JP2005158510A - Heat exchanger for fuel cell vehicle - Google Patents

Heat exchanger for fuel cell vehicle Download PDF

Info

Publication number
JP2005158510A
JP2005158510A JP2003395908A JP2003395908A JP2005158510A JP 2005158510 A JP2005158510 A JP 2005158510A JP 2003395908 A JP2003395908 A JP 2003395908A JP 2003395908 A JP2003395908 A JP 2003395908A JP 2005158510 A JP2005158510 A JP 2005158510A
Authority
JP
Japan
Prior art keywords
heat exchanger
liquid
fuel cell
flow path
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395908A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sato
好宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003395908A priority Critical patent/JP2005158510A/en
Publication of JP2005158510A publication Critical patent/JP2005158510A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for a fuel cell vehicle capable of preventing accumulation of bubbles in a liquid passage. <P>SOLUTION: This heat exchanger is equipped with: a gas passage 51 for gas to flow; the liquid passage 52 disposed so that a flowing liquid thermally contacts the gas passage 51. The liquid passage 52 is disposed by nearly vertically directing it, and the liquid is led out from the upper end 44 of the liquid passage 52. Therefore, the liquid flowing through the inside of the liquid passage 52 flows from the nearly vertical lower side to the upper side. Therefore, bubbles mixed into the liquid passage 52 and bubbles generated by heating of the liquid passage 52 are raised from the lower side to the upper side along the flow of the liquid, and led out from the upper end 44 of the liquid passage 52 as it is. As a result, the accumulation of the bubbles in the liquid passage 52 can be prevented, and heat exchange performance degradation and thermal stress generation caused by the accumulation of the bubbles in the liquid passage 52 can be prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両駆動源として燃料電池システムに用いる燃料電池車両用の熱交換器に関する。   The present invention relates to a heat exchanger for a fuel cell vehicle used in a fuel cell system as a vehicle drive source.

燃料電池システムは、燃料電池で、水素ガスなどの燃料ガス(アノード供給ガス)と酸素を有する酸化ガス(カソード供給ガス)とを電解質を介して電気化学的に反応させ、電 解質両面に設けた電極間から電気エネルギを直接取り出すものである。   The fuel cell system is a fuel cell, and is provided on both sides of the electrolyte by electrochemically reacting a fuel gas such as hydrogen gas (anode supply gas) and an oxidizing gas containing oxygen (cathode supply gas) via an electrolyte. Electric energy is directly taken out between the electrodes.

近年、この燃料電池システムを車両の駆動源として搭載した燃料電池車両の実用化が進んでいる。この燃料電池車両では多くの熱交換器が用いられ、例えば特許文献1に開示されるよう熱交換器がある。
特開平06−034295号
In recent years, fuel cell vehicles equipped with this fuel cell system as a vehicle drive source have been put into practical use. In this fuel cell vehicle, many heat exchangers are used. For example, there is a heat exchanger as disclosed in Patent Document 1.
JP 06-034295 A

しかしながら、この特許文献1に開示される燃料電池車両用の熱交換器では内部に液を流通させるチューブが水平方向に配置されているため、チューブ内に形成される液流路に気泡が混入した場合、液流路内に気泡が溜まりやすい。気泡が溜まった部位は、高温ガスと液との間の熱交換が有効に行われない部分となる。また、気泡が溜まった部位は、その他の部位との間に温度差が生じるため、この温度差により熱交換器に通常より大きな熱応力が発生する可能性がある。   However, in the heat exchanger for a fuel cell vehicle disclosed in Patent Document 1, since the tube through which the liquid is circulated is arranged in the horizontal direction, bubbles are mixed in the liquid flow path formed in the tube. In this case, bubbles tend to accumulate in the liquid flow path. The part where the bubbles are accumulated becomes a part where heat exchange between the hot gas and the liquid is not effectively performed. In addition, since a temperature difference occurs between the part where the bubbles are accumulated and other parts, a thermal stress larger than usual may be generated in the heat exchanger due to the temperature difference.

特に、燃焼器の燃焼ガスを通風させて、高温の燃焼ガスと液との間で熱交換する熱交換器では、液の沸騰により気泡が多く発生しやすい。   In particular, in a heat exchanger in which the combustion gas of the combustor is ventilated to exchange heat between the high-temperature combustion gas and the liquid, many bubbles are likely to be generated due to boiling of the liquid.

そこで、本発明の目的は、上記従来の問題点を解決するため、液流路での気泡の滞留を防止できる燃料電池車両用の熱交換器に関する。   Accordingly, an object of the present invention relates to a heat exchanger for a fuel cell vehicle capable of preventing bubbles from staying in a liquid flow path in order to solve the above-described conventional problems.

本発明の燃料電池車両用の熱交換器は、ガスが流通するガス流路と、前記ガス流路と熱的に接触するように配置され且つ液が流通する液流路と、を備え、前記液流路を略垂直方向に向けて配置するとともに前記液流路の上端部から液を導出することを要旨とする。   A heat exchanger for a fuel cell vehicle according to the present invention includes a gas flow path through which a gas flows, and a liquid flow path that is disposed so as to be in thermal contact with the gas flow path and through which the liquid flows. The gist of the invention is that the liquid flow path is arranged in a substantially vertical direction and the liquid is led out from the upper end of the liquid flow path.

本発明によれば、液流路の内部を流通する液が略垂直方向の下方から上方に向けて流通する。そのため、液流路に混入した気泡は、液の流れに沿って下方から上方に浮上していき、そのまま液流路の上端部から導出される。   According to the present invention, the liquid flowing through the liquid channel flows from the lower side to the upper side in the substantially vertical direction. For this reason, the bubbles mixed in the liquid flow path rise upward from below along the flow of the liquid and are led out from the upper end of the liquid flow path as they are.

これにより、液流路内での気泡の滞留を防止できる。結果、液流路での気泡の滞留により生じる熱交換性能低下および熱応力発生を防止できる。 As a result, bubbles can be prevented from staying in the liquid flow path. As a result, it is possible to prevent deterioration in heat exchange performance and generation of thermal stress caused by retention of bubbles in the liquid flow path.

以下、図面を参照して、本発明に係る燃料電池車両用の熱交換器の一実施形態を詳細に説明する。   Hereinafter, an embodiment of a heat exchanger for a fuel cell vehicle according to the present invention will be described in detail with reference to the drawings.

「燃料電池システムの全体構成」
まず、この実施形態の熱交換器8が介装される、燃料電池車両の駆動源としての燃料電池システムについて説明する。図1は燃料電池システムの概念図、図2は同燃料電池システムの燃焼器および熱交換器8の近傍の平面図である。
"Overall configuration of fuel cell system"
First, a fuel cell system as a drive source for a fuel cell vehicle in which the heat exchanger 8 of this embodiment is interposed will be described. FIG. 1 is a conceptual diagram of the fuel cell system, and FIG. 2 is a plan view of the vicinity of the combustor and heat exchanger 8 of the fuel cell system.

図1に示すように、燃料電池システムは、水素供給配管11を介して燃料ガスとしての水素を供給する水素供給装置(燃料ガス供給装置)1と、空気供給配管14を介して酸化剤ガスとしての空気を供給する空気供給装置(酸化剤ガス供給装置)2と、アノード(燃料極)4とカソード(酸化剤極)5を電極として備えそれぞれの電極に供給された水素と酸素とを用いて発電する燃料電池3と、アノードオフガスをアノードオフガス循環配管12を介してアノード4の上流に循環させるアノードオフガス循環装置6と、アノードオフガスを燃焼させる燃焼器7と、燃焼器7の燃焼排ガスで冷媒を加熱する熱交換器8と、冷却装置9と、アノード供給ガスとしての水素を加湿する加湿器10A及びカソード供給ガスとしての空気を加湿する加湿器10Bと、空気流量制御弁16と、熱交換器8又は冷却装置9と燃料電池3との間の冷媒流路20に冷媒を循環させる冷媒ポンプ21と、冷媒流路20を熱交換器8又は冷却装置9に切り換える三方弁22と、アノードオフガスをアノードオフガス循環装置6からアノードオフガス排出配管13を介して燃焼器7へ排出するアノードオフガス排出弁27と、燃料電池システム全体を制御するシステムコントローラ37と、を備えている。   As shown in FIG. 1, the fuel cell system includes a hydrogen supply device (fuel gas supply device) 1 that supplies hydrogen as a fuel gas via a hydrogen supply pipe 11, and an oxidant gas via an air supply pipe 14. An air supply device (oxidant gas supply device) 2 for supplying air, an anode (fuel electrode) 4 and a cathode (oxidant electrode) 5 as electrodes, and hydrogen and oxygen supplied to each electrode are used. A fuel cell 3 for generating electricity, an anode offgas circulation device 6 for circulating the anode offgas upstream of the anode 4 via the anode offgas circulation pipe 12, a combustor 7 for combusting the anode offgas, and a refrigerant in the combustion exhaust gas of the combustor 7 A heat exchanger 8 for heating the air, a cooling device 9, a humidifier 10A for humidifying hydrogen as an anode supply gas, and a humidification for humidifying air as a cathode supply gas 10B, the air flow control valve 16, the heat exchanger 8 or the refrigerant pump 21 for circulating the refrigerant in the refrigerant flow path 20 between the cooling device 9 and the fuel cell 3, and the refrigerant flow path 20 through the heat exchanger 8 or A three-way valve 22 for switching to the cooling device 9, an anode offgas discharge valve 27 for discharging the anode offgas from the anode offgas circulation device 6 to the combustor 7 via the anode offgas discharge pipe 13, and a system controller 37 for controlling the entire fuel cell system. And.

尚、この実施形態では、アノード供給ガス用の加湿器10Aとカソード供給用の加湿器10Bでは構成が異なっている。アノード供給ガス用の加湿器10Aは、水タンク25に貯蔵される水を利用して水素供給配管11を流れる水素を加湿する。一方、カソード供給ガス用の加湿器10Bは、内部に中空糸膜の集合体を備え、この中空糸膜内にカソードオフガスを流通させるとともに中空糸膜外にカソード供給ガスを流通させて、このカソードオフガス中の水分でカソード供給ガスを加湿する。つまり、このカソード供給用の加湿器10Bは、カソードオフガスの水分を回収する水回収装置である。   In this embodiment, the anode supply gas humidifier 10A and the cathode supply humidifier 10B have different configurations. The humidifier 10 </ b> A for anode supply gas humidifies hydrogen flowing through the hydrogen supply pipe 11 using water stored in the water tank 25. On the other hand, the humidifier 10B for the cathode supply gas has an assembly of hollow fiber membranes inside, and distributes the cathode off gas inside the hollow fiber membrane and distributes the cathode supply gas outside the hollow fiber membrane. The cathode supply gas is humidified with moisture in the off gas. That is, the cathode supply humidifier 10B is a water recovery device that recovers the moisture of the cathode offgas.

「燃料電池システムの動作」
次に、燃料電池システムの動作を説明する。
"Operation of the fuel cell system"
Next, the operation of the fuel cell system will be described.

まず、水素供給装置1からの水素が加湿器10Aで加湿されてアノード4に供給されるとともに空気供給装置2からの空気が加湿器10Bで加湿されてカソード5に供給され、これら水素および空気が燃料電池3内で反応し、発電される。その際アノード4からは消費されずに残ったアノードオフガスが排出される。またカソード5からは一部の酸素が消費され且つ発電により生成した水分を含んだカソードオフガスがそれぞれ排出される。   First, hydrogen from the hydrogen supply device 1 is humidified by the humidifier 10A and supplied to the anode 4, and air from the air supply device 2 is humidified by the humidifier 10B and supplied to the cathode 5, and these hydrogen and air are supplied. The fuel cell 3 reacts to generate electricity. At that time, the anode 4 which is not consumed and is left out is discharged from the anode 4. Also, a part of oxygen is consumed from the cathode 5 and cathode off gas containing moisture generated by power generation is discharged.

通常運転時にアノードオフガスは、アノードオフガス循環装置6によりアノードオフガス循環配管12を介して水素供給配管11に全量循環されて再度アノード4へと供給される。一方、カソードオフガスは、加湿器10B、燃焼器7、熱交換器8、排気管19を介してシステム外へ排気される。   During normal operation, the anode off-gas is circulated through the anode off-gas circulation pipe 6 through the anode off-gas circulation pipe 12 to the hydrogen supply pipe 11 and supplied to the anode 4 again. On the other hand, the cathode off gas is exhausted out of the system through the humidifier 10B, the combustor 7, the heat exchanger 8, and the exhaust pipe 19.

ここで、燃料電池3のセル電圧を検知する電圧検知手段により所定の電圧値よりも低い電圧が検知された場合には、システムコントローラ37はアノード供給ガスに蓄積した不純物量が多くなったと判断してパージ信号に発信し、これに基づいて、アノードオフガス排出弁27から所定流量のアノードオフガスが燃焼器7に排出される。   Here, when a voltage lower than a predetermined voltage value is detected by the voltage detection means for detecting the cell voltage of the fuel cell 3, the system controller 37 determines that the amount of impurities accumulated in the anode supply gas has increased. The purge signal is transmitted to the combustor 7 based on the anode offgas discharge valve 27 based on the purge signal.

燃焼器7では、アノードオフガス排出弁27を介して供給されたアノードオフガス(排水素)がミキサ23でカソードオフガスと混合され、この混合ガスが燃焼触媒を有する燃焼室24で燃焼される。燃焼器7で生成された燃焼ガスは、熱交換器8を通過して排気管19を通じてシステム外(大気)に排気される。   In the combustor 7, the anode offgas (exhaust hydrogen) supplied via the anode offgas discharge valve 27 is mixed with the cathode offgas by the mixer 23, and this mixed gas is combusted in the combustion chamber 24 having a combustion catalyst. The combustion gas generated in the combustor 7 passes through the heat exchanger 8 and is exhausted outside the system (atmosphere) through the exhaust pipe 19.

なお、燃焼器7には、図示せぬ配管を介して水素供給装置1から水素を供給できると共に図示せぬ配管を介して空気を供給できるようになっていて、パージされる排水素を処理する時以外にも、水素および空気(酸素)を燃焼させて熱を発生できるようになっている。この燃焼熱を利用して、必要に応じて燃料電池3を加温できる。   The combustor 7 can be supplied with hydrogen from the hydrogen supply device 1 through a pipe (not shown) and can be supplied with air through a pipe (not shown) to process the purged exhausted hydrogen. In addition to the time, heat can be generated by burning hydrogen and air (oxygen). Using this combustion heat, the fuel cell 3 can be heated as required.

「燃料電池の温度管理」
次に、燃料電池3の温度管理について説明する。燃料電池3は、不凍液等の冷媒により運転温度が適温に維持されるように温度管理されている。
"Fuel cell temperature control"
Next, temperature management of the fuel cell 3 will be described. The temperature of the fuel cell 3 is controlled so that the operating temperature is maintained at an appropriate temperature by a refrigerant such as antifreeze.

燃料電池システムの通常運転時には、発熱した燃料電池3を適正な運転温度に冷却維持する必要がある。そのため、三方弁22で冷媒ポンプ21と冷却装置9とを連通することで、冷媒を冷媒ポンプ21、三方弁22,冷却装置9、燃料電池3、冷媒ポンプ21という閉路に循環させるようになっている。これにより、燃料電池3の発熱を冷却装置9からシステム外へ放出して、燃料電池3の温度を適温に冷却維持する。   During normal operation of the fuel cell system, it is necessary to keep the heated fuel cell 3 cooled to an appropriate operating temperature. Therefore, by connecting the refrigerant pump 21 and the cooling device 9 with the three-way valve 22, the refrigerant is circulated in a closed circuit of the refrigerant pump 21, the three-way valve 22, the cooling device 9, the fuel cell 3, and the refrigerant pump 21. Yes. As a result, the heat generated by the fuel cell 3 is released from the cooling device 9 to the outside of the system, and the temperature of the fuel cell 3 is maintained at an appropriate temperature.

一方、燃料電池システムの起動時には、燃料電池3を適正な運転温度に上昇させる必要がある。そのため、三方弁22で冷媒ポンプ21と熱交換器8とを連通することで、冷媒を冷媒ポンプ21、三方弁22、熱交換器8、燃料電池3、冷媒ポンプ21という閉路に循環させるようになっている。これにより、通常運転時冷媒として用いる媒体を温媒として用いることができ、温媒温度を熱交換器8で上昇させて、燃料電池3の温度を運転開始に適切な温度まで上昇させることができる。   On the other hand, when starting the fuel cell system, it is necessary to raise the fuel cell 3 to an appropriate operating temperature. Therefore, the refrigerant pump 21 and the heat exchanger 8 are communicated with each other by the three-way valve 22 so that the refrigerant is circulated in the closed circuit of the refrigerant pump 21, the three-way valve 22, the heat exchanger 8, the fuel cell 3, and the refrigerant pump 21. It has become. As a result, the medium used as the refrigerant during normal operation can be used as the heating medium, and the temperature of the fuel cell 3 can be increased to an appropriate temperature for starting operation by raising the temperature of the heating medium with the heat exchanger 8. .

「熱交換器」
次に、上記燃料電池システムに用いられる熱交換器について説明する。図3は燃焼器および熱交換器および排気管をアッセンブリしたアッセンブリ体の平面図、図4は同アッセンブリ体の側面図、図5はこの実施形態の熱交換器を概略的に示す垂直断面図である。
"Heat exchanger"
Next, a heat exchanger used in the fuel cell system will be described. 3 is a plan view of an assembly body in which a combustor, a heat exchanger, and an exhaust pipe are assembled. FIG. 4 is a side view of the assembly body. FIG. 5 is a vertical sectional view schematically showing the heat exchanger of this embodiment. is there.

図3、図4に示すように熱交換器8は、筒状の遮熱体61の内部において筒状のケーシング62内に納められている。ケーシング62の一方の開口端には燃焼器7の排出口と接続される燃焼ガス導入口63が設けられ、ケーシング62の他方の開口端には排気管19入口と接続される燃焼ガス導出口64が設けられている。   As shown in FIGS. 3 and 4, the heat exchanger 8 is housed in a cylindrical casing 62 inside a cylindrical heat shield 61. A combustion gas inlet 63 connected to the exhaust port of the combustor 7 is provided at one open end of the casing 62, and a combustion gas outlet 64 connected to the exhaust pipe 19 inlet at the other open end of the casing 62. Is provided.

熱交換器8は、図5に示すように、扁平チューブ42と波状のアウターフィン43とが交互に積層されたもので、扁平チューブ42の積層方向最外側には補強用のサイドプレート48が付設されている。   As shown in FIG. 5, the heat exchanger 8 is formed by alternately laminating flat tubes 42 and corrugated outer fins 43, and a reinforcing side plate 48 is attached to the outermost side in the laminating direction of the flat tubes 42. Has been.

扁平チューブ42は垂直方向に向けて配置されている。各扁平チューブ42の上端部および下端部には、扁平チューブ42の積層方向Zに向けて突設された円筒状のタンク形成部42bが設けられ、隣接する扁平チューブ42の円筒状のタンク形成部42b同士は連通している。これにより、熱交換器8の上端部には上側タンク44が形成され、一方、熱交換器8の下端部には下側タンク45が形成される。   The flat tube 42 is arranged in the vertical direction. A cylindrical tank forming portion 42b that protrudes in the stacking direction Z of the flat tubes 42 is provided at the upper end and the lower end of each flat tube 42, and the cylindrical tank forming portions of the adjacent flat tubes 42 are provided. 42b communicates with each other. Thereby, an upper tank 44 is formed at the upper end of the heat exchanger 8, while a lower tank 45 is formed at the lower end of the heat exchanger 8.

このように構成されることで、扁平チューブ42間には燃焼ガスが流通するガス流路51が形成され、扁平チューブ42の上端部と下端部との間のチューブ本体部42a内部には、液が流通する液流路52が形成される。液流路52内を流れる液は、扁平チューブ42の素材を介してガス流路51を流れるガスと熱的に接触する。なお、扁平チューブ42内には図示せぬ波状のインナーフィンが介在している。   By being configured in this way, a gas flow path 51 through which combustion gas flows is formed between the flat tubes 42, and there is liquid inside the tube main body portion 42 a between the upper end portion and the lower end portion of the flat tube 42. A liquid channel 52 through which the water flows is formed. The liquid flowing in the liquid flow path 52 is in thermal contact with the gas flowing in the gas flow path 51 through the material of the flat tube 42. In the flat tube 42, a wavy inner fin (not shown) is interposed.

また、この実施形態では、下側タンク45の長手方向一端部に、熱交換器液入口としてパイプ47が接続され、且つ、上側タンク44の長手方向一端部に、熱交換器液出口としてのパイプ46が接続されている。これら熱交換器入口としてのパイプ47および熱交換器液出口としてのパイプ46のいずれも、扁平チューブ42の積層方向Zの一方(図5中右側)に設けられている。   In this embodiment, a pipe 47 as a heat exchanger liquid inlet is connected to one end of the lower tank 45 in the longitudinal direction, and a pipe as a heat exchanger liquid outlet is connected to one end of the upper tank 44 in the longitudinal direction. 46 is connected. Both the pipe 47 as the heat exchanger inlet and the pipe 46 as the heat exchanger liquid outlet are provided on one side (right side in FIG. 5) of the flat tubes 42 in the stacking direction Z.

このように構成された熱交換器8では液が図5中矢印で示すように流れる。つまり、熱交換器液入口としてのパイプ47を通じて下側タンク45に供給された液は、各扁平チューブ42内の液流路52を下方から上方に流れた後、上側タンク44で集約されて、熱交換器液出口としてのパイプ46を通じて排出される。液は、扁平チューブ42内の液流路52を流れる際に扁平チューブ42間のガス流路51を流通する高温の燃焼ガスにより加熱されて、この加熱された液が熱交換器8外に取り出される。なお、これにより燃焼器7から熱交換器8を介して排気管19に向かう燃焼ガスは、熱交換器8で冷却されて排気管19を通じて排気されることとなる(図3、4参照)。   In the heat exchanger 8 configured as described above, the liquid flows as indicated by arrows in FIG. That is, the liquid supplied to the lower tank 45 through the pipe 47 as the heat exchanger liquid inlet flows from the lower side to the upper side of the liquid flow path 52 in each flat tube 42, and then is collected in the upper tank 44. It is discharged through a pipe 46 as a heat exchanger liquid outlet. The liquid is heated by the high-temperature combustion gas flowing through the gas flow path 51 between the flat tubes 42 when flowing through the liquid flow path 52 in the flat tube 42, and the heated liquid is taken out of the heat exchanger 8. It is. As a result, the combustion gas directed from the combustor 7 to the exhaust pipe 19 via the heat exchanger 8 is cooled by the heat exchanger 8 and exhausted through the exhaust pipe 19 (see FIGS. 3 and 4).

「効果」
このような熱交換器8によれば以下の効果ある。
"effect"
Such a heat exchanger 8 has the following effects.

まず第1に、この実施形態の熱交換器8によれば、ガスが流通するガス流路51と、流通する液がガス流路51と熱的に接触するように配置された液流路52と、を備え、液流路52を略垂直方向に向けて配置するとともに液流路52の上端部44から液を導出することを特徴とするため、液流路52の内部を流通する液が略垂直方向の下方から上方に向けて流通する。   First, according to the heat exchanger 8 of this embodiment, the gas flow path 51 through which the gas flows and the liquid flow path 52 arranged so that the flowing liquid is in thermal contact with the gas flow path 51. And the liquid channel 52 is arranged in a substantially vertical direction and the liquid is led out from the upper end portion 44 of the liquid channel 52. It circulates from the lower side to the upper side in the substantially vertical direction.

そのため、液流路52に混入した気泡は、液の流れに沿って下方から上方に浮上していき、そのまま液流路52の上端部44から導出される。これにより、液流路52内での気泡の滞留を防止でき、液流路52での気泡の滞留により生じる熱交換性能低下および熱応力発生を防止できる。   Therefore, the bubbles mixed in the liquid flow path 52 float upward from below along the liquid flow, and are led out from the upper end portion 44 of the liquid flow path 52 as they are. Thereby, it is possible to prevent the bubbles from staying in the liquid flow path 52, and it is possible to prevent the heat exchange performance from being lowered and the generation of thermal stress caused by the bubbles staying in the liquid flow path 52.

特に、この実施形態では、ガス流路51を流通するガスが高温で、液流路52を流通する液が沸騰して内部で気泡が発生しやすいため、気泡が液流路に滞留しない構造が、より有効に作用する。   In particular, in this embodiment, since the gas flowing through the gas flow path 51 is hot and the liquid flowing through the liquid flow path 52 boils and bubbles are likely to be generated inside, the structure in which the bubbles do not stay in the liquid flow path is provided. It works more effectively.

第2に、この実施形態の熱交換器8によれば、上下方向に向けて配置された扁平チューブ42を所定間隔を空けて複数多段に積層し、積層方向に隣接する扁平チューブ42の上端部同士を連通する上側タンク44を設け、且つ積層方向に隣接する扁平チューブ42の下端部同士を連通する下側タンク45を設けた構造としたため、これら扁平チューブ42、上側タンク44、下側タンク45により、簡素に熱交換器8を構成できる。   2ndly, according to the heat exchanger 8 of this embodiment, the flat tube 42 arrange | positioned toward an up-down direction is laminated | stacked in multiple stages at predetermined intervals, and the upper end part of the flat tube 42 adjacent to a lamination direction Since the upper tank 44 communicating with each other and the lower tank 45 communicating with the lower ends of the flat tubes 42 adjacent to each other in the stacking direction are provided, the flat tube 42, the upper tank 44, and the lower tank 45 are provided. Thus, the heat exchanger 8 can be configured simply.

なお、この実施形態の熱交換器8では、扁平チューブ42自身が、隣接する扁平チューブ42と連通してタンク44、45を形成するタンク形成部42bを有するため、さらに簡素に熱交換器8を構成できるようになっている。   In addition, in the heat exchanger 8 of this embodiment, the flat tube 42 itself has the tank formation part 42b which communicates with the adjacent flat tube 42 and forms the tanks 44 and 45, Therefore The heat exchanger 8 is further simplified. It can be configured.

第3に、扁平チューブの積層方向Zの一方の最外側(図5中右側)に、熱交換器液入口47および熱交換器液出口46を設けたため、熱交換器8の一方側(図5中右側)から入口側の配管55(例えばゴムホース)および出口側の配管54(例えばゴムホース)をともに取り付ることができるため、熱交換器液入口47および熱交換器液出口46に接続する配管54、55の取付作業が簡易化する。   Third, since the heat exchanger liquid inlet 47 and the heat exchanger liquid outlet 46 are provided on one outermost side (right side in FIG. 5) in the stacking direction Z of the flat tubes, one side of the heat exchanger 8 (FIG. 5). Since the pipe 55 (for example, rubber hose) on the inlet side and the pipe 54 (for example, rubber hose) on the outlet side can be attached together from the middle right side), the pipe connected to the heat exchanger liquid inlet 47 and the heat exchanger liquid outlet 46 The attachment work of 54 and 55 is simplified.

また、接続スペースS(図5中2点鎖線)を、熱交換器8の両側(図5中左右)設ける必要がないため、熱交換器8が占有スペースを縮小できる。そのため、搭載スペースが限られる車両搭載用の熱交換器8として好適である。   Moreover, since it is not necessary to provide the connection space S (two-dot chain line in FIG. 5) on both sides (left and right in FIG. 5) of the heat exchanger 8, the space occupied by the heat exchanger 8 can be reduced. Therefore, it is suitable as the vehicle-mounted heat exchanger 8 in which the mounting space is limited.

以上要するに本発明の燃料電池車両用の熱交換器は、ガスが流通するガス流路と、流通する液が前記ガス流路と熱的に接触するように配置された液流路と、を備え、液流路を略垂直方向に向けて配置するとともに液流路の上端部から液を導出することを特徴とするため、液流路の内部を流通する液が略垂直方向の下方から上方に向けて流通する。そのため、液流路に混入した気泡は、液の流れに沿って下方から上方に浮上していき、そのまま液流路の上端部から導出される。これにより、液流路内での気泡の滞留を防止できる。結果、液流路での気泡の滞留により生じる熱交換性能低下および熱応力発生を防止できる。   In short, the heat exchanger for a fuel cell vehicle according to the present invention includes a gas flow path through which gas flows and a liquid flow path arranged so that the flowing liquid is in thermal contact with the gas flow path. The liquid flow path is arranged in a substantially vertical direction and the liquid is led out from the upper end portion of the liquid flow path. Circulate towards. For this reason, the bubbles mixed in the liquid flow path rise upward from below along the flow of the liquid and are led out from the upper end of the liquid flow path as they are. As a result, bubbles can be prevented from staying in the liquid flow path. As a result, it is possible to prevent deterioration in heat exchange performance and generation of thermal stress caused by retention of bubbles in the liquid flow path.

図1は燃料電池システムの概念図。FIG. 1 is a conceptual diagram of a fuel cell system. 同燃料電池システムの燃焼器および熱交換器の近傍の平面図である。It is a top view of the vicinity of the combustor and heat exchanger of the fuel cell system. 燃焼器および熱交換器および排気管をアッセンブリしたアッセンブリ体の平面図。The top view of the assembly body which assembled the combustor, the heat exchanger, and the exhaust pipe. 燃焼器および熱交換器および排気管をアッセンブリしたアッセンブリ体の側面図。The side view of the assembly body which assembled the combustor, the heat exchanger, and the exhaust pipe. この実施形態の熱交換器を概略的に示す垂直断面図。The vertical sectional view showing roughly the heat exchanger of this embodiment.

符号の説明Explanation of symbols

8…熱交換器
42…扁平チューブ
42b…タンク形成部
44…上側タンク
45…下側タンク
46…パイプ(熱交換器液出口)
47…パイプ(熱交換器液入口)
51…ガス流路
52…液流路
Z…扁平チューブの積層方向
8 ... Heat exchanger 42 ... Flat tube 42b ... Tank forming part 44 ... Upper tank 45 ... Lower tank 46 ... Pipe (heat exchanger liquid outlet)
47 ... Pipe (heat exchanger liquid inlet)
51 ... Gas channel 52 ... Liquid channel Z ... Flat tube stacking direction

Claims (3)

車両駆動源としての燃料電池システムに利用する燃料電池車両用の熱交換器において、
ガスが流通するガス流路と、流通する液が前記ガス流路と熱的に接触するように配置された液流路と、を備え、
前記液流路を略垂直方向に向けて配置し、前記液流路の上端部から液を導出することを特徴とする燃料電池車両用の熱交換器。
In a heat exchanger for a fuel cell vehicle used in a fuel cell system as a vehicle drive source,
A gas flow path through which gas flows, and a liquid flow path arranged so that the flowing liquid is in thermal contact with the gas flow path,
A heat exchanger for a fuel cell vehicle, wherein the liquid passage is arranged in a substantially vertical direction, and the liquid is led out from an upper end portion of the liquid passage.
請求項1記載の燃料電池車両用の熱交換器であって、
上下方向に向けて配置された扁平チューブを所定間隔を空けて複数多段に積層し、積層方向に隣接する扁平チューブの上端部同士を連通する上側タンクを設け且つ積層方向に隣接する扁平チューブの下部同士を連通する下側タンクを設けたことで、
前記扁平チューブ内に前記液流路を構成し且つ積層方向に隣り合う扁平チューブ間に前記ガス流路を構成したことを特徴とする燃料電池車両用の熱交換器。
A heat exchanger for a fuel cell vehicle according to claim 1,
A plurality of flat tubes arranged in the vertical direction are stacked in multiple stages at predetermined intervals, and an upper tank is provided to connect the upper ends of the flat tubes adjacent in the stacking direction, and the lower portion of the flat tube adjacent in the stacking direction By providing a lower tank that communicates with each other,
A heat exchanger for a fuel cell vehicle, characterized in that the liquid flow path is formed in the flat tube and the gas flow path is formed between flat tubes adjacent in the stacking direction.
請求項2に記載の燃料電池車両用の熱交換器であって、
前記扁平チューブの積層方向の一方の最外側に、熱交換器液入口および熱交換器液出口を設けたことを特徴とする燃料電池車両用の熱交換器。

A heat exchanger for a fuel cell vehicle according to claim 2,
A heat exchanger for a fuel cell vehicle, wherein a heat exchanger liquid inlet and a heat exchanger liquid outlet are provided on one outermost side in the stacking direction of the flat tubes.

JP2003395908A 2003-11-26 2003-11-26 Heat exchanger for fuel cell vehicle Pending JP2005158510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395908A JP2005158510A (en) 2003-11-26 2003-11-26 Heat exchanger for fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395908A JP2005158510A (en) 2003-11-26 2003-11-26 Heat exchanger for fuel cell vehicle

Publications (1)

Publication Number Publication Date
JP2005158510A true JP2005158510A (en) 2005-06-16

Family

ID=34721543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395908A Pending JP2005158510A (en) 2003-11-26 2003-11-26 Heat exchanger for fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP2005158510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728996A1 (en) 2005-05-31 2006-12-06 Nissan Motor Co., Ltd. Combustion control method and apparatus for a direct injection spark ignition internal combustion engine
JP2008103297A (en) * 2006-10-20 2008-05-01 Hyundai Motor Co Ltd Structure of bubble prevention buffer tank of fuel cell vehicle
JP2013127344A (en) * 2011-12-19 2013-06-27 Futaba Industrial Co Ltd Fuel cell heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728996A1 (en) 2005-05-31 2006-12-06 Nissan Motor Co., Ltd. Combustion control method and apparatus for a direct injection spark ignition internal combustion engine
JP2008103297A (en) * 2006-10-20 2008-05-01 Hyundai Motor Co Ltd Structure of bubble prevention buffer tank of fuel cell vehicle
JP2013127344A (en) * 2011-12-19 2013-06-27 Futaba Industrial Co Ltd Fuel cell heat exchanger

Similar Documents

Publication Publication Date Title
JP5253134B2 (en) Fuel cell device
US10396377B2 (en) Fuel cell device
JP5206206B2 (en) Fuel cell system
JP4824375B2 (en) In-vehicle fuel cell system
JP2005353580A (en) Humidification device of fuel cell
JP2008210628A (en) Fuel cell device
JP2005158509A (en) Fuel cell system
JP5005701B2 (en) Fuel cell system
JP2005158510A (en) Heat exchanger for fuel cell vehicle
JP2009081102A (en) Polymer electrolyte fuel cell
KR20040028680A (en) Fuel cell system
JP2006139991A (en) Fuel cell system
JP2005116368A (en) Fuel cell system
KR20170079315A (en) Thermal Management System for vehicles
JP2005156370A (en) Pressure-measuring system
JP2005032685A (en) Fuel cell system
JP5216197B2 (en) Fuel cell power generation system
JP5196808B2 (en) Fuel cell device
JP5044921B2 (en) Fuel cell module and operation method
JP2006196249A (en) Fuel cell system
KR100448690B1 (en) Cooling system for fuel cell
JP3981476B2 (en) Fuel cell stack
JP3961198B2 (en) Waste heat fuel cell
JP2007042417A (en) Fuel cell
JP2008300324A (en) Fuel cell unit