陥11の内表面は、第1導電型半導体結晶層2(N型GaN層)に到達する大きさを有するエッチピット14であり、このエッチピット14の表面上に光透過性を有する絶縁性材料のSiO層15が形成され、このSiO層15の上に光反射性に優れた金属層16(本実施例ではAl)を形成し、SiO層15で被覆されていない第2導電型半導体結晶層4上の一部に、第2導電型半導体層にオーミックコンタクトし得る材料(本実施例ではNi)で成る導電層5を形成し、この導電層5の上に第2電極部8を構成している。その他の構成は、実施形態1と同等である。
<Embodiment 3>
FIG. 2 shows a partially enlarged cross section of the LED device according to the third embodiment. In the third embodiment, the inner surface of the threading dislocation defect 11 and the surrounding structure in the first embodiment of FIG. 1 are different. In the third embodiment, the inner surface of the threading dislocation defect 11 is an etch pit 14 having a size that reaches the first conductivity type semiconductor crystal layer 2 (N-type GaN layer). SiO 2 layer 15 of insulating material having transparency is formed, to form a (Al in this embodiment) excellent metal layer 16 to the light reflecting on the SiO 2 layer 15, covered with the SiO 2 layer 15 A conductive layer 5 made of a material (Ni in this embodiment) that can be in ohmic contact with the second conductivity type semiconductor layer is formed on a part of the second conductivity type semiconductor crystal layer 4 that has not been formed. A second electrode portion 8 is formed above. Other configurations are the same as those of the first embodiment.

本実施形態3の作製方法は、次の通りである。
(1)サファイア上に、P型GaNを形成させ、第1電極部を形成させるまでは、実施形態1、2と同様。
(2)P型GaNの表面を、RIE法を用いてエッチング処理することによって、P型GaN層の表面の貫通転位欠陥を拡大させ、N型GaN層に達するまでの深さを有するエッチピット14を形成させる。
(3)P型GaN層の表面にSiO層15を形成させる。
(4)SiO層15上に、光反射性に優れる金属材料であるAl層16をEB蒸着法により蒸着する。
(5)RIE法により、斜め方向からAl層/SiO層の表面をエッチバックする。貫通転位欠陥の内表面及びその周囲には、RIEのイオンが到達し難いので、それ以外の部位のAl層/SiO層がすべて除去されても、貫通転位欠陥の内表面及びその周囲のAl層/SiO層は残る。
(6)露出した第2導電型半導体結晶層4の表面に、新たに、P型GaN層とオーミックコンタクトする金属材料のNi(導電層15)を、EB蒸着法にて層形成させる。
(7)Ni層上に、第2電極部8を構成するAu層を、EB蒸着法にて形成する。
The manufacturing method of Embodiment 3 is as follows.
(1) Similar to the first and second embodiments until P-type GaN is formed on sapphire and the first electrode portion is formed.
(2) Etching the surface of the P-type GaN using the RIE method expands threading dislocation defects on the surface of the P-type GaN layer, and etch pits 14 having a depth until reaching the N-type GaN layer. To form.
(3) The SiO 2 layer 15 is formed on the surface of the P-type GaN layer.
(4) On the SiO 2 layer 15, an Al layer 16 which is a metal material having excellent light reflectivity is deposited by EB deposition.
(5) The surface of the Al layer / SiO 2 layer is etched back from an oblique direction by the RIE method. Since it is difficult for RIE ions to reach the inner surface of the threading dislocation defect and its surroundings, the inner surface of the threading dislocation defect and the surrounding Al are removed even if the Al layer / SiO 2 layer in all other parts is removed. Layer / SiO 2 layer remains.
(6) On the exposed surface of the second conductive type semiconductor crystal layer 4, a new layer of Ni (conductive layer 15), which is in ohmic contact with the P-type GaN layer, is formed by EB vapor deposition.
(7) An Au layer constituting the second electrode portion 8 is formed on the Ni layer by EB vapor deposition.

本実施形態3の作用効果を説明する。活性層3の第1導電型半導体結晶層2側の面まで拡大されたエッチピット14上に、絶縁性材料として、透光性材料でもあるSiO層15を用い、さらにその上に光反射性に優れるAl層16を設けて光反射構造となした。この結果、活性層から放射された光のうち、活性層と平行な方向へ伝播する光が、活性層に対して傾斜する面上に形成された光反射構造により、効率的に光取り出し面側へ反射され、LED素子の光取り出し率が向上する効果がある。 The effect of this Embodiment 3 is demonstrated. On the etch pit 14 expanded to the surface of the active layer 3 on the first conductivity type semiconductor crystal layer 2 side, a SiO 2 layer 15 that is also a translucent material is used as an insulating material, and further a light reflective property is provided thereon. A light reflecting structure is provided by providing an Al layer 16 that is superior to the above. As a result, among the light emitted from the active layer, the light propagating in a direction parallel to the active layer is efficiently reflected by the light reflecting structure formed on the surface inclined with respect to the active layer. The light extraction rate of the LED element is improved.

<実施形態4>
図3に、実施形態4に係るLED素子の部分拡大断面を示す。このLED素子は、基板結晶(サファイア)1上にマスク層(本実施例ではSiO層)をストライプ状に形成し、基板結晶1上及びマスク層上に第1導電型半導体結晶層2(SiをドープしたN型GaN)を形成し、第1導電型半導体結晶層2上に活性層3(GaN/InGaNを8層積み重ねた多量子井戸構造)を形成し、この活性層3の上に形成された第2導電型半導体結晶層4(MgをドープしたP型GaN)を形成し、この第2導電型半導体結晶層4、及びその下地の活性層3の一部が除去されて露出した第1導電型半導体結晶層2の表面に、第1導電型半導体結晶層2に対してオーミックコンタクト性がある材料(本実施例ではTi)で形成された導電層5を形成し、この導電層5上に第1電極部8を成す一層又は複数層の金属層(本実施例ではAu層のみ)を形成したものである。
<Embodiment 4>
In FIG. 3, the partial expanded cross section of the LED element which concerns on Embodiment 4 is shown. In this LED element, a mask layer (SiO 2 layer in this embodiment) is formed in a stripe shape on a substrate crystal (sapphire) 1, and a first conductivity type semiconductor crystal layer 2 (Si) is formed on the substrate crystal 1 and the mask layer. N-type GaN doped with GaN), and an active layer 3 (multi-quantum well structure in which eight layers of GaN / InGaN are stacked) is formed on the first conductivity type semiconductor crystal layer 2 and formed on the active layer 3 The second conductive type semiconductor crystal layer 4 (P-type GaN doped with Mg) is formed, and the second conductive type semiconductor crystal layer 4 and a part of the underlying active layer 3 are removed and exposed. A conductive layer 5 made of a material having ohmic contact with the first conductive semiconductor crystal layer 2 (Ti in this embodiment) is formed on the surface of the one conductive semiconductor crystal layer 2, and this conductive layer 5 Single layer or multiple layers of metal forming the first electrode portion 8 on top (In this example Au layer only) is obtained by forming a.

上記のような構造は公知であるが、マスク層17の上方は貫通転位密度が、それ以外の領域での貫通転位密度に比べて小さくでき、従って、GaN系化合物半導体結晶層中に貫通転位欠陥11は密度の高い領域と低い領域が選択的に形成されている。なお、上記構造は、貫通転位欠陥密度の高い領域と低い領域を選択的に形成させる一例であり、特に上記構造に限定されるものではない。   Although the structure as described above is known, the threading dislocation density above the mask layer 17 can be made smaller than the threading dislocation density in other regions, and therefore, threading dislocation defects are present in the GaN-based compound semiconductor crystal layer. Reference numeral 11 denotes a selectively formed region having a high density and a region having a low density. The above structure is an example of selectively forming a region having a high threading dislocation defect density and a region having a low threading dislocation defect density, and is not particularly limited to the above structure.

本実施形態4では、上記構造を基礎に、さらには、貫通転位欠陥密度の高い領域にある個々の貫通転位欠陥に対して、実施形態3に示したのと同じ光反射構造を形成し、光反射構造が形成されていないN型GaN層上に、N型GaN層にオーミックコンタクト性を有する材料(本実施例ではNi)の導電層5を形成し、この導電層5上に第2電極部8を構成する一層又は複数層の金属層(本実施例ではAu層のみ)を形成する。   In the fourth embodiment, on the basis of the above structure, the same light reflecting structure as that shown in the third embodiment is formed for each threading dislocation defect in a region where the threading dislocation defect density is high, A conductive layer 5 made of a material having ohmic contact property (Ni in this embodiment) is formed on the N-type GaN layer on the N-type GaN layer where the reflective structure is not formed, and the second electrode portion is formed on the conductive layer 5. A single layer or a plurality of metal layers (only an Au layer in this embodiment) constituting 8 is formed.

本実施形態4の作製方法は、次の通りである。
(1)基板結晶上にMOVPE法にて、SiOマスク層を形成後、実施形態1等に記載の方法にて、P型GaNを形成させ、さらに第1電極部を形成させる。
(2)基板結晶上に形成されたSiOマスクに対する反転マスクパターンにより、前記SiOマスク上方のP型GaN層の表面を覆う。
(3)実施形態3と同様に、マスクによって覆われていないP型GaN層の表面を、RIE法を用いてエッチング処理することによって、P型GaN層の表面の貫通転位欠陥を拡大させ、N型GaN層に達するまでの深さを有するエッチピットを形成させる。
(4)P型GaN層の表面にSiO膜を形成させる。
(5)SiO層上に、光反射性に優れる金属材料であるAlをEB蒸着法により蒸着する。
(6)RIE法により、斜め方向からAl層/SiO層の表面をエッチバックする。貫通転位欠陥の内表面及びその周囲には、RIEのイオンが到達し難いので、それ以外の部位のAl層/SiO層がすべて除去されても、貫通転位欠陥の内表面及びその周囲のAl層/SiO層は残る。
(7)露出した第2導電型半導体層の表面に、新たに、P型GaN層とオーミックコンタクトする金属材料のNiを、EB蒸着法にて層形成させる。
(8)Ni層上に、第2電極部を構成するAu層を、EB蒸着法にて形成する。
The manufacturing method of Embodiment 4 is as follows.
(1) After the SiO 2 mask layer is formed on the substrate crystal by the MOVPE method, P-type GaN is formed by the method described in the first embodiment and the first electrode portion is further formed.
(2) The surface of the P-type GaN layer above the SiO 2 mask is covered with an inverted mask pattern for the SiO 2 mask formed on the substrate crystal.
(3) Similar to the third embodiment, the surface of the P-type GaN layer not covered with the mask is etched using the RIE method to enlarge threading dislocation defects on the surface of the P-type GaN layer, and N Etch pits having a depth to reach the type GaN layer are formed.
(4) An SiO 2 film is formed on the surface of the P-type GaN layer.
(5) Al, which is a metal material having excellent light reflectivity, is deposited on the SiO 2 layer by EB deposition.
(6) Etch back the surface of the Al layer / SiO 2 layer from an oblique direction by the RIE method. Since it is difficult for RIE ions to reach the inner surface of the threading dislocation defect and its surroundings, the inner surface of the threading dislocation defect and the surrounding Al are removed even if the Al layer / SiO 2 layer in all other parts is removed. Layer / SiO 2 layer remains.
(7) On the exposed surface of the second conductivity type semiconductor layer, a new layer of Ni, which is a metal material in ohmic contact with the P-type GaN layer, is formed by EB vapor deposition.
(8) An Au layer that constitutes the second electrode portion is formed on the Ni layer by EB vapor deposition.

上記工法により、貫通転位欠陥密度の高い領域に在る貫通転位欠陥に対して、選択的に実施形態3に示したのと同じ光反射構造を形成させたLED素子が作製できる。   By the above method, an LED element in which the same light reflecting structure as that described in Embodiment 3 is selectively formed for threading dislocation defects in a region having a high threading dislocation defect density can be produced.

本実施形態4の作用効果を説明する。貫通転位欠陥密度の小さい領域は、貫通転位欠陥密度の大きい領域に比べて光出力が大きい。そこで、貫通転位密度の高い領域に光反射構造を形成すれば、貫通転位密度の低い領域で発生した光が、その近傍の光反射構造によって、効率的に光取り出し面側へ反射されるので、光効率が大きく向上する効果がある。なお、本発明は、上記実施例の構成に限られることなく、発明の趣旨を変更しない範囲で種々の変形が可能である。   The effect of this Embodiment 4 is demonstrated. The region having a low threading dislocation defect density has a higher light output than the region having a high threading dislocation defect density. Therefore, if a light reflecting structure is formed in a region having a high threading dislocation density, light generated in a region having a low threading dislocation density is efficiently reflected to the light extraction surface side by the light reflecting structure in the vicinity thereof. There is an effect that the light efficiency is greatly improved. The present invention is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.

(a)は本発明の実施形態1,2に係る発光素子の断面図、(b)はその部分拡大断面図。(A) is sectional drawing of the light emitting element which concerns on Embodiment 1, 2 of this invention, (b) is the elements on larger scale. 実施例3に係るLED素子の表面近傍の拡大断面図。FIG. 6 is an enlarged cross-sectional view of the vicinity of the surface of an LED element according to Example 3. 実施例4に係るLED素子の一部分の拡大断面図。FIG. 6 is an enlarged cross-sectional view of a part of an LED element according to Example 4.

符号の説明Explanation of symbols

1 基板結晶
2 第1導電型半導体結晶層
3 活性層
4 第2導電型半導体結晶層
5 導電層
6 導電層
7 第1電極部
8 第2電極部
13 非オーミックコンタクト性材料の被覆部
14 エッチピット
15 SiO
DESCRIPTION OF SYMBOLS 1 Substrate crystal 2 1st conductivity type semiconductor crystal layer 3 Active layer 4 2nd conductivity type semiconductor crystal layer 5 Conductive layer 6 Conductive layer 7 1st electrode part 8 2nd electrode part 13 Covering part of non-ohmic contact material 14 Etch pit 15 SiO 2 layer

Claims (4)

基板結晶と、この基板結晶上に形成された第1導電型の半導体結晶層と、この第1導電型の半導体結晶層上に形成された活性層と、この活性層の上に形成された第2導電型の半導体結晶層と、を有する発光ダイオード素子において、
前記第2導電型結晶層の活性層とは反対側の表面に貫通転位欠陥が露出し、
前記貫通転位欠陥の内表面及びその周囲を、第2導電型半導体結晶層に対して非オーミックコンタクト性の材料で被覆したことを特徴とする発光ダイオード素子。
A substrate crystal, a first conductivity type semiconductor crystal layer formed on the substrate crystal, an active layer formed on the first conductivity type semiconductor crystal layer, and a first crystal formed on the active layer In a light-emitting diode element having a two-conductivity-type semiconductor crystal layer,
Threading dislocation defects are exposed on the surface of the second conductivity type crystal layer opposite to the active layer;
A light-emitting diode element, wherein the inner surface of the threading dislocation defect and the periphery thereof are covered with a material having a non-ohmic contact property to the second conductivity type semiconductor crystal layer.
非オーミック性材料として絶縁性材料を用いることを特徴とする請求項1記載の発光ダイオード素子。   The light-emitting diode element according to claim 1, wherein an insulating material is used as the non-ohmic material. 前記貫通転位欠陥の内表面は、第1導電型半導体層に到達する大きさを有するエッチピットであり、
前記エッチピットの表面上に光透過性を有する絶縁性材料の層が形成され、さらに、前記絶縁性材料の上に金属層が形成されることにより、光反射構造が形成されていることを特徴とする請求項2記載の発光ダイオード素子。
The inner surface of the threading dislocation defect is an etch pit having a size reaching the first conductivity type semiconductor layer,
A light-reflective structure is formed by forming a light-transmitting insulating material layer on the surface of the etch pit, and further forming a metal layer on the insulating material. The light emitting diode device according to claim 2.
前記貫通転位欠陥の密度が高い領域と低い領域が選択的に形成され、前記密度の高い領域に前記光反射構造が形成されていることを特徴とする請求項3記載の発光ダイオード素子。   4. The light emitting diode device according to claim 3, wherein a high density area and a low density area of the threading dislocation defects are selectively formed, and the light reflecting structure is formed in the high density area.
JP2003394391A 2003-11-25 2003-11-25 Light emitting diode element Expired - Lifetime JP4285214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394391A JP4285214B2 (en) 2003-11-25 2003-11-25 Light emitting diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394391A JP4285214B2 (en) 2003-11-25 2003-11-25 Light emitting diode element

Publications (2)

Publication Number Publication Date
JP2005158955A true JP2005158955A (en) 2005-06-16
JP4285214B2 JP4285214B2 (en) 2009-06-24

Family

ID=34720472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394391A Expired - Lifetime JP4285214B2 (en) 2003-11-25 2003-11-25 Light emitting diode element

Country Status (1)

Country Link
JP (1) JP4285214B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146819B1 (en) 2008-09-23 2012-05-21 일진머티리얼즈 주식회사 Method for Manufacturing of Crystalline Substrate, Crystalline Substrate Manufactured Thereby, Light Emitting Device Including Crystalline Substrate and Manufacturing Method Thereof
KR101165258B1 (en) 2005-08-31 2012-07-19 서울옵토디바이스주식회사 Luminous element and method of manufacturing the same
WO2014010779A1 (en) * 2012-07-11 2014-01-16 고려대학교 산학협력단 Light-emitting element having a transparent electrode and production method for same
CN110249441A (en) * 2016-12-12 2019-09-17 原子能和辅助替代能源委员会 Form the method and stack layer of stack layer
CN117393670A (en) * 2023-12-08 2024-01-12 江西兆驰半导体有限公司 LED epitaxial wafer, preparation method thereof and LED

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101165258B1 (en) 2005-08-31 2012-07-19 서울옵토디바이스주식회사 Luminous element and method of manufacturing the same
KR101146819B1 (en) 2008-09-23 2012-05-21 일진머티리얼즈 주식회사 Method for Manufacturing of Crystalline Substrate, Crystalline Substrate Manufactured Thereby, Light Emitting Device Including Crystalline Substrate and Manufacturing Method Thereof
WO2014010779A1 (en) * 2012-07-11 2014-01-16 고려대학교 산학협력단 Light-emitting element having a transparent electrode and production method for same
US9559251B2 (en) 2012-07-11 2017-01-31 Korea University Research And Business Foundation Light emitting device having transparent electrode and method of manufacturing light emitting device
CN110249441A (en) * 2016-12-12 2019-09-17 原子能和辅助替代能源委员会 Form the method and stack layer of stack layer
JP2020506532A (en) * 2016-12-12 2020-02-27 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ Method for forming a laminate and laminate
JP7210449B2 (en) 2016-12-12 2023-01-23 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ Methods and laminates for forming laminates
CN110249441B (en) * 2016-12-12 2023-05-05 原子能和辅助替代能源委员会 Method of forming a stacked layer and stacked layer
CN117393670A (en) * 2023-12-08 2024-01-12 江西兆驰半导体有限公司 LED epitaxial wafer, preparation method thereof and LED

Also Published As

Publication number Publication date
JP4285214B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4994758B2 (en) Gallium nitride semiconductor light emitting device and method for manufacturing the same
KR101007130B1 (en) Light emitting device and method for fabricating the same
KR101154744B1 (en) Nitride light emitting device and fabrication method thereof
JP5255951B2 (en) Nitride semiconductor device
US20060261361A1 (en) Semiconductor light emitting device
JP2007103951A (en) Nitride semiconductor light-emitting element and method for manufacture it
JP2007318085A (en) Nitride-based luminous element
KR101762175B1 (en) Nano rod light emitting device and method of manufacturing the same
JP2006339627A (en) Vertical-structure nitride-based semiconductor light emitting diode
JP2005183909A (en) High output flip chip light emitting diode
KR100593891B1 (en) Nitride semiconductor light emitting device for flip chip and manufacturing method thereof
KR101123010B1 (en) semi-conductor light emitting device and manufacturing method thereof
KR100982988B1 (en) Vertical semiconductor light emitting device and manufacturing method of the same
US8928006B2 (en) Substrate structure, method of forming the substrate structure and chip comprising the substrate structure
KR100863804B1 (en) Gallium nitride light emitting diode and method for manufacturing the same
JP4285214B2 (en) Light emitting diode element
US20100140646A1 (en) Semiconductor light emitting diode
KR101377969B1 (en) Nitride semiconductor light emitting device emitting UV light
JP4902040B2 (en) Nitride semiconductor device
KR100998013B1 (en) Semiconductor light emitting device
KR100781660B1 (en) Light emitting device having light emitting band and the method therefor
KR20110041683A (en) Semiconductor light emitting device and manufacturing method of the same
KR100663910B1 (en) Light-emitting device and method of manufacturing the same
KR100813598B1 (en) Nitride semiconductor light emitting diode
KR101363432B1 (en) Nitride semiconductor light emitting device and method for manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4285214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

EXPY Cancellation because of completion of term