JP2005156989A - Lens barrel - Google Patents

Lens barrel Download PDF

Info

Publication number
JP2005156989A
JP2005156989A JP2003395973A JP2003395973A JP2005156989A JP 2005156989 A JP2005156989 A JP 2005156989A JP 2003395973 A JP2003395973 A JP 2003395973A JP 2003395973 A JP2003395973 A JP 2003395973A JP 2005156989 A JP2005156989 A JP 2005156989A
Authority
JP
Japan
Prior art keywords
lens frame
fine
lens
convex structure
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003395973A
Other languages
Japanese (ja)
Inventor
Michio Shirai
道雄 白井
Kunihisa Koo
邦寿 小尾
Masaru Morooka
優 諸岡
Hisashi Goto
尚志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003395973A priority Critical patent/JP2005156989A/en
Publication of JP2005156989A publication Critical patent/JP2005156989A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lens barrel in which the reflection of stray light in the inner wall face of the lens barrel is suppressed, unnecessary light is prevented from entering an optical system, thus ghosts and flare are suppressed. <P>SOLUTION: A fine rugged structure 11, having a pitch and a size of the wavelength of visible light or smaller, is provided at least a part of the inner wall face of the lens barrel 10 and the fine rugged structure is formed of an aluminum anode oxide film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、カメラ、顕微鏡等の光学装置において、内部にレンズやプリズム等の光学素子を観察光学系や撮像光学系等の光学系として保持するする鏡枠に関する。   The present invention relates to a lens frame that holds an optical element such as a lens or a prism as an optical system such as an observation optical system or an imaging optical system in an optical apparatus such as a camera or a microscope.

カメラ、顕微鏡などの光学装置では、観察や撮像のために光路を構成する光学素子、あるいは光路内に配置される絞り等の部材には、反射防止の処置が施されている。また、これらの光学素子あるいは絞り等を保持する鏡枠においては、光路から外れた迷光が鏡枠内壁面で反射して再び光路内に入ってしまうことにより、ゴーストやフレアが発生するため、鏡枠内壁面は極力光が反射しないように構成されている。   In an optical apparatus such as a camera or a microscope, antireflection treatment is applied to an optical element constituting an optical path for observation or imaging, or a member such as a diaphragm disposed in the optical path. In addition, in the lens frame that holds these optical elements or diaphragms, stray light deviating from the optical path is reflected by the inner wall surface of the lens frame and enters the optical path again, thereby generating ghosts and flares. The inner wall surface of the frame is configured so that light is not reflected as much as possible.

このような技術として、例えば、特許文献1には、レンズ鏡筒ユニット内における反射防止または遮光性の確保のために凹凸を有するマット処理を行う方法、反射防止塗装を行うなどが示されている。
特開平11-64703号公報
As such a technique, for example, Patent Document 1 discloses a method of performing mat processing having unevenness in order to prevent reflection in the lens barrel unit or ensure light shielding properties, and performing antireflection coating. .
JP-A-11-64703

反射防止塗装を行う場合、密着性が悪いと塗装剥がれによる反射防止性の低下やごみの発生が生じ、光学系へ悪影響を与えることとなる。また、塗装厚が数μm以上となるため、鏡枠形状が複雑になると、鏡枠の形状精度に対して、問題となり、塗装できない場合もある。また、凹凸を有するマット処理および反射防止塗装では、ある程度表面の反射を防止するが、場合により反射防止性が不足することがある。   When anti-reflection coating is performed, if the adhesion is poor, the anti-reflection property is reduced and dust is generated due to peeling of the coating, which adversely affects the optical system. Also, since the coating thickness is several μm or more, if the shape of the lens frame becomes complicated, there will be a problem with respect to the shape accuracy of the lens frame, and there may be cases where the coating cannot be performed. In addition, the mat processing and the antireflection coating having irregularities prevent the reflection of the surface to some extent, but the antireflection property may be insufficient in some cases.

本発明は、上記のような従来技術の課題に鑑み、鏡枠の内壁面における迷光の反射を抑制し、光学系へ不要な光が入り込まないようにして、ゴースト、フレアなどの発生を抑制できる鏡枠を提供することを目的とする。   In view of the problems of the prior art as described above, the present invention suppresses the reflection of stray light on the inner wall surface of the lens frame and prevents the generation of ghosts, flares, etc. by preventing unnecessary light from entering the optical system. The purpose is to provide a mirror frame.

本発明の鏡枠は、鏡枠の内壁面の少なくとも一部に、可視光の波長より小さい間隔と大きさの微細凹凸構造を有することを特徴とする。   The lens frame of the present invention is characterized by having a fine concavo-convex structure having an interval and a size smaller than the wavelength of visible light on at least a part of the inner wall surface of the lens frame.

また、本発明の鏡枠は、鏡枠の内壁面の少なくとも一部に、可視光の波長より小さい間隔と大きさの微細凹凸構造を有し、この微細凹凸構造がアルミニウム陽極酸化膜で形成されていることを特徴とする。   In addition, the lens frame of the present invention has a fine concavo-convex structure having an interval and size smaller than the wavelength of visible light on at least a part of the inner wall surface of the lens frame, and the fine concavo-convex structure is formed of an aluminum anodic oxide film. It is characterized by.

また、本発明の鏡枠は、樹脂で形成され、鏡枠の内壁面の少なくとも一部に、可視光の波長より小さい間隔と大きさの微細凹凸構造を有し、この微細凹凸構造は、鏡枠の内壁面にアルミニウム薄膜を形成した後、アルミニウム薄膜を陽極酸化されたもので形成されていることを特徴とする。   In addition, the lens frame of the present invention is made of resin, and has a fine concavo-convex structure having an interval and a size smaller than the wavelength of visible light on at least a part of the inner wall surface of the lens frame. An aluminum thin film is formed on the inner wall surface of the frame, and then the aluminum thin film is anodized.

また、本発明の鏡枠は、鏡枠の内壁面の少なくとも一部に、可視光の波長より小さい間隔と大きさの微細凹凸構造を表面に有するシートを貼り付けたことを特徴とする。   In addition, the lens frame of the present invention is characterized in that a sheet having a fine concavo-convex structure with an interval and a size smaller than the wavelength of visible light is attached to at least a part of the inner wall surface of the lens frame.

本発明によれば鏡枠の内壁面へ反射防止効果のある微細凹凸構造を形成することで、従来の凹凸マット面よりも鏡枠内面での光反射を抑制して、鏡枠内部での迷光によるゴースト、フレアの発生を抑制した鏡枠ユニットを提供することができる。また、量産に適した成形法や陽極酸化法により微細凹凸構造を形成できるので、生産性に優れた反射防止機能を有する鏡枠を提供することができる。   According to the present invention, by forming a fine concavo-convex structure having an antireflection effect on the inner wall surface of the lens frame, light reflection on the inner surface of the lens frame is suppressed more than the conventional rugged mat surface, and stray light inside the lens frame is suppressed. It is possible to provide a lens frame unit that suppresses the occurrence of ghosts and flares. In addition, since the fine concavo-convex structure can be formed by a molding method or anodizing method suitable for mass production, a lens frame having an antireflection function excellent in productivity can be provided.

以下、本発明の実施形態について図面を用いて説明する。
本発明の実施形態の説明に先だって、微細凹凸構造による光の反射防止について基本的事項を説明する。
図1は、本発明の鏡枠の内壁面の一部あるいは全面に形成された微細凹凸構造の一形態を例示する断面図である。図2は微細凹凸構造の具体的構造を示している。(a)は微細凹凸構造が略円錐形状突起よりなる例を示す。(b)は微細凹凸構造が略三角錐形状突起よりなる例を示す。(c)は(a)の変形例である。(d)は(a)の他の変形例である。図3は多数の微細孔hが規則的に繰り返し配置されている微細凹凸構造の他の例を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Prior to the description of the embodiments of the present invention, basic matters regarding the reflection prevention of light by the fine uneven structure will be described.
FIG. 1 is a cross-sectional view illustrating one embodiment of a fine concavo-convex structure formed on a part or the entire inner wall surface of a lens frame of the present invention. FIG. 2 shows a specific structure of the fine uneven structure. (A) shows an example in which the fine concavo-convex structure is formed of substantially conical protrusions. (b) shows an example in which the fine concavo-convex structure is formed of substantially triangular pyramidal protrusions. (c) is a modification of (a). (d) is another modification of (a). FIG. 3 shows another example of a fine concavo-convex structure in which a large number of fine holes h are regularly and repeatedly arranged.

図中、Hは微細凹凸構造の凸部の底部Bと頂部Tとの高低差であり、即ち高さを示す。また、Pは微細凹凸構造の凸部の頂点Tとその隣の凸部の頂点Tとの間の間隔である。例えば、微細凹凸構造の構成単位である凹凸部が錐体形で形成される場合は、その錐体形の突起の頂点Tとそれの隣の突起の頂点Tとの間隔であるピッチに対応するものである。
本発明における微細凹凸構造の大きさについては、微細凹凸構造の構成単位である凸部、即ち突起部の形状が円錐体形状の場合は、その底面の直径Rおよび底面から頂点までの高さHで表されるものであり、また、凸部の形状が角錐体形状の場合は、その底面の対角線の長さRおよび底面から頂点までの高さHで表される。なお、図3に示される微細凹凸構造については、ピッチP、微細孔hの径Rと高さHで表される。
In the figure, H is the difference in height between the bottom B and the top T of the convex portion of the fine concavo-convex structure, that is, indicates the height. P is the distance between the apex T of the convex part of the fine concavo-convex structure and the apex T of the adjacent convex part. For example, when the concavo-convex portion, which is a constituent unit of the fine concavo-convex structure, is formed in a cone shape, it corresponds to the pitch that is the interval between the vertex T of the projection of the cone shape and the vertex T of the adjacent projection. is there.
Regarding the size of the fine concavo-convex structure in the present invention, when the convex part, that is, the shape of the protrusion, which is a constituent unit of the fine concavo-convex structure is a cone shape, the diameter R of the bottom surface and the height H from the bottom surface to the apex. In addition, when the shape of the convex portion is a pyramid shape, it is represented by a diagonal length R of the bottom surface and a height H from the bottom surface to the apex. In addition, about the fine concavo-convex structure shown in FIG.

本発明における微細凹凸構造は、その構成単位である円錐状、角錐状等の錐体形状の突起が多数、面上に配されており、これら突起の頂点Tが可視光線の波長より小さいピッチ(間隔)Pで繰りかえし規則的に配列されて形成された構造を有するものである。また、本発明において微細凹凸周期構造はその構成単位である円錐状、角錐状等の錐体形の突起が多数、面上に配されており、これら突起の頂点Tが可視光線の波長以下のピッチ(間隔)Pで繰りかえし規則的にかつ、周期的に配列されて形成された構造を有するものである。
本発明における微細凹凸構造および微細凹凸周期構造には、上記の図3に示す構造も含まれる。
The fine concavo-convex structure in the present invention has a large number of cone-shaped projections such as conical shapes and pyramid shapes, which are constituent units, arranged on the surface, and the apex T of these projections has a pitch smaller than the wavelength of visible light ( It has a structure formed by repeating regularly at intervals (P). Further, in the present invention, the fine irregular periodic structure has a large number of cone-shaped projections such as cones and pyramids, which are constituent units, arranged on the surface, and the apex T of these projections has a pitch less than the wavelength of visible light. (Spacing) It has a structure formed by repeating regularly at P and periodically.
The fine concavo-convex structure and fine concavo-convex periodic structure in the present invention also include the structure shown in FIG.

可視光の波長より小さいピッチで配列された多数の微細な凹凸が表面に存在すると、その微細な凹凸の底部Bでは、微細な凹凸を形成する材料が大部分を占めているため、その部分での屈折率はその材料の特性を持つが、微細凹凸の表面すなわち頂部Tに近づくにつれ、微細凹凸を形成する材料の体積占有率が低くなり、代わりに微細凹凸に接している物質(通常は、空気)の占める割合が増加するため、見かけ上、微細凹凸の底部と上部の間で屈折率が連続的に変化している層と同様の効果を持つようになる。光の反射は、異なる屈折率を持つ透明な材料の界面を光が透過する際に、屈折率差があるために生じる。微細凹凸周期構造では、連続的に屈折率変化を与えるため、光反射が防止されるようになる。また、微細凹凸構造は規則的かつ周期的に配列されている方が、良好な反射防止効果が得られるが、ある程度不規則であっても十分な反射防止効果は得られる。   When a large number of fine irregularities arranged at a pitch smaller than the wavelength of visible light are present on the surface, the material forming the fine irregularities occupies most at the bottom B of the fine irregularities. The refractive index of the material has the characteristics of the material, but as it approaches the surface of the fine irregularities, that is, the top portion T, the volume occupancy of the material forming the fine irregularities decreases, and instead the substance that is in contact with the fine irregularities (usually, Since the ratio of air) increases, it appears to have the same effect as a layer in which the refractive index continuously changes between the bottom and top of the fine irregularities. The reflection of light occurs due to a difference in refractive index when light passes through the interface of transparent materials having different refractive indexes. In the fine uneven periodic structure, since the refractive index is continuously changed, light reflection is prevented. Further, when the fine concavo-convex structure is regularly and periodically arranged, a good antireflection effect can be obtained, but a sufficient antireflection effect can be obtained even if it is irregular to some extent.

良好な反射防止効果を得るためには、図2に例示されるような微細凹凸は略四角錐、略三角錐、略円錐などの略錐体形状であることが好ましい。また、微細凹凸構造のピッチPは、対象となる光の波長λより小さく、微細凹凸の高さHと微細凹凸構造のピッチPとの比は、0.2〜4とすることが望ましい。本実施形態ではP及びHは夫々100〜400nmである。(図1参照)   In order to obtain a good antireflection effect, it is preferable that the fine irregularities as illustrated in FIG. 2 have a substantially pyramid shape such as a substantially quadrangular pyramid, a substantially triangular pyramid, and a substantially conical shape. Further, the pitch P of the fine concavo-convex structure is smaller than the wavelength λ of the target light, and the ratio between the height H of the fine concavo-convex structure and the pitch P of the fine concavo-convex structure is preferably 0.2-4. In this embodiment, P and H are each 100 to 400 nm. (See Figure 1)

上記図3に示されるような微細孔hが規則的、周期的に配列された微細孔周期構造からなる微細凹凸構造のものでも、反射防止効果が得られる。この場合、この間隔あるいはピッチPは対象となる光の波長λより小さく、微細孔の深さHと微細孔の配列ピッチPとの比は、1以上とすることが望ましい。   The antireflection effect can be obtained even with a fine concavo-convex structure having a fine hole periodic structure in which the fine holes h as shown in FIG. 3 are regularly and periodically arranged. In this case, the interval or pitch P is preferably smaller than the wavelength λ of the target light, and the ratio of the fine hole depth H to the fine hole arrangement pitch P is preferably 1 or more.

ここで光が全反射する条件である臨界角、屈折率と反射防止効果との関係を説明する。
二つの透明な材料の界面で光が全反射する臨界角θcは下記の式で表される。
θc=sin−1(n1/n2) 但し、n1、n2は、それぞれの透明な材料の屈折率である。
上記のように微細凹凸構造では、屈折率が連続的に変化している層と同等の効果が得られるため、微細凹凸層は微視的な範囲では、n1≒n2となり、非常に大きな臨界角となる。このため、微細凹凸構造では、光の入射角が大きくなっても良好な反射防止効果を得ることができる。
Here, the relationship between the critical angle, the refractive index, and the antireflection effect, which are conditions under which light is totally reflected, will be described.
The critical angle θc at which light is totally reflected at the interface between two transparent materials is expressed by the following equation.
θc = sin −1 (n1 / n2) where n1 and n2 are the refractive indices of the respective transparent materials.
As described above, in the fine concavo-convex structure, an effect equivalent to that of a layer having a continuously changing refractive index can be obtained. Therefore, the fine concavo-convex layer has n1≈n2 in a microscopic range, and has a very large critical angle. It becomes. For this reason, in the fine uneven structure, a good antireflection effect can be obtained even when the incident angle of light increases.

このため、光学設計上予期し得ない迷光が、反射面に対して大きな入射角で照射された場合でも、広い範囲の入射角の光に対して、反射防止効果が得られるようになる。   For this reason, even when stray light that cannot be expected in optical design is irradiated at a large incident angle on the reflecting surface, an antireflection effect can be obtained for light having a wide range of incident angles.

ここで用いられる微細凹凸構造は、どのような方法を用いて作製してもよい。例えば、半導体による集積回路形成で用いられる微細加工技術を転用して、あるいは、リソグラフィー技術を応用して電子線描画やレーザー干渉法によりレジストパターンを形成した後に、原子線、イオンビームあるいは薬液などによりエッチングするなどの方法で、鏡枠の内壁面の少なくとも一部に直接、微細凹凸構造を形成させることができる。   The fine concavo-convex structure used here may be produced by any method. For example, by using microfabrication technology used in the formation of integrated circuits using semiconductors, or after applying a lithography technique to form a resist pattern by electron beam drawing or laser interferometry, using atomic beams, ion beams, or chemicals A fine concavo-convex structure can be formed directly on at least a part of the inner wall surface of the lens frame by a method such as etching.

また、前述のリソグラフィー技術の応用により、型基材に逆の微細凹凸構造を形成させる方法や、ガラスなどの基材に所定の微細凹凸構造を形成させた後、これにニッケル等の金属メッキを行って、メッキ層を剥がして型とする電鋳法により、成形用の型を作製し、これを用いて樹脂製の鏡枠を成形して、所定の位置に微細凹凸構造を形成させる方法がある。また、金属薄膜が形成された鏡枠の内壁面についても同様に、リソグラフィー技術を応用した微細パターンエッチング法が適用できる。   In addition, by applying the above-described lithography technology, a method of forming a reverse fine concavo-convex structure on a mold base, or forming a predetermined fine concavo-convex structure on a substrate such as glass, and then plating with metal such as nickel. There is a method in which a mold for molding is produced by an electroforming method in which the plating layer is peeled off to form a mold, and a resin lens frame is molded using the mold to form a fine concavo-convex structure at a predetermined position. is there. Similarly, a fine pattern etching method using a lithography technique can be applied to the inner wall surface of the lens frame on which the metal thin film is formed.

金属薄膜がアルミニウムの場合、陽極酸化法により微細孔周期構造を形成できる。陽極酸化された部分は、アルミニウム(Al)からアルミナ(Al)へ変化し透明となるため、光反射を抑制できる。 When the metal thin film is aluminum, a fine pore periodic structure can be formed by an anodic oxidation method. Since the anodized portion changes from aluminum (Al) to alumina (Al 2 O 3 ) and becomes transparent, light reflection can be suppressed.

上記のように金属薄膜がアルミニウムの場合、前述のリソグラフィー技術の応用で必要となる電子線描画装置、レーザー干渉露光装置あるいは微細パターンマスクなどの非常に高額な設備類を用いることなく、微細孔周期構造を形成できる。
また、光の波長以下のピッチの無数の微細凹凸が形成されたフィルムを所定の場所に貼り付けて、鏡枠の内壁面に微細凹凸構造を形成することもできる。
When the metal thin film is aluminum as described above, the fine hole period can be obtained without using very expensive equipment such as an electron beam drawing apparatus, a laser interference exposure apparatus, or a fine pattern mask, which are necessary for the application of the above-mentioned lithography technology. A structure can be formed.
Further, a fine uneven structure can be formed on the inner wall surface of the lens frame by sticking a film on which an infinite number of fine unevenness having a pitch equal to or less than the wavelength of light is formed at a predetermined place.

以下、図面を用いて本発明の実施形態をより詳細に説明するが、本発明は、これらの実施形態に限定されるものではない。
実施形態1
図4は、レンズ鏡枠ユニットの外観の斜視図であり、図5は、前記レンズ鏡枠ユニットに内挿される鏡枠の断面図であり、図6は、前記レンズ鏡枠ユニットに内挿される鏡枠を構成する鏡枠部品の斜視図である。
図中、レンズ12は、レンズ組み込み側の内壁面が内径20mm、長さ30mmである鏡枠10のレンズ支え部13に接着固定されている。鏡枠10の内壁面のレンズ支え部13以外の部分には微細凹凸が形成されて、微細凹凸構造の微細凹凸部11となっている。この微細凹凸部11は、図1に示すような断面形状となる円錐形状突起を有し、そのピッチPは約200nmであり、また、凹凸の高さTは約200nmであって、以下のように形成したものである。
Hereinafter, although embodiment of this invention is described in detail using drawing, this invention is not limited to these embodiment.
Embodiment 1
4 is a perspective view of the appearance of the lens barrel unit, FIG. 5 is a cross-sectional view of a lens barrel inserted into the lens barrel unit, and FIG. 6 is inserted into the lens barrel unit. It is a perspective view of the lens frame component which comprises a lens frame.
In the drawing, the lens 12 is bonded and fixed to the lens support portion 13 of the lens frame 10 whose inner wall surface on the lens incorporation side has an inner diameter of 20 mm and a length of 30 mm. Fine irregularities are formed on portions of the inner wall surface of the lens frame 10 other than the lens support portion 13 to form the fine irregularities 11 having a fine irregular structure. The fine concavo-convex portion 11 has a conical protrusion having a cross-sectional shape as shown in FIG. 1, the pitch P is about 200 nm, and the height T of the concavo-convex is about 200 nm. Is formed.

本実施形態の鏡枠10は、図6に示すような鏡枠10を半分にした鏡枠部品101を2つ接着剤により貼り合わせて作製されている。鏡枠部品101は、ポリカーボネート樹脂(三菱瓦斯化学(株)製 ユーピロン(登録商標)GS2030)を射出成形して作製した。このようにして得られた鏡枠部品101の微細凹凸部に対応する部分へ黒色染料を含有した光反応硬化樹脂を塗布し、厚さが3μmとなったその部分にリソグラフィー応用技術により図1に示すような断面形状の微細凹凸とは逆の断面形状を表面にもつガラス型を押し付け、紫外線を照射させ光反応硬化樹脂を硬化させた後、離型して鏡枠部品101へ微細凹凸部11を形成した。その後に鏡枠部品101同士の貼り合わせをした。   The lens frame 10 of the present embodiment is manufactured by bonding two lens frame components 101 each having a half of the lens frame 10 as shown in FIG. 6 with an adhesive. The lens frame part 101 was produced by injection molding a polycarbonate resin (Iupilon (registered trademark) GS2030 manufactured by Mitsubishi Gas Chemical Company, Inc.). A photo-reactive curable resin containing a black dye is applied to the portion corresponding to the fine irregularities of the lens frame part 101 obtained in this way, and the portion having a thickness of 3 μm is applied to the portion shown in FIG. A glass mold having a cross-sectional shape opposite to the cross-sectional shape as shown in the figure is pressed, irradiated with ultraviolet rays to cure the photoreactive cured resin, and then released from the mold to the lens frame component 101. Formed. Thereafter, the lens frame components 101 were bonded to each other.

このようにして作製した鏡枠10へレンズ12を組み込み、この鏡枠10をレンズ鏡枠ユニット100に内挿するとともにこのレンズ鏡枠ユニットへ光を通し鏡枠内面での反射を目視で観察したところ、鏡枠内壁面での光反射は確認されず、良好な結果を得た。   The lens 12 is incorporated into the lens frame 10 thus manufactured, the lens frame 10 is inserted into the lens frame unit 100, and light is passed through the lens frame unit and the reflection on the inner surface of the lens frame is visually observed. However, light reflection on the inner wall surface of the lens frame was not confirmed, and good results were obtained.

実施形態2
図7は、実施形態2におけるレンズ鏡枠ユニットの断面である。
本実施形態では、内径20mm、長さ30mmのレンズ支え部20a、20bを2ケ所に有する鏡枠20をアルミ切削加工により作製し、鏡枠20の全体にブラックアルマイト処理を施した。この鏡枠20の内壁面にピッチ150nm、微細凹凸の高さ150nmの円錐形状の微細凹凸が形成された微細凹凸表面をもつシートを貼り付けた後、レンズ21、22をそれぞれ鏡枠20へ落とし込み接着により固定してレンズ鏡枠ユニットとした。ここで、微細凹凸表面をもつシートは、微細凹凸とは逆の形状をもつ金属製スタンパー型を用いて、スタンパー型上に黒色染料を含んだ光硬化性樹脂組成物を厚さ100μmで塗布した後、光硬化性樹脂側より250W高圧水銀灯により光を照射して硬化させ、前記スタンパー型より離型したものをシートとして用いた。なお、平坦なガラス基板に黒色染料を含んだ光硬化性樹脂組成物を厚さ100μmで塗布した後にこれにスタンパー型を押しつけ、ガラス基板側より高圧水銀灯で照射して組成物を硬化させ、離型したものをシートとして用いても良い。金属製スタンパー型は、ガラス基板に塗布した感光性樹脂に、レーザー光干渉法により微細凹凸とは逆の形状の凹凸を形成して、これを原型としてメッキ法により得た金属メッキ層を型としたものである。
Embodiment 2
FIG. 7 is a cross-sectional view of the lens barrel unit in the second embodiment.
In this embodiment, the lens frame 20 having two lens support portions 20a and 20b having an inner diameter of 20 mm and a length of 30 mm is manufactured by aluminum cutting, and the entire lens frame 20 is subjected to black alumite treatment. After a sheet having a fine uneven surface with a conical fine unevenness having a pitch of 150 nm and a fine uneven height of 150 nm is attached to the inner wall surface of the lens frame 20, the lenses 21 and 22 are dropped into the lens frame 20, respectively. The lens frame unit was fixed by bonding. Here, the sheet having a fine uneven surface was coated with a photocurable resin composition containing a black dye on the stamper mold with a thickness of 100 μm using a metal stamper mold having a shape opposite to the fine unevenness. Thereafter, the sheet was cured by irradiating light with a 250 W high-pressure mercury lamp from the photocurable resin side, and released from the stamper type, and used as a sheet. After applying a photocurable resin composition containing a black dye on a flat glass substrate to a thickness of 100 μm, a stamper mold is pressed against the glass substrate, and the composition is cured by irradiation with a high-pressure mercury lamp from the glass substrate side. You may use what was type | molded as a sheet | seat. The metal stamper mold is a photosensitive resin coated on a glass substrate, with irregularities that are opposite to the fine irregularities formed by laser beam interferometry, and a metal plating layer obtained by plating using this as a mold. It is a thing.

上記レンズ鏡枠ユニットに、点光源からなる光を通して、目視で鏡枠内面での反射状態を確認したところ、ほとんど内壁面での反射は確認されず、良好な結果であった。   When the reflection state on the inner surface of the lens frame was visually confirmed through the lens barrel unit with light from a point light source, almost no reflection on the inner wall surface was confirmed, which was a good result.

実施形態3
図8は、実施形態3におけるレンズ鏡枠ユニットの断面を示す。
本実施形態では、鏡枠30は、ポリカーボネート(三菱瓦斯化学(株)製ユーピロン(登録商標)GS2030)を射出成形により作製した。この鏡枠30はレンズ組み込み側の内壁面が内径20mm、長さ40mmとし、その内壁にスパッタリング法によりアルミニウムを平均膜厚0.5μmでコーティングした。
Embodiment 3
FIG. 8 shows a cross section of the lens barrel unit in the third embodiment.
In the present embodiment, the lens frame 30 is made of polycarbonate (Iupilon (registered trademark) GS2030 manufactured by Mitsubishi Gas Chemical Company, Inc.) by injection molding. This lens frame 30 has an inner wall surface on the lens incorporation side having an inner diameter of 20 mm and a length of 40 mm, and the inner wall is coated with aluminum with an average film thickness of 0.5 μm by sputtering.

アルミニウムコーティングされた鏡枠30を陽極酸化処理し、アルミニウムコーティング部に図3によって模式的に示されるような微細凹凸を形成した。この微細凹凸は、ピッチ100nm、孔径50nmであった。なお、陽極酸化は、シュウ酸溶液中で電圧40Vの条件で5分間処理を行った。この微細凹凸を有する鏡枠30の内部のレンズ支え部30aにレンズ31を接着固定してレンズ鏡枠ユニットとした。なお、アルミニュウムの膜厚は、0.05μm〜1μm程度にすると鏡枠との密着強度が保たれてよい。   The aluminum-coated lens frame 30 was anodized to form fine irregularities as schematically shown in FIG. The fine irregularities had a pitch of 100 nm and a pore diameter of 50 nm. The anodization was performed in an oxalic acid solution for 5 minutes under a voltage of 40V. The lens 31 is bonded and fixed to the lens support portion 30a inside the lens frame 30 having the fine irregularities to obtain a lens lens frame unit. If the film thickness of aluminum is about 0.05 μm to 1 μm, the adhesion strength with the lens frame may be maintained.

上記レンズ鏡枠ユニットに、点光源からなる光を通して、目視により鏡枠内面における反射状態を確認したところ、ほとんど内壁面での反射は確認されず、良好な結果であった。   When the reflection state on the inner surface of the lens frame was confirmed by visual observation through the lens barrel unit with light from a point light source, almost no reflection on the inner wall surface was confirmed.

本発明における微細凹凸構造の一形態の断面図である。It is sectional drawing of one form of the fine uneven structure in this invention. 本発明における微細凹凸構造の各種形態例の斜視図で、 (a)は微細凹凸構造が略円錐形状突起よりなる例で、(b)は微細凹凸構造が略角錐形状突起よりなる例で、(c)は、上記(a)の変形例で、(d)は、上記(b)の変形例である。It is a perspective view of various forms of fine concavo-convex structure in the present invention, (a) is an example in which the fine concavo-convex structure is made of a substantially conical protrusion, (b) is an example in which the fine concavo-convex structure is made of a substantially pyramidal protrusion, c) is a modification of the above (a), and (d) is a modification of the above (b). 本発明に用いられる微細凹凸構造の一例の外観斜視図である。It is an external appearance perspective view of an example of the fine concavo-convex structure used for the present invention. 本発明を説明するためのレンズ鏡枠ユニットの斜視図である。It is a perspective view of a lens barrel unit for explaining the present invention. 本発明の実施形態1のレンズ鏡枠ユニットの断面図である。It is sectional drawing of the lens barrel unit of Embodiment 1 of this invention. 本発明の実施形態1のレンズ鏡枠ユニットの断面の斜視図である。It is a perspective view of the section of the lens barrel unit of Embodiment 1 of the present invention. 本発明の実施形態2のレンズ鏡枠ユニットの断面図である。It is sectional drawing of the lens barrel unit of Embodiment 2 of this invention. 本発明の実施形態3のレンズ鏡枠ユニットの断面図である。It is sectional drawing of the lens barrel unit of Embodiment 3 of this invention.

符号の説明Explanation of symbols

10、20、30 鏡枠
11、23 微細凹凸部
12、21、31 レンズ
13 レンズ支え部
A、B 光学有効範囲部分以外の表面部分
H 高さ
P ピッチ
B 底部位置
T 頂部位置
10, 20, 30 Lens frame 11, 23 Fine uneven portion 12, 21, 31 Lens 13 Lens support portion A, B Surface portion other than optical effective range portion H Height P Pitch B Bottom position T Top position

Claims (4)

鏡枠の内壁面の少なくとも一部に、可視光の波長より小さい間隔と大きさの微細凹凸構造を有することを特徴とする鏡枠。   A lens frame characterized by having a fine concavo-convex structure having an interval and size smaller than the wavelength of visible light on at least a part of the inner wall surface of the lens frame. 微細凹凸構造がアルミニウム陽極酸化膜で形成されたことを特徴とする請求項1に記載の鏡枠。   2. The lens frame according to claim 1, wherein the fine uneven structure is formed of an aluminum anodic oxide film. 前記鏡枠が樹脂からなり、鏡枠の内壁面にアルミニウム薄膜を形成した後、アルミニウム薄膜を陽極酸化したことを特徴とする請求項2に記載の鏡枠。   3. The lens frame according to claim 2, wherein the lens frame is made of resin, and an aluminum thin film is formed on the inner wall surface of the lens frame, and then the aluminum thin film is anodized. 微細凹凸構造を表面に有するシートを鏡枠の内壁面に貼り付けたことを特徴とする請求項1に記載の鏡枠。   2. The lens frame according to claim 1, wherein a sheet having a fine concavo-convex structure on its surface is attached to the inner wall surface of the lens frame.
JP2003395973A 2003-11-26 2003-11-26 Lens barrel Withdrawn JP2005156989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395973A JP2005156989A (en) 2003-11-26 2003-11-26 Lens barrel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395973A JP2005156989A (en) 2003-11-26 2003-11-26 Lens barrel

Publications (1)

Publication Number Publication Date
JP2005156989A true JP2005156989A (en) 2005-06-16

Family

ID=34721593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395973A Withdrawn JP2005156989A (en) 2003-11-26 2003-11-26 Lens barrel

Country Status (1)

Country Link
JP (1) JP2005156989A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329714A (en) * 2006-06-08 2007-12-20 Funai Electric Co Ltd Pantoscopic imaging device
JPWO2009040960A1 (en) * 2007-09-28 2011-01-13 凸版印刷株式会社 Display and labeled goods
JP2013020026A (en) * 2011-07-08 2013-01-31 Hitachi Maxell Ltd Lens unit
WO2015045792A1 (en) * 2013-09-25 2015-04-02 日本電産サンキョー株式会社 Optical unit that has image stabilization functionality
JP2016161726A (en) * 2015-02-27 2016-09-05 シャープ株式会社 Light shielding device, autonomous traveling body, and autonomous traveling body system
JP2017151451A (en) * 2017-03-30 2017-08-31 日立マクセル株式会社 Lens unit
CN110376851A (en) * 2019-07-23 2019-10-25 东莞科视自动化科技有限公司 A kind of light source of exposure machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329714A (en) * 2006-06-08 2007-12-20 Funai Electric Co Ltd Pantoscopic imaging device
JPWO2009040960A1 (en) * 2007-09-28 2011-01-13 凸版印刷株式会社 Display and labeled goods
JP2013020026A (en) * 2011-07-08 2013-01-31 Hitachi Maxell Ltd Lens unit
WO2015045792A1 (en) * 2013-09-25 2015-04-02 日本電産サンキョー株式会社 Optical unit that has image stabilization functionality
JP2015064501A (en) * 2013-09-25 2015-04-09 日本電産サンキョー株式会社 Optical unit with shake correction function
KR20160063329A (en) * 2013-09-25 2016-06-03 니혼 덴산 산쿄 가부시키가이샤 Optical unit that has image stabilization functionality
US10003746B2 (en) 2013-09-25 2018-06-19 Nidec Sankyo Corporation Optical unit with shake correction function
KR102169990B1 (en) * 2013-09-25 2020-10-26 니혼 덴산 산쿄 가부시키가이샤 Optical unit that has image stabilization functionality
JP2016161726A (en) * 2015-02-27 2016-09-05 シャープ株式会社 Light shielding device, autonomous traveling body, and autonomous traveling body system
JP2017151451A (en) * 2017-03-30 2017-08-31 日立マクセル株式会社 Lens unit
CN110376851A (en) * 2019-07-23 2019-10-25 东莞科视自动化科技有限公司 A kind of light source of exposure machine

Similar Documents

Publication Publication Date Title
CN101320104B (en) Optical element, method for producing same, replica substrate configured to form optical element, and method for producing replica substrate
US8184373B2 (en) Optical element and method for producing the same
CN107430219B (en) Diffusion plate
KR102136021B1 (en) Diffuser and projection projector units
US8449284B2 (en) Optical element molding die and method for molding optical element
RU2523764C2 (en) Antireflection optical device and method of making standard mould
US9664821B2 (en) Optical element and method for manufacturing master for producing optical element
KR102458998B1 (en) Diffusing plate and diffusing-plate design method
CN108351437B (en) Diffusion plate, method for designing diffusion plate, method for manufacturing diffusion plate, display device, projection device, and illumination device
JP6804830B2 (en) Diffusion plate
US11237305B2 (en) Diffuser plate
JP2015038579A (en) Optical element, optical system, imaging device, optical apparatus, and master and method for manufacturing the same
JP3825782B2 (en) Anti-glare film, method for producing the same, and display device including the same
JP2005156989A (en) Lens barrel
JP2009128539A (en) Method for manufacturing antireflection structure
JP2006251318A (en) Manufacturing method of member having antireflective structure
US20220128742A1 (en) Diffuser plate
JP2006235195A (en) Method for manufacturing member with antireflective structure
US20120307368A1 (en) Optical element and method of manufacturing optical elements
JP2006171229A (en) Nonreflective structure and optical element with nonreflective structure, and manufacturing method thereof and mask used for same
JP2006243633A (en) Manufacturing method of member having antireflection structure body
JP2005148591A (en) Reflective optical element
JP5211762B2 (en) Antireflection structure manufacturing method, antireflection structure, and optical member
JP2006259292A (en) Member having antireflection structure and its manufacturing method
JP2008008969A (en) Method for manufacturing antireflection structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206