JP2005158121A - Rotatory power compensation wide-band 1/4-wavelength plate and optical pickup unit using same - Google Patents

Rotatory power compensation wide-band 1/4-wavelength plate and optical pickup unit using same Download PDF

Info

Publication number
JP2005158121A
JP2005158121A JP2003392987A JP2003392987A JP2005158121A JP 2005158121 A JP2005158121 A JP 2005158121A JP 2003392987 A JP2003392987 A JP 2003392987A JP 2003392987 A JP2003392987 A JP 2003392987A JP 2005158121 A JP2005158121 A JP 2005158121A
Authority
JP
Japan
Prior art keywords
optical
wave plate
matrix
phase difference
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003392987A
Other languages
Japanese (ja)
Other versions
JP4329508B2 (en
Inventor
Masayuki Oto
正之 大戸
Hiroshi Matsumoto
浩 松本
Satoshi Kaizawa
聡 甲斐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003392987A priority Critical patent/JP4329508B2/en
Publication of JP2005158121A publication Critical patent/JP2005158121A/en
Application granted granted Critical
Publication of JP4329508B2 publication Critical patent/JP4329508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wide-band 1/4-wavelength plate such that influence of rotatory poweris corrected when a 1/4-wavelength plate is constituted by using a birefringent optical material, such as crystal, having rotatory power. <P>SOLUTION: The rotatory power compensation wide-band 1/4-wavelength plate is constituted by forming wavelength plates A and B of the same optical material having rotatory power and placing them one over the other so that the optical axes cross each other, the wide-band 1/4 wavelength plate being characterized in that an optimum value can be obtained by short-time simulation by calculating three approximate expressions (1) to (3) first and performing simulation within a range where an expression (4) or (5) is satisfied, characteristics are very excellent, and influence of rotatory power is corrected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学材料の複屈折性を利用した波長板に関し、特に、水晶等の旋光能を有する光学材料を用いた旋光能補正広帯域1/4波長板及びこれを用いた光ピックアップ装置に関する。   The present invention relates to a wave plate using the birefringence of an optical material, and more particularly, to an optical rotation correcting broadband quarter-wave plate using an optical material having optical activity such as quartz and an optical pickup device using the same.

音楽や映像関連などの大容量情報の光学記録媒体としてCD(Compact Disc)やDVD(Digital Versatile Disc)が普及し、更に高密度大容量な光学記録媒体も開発されつつある。これらCDやDVD等の光学記録媒体は、直線偏光や円偏光等のレーザー光を利用して再生或いは記録を行うものであり、再生/記録を行う光ディスク装置が用いられる。近年、CDとDVDのコンパチブル(共用)性と共に光ディスク装置自体の小型化の要求が高まっている。
DVDはCDに比べ記録密度が高く、例えば2時間以上の映像及び音声の情報を1枚のディスクに収容できるようになった。これに伴いDVDの再生波長は、CDの780nm帯に対して650nm帯と波長も短くなっており、DVDとCDのコンパチブルを可能とする光ピックアップ装置では必然的にこれら2種類の波長に対応する必要が生じる。
光ディスク装置内では、それぞれの波長光を発生するレーザー光源に応じて、2系統の光ピックアップ装置を設けて構成していたが、近年の小型化の要求により、特に、光学系部品点数の削減等の簡素化を図るべく光ピックアップ装置を1系統で構成する試みが種々なされている。
CDs (Compact Discs) and DVDs (Digital Versatile Discs) are widely used as optical recording media for large-capacity information related to music and video, and higher-density and large-capacity optical recording media are being developed. These optical recording media such as CD and DVD perform reproduction or recording using laser light such as linearly polarized light or circularly polarized light, and an optical disk device that performs reproduction / recording is used. In recent years, there has been an increasing demand for miniaturization of the optical disk apparatus itself along with compatibility of CD and DVD.
A DVD has a higher recording density than a CD, and for example, video and audio information for two hours or more can be accommodated in one disc. Along with this, the reproduction wavelength of DVD is 650 nm band shorter than the 780 nm band of CD, and an optical pickup device capable of DVD and CD compatibility necessarily corresponds to these two types of wavelengths. Need arises.
In the optical disk device, two systems of optical pickup devices are provided according to the laser light source that generates light of each wavelength. However, due to recent demands for miniaturization, especially the number of optical system components is reduced. Various attempts have been made to configure the optical pickup device in one system in order to simplify the system.

ここで、光ピックアップ装置の中で行われる光の偏光について説明する。光を波としてとらえると、光の進行方向と磁場を含む面を偏光面といい、一方、光の進行方向と電場を含む面を振動面という。そして、偏光面の方向が揃っている場合の光が偏光であり、偏光面が一つの平面に限られるような偏光を直線偏光と呼ぶ。直線偏光には、入射光線と入射面の法線とを含む平面に対して、水平に振動する成分のP偏光と、垂直に振動する成分のS偏光とがある。また、ある位置でみた電場ベクトルが、時間とともに回転するような偏光を一般に楕円偏光といい、特に、光の進行方向に垂直な平面上に電場ベクトルの先端を投影したとき、その軌跡が円となるものを円偏光という。   Here, polarization of light performed in the optical pickup device will be described. When light is viewed as a wave, the plane including the light traveling direction and the magnetic field is referred to as a polarization plane, while the plane including the light traveling direction and the electric field is referred to as a vibration plane. The light in the case where the directions of the polarization planes are aligned is the polarization, and the polarization in which the polarization plane is limited to one plane is called linear polarization. The linearly polarized light includes P-polarized light having a component that oscillates horizontally and S-polarized light having a component that oscillates vertically with respect to a plane including the incident ray and the normal of the incident surface. In addition, polarized light whose electric field vector viewed at a certain position rotates with time is generally called elliptically polarized light.In particular, when the tip of the electric field vector is projected on a plane perpendicular to the light traveling direction, the trajectory is a circle. This is called circularly polarized light.

波長板(位相レターデーションプレートとも呼ばれる)は、光学材料の複屈折性を利用し光の位相変調を行う光学素子である。中でも、直線偏光を円偏光に変換する1/4波長板は、上述の光ディスク装置や、ディジタルカメラなどに使用するOLPF(Optical Low Pass Filter)の偏光解消板として用いられている。
波長板の位相差は波長の関数であるため、使用する波長が変わると位相差も変化してしまう特性がある。即ち、これは複数の波長を使用するCD/DVD互換タイプや、或いは、可視光帯域の複数点の波長を選択的/可変的に用いるようなタイプの光ピックアップ装置の場合、波長板を経由する夫々の波長により位相差が変化してしまうため、位相差を1/4波長に維持することができないという問題が生じる。
A wave plate (also called a phase retardation plate) is an optical element that performs phase modulation of light using the birefringence of an optical material. Among them, a quarter-wave plate that converts linearly polarized light into circularly polarized light is used as a depolarizing plate for an OLPF (Optical Low Pass Filter) used in the above-described optical disk device, digital camera, and the like.
Since the phase difference of the wave plate is a function of the wavelength, there is a characteristic that the phase difference changes as the wavelength used changes. That is, in the case of a CD / DVD compatible type that uses a plurality of wavelengths, or an optical pickup device that uses a plurality of wavelengths in the visible light band selectively / variably, it passes through a wave plate. Since the phase difference changes depending on each wavelength, there arises a problem that the phase difference cannot be maintained at ¼ wavelength.

このような問題を解決するものとして、例えば、特開平10−068816号公報に示されるように、複屈折光の位相差が1/4波長である波長板と、複屈折光の位相差が1/2波長である波長板とを同一材料にて作製し、この二つの波長板を光軸が交差するよう張り合わせることが提案されている。これによれば、ある波長範囲にて、ほぼ1/4波長の位相差で機能する波長板となる。
特開平10−068816号公報
In order to solve such a problem, for example, as disclosed in Japanese Patent Laid-Open No. 10-068816, a wave plate having a quarter-wave phase difference of birefringent light and a phase difference of birefringent light of 1 are used. It has been proposed that a wave plate having a / 2 wavelength is made of the same material and the two wave plates are bonded so that their optical axes intersect. According to this, a wave plate that functions with a phase difference of almost ¼ wavelength in a certain wavelength range is obtained.
JP-A-10-068816

しかしながら、上述した従来の1/4波長板においては、以下に示すような問題点があった。つまり、波長板の用途が液晶ディスプレイなどの変色防止を前提しているため、光学材料に高分子フィルム(例えば、ポリカーボネイト)を用いた例が上げられているが、これを光ピックアップ装置に適用した場合、近年の高倍速書込みに使用する高出力レーザは、その温度上昇によりピックアップ自体の温度が上昇し、高分子フィルムは線熱膨張係数が大きいため、膨張し熱歪みを生じる。結果、透過波面収差が劣化しレーザをディスク上に集光できなくなる。更に、近年の光学記録媒体にあっては高密度大容量化の傾向から使用される光線はブルーレーザー(400nm帯波長)の領域へも進んできており、特に、ポリカーボネイト樹脂は、紫外線領域光を受けると化学変化を起こして「黄変劣化」してしまうという耐光性の低さから光ピックアップ装置への適用には不向きである。
そこで、耐光性の高い複屈折性光学材料として水晶などが有効であると考えられる。
However, the conventional quarter wavelength plate described above has the following problems. In other words, because the use of the wave plate is premised on preventing discoloration of liquid crystal displays and the like, an example using a polymer film (for example, polycarbonate) as an optical material has been given, but this was applied to an optical pickup device. In this case, in recent high-power lasers used for high-speed writing, the temperature of the pickup itself rises due to the temperature rise, and the polymer film has a large coefficient of linear thermal expansion, so that it expands and generates thermal distortion. As a result, the transmitted wavefront aberration is degraded and the laser cannot be focused on the disk. Furthermore, in recent optical recording media, the light used for the trend toward higher density and larger capacity has advanced to the blue laser (400 nm band wavelength) region. In particular, polycarbonate resin emits light in the ultraviolet region. When received, it is unsuitable for application to an optical pickup device due to its low light resistance that causes chemical change and “yellowing deterioration”.
Therefore, it is considered that quartz or the like is effective as a birefringent optical material having high light resistance.

ところが、水晶等の複屈折性光学材料の一部(主に単結晶からなる材料)は、旋光能を有するため光軸方向に伝搬する直線偏光の振動面が光の進行につれてねじれてしまう。そのため、水晶等を光学材料として特開平10−068816号公報に開示されるように波長板を構成しても、ある波長範囲でほぼ1/4波長板として機能させることができないという問題点があった。   However, some birefringent optical materials such as quartz (materials mainly composed of a single crystal) have optical rotatory power, so that the vibration plane of linearly polarized light propagating in the optical axis direction is twisted as the light advances. Therefore, even if a wave plate is configured as disclosed in Japanese Patent Laid-Open No. 10-068816 using quartz or the like as an optical material, it cannot function as a quarter wave plate in a certain wavelength range. It was.

本発明はこのような問題点を解決するためになされたものであり、水晶等の旋光能を有する複屈折光学材料を用いて1/4波長板を構成するにあたり、旋光能による影響を補正した広帯域な1/4波長板を提供することを目的とする。   The present invention has been made in order to solve such problems, and in the construction of a quarter-wave plate using a birefringent optical material having optical activity such as quartz, the influence of optical activity was corrected. An object is to provide a broadband quarter-wave plate.

上記課題を解決するために本発明に係わる旋光能補正広帯域1/4波長板の請求項1の発明は、旋光能を有する同一の光学材料から形成した二つの波長板A及びBを、両者の光軸が互いに交差するよう重ね合わせた旋光能補正広帯域1/4波長板であって、前記波長板Aの、位相差をΓ、光学軸方位角度をθ、旋光能を2ρ、回転軸と中性軸のなす角をβとし、前記波長板Bの、位相差をΓ、光学軸方位角度をθ、旋光能を2ρ、回転軸と中性軸のなす角をβとした場合に、前記波長板Aと波長板Bとの関係が下式(1)乃至(3)を満足し、波長板Aの旋光子の行列をTAK、位相子の行列をRAKとし、波長板Bの旋光子の行列をTBK、位相子の行列をRBKとし、入射偏光の行列をIとしたとき、下式(4)又は(5)を満足するよう構成したことを特徴とする。

Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
これによれば、旋光能による影響を低減することができ、広帯域において特性の良い1/4波長板を得ることができる。 In order to solve the above-mentioned problem, the invention of claim 1 of the optical rotatory power-corrected broadband quarter-wave plate according to the present invention comprises two wave plates A and B formed of the same optical material having optical rotatory power. An optical rotation correction broadband quarter-wave plate with the optical axes intersecting each other, the phase difference of the wave plate A is Γ A , the optical axis azimuth is θ A , and the optical rotation is 2ρ A. The angle between the axis and the neutral axis is β A , the phase difference of the wave plate B is Γ B , the optical axis azimuth angle is θ B , the optical rotation power is 2ρ B , and the angle between the rotation axis and the neutral axis is β In the case of B, the relationship between the wave plate A and the wave plate B satisfies the following expressions (1) to (3), the optical rotator matrix of the wave plate A is T AK , and the phase shifter matrix is R AK and then, when a matrix of optical rotator wavelength plate B T BK, a matrix of phase shifter and R BK, the matrix of the incident polarization was I, the following equation (4 Or (5), characterized by being configured to satisfy.
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
According to this, the influence by the optical rotation can be reduced, and a quarter wavelength plate having good characteristics in a wide band can be obtained.

また、本発明に係わる光ピックアップ装置の請求項2の発明は、光源から出射した第1の波長の第1直線偏光と第2の波長の第2直線偏光とが、波長板を通過するよう構成された光ピックアップ装置において、前記波長板が、旋光能を有する同一の光学材料から形成した二つの波長板A及びBを、両者の光軸が互いに交差するよう重ね合わせた旋光能補正広帯域1/4波長板であって、前記波長板Aの、位相差をΓ、光学軸方位角度をθ、旋光能を2ρ、回転軸と中性軸のなす角をβとし、前記波長板Bの、位相差をΓ、光学軸方位角度をθ、旋光能を2ρ、回転軸と中性軸のなす角をβとした場合に、前記波長板Aと波長板Bとの関係が下式(1)乃至(3)を満足し、波長板Aの旋光子の行列をTAK、位相子の行列をRAKとし、波長板Bの旋光子の行列をTBK、位相子の行列をRBKとし、入射偏光の行列をIとしたとき、下式(4)又は(5)を満足するよう構成したことを特徴とする。

Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
つまり、請求項1記載の旋光能補正広帯域1/4波長板を光ピックアップ装置に適用することによって、高出力の光線や紫外線に近い領域の波長の光線を扱うことができるようになる。 According to a second aspect of the optical pickup device of the present invention, the first linearly polarized light having the first wavelength and the second linearly polarized light having the second wavelength emitted from the light source pass through the wave plate. In this optical pickup device, the waveplate is composed of two waveplates A and B formed of the same optical material having optical rotation ability, which are superposed so that their optical axes intersect with each other. The wave plate of the wave plate A, wherein the wave plate A has a phase difference of Γ A , an optical axis azimuth angle of θ A , an optical rotation power of 2ρ A , and an angle formed by the rotation axis and the neutral axis is β A , When the phase difference of B is Γ B , the optical axis azimuth angle is θ B , the optical rotation power is 2ρ B , and the angle between the rotation axis and the neutral axis is β B , the wave plate A and the wave plate B relationship satisfies the following formula (1) to (3), a matrix of optical rotator wavelength plate a T AK, retarders Columns and R AK, a matrix of optical rotator wavelength plate B T BK, a matrix of phase shifter and R BK, when the matrix of the incident polarization and the I, so as to satisfy the following formula (4) or (5) It is characterized by comprising.
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
That is, by applying the optical rotation correction wide-band quarter-wave plate according to claim 1 to the optical pickup device, it becomes possible to handle high-power light rays and light rays having a wavelength close to ultraviolet rays.

本発明に係わる旋光能補正広帯域1/4波長板は、旋光能を有する同一の光学材料から夫々特性の異なる二つの波長板Aと波長板Bとを形成し、それら二つの波長板の光軸が交差するよう重ね合わせて1/4波長板として機能するよう構成した構造とし、且つ、波長板Aが有する特性を、位相差Γ、光学軸方位角度θ、旋光能2ρとして表し、他方の波長板Bが有する特性を、位相差Γ、光学軸方位角度θ、旋光能2ρとして表した場合に、これら波長板Aと波長板Bとの関係が以下の条件式(1)乃至(3)にて概算し、更に条件式(4)又は(5)にて最適化させることで、旋光能の影響を補正しつつ広帯域な光波長範囲にわたり高精度な1/4波長板が実現できる。また、この旋光能補正広帯域1/4波長板を用いて光ピックアップ装置を構成すれば、高出力の光線や紫外線に近い領域の波長の光線を扱う光ディスク装置等にも対応することができるようになる。

Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
The optical rotatory power-corrected broadband quarter wave plate according to the present invention forms two wave plates A and B having different characteristics from the same optical material having optical rotatory power, and the optical axes of the two wave plates. And the characteristics of the wave plate A are expressed as a phase difference Γ A , an optical axis azimuth angle θ A , and an optical rotation power 2ρ A. the characteristic of the other wavelength plate B, a phase difference gamma B, the optical axis azimuth angle theta B, when expressed as a rotatory power 2.rho B, the relationship between these wave plate a and the wavelength plate B the following conditional expressions (1 ) To (3), and further optimized by the conditional expression (4) or (5) to correct the influence of the optical rotation and correct the wavelength of light over a wide wavelength range. Can be realized. In addition, if an optical pickup device is configured using this optical rotation correction wide-band quarter-wave plate, it can be applied to an optical disk device or the like that handles high-power light rays or light rays having a wavelength close to ultraviolet rays. Become.
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121

本発明に係る旋光能補正広帯域1/4波長板を説明する前に、まず、旋光能の影響と、旋光能を持たない光学材料を用いた広帯域波長板の例と、旋光能を持つ光学材料を用いた広帯域波長板において旋光能の影響を補正しない例と、について簡単に説明する。
《旋光能の影響》
水晶のような旋光能を持つ光学材料は、その中を光が進行する時、直線複屈折(位相差)と円複屈折(旋光性)の両方が作用する。これをポアンカレ球にて説明する。
図1は、水晶結晶の中を波長λの光が進行する時の作用例を示す図である。
この球を地球に見立てると、極軸上の北極において左回り円偏光(R)を示し、南極において右回り円偏光(L)を示し、赤道上において直線偏光を示している。
この図に示すように、中性軸方向CfCsに直線複屈折から与えられる位相差Γと、極軸方向LRに円複屈折から与えられる位相差2ρとのベクトルを取った時、その合成ベクトルΓ’がポアンカレ球と交差する点をPa及びPとして、PaP回りの回転角として下式で表すことが出来る。
このときの中性軸S1と中性軸S2とを常に含む面と、PaPの軸のなす角をβとすると、位相差ベクトルΓと位相差ベクトル2ρとを用いてβは下式(6)で表される。
tanβ=2ρ/Γ ・・・・(6)
また、合成ベクトルΓ’は下式(7)で表される。

Figure 2005158121
なお、ここで「n’」は異常光線屈折率、「n」は常光線屈折率、「n」は右円偏光屈折率、「n」は左円偏光屈折率、「d」は結晶の厚さを表す。
つまり、合成ベクトルΓ’は直線複屈折性による位相差と円複屈折性による位相差を合成したもので、ポアンカレ球上でPaPを回転軸としてΓ’回転する挙動として取り扱うことが出来る。 Before explaining the optical rotatory power-corrected broadband quarter-wave plate according to the present invention, first, the influence of the optical rotatory power, an example of a broadband wavelength plate using an optical material having no optical rotatory power, and an optical material having optical rotatory power An example in which the influence of the optical rotatory power is not corrected in the broadband wavelength plate using the lens will be briefly described.
<Effect of optical rotation>
An optical material having optical activity such as quartz has both linear birefringence (phase difference) and circular birefringence (optical rotation) when light travels through the optical material. This will be explained using the Poincare sphere.
FIG. 1 is a diagram showing an example of the action when light of wavelength λ travels through a quartz crystal.
When this sphere is regarded as the earth, it shows counterclockwise circularly polarized light (R) in the north pole on the polar axis, clockwise circularly polarized light (L) in the south pole, and linearly polarized light on the equator.
As shown in this figure, when taking a vector of a phase difference Γ given from linear birefringence in the neutral axis direction CfCs and a phase difference 2ρ given from circular birefringence in the polar axis direction LR, the resultant vector Γ Let Pa and P be points where 'intersects the Poincare sphere, and the rotation angle around PaP can be expressed by the following equation.
If the angle between the plane always including the neutral axis S1 and the neutral axis S2 and the axis of the PaP is β, β is expressed by the following equation (6) using the phase difference vector Γ and the phase difference vector 2ρ. It is represented by
tan β = 2ρ / Γ (6)
The combined vector Γ ′ is expressed by the following equation (7).
Figure 2005158121
Here, “n e ” is an extraordinary ray refractive index, “n o ” is an ordinary ray refractive index, “n R ” is a right circular polarization refractive index, “n L ” is a left circular polarization refractive index, and “d”. Represents the thickness of the crystal.
In other words, the combined vector Γ ′ is a combination of the phase difference due to the linear birefringence and the phase difference due to the circular birefringence, and can be handled as a behavior that rotates Γ ′ about the PaP rotation axis on the Poincare sphere.

《旋光能を持たない光学材料を用いた広帯域波長板の例》
次に、旋光能の有無による相違点を明確にするために、旋光能を持たない材料を用いた広帯域波長板について、以下の如く定める波長板を用いた場合を例として、ポアンカレ球を用いて説明する。
波長λ1〜λ2の帯域において位相差が概ね90degとなる広帯域波長板において、λ1〜λ2中のある波長λにおいて下記位相差となる2枚の波長板AとBとを重ねて使用する。
波長板A 位相差 180deg
光学軸方位 θ
波長板B 位相差 90deg
光学軸方位 θ
このときの偏光状態は、図2のに示すように考えることが出来る。
図2は、旋光能を持たない光学材料を用いた広帯域波長板の例を説明するための図である。
この図に示すように、点Pがポアンカレ球の極(北極点または南極点)に到達すれば出射偏光は円偏光となる。
点Pがポアンカレ球の極に到達するためには、夫々の波長板における光学軸方位θおよびθが、下式(8)の関係となることが望ましい。
θ=2θ+45 ・・・・(8)
即ち、波長がλ1〜λ2間で変化すると、それに応じて波長板A及びBの位相差が夫々180deg、90degから変化する。この変化量をΔΓ、ΔΓとする。
これら変化量が、ポアンカレ球上の点Pと点P’とを結ぶ球面上の同一の線分となる条件であるならば、常に点Pは極に到達することができる。
ここで近似的に点Pと点P’とを直線で結び、余弦定理を用いて位相差変化量ΔΓ、位相差変化量ΔΓ、及び光学軸方位θの関係を表すと次の式(9)となる。
cosΔΓ=1−2(1−2cos2θ)(1−2cosΔΓ) ・・・・(9)
また、波長板Aと波長板Bとが同じ波長分散の材質とすれば、各々の位相差が180deg、90degであるから、位相差変化量ΔΓと位相差変化量ΔΓには次に示す式(10)の関係が成立する。
ΔΓ=2ΔΓ ・・・・(10)
この式(10)を、上述の式(9)に代入すると、光学軸方位θと光学軸方位θとは、それぞれ、θ≒15deg、θ≒75degであれば良いことがわかる。
《Example of broadband wave plate using optical material without optical rotation》
Next, in order to clarify the difference depending on the presence or absence of optical activity, a broadband wavelength plate using a material that does not have optical activity is used as an example of the case where a wavelength plate defined as follows is used. explain.
In a broadband wave plate having a phase difference of approximately 90 deg in the band of wavelengths λ1 to λ2, two wave plates A and B having the following phase difference at a certain wavelength λ in λ1 to λ2 are used in an overlapping manner.
Wave plate A phase difference 180deg
Optical axis orientation θ A
Wave plate B phase difference 90deg
Optical axis orientation θ B
The polarization state at this time can be considered as shown in FIG.
FIG. 2 is a diagram for explaining an example of a broadband wave plate using an optical material having no optical rotation ability.
As shown in this figure, the point P B is output polarization if reaching the Poincare sphere poles (North Pole or South Pole) becomes circularly polarized light.
In order for the point P B to reach the pole of the Poincare sphere, it is desirable that the optical axis directions θ A and θ B in the respective wave plates have the relationship of the following formula (8).
θ B = 2θ A +45 (8)
That is, when the wavelength changes between λ1 and λ2, the phase difference between the wave plates A and B changes from 180 deg and 90 deg, respectively. This amount of change is represented by ΔΓ A and ΔΓ B.
If the amount of change is a condition that makes the same line segment on the spherical surface connecting the point P A and the point P A ′ on the Poincare sphere, the point P B can always reach the pole.
Here, the points P A and P A ′ are approximately connected by a straight line, and the relationship between the phase difference change amount ΔΓ A , the phase difference change amount ΔΓ B , and the optical axis direction θ A is expressed using the cosine theorem. Equation (9) is obtained.
cosΔΓ B = 1-2 (1-2 cos 2θ A ) (1-2 cos ΔΓ A ) (9)
Further, if the wavelength plate A and the wavelength plate B and the material of the same wavelength dispersion, following each of the phase difference is 180 deg, because it is 90deg, the phase difference change amount [Delta] [gamma] A and the phase difference change amount [Delta] [gamma] B The relationship of Formula (10) is materialized.
ΔΓ A = 2ΔΓ B (10)
If this equation (10) is substituted into the above equation (9), it can be seen that the optical axis azimuth θ A and the optical axis azimuth θ B may be θ A ≈15 deg and θ B ≈75 deg, respectively.

以上の結果から得られる下記条件において、広帯域1/4波長板として機能するか否かをシミュレーションした。
波長板A 位相差 180deg
光学軸方位 15deg
波長板B 位相差 90deg
光学軸方位 75deg
但し、本条件は近似を含むためミューラ行列、ジョーンズ行列などを用いを行なった。
DVD、CD互換ピックアップ用の広帯域1/4波長板を前提として、波長λ=720nmとし、上記条件での計算値及び最適化した結果を図3に示す。
図3は、旋光性を持たない光学材料を用いた広帯域波長板のシミュレーション結果を示すグラフ図である。なお、特性曲線1は計算結果に基づく特性を示し、特性曲線2は最適化を施した場合の結果に基づく特性を示す。
光ピックアップで使用する場合、楕円率は一般的に0.9以上必要であるが、この図に特性曲線2として示す最適化した特性であれば、DVDとCDが使用する650±20nm、780±20nmの両帯域で確実に楕円率0.9以上を確保することができている。
It was simulated whether or not it functions as a broadband quarter-wave plate under the following conditions obtained from the above results.
Wave plate A phase difference 180deg
Optical axis direction 15deg
Wave plate B phase difference 90deg
Optical axis direction 75deg
However, since this condition includes approximation, Mueller matrix, Jones matrix, etc. were used.
FIG. 3 shows the calculated values and the optimized results under the above conditions with the wavelength λ = 720 nm on the premise of a broadband quarter-wave plate for DVD and CD compatible pickups.
FIG. 3 is a graph showing a simulation result of a broadband wavelength plate using an optical material having no optical rotation. The characteristic curve 1 shows the characteristic based on the calculation result, and the characteristic curve 2 shows the characteristic based on the result when optimization is performed.
When used in an optical pickup, the ellipticity is generally required to be 0.9 or more, but the optimized characteristics shown as characteristic curve 2 in this figure are 650 ± 20 nm, 780 ± used by DVD and CD. An ellipticity of 0.9 or more can be reliably ensured in both bands of 20 nm.

《旋光能を持つ光学材料を用いた帯域波長板において、旋光能を補正しない場合の例》
続いて、旋光能の影響を示すため、旋光能を持つ光学材料を用い、上述した旋光能を持たない光学材料と同じ方法で偏光状態を考察する。
波長λ1〜λ2の帯域における位相差が概ね90degとなる広帯域波長板であって、λ1〜λ2中のある特定の波長λにおいて下記位相差となる2枚の波長板Aと波長板Bとを重ねて使用する。
波長板A 位相差 Γ

Figure 2005158121
光学軸方位 θ
旋光能 2ρ
回転軸と中性軸のなす角 β
Figure 2005158121
波長板B 位相差 Γ
Figure 2005158121
光学軸方位 θ
旋光能 2ρ
回転軸と中性軸のなす角 β
Figure 2005158121
前述した関係式(8)、(9)、(10)に基づき、ポアンカレ球を用いて偏光状態を示したものを図4に示す。
図4は、旋光能を持つ光学材料を用いた帯域波長板において、旋光能を補正しない場合の例を説明するための図である。
この図に示すように、旋光能を持つ場合にあっては、上述した旋光能を持たない光学材料と同じ方法では、点Pが極に到達できていないことがわかる。即ち、旋光能を持つ光学材料は、旋光能を持たない材料と同じ方法では波長λ1〜λ2間で概ね1/4波長板として機能しないのである。 << Example of the case where the optical rotatory power is not corrected in a band wavelength plate using an optical material with optical rotatory power >>
Subsequently, in order to show the influence of the optical rotatory power, an optical material having an optical rotatory power is used, and the polarization state is examined by the same method as the optical material having no optical rotatory power described above.
A broadband wave plate having a phase difference of approximately 90 deg in the wavelength λ1 to λ2 band, and two wave plates A and B having the following phase difference at a specific wavelength λ in λ1 to λ2 are overlapped. To use.
Wave plate A phase difference Γ A '
Figure 2005158121
Optical axis orientation θ A
Optical rotation 2ρ A
Angle between rotation axis and neutral axis β A
Figure 2005158121
Wave plate B phase difference Γ B '
Figure 2005158121
Optical axis orientation θ B
Optical rotation 2ρ B
Angle between the rotation axis and neutral axis β B
Figure 2005158121
FIG. 4 shows the polarization state using the Poincare sphere based on the relational expressions (8), (9), and (10) described above.
FIG. 4 is a diagram for explaining an example in which the optical rotation is not corrected in the band wavelength plate using the optical material having the optical rotation.
As shown in this figure, it can be seen that the point P B cannot reach the pole by the same method as that of the optical material having no optical rotatory power described above when having the optical rotatory power. That is, an optical material having optical rotation ability does not function as a quarter wavelength plate between wavelengths λ1 and λ2 in the same manner as a material having no optical rotation ability.

このことを、更に具体的な例として右水晶を用い、その主面の法線がZ軸から13度となるように切断した水晶波長板を用いた場合のシミュレーション例を図5に示す。
図5は、水晶波長板の旋光性を補正せずに用いた広帯域波長板のシミュレーション結果を示すグラフ図である。
この図に示されるように、楕円率特性を示す特性曲線3は、波長600nm〜850nmの間にて、何れも楕円率が0.7以下であり、光ピックアップにて実用できるレベルではない。
As a more specific example, FIG. 5 shows a simulation example in which a right quartz crystal is used and a quartz wavelength plate cut so that the normal of the main surface is 13 degrees from the Z axis is used.
FIG. 5 is a graph showing a simulation result of the broadband wavelength plate used without correcting the optical rotation of the quartz wavelength plate.
As shown in this figure, the characteristic curve 3 indicating the ellipticity characteristic has an ellipticity of 0.7 or less between wavelengths of 600 nm to 850 nm, which is not at a level practical with an optical pickup.

以上のように、旋光能を持つ光学材料の旋光能を考慮せずに広帯域波長板を構成したとすれば、その波長板は、当該帯域において高精度な位相差特性を得ることはできない。
そこで、旋光能を考慮するための考え方について説明する。
《旋光能を持つ光学材料の作用のシミュレーション方法》
旋光能を有する複屈折性材料として水晶を用いた場合に有効なシミュレーション方法を説明する。
水晶波長板の作用を行列Wとすると、Wは旋光子T及び位相子Rの行列を用いて次の式(11)のように近似することができる。

Figure 2005158121
なお、上記式(11)において、行列T及びRはジョーンズ行列、ミューラ行列のいずれを用いても良いが、以降ミューラ行列を例に説明する。行列Tを式(12)に、行列Rを式(13)にそれぞれ示す。
Figure 2005158121
上記式(12)において、「ρ」は旋光能、「k」は自然数(1,2,3・・・n)を示す。即ち、旋光子Tをn分割した行列Tをミューラ行列にて表している。
Figure 2005158121
上記式(13)において、「Γ」は位相差、「θ」は光学軸方位角、「k」は自然数(1,2,3・・・n)を示す。即ち、位相子Rをn分割した行列Rをミューラ行列にて表している。
図6は、水晶波長板の位相子および旋光子による近似例を説明するためのイメージ図である。
この図に示すように、水晶波長板の作用は、水晶波長板を厚み方向にn個の旋光子と位相子に分割し、これらが交互に作用する素子として近似することができる。
nは、大きいほど実際の現象に近くなるが、この実験においてn=10にて、ほぼ実測値と近い値が得られることを確認した。 As described above, if a broadband wavelength plate is configured without considering the optical rotation power of an optical material having optical activity, the wavelength plate cannot obtain a phase difference characteristic with high accuracy in the band.
Therefore, the concept for taking into account the optical rotation will be described.
<< Simulation method of action of optical material with optical rotation >>
A simulation method effective when quartz is used as the birefringent material having optical rotation power will be described.
Assuming that the action of the quartz wavelength plate is a matrix W, W can be approximated by the following equation (11) using a matrix of optical rotators T and phase shifters R.
Figure 2005158121
In the above equation (11), the matrices T and R may be either Jones matrices or Mueller matrices, but the following description will be made by taking the Mueller matrix as an example. The matrix T is shown in Equation (12), and the matrix R is shown in Equation (13).
Figure 2005158121
In the above formula (12), “ρ” represents the optical rotation power, and “k” represents a natural number (1, 2, 3,... N). That is, a matrix T k obtained by dividing the optical rotator T into n is represented by a Mueller matrix.
Figure 2005158121
In the above formula (13), “Γ” represents a phase difference, “θ” represents an optical axis azimuth, and “k” represents a natural number (1, 2, 3,... N). That is, a matrix R k obtained by dividing the phase shifter R into n is represented by a Mueller matrix.
FIG. 6 is an image diagram for explaining an approximation example using a phase shifter and an optical rotator of a quartz wavelength plate.
As shown in this figure, the action of the quartz wave plate can be approximated as an element in which the quartz wave plate is divided into n optical rotators and phase shifters in the thickness direction and these act alternately.
The larger n is, the closer to the actual phenomenon, but in this experiment, it was confirmed that a value almost close to the actual measurement value was obtained when n = 10.

ここで2枚の水晶波長板AとBとを重ねて広帯域波長板として使用する場合を考える。
入射偏光の行列Iとすると、出射偏光の行列Eは下式(14)で表すことができる。

Figure 2005158121
行列T、Rの要素に含まれる旋光能ρ及び位相差Γは波長分散を持つため、行列T、Rも波長分散を持つと考えて良い。波長λ1からλ2の範囲内の、任意の波長において、その波長の旋光能ρ、位相差Γを代入し行列T、Rを求め、これを式(14)を用いて計算することで、波長λ1からλ2の範囲内の、任意の波長の行列Eを求めることが出来る。
すなわち、行列Eが示す偏光状態が、ピックアップ用デバイスとして使用する際の許容値である楕円率0.9以上となる様に旋光能ρ、位相差Γ、光学軸方位角θを設定する。
行列Eが示す偏光状態を求める方法は幾つか考えられるが、その一つとして行列Eの行列要素を用いて求めた。行列Eの行列要素SE3が式(4)又は式(5)を満足する様に旋光能ρ、位相差Γ、光学軸方位角θを設定する。
Figure 2005158121
Figure 2005158121
旋光能ρ、位相差Γ、及び光学軸方位角θを適宜、式(4)又は(5)に代入してシミュレーションすることで最適値を探すことも可能であるが、その組合わせが莫大であり計算に時間を要することになる。そのためポアンカレ球を用いて近似的に適当な旋光能ρ、位相差Γ、及び光学軸方位角θを求め、その後、式(4)又は(5)にて演算し最適値を求めた。 Here, consider a case where two quartz wave plates A and B are overlapped and used as a broadband wave plate.
Assuming that the input polarization matrix I is given, the output polarization matrix E can be expressed by the following equation (14).
Figure 2005158121
Since the optical rotation power ρ and the phase difference Γ included in the elements of the matrices T and R have chromatic dispersion, it can be considered that the matrices T and R also have chromatic dispersion. By substituting the optical rotation power ρ and phase difference Γ of the wavelength at any wavelength within the wavelength λ1 to λ2, the matrices T and R are obtained, and this is calculated using the equation (14), thereby calculating the wavelength λ1 A matrix E having an arbitrary wavelength within a range from λ2 to λ2.
That is, the optical rotation power ρ, the phase difference Γ, and the optical axis azimuth angle θ are set so that the polarization state indicated by the matrix E becomes an ellipticity of 0.9 or more, which is an allowable value when used as a pickup device.
There are several methods for obtaining the polarization state indicated by the matrix E, and one of them is obtained using the matrix elements of the matrix E. The optical rotation ρ, the phase difference Γ, and the optical axis azimuth angle θ are set so that the matrix element S E3 of the matrix E satisfies Expression (4) or Expression (5).
Figure 2005158121
Figure 2005158121
It is possible to search for the optimum value by substituting the optical rotation ρ, phase difference Γ, and optical axis azimuth angle θ into equation (4) or (5) as appropriate, and the combination is enormous. Yes, it takes time to calculate. Therefore, an appropriate optical rotation power ρ, phase difference Γ, and optical axis azimuth angle θ were approximately obtained using a Poincare sphere, and then calculated by the formula (4) or (5) to obtain an optimum value.

以下、本発明に係る旋光能補正広帯域1/4波長板について詳細に説明する。
なお、ここで特徴的な点は、近似による旋光能ρ、位相差Γ、及び光学軸方位角θを用いているところにあり、これを用いれば本発明に係る旋光能補正広帯域1/4波長板を構成する二つの波長板の関係を特定する式を得ることができるので、極めて簡単に旋光能による影響を補正した高精度な広帯域1/4波長板が実現できるようになる。
《旋光能を持つ材料で広帯域1/4として機能させる方法のポアンカレ球を用いた考察》
波長λ1〜λ2の所定の波長λにおいて下記に示す位相差と旋光能を有する波長板AとBとを重ねてなる水晶波長板において、波長λ1〜λ2の帯域における位相差が概ね90degとなる広帯域波長板を考察する。
波長板A 位相差 Γ

Figure 2005158121
光学軸方位 θ
旋光能 2ρ
回転軸と中性軸のなす角 β
Figure 2005158121
波長板B 位相差 Γ
Figure 2005158121
光学軸方位 θ
旋光能 2ρ
回転軸と中性軸のなす角 β
Figure 2005158121
このときの偏光状態は、ポアンカレ球を用い図7のように考えることができる。
図7は、波長板AとBとを重ねてなる水晶波長板の偏光状態を示す図である。 Hereinafter, the optical rotation correcting broadband quarter-wave plate according to the present invention will be described in detail.
The characteristic point here is that the optical rotation power ρ, the phase difference Γ, and the optical axis azimuth angle θ by approximation are used, and if this is used, the optical rotation correction broadband quarter wavelength according to the present invention is used. Since an expression for specifying the relationship between the two wave plates constituting the plate can be obtained, a high-accuracy broadband quarter-wave plate in which the influence of the optical rotatory power is corrected can be realized very easily.
《Consideration using Poincare sphere of the method of functioning as a quarter of a wide band with optically active material》
In a quartz wavelength plate in which wavelength plates A and B having the following phase difference and optical rotation power are overlapped at a predetermined wavelength λ of wavelengths λ1 to λ2, a broadband in which the phase difference in the band of wavelengths λ1 to λ2 is approximately 90 deg. Consider a waveplate.
Wave plate A phase difference Γ A '
Figure 2005158121
Optical axis orientation θ A
Optical rotation 2ρ A
Angle between rotation axis and neutral axis β A
Figure 2005158121
Wave plate B phase difference Γ B '
Figure 2005158121
Optical axis orientation θ B
Optical rotation 2ρ B
Angle between the rotation axis and neutral axis β B
Figure 2005158121
The polarization state at this time can be considered as shown in FIG. 7 using a Poincare sphere.
FIG. 7 is a diagram showing a polarization state of a quartz wavelength plate in which the wavelength plates A and B are overlapped.

まず、波長板Aの位相差Γと光学軸方位角θについて考察する。
図8は、波長板Aについての作用を説明する図である。
この図に示すように、波長板Aを透過した後の偏光状態を示すポアンカレ球上の点Pは、軸Rを角度βだけ極軸S方向に回転させるため、位相差を仮に180degとしたとき点PA1に到達する。位相差変化による影響を少なくするためには、到達点を点PA1の位置ではなく、赤道上の点PA2にすることが望ましい。点PA2は、回転軸Rがポアンカレ球と交わる点と極軸S座標が同じになる点である。この点であれば位相差が変化したときの中性軸S及び中性軸Sの座標変化を最小に抑えることができる。
First, the phase difference Γ A and the optical axis azimuth angle θ A of the wave plate A will be considered.
FIG. 8 is a diagram for explaining the operation of the wave plate A.
As shown in this figure, the point P o on the Poincare sphere indicating the polarization state after passing through the wave plate A rotates the axis R A by the angle β A in the direction of the polar axis S 3. When 180 deg is reached, the point P A1 is reached. In order to reduce the influence of the change in phase difference, it is desirable that the arrival point is not the position of the point P A1 but the point P A2 on the equator. Point P A2 are that a polar axis S 3 coordinates the rotation axis R A intersects the Poincare sphere is a point that the same. If this point it is possible to suppress the change in coordinates of a neutral shaft S 1 and the neutral axis S 2 when the phase difference is changed to a minimum.

A2に到達させるためには、次式(15)に示すごとく位相差を180degより角度α分だけ補正すれば良い。R軸を中心とした回転方向が右回転の場合は+α、左回転の場合は−α補正する。
Γ’=180±α ・・・・(15)
ここで、図8からαは近似的に次の式(16)で表される。

Figure 2005158121
式(15)に式(16)を代入し次式(17)を得る。
Figure 2005158121
また、光学軸方位θは、回転軸Rが角度β傾くことで回転半径が大きくなる。このため実際に寄与する光学軸方位θ’は下式(18)で表される。
Figure 2005158121
ここで、βは、数度のレベル(僅かな角度)であるため、1−cosβ≒0と近似し、θ’=θとして考慮した。 In order to reach the P A2 may be corrected by an angle α min than 180deg phase difference as shown in the following equation (15). If the rotation direction about the RA axis is right rotation, + α is corrected, and if it is left rotation, −α is corrected.
Γ A '= 180 ± α (15)
Here, from FIG. 8, α is approximately expressed by the following equation (16).
Figure 2005158121
By substituting equation (16) into equation (15), the following equation (17) is obtained.
Figure 2005158121
In addition, the optical axis azimuth θ A has a larger radius of rotation when the rotation axis R A is inclined by an angle β A. Therefore, the optical axis orientation θ A ′ that actually contributes is expressed by the following formula (18).
Figure 2005158121
Here, since β A is a level of several degrees (a slight angle), it is approximated as 1-cos β A ≈0 and considered as θ A ′ = θ A.

続いて、もう一方の波長板Bの位相差Γ’と光学軸方位角θについて考察する。
図9は、波長板Bについての作用を説明する図である。
この図に示すように、波長板Bの光学軸方位θ(図示しない)は、極軸S方向へ角度βだけ傾いている。そのため、次式(19)と表わされる。

Figure 2005158121
Next, the phase difference Γ B ′ and the optical axis azimuth angle θ B of the other wave plate B will be considered.
FIG. 9 is a diagram for explaining the operation of the wave plate B.
As shown in this figure, the optical axis azimuth θ B (not shown) of the wave plate B is inclined by the angle β B in the direction of the polar axis S 3 . Therefore, it is expressed as the following formula (19).
Figure 2005158121

また、点PA2(図示しない)から極(例えば、極軸S方向)に到達させるためには、同図に示す如く、位相差をΓ’とすれば良い。
位相差Γは、角度εを用いて次の式(20)のように表される。
Γ’=90−ε ・・・・(20)
ここで角度εは、近似的に下式(21)で表される。

Figure 2005158121
この式(21)を式(20)に代入すると、次の式(22)のように表すことができる。
Figure 2005158121
Further, electrode from the point P A2 (not shown) (e.g., the polar axis S 3 direction) to reach the, as shown in the figure, it may be a phase difference between gamma B '.
The phase difference Γ B is expressed by the following equation (20) using the angle ε.
Γ B '= 90−ε (20)
Here, the angle ε is approximately expressed by the following equation (21).
Figure 2005158121
If this equation (21) is substituted into equation (20), it can be expressed as the following equation (22).
Figure 2005158121

以上の説明を以下にまとめる。
つまり、位相差がΓ、光学軸方位角がθ、旋光能が2ρ、回転軸と中性軸のなす角βである波長板Aと、位相差がΓ、光学軸方位角がθ、旋光能が2ρ、回転軸と中性軸のなす角βである波長板Bとを用い、これらを重ねてなる水晶波長板において、波長λ1〜λ2の帯域における位相差が概ね90degとなる広帯域1/4波長板を得るためには、概ね位相差Γ’と、光学軸方位角θと、位相差Γ’と、光学軸方位角θとの関係を下記の式(1)、(2)、(3)の全てを満たすように設定すれば良い。
The above description is summarized below.
That is, the phase difference is Γ A , the optical axis azimuth is θ A , the optical rotation is 2ρ A , the wave plate A having the angle β A formed by the rotation axis and the neutral axis, the phase difference is Γ B , and the optical axis azimuth There theta B, optical rotatory power is 2.rho B, using the wavelength plate B is the angle beta B of the rotation axis and the neutral axis, the quartz crystal wave plate formed by superimposing these, the phase difference in the band of wavelengths λ1~λ2 is In order to obtain a broadband quarter-wave plate of approximately 90 degrees, the relationship between the phase difference Γ A ′, the optical axis azimuth angle θ A , the phase difference Γ B ′, and the optical axis azimuth angle θ B is described below. What is necessary is just to set so that all the formulas (1), (2), and (3) may be satisfied.

式(1)は、波長板Aと波長板Bとが、それぞれ有する光学軸方位角度θとθとの関係を定める関係式である。

Figure 2005158121
そして、式(2)および式(3)は、それぞれ波長板Aの位相差Γと波長板Bの位相差Γとを定める関係式である。
Figure 2005158121

Figure 2005158121
これら関係式(1)、(2)、(3)を用いれば、シミュレーションに要する時間を大幅に短縮することができる。しかし、前述した様に関係式(1)、(2)、(3)は近似的に求めたものであるため、より精度の高い計算を行なう必要がある。このため、関係式(1)、(2)、(3)より求められた値を元に上述した式(4)、(5)を用いて各条件の最適化を行なう。 Expression (1) is a relational expression that defines the relationship between the optical axis azimuth angles θ A and θ B that the wave plate A and the wave plate B have, respectively.
Figure 2005158121
Expressions (2) and (3) are relational expressions that determine the phase difference Γ A of the wave plate A and the phase difference Γ B of the wave plate B, respectively.
Figure 2005158121

Figure 2005158121
If these relational expressions (1), (2), and (3) are used, the time required for the simulation can be greatly reduced. However, since the relational expressions (1), (2), and (3) are obtained approximately as described above, it is necessary to perform calculation with higher accuracy. For this reason, each condition is optimized using the above-described equations (4) and (5) based on the values obtained from the relational equations (1), (2), and (3).

ここで、具体例を示す。
例えば、右水晶を用い、その主面の放線がZ軸から13°となるように切断した二つの水晶波長板AとBとを用いて、DVDおよびCD互換の光ピックアップ用として、波長λ=720nmにおいて、上述の条件での計算値及び最適化した結果を図10に示す。
図10は、本発明に係る旋光能補正広帯域1/4波長板の特性例を示すグラフ図である。
この図に示す特性曲線4は、最適化後による旋光能補正広帯域1/4波長板の特性例を示し、特性曲線5は最適化前の計算結果に基づく特性例を示し、特性曲線6は旋光能を考慮しない場合の特性例を示す線である。
特性曲線5と特性曲線6とを比較すれば、計算結果に基づく特性曲線5のほうが、旋光能未考慮の特性曲線6よりも特性が改善されていることが確認できる。
更に、特性曲線4と特性曲線5とを比較すれば、シミュレーションにより最適化した特性曲線4のほうが、計算結果に基づく特性曲線5よりも特性が改善されおり、特性曲線4は、650±20nm、および780±20nmの両帯域において楕円率0.9以上を確保することができている。そのため、DVDおよびCD互換の光ピックアップ装置用として極めて優れた1/4波長板が実現できる。
Here, a specific example is shown.
For example, using a right quartz crystal and two quartz wavelength plates A and B cut so that the ray of the main surface is 13 ° from the Z axis, the wavelength λ = FIG. 10 shows the calculated values and the optimized results under the above-described conditions at 720 nm.
FIG. 10 is a graph showing an example of characteristics of the optical rotation correction wide-band quarter-wave plate according to the present invention.
A characteristic curve 4 shown in this figure shows an example of the characteristics of the optical rotatory power corrected broadband quarter-wave plate after optimization, a characteristic curve 5 shows an example of characteristics based on the calculation results before optimization, and a characteristic curve 6 shows the optical rotation. It is a line which shows the example of a characteristic when not considering performance.
If the characteristic curve 5 and the characteristic curve 6 are compared, it can be confirmed that the characteristic curve 5 based on the calculation result has improved characteristics as compared with the characteristic curve 6 not considering the optical activity.
Further, comparing the characteristic curve 4 and the characteristic curve 5, the characteristic curve 4 optimized by simulation has improved characteristics over the characteristic curve 5 based on the calculation result. The characteristic curve 4 is 650 ± 20 nm, In both bands of 780 ± 20 nm, an ellipticity of 0.9 or more can be secured. Therefore, an extremely excellent quarter-wave plate can be realized for a DVD and CD compatible optical pickup device.

以上のように、本発明に係わる旋光能補正広帯域1/4波長板は、近似式(関係式1乃至3)を用いて計算することで、水晶等の旋光能を有する複屈折光学材料を用いたとしても、その旋光能の影響を低減し、所定の波長帯域においてほぼ1/4波長板として機能させることができるようになる。また、更に、近似式の計算結果からシミュレーションすることで最適値を探し求めるようにすれば、シミュレーションに要する計算時間は僅かで済むようになり、且つ、シミュレーションにより最適化されたとき旋光能補正広帯域1/4波長板は、極めて特性のよい1/4波長板として機能させることができる。
そして、本発明に係わる旋光能補正広帯域1/4波長板を用いて光ピックアップ装置を構成することで、光線が高出力レーザー光であっても歪みによる位相差のずれは少なくて済み、且つ、光線が紫外線領域光にも耐えうるので、光ディスク装置に適した光ピックアップ装置を実現できる。
As described above, the optical rotatory power-corrected broadband quarter-wave plate according to the present invention uses a birefringent optical material having optical rotatory power such as quartz by calculating using an approximate expression (relational expressions 1 to 3). Even if it exists, the influence of the optical rotatory power can be reduced, and it can function as a substantially quarter-wave plate in a predetermined wavelength band. Further, if the optimum value is found by simulating from the calculation result of the approximate expression, the calculation time required for the simulation can be reduced, and the optical rotation correction broadband 1 when optimized by the simulation can be obtained. The quarter-wave plate can function as a quarter-wave plate with very good characteristics.
And, by configuring the optical pickup device using the optical rotation correction wide-band quarter-wave plate according to the present invention, even if the light beam is a high-power laser beam, there is little shift in phase difference due to distortion, and Since the light beam can withstand ultraviolet light, an optical pickup device suitable for the optical disk device can be realized.

旋光性を説明するための図であって、水晶結晶の中を波長λの光が進行する時の作用例を示す図である。It is a figure for demonstrating optical rotation, Comprising: It is a figure which shows the example of an effect | action when the light of wavelength (lambda) advances in a quartz crystal. 旋光能を持たない光学材料を用いた広帯域波長板の例を説明するための図である。It is a figure for demonstrating the example of the broadband wavelength plate using the optical material which does not have an optical rotatory power. 旋光性を持たない光学材料を用いた広帯域波長板のシミュレーション結果を示すグラフ図である。It is a graph which shows the simulation result of the broadband wavelength plate using the optical material which does not have an optical rotation. 旋光能を持つ光学材料を用いた帯域波長板において、旋光能を補正しない場合の例を説明するための図である。It is a figure for demonstrating the example when not correcting optical rotatory power in the band wavelength plate using the optical material which has optical rotatory power. 水晶波長板の旋光性を補正せずに用いた広帯域波長板のシミュレーション結果を示すグラフ図である。It is a graph which shows the simulation result of the broadband wavelength plate used without correcting the optical rotation of a quartz wavelength plate. 水晶波長板の位相子および旋光子による近似例を説明するためのイメージ図である。It is an image figure for demonstrating the approximate example by the phase plate and optical rotator of a quartz wavelength plate. 波長板AとBとを重ねてなる水晶波長板の偏光状態を示す図である。It is a figure which shows the polarization state of the quartz wavelength plate which overlaps the wavelength plates A and B. FIG. 波長板Aについての作用を説明する図である。It is a figure explaining the effect | action about the wavelength plate. 波長板Bについての作用を説明する図である。It is a figure explaining the effect | action about the wavelength plate. 本発明に係る旋光能補正広帯域1/4波長板の特性例を示したグラフ図である。It is the graph which showed the example of the characteristic of the optical rotation correction broadband 1/4 wavelength plate which concerns on this invention.

符号の説明Explanation of symbols

1・・・特性曲線
2・・・特性曲線
3・・・特性曲線
4・・・本発明に係る波長板の特性曲線(最適化後)
5・・・本発明に係る波長板の特性曲線(最適化前)
6・・・特性曲線
・・・第1の中性軸
・・・第2の中性軸
・・・極軸
、C・・・第1の中性軸とポアンカレ球とが交わる点
Γ・・・位相差ベクトル
Γ’・・・合成ベクトル(角度)
2ρ・・・位相差ベクトル
Pa、P・・・合成ベクトルΓ’がポアンカレ球と交わる点
β、β、β・・・角度
、P、P’、P・・・ポアンカレ球上の点
ΔΓ、ΔΓ・・・角度
2θ、2θ・・・光学軸方位に関わる角度
T、R・・・行列
・・・旋光子
・・・位相子
、R・・・回転軸
A1、PA2・・・ポアンカレ球上の点
α・・・角度
、Y、YA1、YA2、YB1、YB2、YB3・・・直線
ε・・・角度
DESCRIPTION OF SYMBOLS 1 ... Characteristic curve 2 ... Characteristic curve 3 ... Characteristic curve 4 ... Characteristic curve of wavelength plate based on this invention (after optimization)
5 ... Characteristic curve of wave plate according to the present invention (before optimization)
6 ... characteristic curve S 1 ... first neutral axis S 2 ... second neutral axis S 3 ... polar axis C S, and C F ... first neutral axis Point where Poincare sphere intersects Γ ・ ・ ・ Phase difference vector Γ ′ ・ ・ ・ Composite vector (angle)
2ρ: phase difference vector Pa, P: points where composite vector Γ ′ intersects Poincare sphere β, β A , β B: angles P O , P A , P A ′, P B: Poincare [Delta] [gamma] B point on the sphere, [Delta] [gamma] a · · · angle 2 [Theta] a, the angle T involved in 2 [Theta] B · · · optical axis azimuth, R · · · matrix T N · · · rotator R N · · · retarder R a , R B ... rotation axis P A1 , P A2 ... point on Poincare sphere α ... angle X A , Y A , Y A1 , Y A2 , Y B1 , Y B2 , Y B3 ... straight line ε ・ ・ ・ Angle

Claims (2)

旋光能を有する同一の光学材料から形成した二つの波長板A及びBを、両者の光軸が互いに交差するよう重ね合わせた旋光能補正広帯域1/4波長板であって、
前記波長板Aの、位相差をΓ、光学軸方位角度をθ、旋光能を2ρ、回転軸と中性軸のなす角をβとし、
前記波長板Bの、位相差をΓ、光学軸方位角度をθ、旋光能を2ρ、回転軸と中性軸のなす角をβとした場合に、
前記波長板Aと波長板Bとの関係が下式(1)乃至(3)を満足し、
波長板Aの旋光子の行列をTAK、位相子の行列をRAKとし、
波長板Bの旋光子の行列をTBK、位相子の行列をRBKとし、
入射偏光の行列をIとしたとき、
下式(4)又は(5)を満足するよう構成したことを特徴とする旋光能補正広帯域1/4波長板。
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
An optical rotation-corrected broadband quarter-wave plate in which two wave plates A and B formed of the same optical material having optical activity are superposed so that their optical axes intersect each other,
The phase difference of the wave plate A is Γ A , the optical axis azimuth angle is θ A , the optical rotation power is 2ρ A , and the angle between the rotation axis and the neutral axis is β A ,
When the phase difference of the wave plate B is Γ B , the optical axis azimuth angle is θ B , the optical rotation power is 2ρ B , and the angle between the rotation axis and the neutral axis is β B ,
The relationship between the wave plate A and the wave plate B satisfies the following expressions (1) to (3),
The optical rotator matrix of the wave plate A is T AK , and the retarder matrix is R AK ,
The matrix of optical rotators of the wave plate B is T BK , the matrix of phase retarders is R BK ,
When the incident polarization matrix is I,
An optical rotation correcting broadband quarter-wave plate characterized by satisfying the following formula (4) or (5).
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
光源から出射した第1の波長の第1直線偏光と第2の波長の第2直線偏光とが、波長板を通過するよう構成された光ピックアップ装置において、
前記波長板が、旋光能を有する同一の光学材料から形成した二つの波長板A及びBを、両者の光軸が互いに交差するよう重ね合わせた旋光能補正広帯域1/4波長板であって、
前記波長板Aの、位相差をΓ、光学軸方位角度をθ、旋光能を2ρ、回転軸と中性軸のなす角をβとし、
前記波長板Bの、位相差をΓ、光学軸方位角度をθ、旋光能を2ρ、回転軸と中性軸のなす角をβとした場合に、
前記波長板Aと波長板Bとの関係が下式(1)乃至(3)を満足し、
波長板Aの旋光子の行列をTAK、位相子の行列をRAKとし、
波長板Bの旋光子の行列をTBK、位相子の行列をRBKとし、
入射偏光の行列をIとしたとき、
下式(4)又は(5)を満足するよう構成したことを特徴とする光ピックアップ装置。
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
In the optical pickup device configured so that the first linearly polarized light having the first wavelength and the second linearly polarized light having the second wavelength emitted from the light source pass through the wave plate,
The wave plate is an optical rotation correction broadband quarter wave plate in which two wave plates A and B formed of the same optical material having optical rotation power are overlapped so that their optical axes intersect each other,
The phase difference of the wave plate A is Γ A , the optical axis azimuth angle is θ A , the optical rotation power is 2ρ A , and the angle between the rotation axis and the neutral axis is β A ,
When the phase difference of the wave plate B is Γ B , the optical axis azimuth angle is θ B , the optical rotation power is 2ρ B , and the angle between the rotation axis and the neutral axis is β B ,
The relationship between the wave plate A and the wave plate B satisfies the following expressions (1) to (3),
The optical rotator matrix of the wave plate A is T AK , and the retarder matrix is R AK ,
The matrix of optical rotators of the wave plate B is T BK , the matrix of phase retarders is R BK ,
When the incident polarization matrix is I,
An optical pickup device configured to satisfy the following expression (4) or (5).
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
Figure 2005158121
JP2003392987A 2003-11-21 2003-11-21 Optical rotation correction broadband quarter wave plate and optical pickup device using the same Expired - Fee Related JP4329508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392987A JP4329508B2 (en) 2003-11-21 2003-11-21 Optical rotation correction broadband quarter wave plate and optical pickup device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392987A JP4329508B2 (en) 2003-11-21 2003-11-21 Optical rotation correction broadband quarter wave plate and optical pickup device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009111972A Division JP4553056B2 (en) 2009-05-01 2009-05-01 Optical rotation correction broadband quarter wave plate and optical pickup device using the same

Publications (2)

Publication Number Publication Date
JP2005158121A true JP2005158121A (en) 2005-06-16
JP4329508B2 JP4329508B2 (en) 2009-09-09

Family

ID=34719523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392987A Expired - Fee Related JP4329508B2 (en) 2003-11-21 2003-11-21 Optical rotation correction broadband quarter wave plate and optical pickup device using the same

Country Status (1)

Country Link
JP (1) JP4329508B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017037A1 (en) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. Retardation element and optical head device
JP2009301711A (en) * 2006-04-18 2009-12-24 Epson Toyocom Corp Laminated wave plate and optical pickup device using the same
JP2010107912A (en) * 2008-10-31 2010-05-13 Epson Toyocom Corp Laminated quarter wave plate
JP2010146020A (en) * 2007-03-27 2010-07-01 Epson Toyocom Corp Laminated retardation plate, polarization converting element, and projection type video imaging apparatus
JP2011095679A (en) * 2009-11-02 2011-05-12 Seiko Epson Corp 1/2 wavelength plate, optical pickup unit, polarization converting element and projection display apparatus
JP4830072B2 (en) * 2005-09-28 2011-12-07 セイコーエプソン株式会社 Wave plate and optical pickup using the same
TWI391716B (en) * 2008-10-27 2013-04-01 Seiko Epson Corp Quarter wave plate, optical pickup device, and reflective liquid crystal display device
US8657448B2 (en) 2011-05-30 2014-02-25 Seiko Epson Corporation Polarization converting element, polarization converting unit, and projection-type imaging device
US9001279B2 (en) 2011-01-21 2015-04-07 Seiko Epson Corporation Polarization conversion device, polarization conversion unit, and projection type video apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553056B2 (en) * 2009-05-01 2010-09-29 エプソントヨコム株式会社 Optical rotation correction broadband quarter wave plate and optical pickup device using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830072B2 (en) * 2005-09-28 2011-12-07 セイコーエプソン株式会社 Wave plate and optical pickup using the same
JP2009301711A (en) * 2006-04-18 2009-12-24 Epson Toyocom Corp Laminated wave plate and optical pickup device using the same
JP4623226B2 (en) * 2006-04-18 2011-02-02 エプソントヨコム株式会社 Laminated wave plate and optical pickup device using the same
JP2010146020A (en) * 2007-03-27 2010-07-01 Epson Toyocom Corp Laminated retardation plate, polarization converting element, and projection type video imaging apparatus
WO2009017037A1 (en) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. Retardation element and optical head device
TWI391716B (en) * 2008-10-27 2013-04-01 Seiko Epson Corp Quarter wave plate, optical pickup device, and reflective liquid crystal display device
US8477272B2 (en) 2008-10-27 2013-07-02 Seiko Epson Corporation Quarter wave plate, optical pickup device, and reflective liquid crystal display device
JP2010107912A (en) * 2008-10-31 2010-05-13 Epson Toyocom Corp Laminated quarter wave plate
JP2011095679A (en) * 2009-11-02 2011-05-12 Seiko Epson Corp 1/2 wavelength plate, optical pickup unit, polarization converting element and projection display apparatus
US8398241B2 (en) 2009-11-02 2013-03-19 Seiko Epson Corporation Half-wave plate, optical pickup device, polarization conversion element, and projection display device
US9001279B2 (en) 2011-01-21 2015-04-07 Seiko Epson Corporation Polarization conversion device, polarization conversion unit, and projection type video apparatus
US8657448B2 (en) 2011-05-30 2014-02-25 Seiko Epson Corporation Polarization converting element, polarization converting unit, and projection-type imaging device

Also Published As

Publication number Publication date
JP4329508B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP5040952B2 (en) Wave plate and optical pickup
US8477272B2 (en) Quarter wave plate, optical pickup device, and reflective liquid crystal display device
JP4329508B2 (en) Optical rotation correction broadband quarter wave plate and optical pickup device using the same
JP2010231135A (en) Laminated half-wave plate, optical pickup device, polarization converter, and projection display apparatus
JP4928056B2 (en) Wave plate and optical pickup device using the same
JP4825951B2 (en) Wave plate and optical pickup using the same
JP5228805B2 (en) Laminated quarter wave plate
JP4534706B2 (en) Laminated wave plate and optical pickup using the same
JP2010231136A (en) Laminated wave plate, optical pickup device, polarization converter, and projection display apparatus
JP4553056B2 (en) Optical rotation correction broadband quarter wave plate and optical pickup device using the same
JP5056059B2 (en) Broadband wave plate
JP2005181418A (en) Polarization changing element and optical device including polarization changing element
JP2007093963A (en) Wave plate using oblique angle deposition
JP5131244B2 (en) Laminated phase plate and optical head device
JP2008262662A (en) Quarter wavelength plate for optical pickup, and optical head device
CN102073087A (en) Half-wave plate, optical pickup device, polarization conversion element, and projection display device
WO2006041109A1 (en) Broad-band phase compensation polarized light elimination plate and broad-band phase compensation wavelength plate
JP2006201302A (en) Ultrathin wavelength plate, composite optical element and optical pickup device
JP5083014B2 (en) Broadband wave plate and optical head device
JP2967257B2 (en) Optical isolator
JP2002319202A (en) Magneto-optical head device
JP2005267767A (en) Optical head device
JP2015057660A (en) Phaser
JP2011065175A (en) Wavelength plate and optical pickup device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4329508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees