JP2005156507A - Load measurement device for rolling bearing unit - Google Patents

Load measurement device for rolling bearing unit Download PDF

Info

Publication number
JP2005156507A
JP2005156507A JP2003399221A JP2003399221A JP2005156507A JP 2005156507 A JP2005156507 A JP 2005156507A JP 2003399221 A JP2003399221 A JP 2003399221A JP 2003399221 A JP2003399221 A JP 2003399221A JP 2005156507 A JP2005156507 A JP 2005156507A
Authority
JP
Japan
Prior art keywords
outer ring
detection
revolution speed
equivalent member
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003399221A
Other languages
Japanese (ja)
Inventor
Tomoyuki Yanagisawa
知之 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003399221A priority Critical patent/JP2005156507A/en
Publication of JP2005156507A publication Critical patent/JP2005156507A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/412Massive or moulded comb cages, e.g. snap ball cages
    • F16C33/414Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
    • F16C33/416Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase reliability in detection of a revolution speed and a rotation speed for improvement in reliability of load measurement in a structure finding a load applied between a hub 2b and an outer ring 1 based on the revolution speed of rolling elements 9a and 9b in respective races and the rotation speed of the hub 2b. <P>SOLUTION: In this load measurement device, a sensor unit 21a having revolution speed detecting sensors 23a and 23b and a rotation speed detecting sensor 15a is inserted into a mounting hole 10b attached slantingly to the outer ring 1. Revolution speed detecting encoders 25a' and 25b' arranged in holders 24a' and 24b' holding the rolling elements 9a and 9b in the respective races are tilted by the same angle in the same direction as the mounting hole 10b. A front end face 32 of the sensor unit 21a is tilted to the center axis of the sensor unit 21a. In this way, the respective sensors 23a, 23b, and 15a can be set to be parallel to detected faces of the encoders 25a', 25b', and 13a, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明の対象となる転がり軸受ユニットの荷重測定装置は、例えば、自動車、鉄道車両等の車両の車輪を支持する為の転がり軸受ユニットに負荷される荷重(ラジアル荷重とアキシアル荷重との一方又は双方)を測定し、上記車両の走行安定性確保を図る為に利用する。   A load measuring device for a rolling bearing unit that is an object of the present invention is, for example, a load (one or both of a radial load and an axial load) applied to a rolling bearing unit for supporting wheels of a vehicle such as an automobile or a railway vehicle. ) Is measured and used to ensure the running stability of the vehicle.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更にはビークルスタビリティコントロールシステム(VSC)等の車両用走行安定装置が使用されている。この様な各種車両用走行安定装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等の信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる荷重(ラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, an automobile wheel is rotatably supported by a double row angular rolling bearing unit with respect to a suspension device. In order to ensure the running stability of automobiles, vehicle running stabilizers such as an antilock brake system (ABS), a traction control system (TCS), and a vehicle stability control system (VSC) are used. . In order to control such various vehicle running stabilizers, signals such as the rotational speed of the wheels and the acceleration in each direction applied to the vehicle body are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (one or both of a radial load and an axial load) applied to the rolling bearing unit via the wheel.

この様な事情に鑑みて、特許文献1には、ラジアル荷重を測定自在な、荷重測定装置付転がり軸受ユニットが記載されている。この従来構造の第1例の荷重測定装置付転がり軸受ユニットは、ラジアル荷重を測定するもので、図3に示す様に構成している。懸架装置に支持される外輪1の内径側に、車輪を結合固定するハブ2を支持している。このハブ2は、車輪を固定する為の回転側フランジ3をその外端部(車両への組み付け状態で幅方向外側となる端部で、図6を除く各図の左端部)に有するハブ本体4と、このハブ本体4の内端部(車両への組み付け状態で幅方向中央側となる端部で、図6を除く各図の右端部)に外嵌されてナット5により抑え付けられた内輪6とを備える。そして、上記外輪1の内周面に形成した複列の外輪軌道7、7と、上記ハブ2の外周面に形成した複列の内輪軌道8、8との間に、それぞれ複数個ずつの転動体9a、9bを配置して、上記外輪1の内径側での上記ハブ2の回転を自在としている。   In view of such circumstances, Patent Document 1 describes a rolling bearing unit with a load measuring device capable of measuring a radial load. The rolling bearing unit with a load measuring device of the first example of this conventional structure measures a radial load and is configured as shown in FIG. A hub 2 for coupling and fixing the wheel is supported on the inner diameter side of the outer ring 1 supported by the suspension device. The hub 2 has a hub body having a rotation-side flange 3 for fixing a wheel at an outer end thereof (an end portion on the outer side in the width direction when assembled to a vehicle, and a left end portion in each drawing excluding FIG. 6). 4 and the inner end portion of the hub body 4 (the end portion on the center side in the width direction in the assembled state in the vehicle, the right end portion of each drawing excluding FIG. 6) and are held down by the nut 5. And an inner ring 6. A plurality of rolling rings are provided between the double row outer ring raceways 7 and 7 formed on the inner peripheral surface of the outer ring 1 and the double row inner ring raceways 8 and 8 formed on the outer peripheral surface of the hub 2. The moving bodies 9a and 9b are arranged to freely rotate the hub 2 on the inner diameter side of the outer ring 1.

上記外輪1の軸方向中間部で複列の外輪軌道7、7の間部分に、この外輪1を直径方向に貫通する取付孔10を、この外輪1の上端部にほぼ鉛直方向に形成している。そして、この取付孔10内に、荷重測定用のセンサである、円杆状(丸棒状)の変位センサ11を装着している。この変位センサ11は非接触式で、先端面(下端面)に設けた検出面は、ハブ2の軸方向中間部に外嵌固定したセンサリング12の外周面に近接対向させている。上記変位センサ11は、上記検出面と上記センサリング12の外周面との距離が変化した場合に、その変化量に対応した信号を出力する。   A mounting hole 10 that diametrically penetrates the outer ring 1 is formed in a substantially vertical direction at an upper end portion of the outer ring 1 in a portion between the double row outer ring raceways 7 and 7 at an intermediate portion in the axial direction of the outer ring 1. Yes. In the mounting hole 10, a circular rod-shaped (round bar-shaped) displacement sensor 11, which is a load measuring sensor, is mounted. This displacement sensor 11 is a non-contact type, and the detection surface provided on the front end surface (lower end surface) is closely opposed to the outer peripheral surface of the sensor ring 12 fitted and fixed to the intermediate portion in the axial direction of the hub 2. When the distance between the detection surface and the outer peripheral surface of the sensor ring 12 changes, the displacement sensor 11 outputs a signal corresponding to the amount of change.

上述の様に構成する従来の荷重測定装置付転がり軸受ユニットの場合には、上記変位センサ11の検出信号に基づいて、転がり軸受ユニットに加わる荷重を求める事ができる。即ち、車両の懸架装置に支持した上記外輪1は、この車両の重量により下方に押されるのに対して、車輪を支持固定したハブ2は、そのままの位置に止まろうとする。この為、上記重量が嵩む程、上記外輪1やハブ2、並びに転動体9a、9bの弾性変形に基づいて、これら外輪1の中心とハブ2の中心とのずれが大きくなる。そして、この外輪1の上端部に設けた、上記変位センサ11の検出面と上記センサリング12の外周面との距離は、上記重量が嵩む程短くなる。そこで、上記変位センサ11の検出信号を制御器に送れば、予め実験等により求めた関係式或はマップ等から、当該変位センサ11を組み込んだ転がり軸受ユニットに加わるラジアル荷重を求める事ができる。この様にして求めた、各転がり軸受ユニットに加わる荷重に基づいて、ABSを適正に制御する他、積載状態の不良を運転者に知らせる。   In the case of the conventional rolling bearing unit with a load measuring device configured as described above, the load applied to the rolling bearing unit can be obtained based on the detection signal of the displacement sensor 11. That is, the outer ring 1 supported by the vehicle suspension device is pushed downward by the weight of the vehicle, whereas the hub 2 supporting and fixing the wheel tends to stop at the same position. For this reason, the greater the weight, the greater the deviation between the center of the outer ring 1 and the center of the hub 2 based on the elastic deformation of the outer ring 1, the hub 2, and the rolling elements 9a, 9b. The distance between the detection surface of the displacement sensor 11 and the outer peripheral surface of the sensor ring 12 provided at the upper end of the outer ring 1 becomes shorter as the weight increases. Therefore, if the detection signal of the displacement sensor 11 is sent to the controller, the radial load applied to the rolling bearing unit in which the displacement sensor 11 is incorporated can be obtained from a relational expression or a map obtained beforehand through experiments or the like. Based on the load applied to each rolling bearing unit thus obtained, the ABS is appropriately controlled and the driver is informed of the poor loading state.

尚、図3に示した従来構造は、上記転がり軸受ユニットに加わる荷重に加えて、上記ハブ2の回転速度も検出自在としている。この為に、前記内輪6の内端部に回転速度検出用エンコーダ13を外嵌固定すると共に、上記外輪1の内端開口部に被着したカバー14に回転速度検出用センサ15を支持している。そして、この回転速度検出用センサ15の検知部を、上記回転速度検出用エンコーダ13の被検出部に、測定隙間を介して対向させている。   In the conventional structure shown in FIG. 3, in addition to the load applied to the rolling bearing unit, the rotational speed of the hub 2 can also be detected. For this purpose, the rotational speed detecting encoder 13 is fitted and fixed to the inner end of the inner ring 6, and the rotational speed detecting sensor 15 is supported on the cover 14 attached to the inner end opening of the outer ring 1. Yes. And the detection part of this rotational speed detection sensor 15 is made to oppose the to-be-detected part of the said encoder 13 for rotational speed detection through the measurement clearance gap.

上述の様な回転速度検出装置を組み込んだ転がり軸受ユニットの使用時、車輪を固定したハブ2と共に上記回転速度検出用エンコーダ13が回転し、この回転速度検出用エンコーダ13の被検知部が上記回転速度検出用センサ15の検知部の近傍を走行すると、この回転速度検出用センサ15の出力が変化する。この様にして回転速度検出用センサ15の出力が変化する周波数は、上記車輪の回転数に比例する。従って、この回転速度検出用センサ15の出力信号を図示しない制御器に送れば、ABSやTCSを適切に制御できる。   When the rolling bearing unit incorporating the rotational speed detecting device as described above is used, the rotational speed detecting encoder 13 is rotated together with the hub 2 to which the wheel is fixed, and the detected portion of the rotational speed detecting encoder 13 is rotated as described above. When traveling in the vicinity of the detection unit of the speed detection sensor 15, the output of the rotation speed detection sensor 15 changes. The frequency at which the output of the rotational speed detection sensor 15 changes in this way is proportional to the rotational speed of the wheel. Therefore, if the output signal of the rotational speed detection sensor 15 is sent to a controller (not shown), ABS and TCS can be controlled appropriately.

上述の様な従来構造の第1例の荷重測定装置付転がり軸受ユニットは、転がり軸受ユニットに加わるラジアル荷重を測定する為のものであるが、転がり軸受ユニットに加わるアキシアル荷重を測定する構造も、特許文献2等に記載されて、従来から知られている。図4は、この特許文献2に記載された、アキシアル荷重を測定する為の荷重測定装置付転がり軸受ユニットを示している。この従来構造の第2例の場合、ハブ2aの外端部外周面に、車輪を支持する為の回転側フランジ3aを固設している。又、外輪1aの外周面に、この外輪1aを懸架装置を構成するナックル16に支持固定する為の、固定側フランジ17を固設している。そして、上記外輪1aの内周面に形成した複列の外輪軌道7、7と、上記ハブ2aの外周面に形成した複列の内輪軌道8、8との間に、それぞれ複数個ずつの転動体9a、9bを転動自在に設ける事により、上記外輪1aの内径側に上記ハブ2aを回転自在に支持している。   The rolling bearing unit with a load measuring device of the first example of the conventional structure as described above is for measuring the radial load applied to the rolling bearing unit, but the structure for measuring the axial load applied to the rolling bearing unit is also, It is described in Patent Document 2 and the like and has been conventionally known. FIG. 4 shows a rolling bearing unit with a load measuring device for measuring an axial load described in Patent Document 2. As shown in FIG. In the case of the second example of this conventional structure, the rotation side flange 3a for supporting the wheel is fixed on the outer peripheral surface of the outer end portion of the hub 2a. A fixed-side flange 17 is fixed to the outer peripheral surface of the outer ring 1a for supporting and fixing the outer ring 1a to a knuckle 16 constituting a suspension device. A plurality of rolling rings are respectively provided between the double row outer ring raceways 7 and 7 formed on the inner peripheral surface of the outer ring 1a and the double row inner ring raceways 8 and 8 formed on the outer peripheral surface of the hub 2a. By providing the moving bodies 9a and 9b so as to be able to roll, the hub 2a is rotatably supported on the inner diameter side of the outer ring 1a.

更に、上記固定側フランジ17の内側面複数個所で、この固定側フランジ17を上記ナックル16に結合する為のボルト18を螺合する為のねじ孔19を囲む部分に、それぞれ荷重センサ20を添設している。上記外輪1aを上記ナックル16に支持固定した状態でこれら各荷重センサ20は、このナックル16の外側面と上記固定側フランジ17の内側面との間で挟持される。   Further, a load sensor 20 is attached to a part surrounding the screw hole 19 for screwing the bolt 18 for connecting the fixed side flange 17 to the knuckle 16 at a plurality of positions on the inner side surface of the fixed side flange 17. Has been established. Each load sensor 20 is sandwiched between the outer side surface of the knuckle 16 and the inner side surface of the fixed-side flange 17 in a state where the outer ring 1 a is supported and fixed to the knuckle 16.

この様な従来構造の第2例の転がり軸受ユニットの荷重測定装置の場合、図示しない車輪と上記ナックル16との間にアキシアル荷重が加わると、上記ナックル16の外側面と上記固定側フランジ17の内側面とが、上記各荷重センサ20を、軸方向両面から強く押し付け合う。従って、これら各荷重センサ20の測定値を合計する事で、上記車輪と上記ナックル16との間に加わるアキシアル荷重を求める事ができる。又、図示はしないが、特許文献3には、一部の剛性を低くした外輪相当部材の振動周波数から転動体の公転速度を求め、更に、転がり軸受に加わるアキシアル荷重を測定する方法が記載されている。   In the case of the load measuring device of the rolling bearing unit of the second example having such a conventional structure, when an axial load is applied between a wheel (not shown) and the knuckle 16, the outer surface of the knuckle 16 and the fixed side flange 17 The inner surface strongly presses the load sensors 20 from both sides in the axial direction. Therefore, the axial load applied between the wheel and the knuckle 16 can be obtained by summing up the measured values of the load sensors 20. Although not shown, Patent Document 3 describes a method of obtaining the revolution speed of the rolling element from the vibration frequency of a member corresponding to an outer ring having a reduced rigidity, and measuring the axial load applied to the rolling bearing. ing.

前述の図3に示した従来構造の第1例の場合、変位センサ11により、外輪1とハブ2との径方向に関する変位を測定する事で、転がり軸受ユニットに加わる荷重を測定する。但し、この径方向に関する変位量は僅かである為、この荷重を精度良く求める為には、上記変位センサ11として、高精度のものを使用する必要がある。高精度の非接触式センサは高価である為、荷重測定装置付転がり軸受ユニット全体としてコストが嵩む事が避けられない。   In the case of the first example of the conventional structure shown in FIG. 3 described above, the load applied to the rolling bearing unit is measured by measuring the displacement in the radial direction between the outer ring 1 and the hub 2 by the displacement sensor 11. However, since the displacement amount in the radial direction is small, it is necessary to use a highly accurate displacement sensor 11 in order to obtain this load with high accuracy. Since high-precision non-contact sensors are expensive, it is inevitable that the cost of the entire rolling bearing unit with a load measuring device increases.

又、上述の図4に示した従来構造の第2例の場合、ナックル16に対し外輪1aを支持固定する為のボルト18と同数だけ、荷重センサ20を設ける必要がある。この為、荷重センサ20自体が高価である事と相まって、転がり軸受ユニットの荷重測定装置全体としてのコストが相当に嵩む事が避けられない。又、特許文献3に記載された方法は、外輪相当部材の一部の剛性を低くする必要があり、この外輪相当部材の耐久性確保が難しくなる可能性がある。又、この外輪相当部材の振動周波数から転動体の公転速度を求める為、この公転速度を正確に測定できないと言った問題もある。   In the case of the second example of the conventional structure shown in FIG. 4 described above, it is necessary to provide as many load sensors 20 as the number of bolts 18 for supporting and fixing the outer ring 1a to the knuckle 16. For this reason, coupled with the fact that the load sensor 20 itself is expensive, it is inevitable that the cost of the entire load measuring device of the rolling bearing unit is considerably increased. Further, the method described in Patent Document 3 requires that the rigidity of a part of the outer ring equivalent member be lowered, and it may be difficult to ensure the durability of the outer ring equivalent member. Further, since the revolution speed of the rolling element is obtained from the vibration frequency of the outer ring equivalent member, there is a problem that the revolution speed cannot be measured accurately.

この様な事情に鑑みて本発明者等は先に、複列アンギュラ型玉軸受である転がり軸受ユニットを構成する1対の列の転動体(玉)の公転速度に基づいて、この転がり軸受ユニットに加わるラジアル荷重又はアキシアル荷重を測定する、転がり軸受ユニットの荷重測定装置に関する発明を行なった(特願2003−171715号、172483号)。図5は、この先発明の転がり軸受ユニットの荷重測定装置を示している。この先発明に係る構造の場合、外輪1(外輪相当部材)の軸方向中間部で複列の外輪軌道7、7の間部分に形成した取付孔10aにセンサユニット21を挿通し、このセンサユニット21の先端部22を、上記外輪1の内周面から突出させている。この先端部22には、1対の公転速度検出用センサ23a、23bと、1個の回転速度検出用センサ15aとを設けている。   In view of such circumstances, the present inventors have previously described this rolling bearing unit based on the revolution speed of a pair of rolling elements (balls) constituting a rolling bearing unit which is a double row angular ball bearing. An invention relating to a load measuring device for a rolling bearing unit that measures a radial load or an axial load applied to the bearing is performed (Japanese Patent Application Nos. 2003-171715 and 172483). FIG. 5 shows a load measuring device for a rolling bearing unit according to the present invention. In the case of the structure according to the previous invention, the sensor unit 21 is inserted into the mounting hole 10a formed in the portion between the double-row outer ring raceways 7 and 7 at the intermediate portion in the axial direction of the outer ring 1 (outer ring equivalent member). The front end portion 22 of the outer ring 1 protrudes from the inner peripheral surface of the outer ring 1. The tip portion 22 is provided with a pair of revolution speed detection sensors 23a and 23b and one rotational speed detection sensor 15a.

そして、このうちの各公転速度検出用センサ23a、23bの検出部を、複列に配置された各転動体9a、9bを回転自在に保持した各保持器24a、24bに設けた、公転速度検出用エンコーダ25a、25bに近接対向させて、各転動体9a、9bの公転速度を検出自在としている。又、上記回転速度検出用センサ15aの検出部を、内輪相当部材であるハブ2の中間部に外嵌固定した回転速度検出用エンコーダ13aに近接対向させて、このハブ2の回転速度を検出自在としている。この様な構成を有する先発明に係る転がり軸受ユニットの荷重測定装置によれば、上記ハブ2の回転速度の変動に拘らず、上記外輪1と上記ハブ2との間に加わる荷重(ラジアル荷重及びアキシアル荷重)を求められる。   And the detection part of each revolution speed detection sensor 23a, 23b of these is provided in each retainer 24a, 24b which hold | maintained each rolling element 9a, 9b arrange | positioned in a double row freely, The revolution speed detection The revolving speeds of the rolling elements 9a and 9b are made freely detectable by being close to and facing the encoders 25a and 25b. Further, the rotational speed of the hub 2 can be detected by making the detection part of the rotational speed detection sensor 15a close to and opposed to the rotational speed detection encoder 13a externally fitted and fixed to the intermediate part of the hub 2 which is an inner ring equivalent member. It is said. According to the load measuring device for a rolling bearing unit according to the prior invention having such a configuration, a load (a radial load and a load) applied between the outer ring 1 and the hub 2 regardless of fluctuations in the rotational speed of the hub 2. Axial load) is required.

即ち、上述の様な先発明に係る転がり軸受ユニットの荷重測定装置の場合、図示しない演算器が、上記各センサ23a、23b、15aから送り込まれる検出信号に基づいて、上記外輪1と上記ハブ2との間に加わるラジアル荷重とアキシアル荷重とのうちの一方又は双方の荷重を算出する。例えば、このラジアル荷重を求める場合に上記演算器は、上記両公転速度検出用センサ23a、23bが検出する各列の転動体9a、9bの公転速度の和を求め、この和と、上記回転速度検出用センサ15aが検出する上記ハブ2の回転速度との比に基づいて、上記ラジアル荷重を算出する。又、上記アキシアル荷重は、上記両公転速度検出用センサ23a、23bが検出する各列の転動体9a、9bの公転速度の差を求め、この差と、上記回転速度検出用センサ15aが検出する上記ハブ2の回転速度との比に基づいて算出する。この点に就いて、図6を参照しつつ説明する。尚、以下の説明は、アキシアル荷重Fyが加わらない状態での、上記両列の転動体9a、9bの接触角αa 、αb が互いに同じであるとして行なう。 That is, in the case of the load measuring device for a rolling bearing unit according to the above-described prior invention, an arithmetic unit (not shown) performs the outer ring 1 and the hub 2 based on the detection signals sent from the sensors 23a, 23b, 15a. One or both of a radial load and an axial load applied between the two are calculated. For example, when the radial load is obtained, the computing unit obtains the sum of the revolution speeds of the rolling elements 9a and 9b of the respective rows detected by the revolution speed detection sensors 23a and 23b, and the sum and the rotation speed. The radial load is calculated based on the ratio to the rotational speed of the hub 2 detected by the detection sensor 15a. The axial load is obtained by calculating the difference between the revolution speeds of the rolling elements 9a and 9b in the respective rows detected by the revolution speed detection sensors 23a and 23b, and the difference between the difference and the rotation speed detection sensor 15a. Calculation is based on the ratio to the rotational speed of the hub 2. This point will be described with reference to FIG. In the following description, it is assumed that the contact angles α a and α b of the rolling elements 9a and 9b in both rows in the state where the axial load Fy is not applied are the same.

図6は、上述の図5に示した車輪支持用の転がり軸受ユニットを模式化し、荷重の作用状態を示したものである。複列の内輪軌道8、8と複列の外輪軌道7、7との間に複列に配置された転動体9a、9bには予圧F0 、F0 を付与している。又、使用時に上記転がり軸受ユニットには、車体の重量等により、ラジアル荷重Fzが加わる。更に、旋回走行時に加わる遠心力等により、アキシアル荷重Fyが加わる。これら予圧F0 、F0 、ラジアル荷重Fz、アキシアル荷重Fyは、何れも上記各転動体9a、9bの接触角α(αa 、αb )に影響を及ぼす。そして、この接触角αa 、αb が変化すると、これら各転動体9a、9bの公転速度nc が変化する。これら各転動体9a、9bのピッチ円直径をDとし、これら各転動体9a、9bの直径をdとし、上記両内輪軌道8、8を設けたハブ2の回転速度をni とし、上記両外輪軌道7、7を設けた外輪1の回転速度をno とすると、上記公転速度nc は、次の式で表される。
c ={1−(d・cosα/D)・(ni /2)}+{1+(d・cosα/D)・(no /2)}
FIG. 6 schematically shows the wheel bearing rolling bearing unit shown in FIG. 5 described above and shows the action state of the load. Preloads F 0 and F 0 are applied to the rolling elements 9 a and 9 b arranged in a double row between the double row inner ring raceways 8 and 8 and the double row outer ring raceways 7 and 7. Further, a radial load Fz is applied to the rolling bearing unit during use due to the weight of the vehicle body or the like. Further, an axial load Fy is applied due to centrifugal force applied during turning. These preloads F 0 , F 0 , radial load Fz, and axial load Fy all affect the contact angles α (α a , α b ) of the rolling elements 9a, 9b. Then, the contact angle alpha a, the alpha b is changed, these rolling elements 9a, the revolution speed n c of 9b changes. The pitch circle diameter of each of these rolling elements 9a, 9b is D, the diameter of each of these rolling elements 9a, 9b is d, the rotational speed of the hub 2 provided with both the inner ring raceways 8, 8 is n i , When the rotational speed of the outer race 1 provided with the outer ring raceway 7, 7 and n o, the revolution speed n c is expressed by the following equation.
n c = {1− (d · cos α / D) · (n i / 2)} + {1+ (d · cos α / D) · (n o / 2)}

この式から明らかな通り、上記各転動体9a、9bの公転速度nc は、これら各転動体9a、9bの接触角α(αa 、αb )の変化に応じて変化するが、上述した様にこの接触角αa 、αb は、上記ラジアル荷重Fz及び上記アキシアル荷重Fyに応じて変化する。従って上記公転速度nc は、これらラジアル荷重Fz及びアキシアル荷重Fyに応じて変化する。本例の場合、上記ハブ2が回転し、上記外輪1が回転しない為、具体的には、上記ラジアル荷重Fzに関しては、大きくなる程上記公転速度nc が遅くなる。又、アキシアル荷重Fyに関しては、このアキシアル荷重Fyを支承する列の公転速度が速くなり、このアキシアル荷重Fyを支承しない列の公転速度が遅くなる。従って、この公転速度nc に基づいて、上記ラジアル荷重Fz及びアキシアル荷重Fyを求められる事になる。 As is evident from this equation, the rolling elements 9a, revolution speed n c of 9b, these rolling elements 9a, the contact angle α (α a, α b) of 9b varies in response to changes in, the above-described Similarly, the contact angles α a and α b vary according to the radial load Fz and the axial load Fy. Thus the revolution speed n c is changed according to these radial load Fz and the axial load Fy. In this example, the hub 2 is rotated, since the outer ring 1 is not rotated, specifically, with respect to the radial load Fz, the revolution speed n c is slow enough to increase. As for the axial load Fy, the revolution speed of the row that supports the axial load Fy is increased, and the revolution speed of the row that does not support the axial load Fy is decreased. Therefore, on the basis of the revolution speed n c, it will be asked to the radial load Fz and the axial load Fy.

但し、上記公転速度nc の変化に結び付く上記接触角αは、上記ラジアル荷重Fzと上記アキシアル荷重Fyとが互いに関連しつつ変化するだけでなく、上記予圧F0 、F0 によっても変化する。又、上記公転速度nc は、上記ハブ2の回転速度ni に比例して変化する。この為、これらラジアル荷重Fz、上記アキシアル荷重Fy、予圧F0 、F0 、ハブ2の回転速度ni を総て関連させて考えなければ、上記公転速度nc を正確に求める事はできない。このうちの予圧F0 、F0 は、運転状態に応じて変化するものではないので、初期設定等によりその影響を排除する事は容易である。これに対して上記ラジアル荷重Fz、アキシアル荷重Fy、ハブ2の回転速度ni は、運転状態に応じて絶えず変化するので、初期設定等によりその影響を排除する事はできない。 However, the contact angle α which leads to a change in the revolution speed n c, as well as the radial load Fz and the axial load Fy changes while associated with each other, also vary according to the preload F 0, F 0. Also, the revolution speed n c is changed in proportion to the rotational speed n i of the hub 2. Therefore, these radial load Fz, the axial load Fy, the preload F 0, F 0, to be considered in conjunction all the rotational speed n i of the hub 2, it is impossible to correctly determine the revolution speed n c. Of these, the preloads F 0 and F 0 do not change according to the operating state, so it is easy to eliminate the influence by initial setting or the like. The radial load Fz with respect to this, the axial load Fy, the rotational speed n i of the hub 2, since the constantly changing depending on the operating conditions, it is impossible to eliminate the influence by such initialization.

この様な事情に鑑みて先発明の場合には、前述した様に、ラジアル荷重Fzを求める場合には、前記各公転速度検出用センサ23a、23bが検出する各列の転動体9a、9bの公転速度の和を求める事で、上記アキシアル荷重Fyの影響を少なくしている。又、アキシアル荷重Fyを求める場合には、上記両列の転動体9a、9bの公転速度の差を求める事で、上記ラジアル荷重Fzの影響を少なくしている。更に、何れの場合でも、上記和又は差と、前記回転速度検出用センサ15aが検出する上記ハブ2の回転速度ni との比に基づいて上記ラジアル荷重Fz又は上記アキシアル荷重Fyを算出する事により、上記ハブ2の回転速度ni の影響を排除している。但し、上記アキシアル荷重Fyを、上記両列の転動体9a、9bの公転速度の比に基づいて算出する場合には、上記ハブ2の回転速度ni は、必ずしも必要ではない。 In the case of the prior invention in view of such circumstances, as described above, when the radial load Fz is obtained, the rolling elements 9a, 9b of the respective rows detected by the respective revolution speed detection sensors 23a, 23b are detected. By determining the sum of the revolution speeds, the influence of the axial load Fy is reduced. Further, when the axial load Fy is obtained, the influence of the radial load Fz is reduced by obtaining the difference between the revolution speeds of the rolling elements 9a and 9b in both rows. Furthermore, in any case, possible to calculate the radial load Fz or the axial load Fy on the basis of the ratio of the above sum or difference, the rotational speed detecting sensor 15a is a rotational speed n i of the hub 2 for detecting way, by eliminating the influence of the rotational speed n i of the hub 2. However, the axial load Fy, when calculating on the basis of the ratio of the revolution speed of the both rows of rolling elements 9a, 9b, the rotational speed n i of the hub 2 is not necessarily required.

尚、上記両公転速度検出用センサ23a、23bの信号に基づいて上記ラジアル荷重Fzとアキシアル荷重Fyとのうちの一方又は双方の荷重を算出する方法は、他にも各種存在するが、この様な方法に就いては、前述の特願2003−171715号、172483号に詳しく説明されているし、本発明の要旨とも関係しないので、詳しい説明は省略する。   There are various other methods for calculating one or both of the radial load Fz and the axial load Fy based on the signals of the revolution speed detection sensors 23a and 23b. This method is described in detail in the aforementioned Japanese Patent Application Nos. 2003-171715 and 172483, and is not related to the gist of the present invention.

上述の様な先発明の転がり軸受ユニットの荷重測定装置を実施する場合、必ずしも前記取付孔10aを、図5に示す様に、外輪1の中心軸に対して直角方向に設けられない場合が考えられる。即ち、ハブ2の形状や、この外輪1をナックル16(図4)に取り付ける際のスペース上の問題等から、図7に示す様に取付孔10bを上記外輪1の中心軸に対し斜めに形成しなければならない場合が考えられる。この様に傾斜した取付孔10bに対し、前述の図5に示した様に、外輪1の直径方向に形成した取付孔10aに挿入するのと同様のセンサユニット21を組み付けると、図7に示す様に、このセンサユニット21の先端部22に設けた各公転速度検出用センサ23a、23bと、各保持器24a、24bの側面に設けた各公転速度検出用エンコーダ25a、25bとが、互いに非平行になる。   When the load measuring device for a rolling bearing unit according to the invention as described above is implemented, the mounting hole 10a may not necessarily be provided in a direction perpendicular to the central axis of the outer ring 1 as shown in FIG. It is done. That is, the mounting hole 10b is formed obliquely with respect to the central axis of the outer ring 1 as shown in FIG. 7 due to the shape of the hub 2 and the space problem when the outer ring 1 is attached to the knuckle 16 (FIG. 4). There are cases where you must do this. When the same sensor unit 21 as that inserted into the mounting hole 10a formed in the diameter direction of the outer ring 1 is assembled to the mounting hole 10b inclined in this way, as shown in FIG. Similarly, the revolution speed detection sensors 23a and 23b provided at the tip 22 of the sensor unit 21 and the revolution speed detection encoders 25a and 25b provided on the side surfaces of the cages 24a and 24b are not mutually connected. Become parallel.

尚、前述の図5に示した構造が従動輪(FR車、MR車、RR車の前輪、FF車の後輪)用の転がり軸受ユニットに荷重測定装置を組み込んでいるのに対して、上記図7に示した構造は、駆動輪(FR車、MR車、RR車の後輪、FF車の前輪、4WD車の全輪)用の転がり軸受ユニットに荷重測定装置を組み込んでいる。この為に、ハブ2bの中心部にスプライン孔26を形成している。又、このハブ2bの内端部に外嵌した内輪6の内端面をこのハブ2bの内端面よりも突出させている。この様な内輪6の内端面には、組み付け状態で等速ジョイントに付属のハウジングの外端面が突き当たり、上記ハブ2bと上記内輪6との分離防止を図る。更に、この内輪6の内端部外周面と上記外輪1の内端部内周面との間に組み合わせシールリング27を設けて、各転動体9a、9bを設置した空間28の内端開口部を塞いでいる。この様な駆動輪用の転がり軸受ユニットの場合、上記等速ジョイントに付属のハウジングの存在に基づき、上記取付孔10bを、図7に示す様に、径方向外方程軸方向外方に向かう方向に傾斜させる必要が、特に生じ易い。但し、上記図5に示した従動輪用の転がり軸受ユニットの場合でも、センサユニット用の取付孔を傾斜させる必要が生じる場合がある。   Incidentally, the structure shown in FIG. 5 described above incorporates a load measuring device in a rolling bearing unit for a driven wheel (a front wheel of an FR vehicle, an MR vehicle, an RR vehicle, and a rear wheel of an FF vehicle). The structure shown in FIG. 7 incorporates a load measuring device in a rolling bearing unit for driving wheels (FR wheel, MR wheel, rear wheel of RR vehicle, front wheel of FF vehicle, all wheels of 4WD vehicle). For this purpose, a spline hole 26 is formed at the center of the hub 2b. Further, the inner end surface of the inner ring 6 fitted on the inner end portion of the hub 2b protrudes from the inner end surface of the hub 2b. The outer end surface of the housing attached to the constant velocity joint in the assembled state hits the inner end surface of such an inner ring 6 to prevent the hub 2b and the inner ring 6 from being separated. Further, a combination seal ring 27 is provided between the inner end portion outer peripheral surface of the inner ring 6 and the inner end inner peripheral surface of the outer ring 1, and the inner end opening portion of the space 28 in which the rolling elements 9a and 9b are installed is provided. It is blocking. In the case of such a rolling bearing unit for driving wheels, based on the presence of the housing attached to the constant velocity joint, as shown in FIG. In particular, it is necessary to be inclined. However, even in the case of the rolling bearing unit for the driven wheel shown in FIG. 5, it may be necessary to incline the mounting hole for the sensor unit.

何れにしても、前述の様に前記各公転速度検出用センサ23a、23bと前記各公転速度検出用エンコーダ25a、25bとが互いに非平行である状態では、これら各公転速度検出用エンコーダ25a、25bの被検出面から出た磁束が、上記両公転速度検出用センサ23a、23bの検出部に設けた磁気検出素子を直交して流れない。この為、これら各公転速度検出用センサ23a、23bの検出信号の変化が不安定になり、各列の転動体9a、9bの公転速度検出の信頼性確保が難しくなる。   In any case, when the revolution speed detection sensors 23a, 23b and the revolution speed detection encoders 25a, 25b are not parallel to each other as described above, the revolution speed detection encoders 25a, 25b are not parallel to each other. The magnetic flux emitted from the detected surface does not flow perpendicularly to the magnetic detection elements provided in the detection portions of the two revolution speed detection sensors 23a and 23b. For this reason, changes in the detection signals of the revolution speed detection sensors 23a and 23b become unstable, and it becomes difficult to ensure the reliability of the revolution speed detection of the rolling elements 9a and 9b in each row.

又、上記センサユニット21の先端部22が、上記外輪の内周面から径方向内方に、傾斜した状態で突出している為、ポケット隙間の影響等により、上記両保持器24a、24bが振れ回った場合に、上記両公転速度検出用エンコーダ25a、25bの被検出面と上記両公転速度検出用センサ23a、23bの検出部と(図7に示した構造では、軸方向内側の公転速度検出用エンコーダ25bの被検出面と公転速度検出用センサ23bの検出部の端部と)が接触する可能性がある。そして、接触した場合には、上記両公転速度検出用エンコーダ25a、25bの被検出面と上記両公転速度検出用センサ23a、23bの検出部との一方又は双方を損傷する可能性が大きくなる。勿論、これら各公転速度検出用エンコーダ25a、25bの被検出面と上記両公転速度検出用センサ23a、23bの検出部とを十分に離せば上記損傷を防止できるが、これら各センサ23a、23bに達する磁束が少なくなり、公転速度検出の信頼性確保が益々難しくなる。   Further, since the tip portion 22 of the sensor unit 21 protrudes in a radially inward direction from the inner peripheral surface of the outer ring, the two cages 24a and 24b are swung due to the influence of a pocket gap or the like. When rotating, the detection surfaces of the two revolution speed detection encoders 25a and 25b and the detection parts of the two revolution speed detection sensors 23a and 23b (in the structure shown in FIG. There is a possibility that the detected surface of the encoder 25b and the end of the detecting portion of the revolution speed detecting sensor 23b are in contact with each other. In the case of contact, the possibility of damaging one or both of the detected surfaces of the two revolution speed detection encoders 25a and 25b and the detection parts of the two revolution speed detection sensors 23a and 23b increases. Of course, the damage can be prevented by sufficiently separating the detected surfaces of the respective revolution speed detecting encoders 25a and 25b from the detection parts of the two revolution speed detecting sensors 23a and 23b. The magnetic flux that reaches is reduced, and it becomes increasingly difficult to ensure the reliability of revolution speed detection.

特開2001−21577号公報JP 2001-21577 A 特開平3−209016号公報Japanese Patent Laid-Open No. 3-209016 特公昭62−3365号公報Japanese Patent Publication No.62-3365

本発明は、上述の様な事情に鑑みて、外輪に対しセンサユニットを傾斜した状態で装着する場合でも、公転速度検出の信頼性確保と各部の損傷防止とを両立させられる転がり軸受ユニットの荷重測定装置を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides a load for a rolling bearing unit capable of ensuring both reliability of revolution speed detection and preventing damage to each part even when the sensor unit is mounted in an inclined state with respect to the outer ring. Invented to realize a measuring apparatus.

本発明の転がり軸受ユニットの荷重測定装置は、外輪相当部材と、内輪相当部材と、複数個の転動体と、保持器と、公転速度検出用エンコーダと、取付孔と、公転速度検出用センサと、演算器とを備える。
このうちの外輪相当部材は、内周面に外輪軌道を有し、使用時にも回転しない。
又、上記内輪相当部材は、上記外輪相当部材の内径側にこの外輪相当部材と同心に配置されたもので、外周面に内輪軌道を有し、使用時に回転する。
又、上記各転動体は、この内輪軌道と上記外輪軌道との間に、接触角を付与した状態で設けられている。
又、上記保持器は、上記各転動体を転動自在に保持している。
又、上記公転速度検出用エンコーダは、上記保持器の軸方向側面に、全周に亙って設けられたもので、軸方向側面に存在する被検出面の特性を、円周方向に関して交互に且つ等間隔に変化させている。
又、上記取付孔は、上記外輪相当部材に設けられている。
又、上記公転速度検出用センサは、上記取付孔に挿入する挿入部を備えたセンサユニットの先端部に設けられ、その検出部を上記公転速度検出用エンコーダの被検出面に対向させる事で、上記転動体の公転速度を検出する。
又、上記演算器は、上記公転速度検出用センサから送り込まれる検出信号に基づいて、上記外輪相当部材と上記内輪相当部材との間に加わる荷重を算出する。
更に、上記取付孔は上記外輪相当部材の径方向に対し傾斜した方向に設けられており、上記公転速度検出用エンコーダは上記保持器の軸方向側面に、上記取付孔と同じ方向に傾斜した状態で設けられて、この公転速度検出用エンコーダの被検出面と上記公転速度検出用センサの検出部とをほぼ平行に配置している。
The load measuring device of the rolling bearing unit of the present invention includes an outer ring equivalent member, an inner ring equivalent member, a plurality of rolling elements, a cage, a revolution speed detection encoder, a mounting hole, a revolution speed detection sensor, And an arithmetic unit.
Of these, the outer ring equivalent member has an outer ring raceway on the inner peripheral surface, and does not rotate during use.
The inner ring equivalent member is disposed concentrically with the outer ring equivalent member on the inner diameter side of the outer ring equivalent member, has an inner ring raceway on the outer peripheral surface, and rotates during use.
Each of the rolling elements is provided with a contact angle between the inner ring raceway and the outer ring raceway.
Moreover, the said holder | retainer hold | maintains each said rolling element so that rolling is possible.
The revolving speed detection encoder is provided on the axial side surface of the cage over the entire circumference, and the characteristics of the surface to be detected existing on the axial side surface are alternately shown in the circumferential direction. And it is changed at equal intervals.
The mounting hole is provided in the outer ring equivalent member.
In addition, the revolution speed detection sensor is provided at the tip of a sensor unit having an insertion portion to be inserted into the mounting hole, and by making the detection portion face the detected surface of the revolution speed detection encoder, The revolution speed of the rolling element is detected.
The computing unit calculates a load applied between the outer ring equivalent member and the inner ring equivalent member based on a detection signal sent from the revolution speed detection sensor.
Further, the mounting hole is provided in a direction inclined with respect to the radial direction of the outer ring equivalent member, and the revolution speed detecting encoder is inclined on the side surface in the axial direction of the cage in the same direction as the mounting hole. The detected surface of the revolution speed detection encoder and the detection part of the revolution speed detection sensor are arranged substantially parallel to each other.

上述の様に構成する本発明の転がり軸受ユニットの荷重測定装置は、転動体の公転速度を検出する事により、転がり軸受ユニットに負荷される荷重を測定できる。即ち、玉軸受の如き転がり軸受ユニットに荷重が負荷されると、転動体(玉)の接触角が変化し、これら各転動体の公転速度が変化する。そこで、この公転速度を検出すれば、外輪相当部材と内輪相当部材との間に作用する荷重を求められる。
更に、本発明の転がり軸受ユニットの荷重測定装置によれば、取付孔を外輪相当部材の径方向に対し傾斜した方向に設けている為、上記内輪相当部材の形状や、この外輪相当部材を懸架装置に取り付ける際のスペース上の問題に拘らず、上記取付孔にセンサユニットを組み付けられる。又、修理等の為、上記外輪相当部材を上記懸架装置に取り付けたまま、上記取付孔に上記センサユニットを抜き差しする必要が生じた場合でも、この作業を容易に行なえる。
この場合でも、公転速度検出用エンコーダの被検出面と公転速度検出用センサの検出部とをほぼ平行に配置しているので、この公転速度検出用センサの検出信号の変化を安定させて、転動体の公転速度検出の信頼性確保を図れる。又、ポケット隙間の影響等により保持器が振れ回った場合でも、上記公転速度検出用エンコーダの被検出面と上記公転速度検出用センサの検出部とが接触しにくく、この公転速度検出用エンコーダの被検出面や上記公転速度検出用センサの検出部を損傷しにくくできる。この結果、公転速度検出、延ては上記荷重測定の信頼性確保が容易になる。
The load measuring device of the rolling bearing unit of the present invention configured as described above can measure the load applied to the rolling bearing unit by detecting the revolution speed of the rolling element. That is, when a load is applied to a rolling bearing unit such as a ball bearing, the contact angle of the rolling elements (balls) changes, and the revolution speed of each rolling element changes. Therefore, if this revolution speed is detected, a load acting between the outer ring equivalent member and the inner ring equivalent member can be obtained.
Furthermore, according to the load measuring device of the rolling bearing unit of the present invention, since the mounting hole is provided in a direction inclined with respect to the radial direction of the outer ring equivalent member, the shape of the inner ring equivalent member and the outer ring equivalent member are suspended. The sensor unit can be assembled in the mounting hole regardless of the space problem when mounting to the apparatus. Further, even if it becomes necessary to insert / remove the sensor unit into / from the mounting hole with the outer ring equivalent member attached to the suspension device for repair or the like, this operation can be easily performed.
Even in this case, since the detection surface of the revolution speed detection encoder and the detection part of the revolution speed detection sensor are arranged substantially in parallel, the change of the detection signal of the revolution speed detection sensor is stabilized and the rotation speed detection sensor is changed. Ensuring the reliability of detecting the revolution speed of moving objects. Further, even when the cage swings due to the influence of the pocket gap, etc., the detected surface of the revolution speed detection encoder and the detection part of the revolution speed detection sensor are difficult to come into contact with each other. It is possible to make it difficult to damage the detection surface and the detection part of the revolution speed detection sensor. As a result, it becomes easy to detect the revolution speed and to ensure the reliability of the load measurement.

本発明を実施する場合に好ましくは、請求項2に記載した様に、外輪相当部材の内周面に複列の外輪軌道を、内輪相当部材の外周面に複列の内輪軌道を、それぞれ設けると共に、これら両外輪軌道と両内輪軌道との間にそれぞれ複数個ずつの転動体を、互いに逆方向の接触角を付与した状態で設ける。そして、これら各列の転動体を転動自在に保持した1対の保持器の互いに対向する軸方向側面に、1対の公転速度検出用エンコーダを設ける。又、取付孔は、上記外輪相当部材の軸方向中間部で上記両外輪軌道の間部分に設け、センサユニットの先端部で上記外輪相当部材の軸方向に関して互いに反対側側面に設けられた1対の公転速度検出用センサの検出部を、それぞれ上記両公転速度検出用エンコーダの被検出面に対向させる。
この様に複列に配置した転動体の公転速度を検出する様に構成すれば、上記外輪相当部材と上記内輪相当部材との間に作用する荷重を、より精度良く求められる。又、一方の列の公転速度と他方の列の公転速度との比に基づいて上記荷重を求める事により、上記内輪相当部材の回転速度が変化した場合にも、この荷重を求められる。
When the present invention is implemented, preferably, as described in claim 2, a double row outer ring raceway is provided on the inner peripheral surface of the outer ring equivalent member, and a double row inner ring raceway is provided on the outer peripheral surface of the inner ring equivalent member. At the same time, a plurality of rolling elements are provided between the outer ring raceways and the inner ring raceways with contact angles in opposite directions. A pair of revolution speed detection encoders are provided on the axial side surfaces of the pair of cages that hold the rolling elements of each row in a freely rolling manner. Further, a mounting hole is provided at a portion between the outer ring raceways at an intermediate portion in the axial direction of the outer ring equivalent member, and is provided on a side surface opposite to each other with respect to the axial direction of the outer ring equivalent member at the tip portion of the sensor unit. The detection portions of the revolution speed detection sensors are opposed to the detected surfaces of the both revolution speed detection encoders.
Thus, if it comprises so that the revolution speed of the rolling element arrange | positioned in a double row may be detected, the load which acts between the said outer ring equivalent member and the said inner ring equivalent member will be calculated | required more accurately. Further, by obtaining the load based on the ratio between the revolution speed of one row and the revolution speed of the other row, this load can be obtained even when the rotational speed of the inner ring equivalent member changes.

上述の様な請求項2に記載した発明を実施する場合に、好ましくは、請求項3に記載した様に、上記内輪相当部材の軸方向中間部で1対の内輪軌道の間部分に、その外周面を被検出面とした回転速度検出用エンコーダを設ける。そして、上記センサユニットの先端面に設置した回転速度検出用センサの検出部を、上記回転速度検出用エンコーダの被検出面に対向させる。
この様に構成すれば、上記内輪相当部材の回転速度が変化した場合に於ける上記荷重の測定精度を向上できる。
この様な請求項3に記載した発明を実施する場合に、更に好ましくは、請求項4に記載した様に、上記センサユニットの先端面をこのセンサユニットの中心軸に対し傾斜させる事で、この先端面を内輪相当部材の軸方向に対しほぼ平行とする。そして、回転速度検出用センサの検出部と回転速度検出用エンコーダの被検出面とをほぼ平行に配置する。
この様に構成すれば、磁束がセンサの検出部を直交して流れる為、上記回転速度検出用センサの検出信号の変化を安定させて、上記内輪相当部材の回転速度検出、延ては上記外輪相当部材と上記内輪相当部材との間に作用する荷重測定の信頼性確保を図れる。
When carrying out the invention described in claim 2 as described above, preferably, as described in claim 3, the intermediate ring-corresponding member is positioned at the intermediate portion in the axial direction between the pair of inner ring tracks. An encoder for detecting rotational speed having an outer peripheral surface as a detection surface is provided. And the detection part of the rotational speed detection sensor installed in the front end surface of the said sensor unit is made to oppose the to-be-detected surface of the said rotational speed detection encoder.
If comprised in this way, the measurement precision of the said load in case the rotational speed of the said inner ring | wheel equivalent member will change can be improved.
When the invention described in claim 3 is carried out, it is more preferable that the tip surface of the sensor unit is inclined with respect to the central axis of the sensor unit as described in claim 4. The tip surface is substantially parallel to the axial direction of the inner ring equivalent member. The detection unit of the rotation speed detection sensor and the detected surface of the rotation speed detection encoder are arranged substantially in parallel.
With this configuration, since the magnetic flux flows orthogonally through the detection part of the sensor, the change in the detection signal of the rotational speed detection sensor is stabilized, and the rotational speed of the inner ring equivalent member is detected. It is possible to ensure the reliability of the load measurement acting between the equivalent member and the inner ring equivalent member.

図1は、請求項1〜3に対応する、本発明の実施例1を示している。尚、本実施例の特徴は、外輪1の軸方向中間部で1対の外輪軌道7、7の間部分に形成した取付孔10bを、この外輪1の中心軸に対し傾斜させた場合にも、それぞれ1対ずつ設けた公転速度検出用センサ23a、23bの検出部と公転速度検出用エンコーダ25a´、25b´の被検出面とをほぼ(=実質的に=組み付け誤差等を除いて可及的に)平行にする点にある。転がり軸受ユニット及び荷重測定装置の基本的構成及び作用は、前述の図5に示した先発明に係る構造と同様である。又、転がり軸受ユニットを駆動輪用とした事により構成が異なる部分に就いては、前述の図7に示した構造と同様である。就いては、この図7或は上記図5に記載した構造と同等部分には同一符号を付して重複する説明は省略し、以下、本実施例の特徴部分を中心に説明する。   FIG. 1 shows a first embodiment of the present invention corresponding to claims 1 to 3. The feature of this embodiment is that the mounting hole 10b formed in the portion between the pair of outer ring raceways 7 and 7 at the intermediate portion in the axial direction of the outer ring 1 is also inclined with respect to the central axis of the outer ring 1. The detection units of the revolution speed detection sensors 23a and 23b and the detected surfaces of the revolution speed detection encoders 25a ′ and 25b ′ are substantially (= substantially = excluding assembly errors, etc.) In fact) in parallel points. The basic configuration and operation of the rolling bearing unit and the load measuring device are the same as the structure according to the previous invention shown in FIG. In addition, the structure that is different due to the use of the rolling bearing unit for the drive wheel is the same as the structure shown in FIG. Therefore, the same components as those shown in FIG. 7 or FIG. 5 are denoted by the same reference numerals and redundant description will be omitted, and the characteristic portions of the present embodiment will be mainly described below.

本実施例の場合、上記外輪1の軸方向中間部で複列の外輪軌道7、7の間部分に上記取付孔10bを、径方向外方側に向かう程軸方向外側に向かう方向に、上記外輪1の中心軸に対し傾斜した状態で設けている。又、この外輪1の外周面で上記取付孔10bの開口部を囲む部分は、この取付孔10bの中心軸に対し直行する方向に存在する取付面29とし、この取付面29に、センサユニット21の基端部に設けた、外向フランジ状の取付部30の片面を突き当て自在としている。又、上記外輪1の内周面から径方向内方に突出した、上記センサユニット21の先端部22のうち、この外輪1の軸方向に関して両側面に、上記両公転速度検出用センサ23a、23bを設けている。これら各公転速度検出用センサ23a、23bの検出部を構成する、ホール素子、磁気抵抗素子等の磁気検出素子は、上記センサユニット21の中心軸に対し平行に配置している。従ってこの磁気検出素子は、上記外輪1の中心軸に対し傾斜した状態で設けられている。   In the case of the present embodiment, the mounting hole 10b is formed in a portion between the double row outer ring raceways 7 and 7 in the axial intermediate portion of the outer ring 1 in the direction toward the outer side in the axial direction toward the outer side in the radial direction. It is provided in an inclined state with respect to the central axis of the outer ring 1. The portion surrounding the opening of the mounting hole 10b on the outer peripheral surface of the outer ring 1 is a mounting surface 29 that exists in a direction perpendicular to the central axis of the mounting hole 10b. The one side of the outward flange-shaped attachment portion 30 provided at the base end portion of the base plate is freely abutted. Of the tip 22 of the sensor unit 21 projecting radially inward from the inner peripheral surface of the outer ring 1, the two revolution speed detecting sensors 23a and 23b are provided on both sides of the outer ring 1 in the axial direction. Is provided. Magnetic detecting elements such as Hall elements and magnetoresistive elements that constitute the detecting portions of the revolution speed detecting sensors 23 a and 23 b are arranged in parallel to the central axis of the sensor unit 21. Therefore, this magnetic detection element is provided in an inclined state with respect to the central axis of the outer ring 1.

又、複列に配置された転動体9a、9bを転動自在に保持する1対の保持器24a´、24b´は、それぞれのリム部31a、31bを互いに対向させた状態で設けられている。これら各リム部31a、31bの互いに対向する側面は、径方向外方程軸方向外方に向く方向に、上記取付孔10bと同じ角度だけ傾斜した、部分円すい状凸面(軸方向外側の保持器24a´のリム部31aの場合)或は部分円すい状凹面(軸方向内側の保持器24b´のリム部31bの場合)としている。そして、この様な上記両リム部31a、31bの互いに対向する側面に、それぞれ公転速度検出用エンコーダ25a´、25b´を設けている。これら両公転速度検出用エンコーダ25a´、25b´の軸方向に関する厚さは、径方向のほぼ全幅に亙って(内外両周縁部の極一部を除き)均一である。従って上記両公転速度検出用エンコーダ25a´、25b´の被検出面は、径方向外方程軸方向外方に向く方向に、上記取付孔10bと同じ角度だけ傾斜している。この結果、両公転速度検出用センサ23a、23bの検出部と上記両公転速度検出用エンコーダ25a´、25b´の被検出面とは、互いに平行となる。   Further, a pair of retainers 24a 'and 24b' that rotatably hold the rolling elements 9a and 9b arranged in a double row are provided with the respective rim portions 31a and 31b facing each other. . Side surfaces of the rim portions 31a and 31b that face each other are partially conical convex surfaces (an axially outer retainer 24a) that are inclined by the same angle as the mounting hole 10b in the radially outward direction. 'In the case of the rim portion 31a) or a partially conical concave surface (in the case of the rim portion 31b of the cage 24b' on the inner side in the axial direction). Revolution speed detecting encoders 25a 'and 25b' are provided on the side surfaces of the rim portions 31a and 31b facing each other. The thicknesses of the two revolution speed detecting encoders 25a 'and 25b' in the axial direction are uniform over almost the entire width in the radial direction (except for the pole portions of the inner and outer peripheral edges). Accordingly, the detected surfaces of the two revolution speed detecting encoders 25a ′ and 25b ′ are inclined by the same angle as the mounting hole 10b in the direction of the outer side in the radial direction. As a result, the detection portions of the revolution speed detection sensors 23a and 23b and the detected surfaces of the revolution speed detection encoders 25a ′ and 25b ′ are parallel to each other.

上述の様に構成する本実施例の転がり軸受ユニットの荷重測定装置によれば、上記取付孔10bを上記外輪1の径方向に対し傾斜した方向に設けている為、ハブ2bの形状や、このハブ2bに結合固定される等速ジョイントの形状、更には上記外輪1を懸架装置を構成するナックル16(図4参照)に取り付ける際のスペース上の問題に拘らず、上記取付孔10bに前記センサユニット21を組み付けられる。又、修理等の為、上記外輪1を上記ナックル16に取り付けたまま、上記取付孔10bに上記センサユニット21を抜き差しする必要が生じた場合でも、この作業を容易に行なえる。   According to the load measuring device of the rolling bearing unit of the present embodiment configured as described above, since the mounting hole 10b is provided in a direction inclined with respect to the radial direction of the outer ring 1, the shape of the hub 2b, Regardless of the shape of the constant velocity joint coupled and fixed to the hub 2b, and the space problem when the outer ring 1 is attached to the knuckle 16 (see FIG. 4) constituting the suspension device, the sensor is inserted into the attachment hole 10b. The unit 21 can be assembled. Further, even if it becomes necessary to insert / remove the sensor unit 21 into / from the mounting hole 10b while the outer ring 1 is mounted on the knuckle 16 for repair or the like, this operation can be easily performed.

この様な作用・効果を得る為に上記取付孔10bを傾斜させた場合でも、上記両公転速度検出用エンコーダ25a´、25b´の被検出面と上記両公転速度検出用センサ23a、23bの検出部とをほぼ平行に配置しているので、それぞれが永久磁石製である上記両公転速度検出用エンコーダ25a´、25b´の被検出面から出た磁束が、上記両公転速度検出用センサ23a、23bの検出部に対してほぼ直交する方向に流れる様になる。この為、これら両公転速度検出用センサ23a、23bの検出信号の変化を安定させて、前記各転動体9a、9bの公転速度検出の信頼性確保を図れる。又、ポケット隙間の影響等により前記各保持器24a´、24b´が振れ回った場合でも、上記両公転速度検出用エンコーダ25a´、25b´の被検出面と上記両公転速度検出用センサ23a、23bの検出部とが接触しにくくなる。この結果、上記両公転速度検出用エンコーダ25a´、25b´の被検出面や上記両公転速度検出用センサ23a、23bの検出部を損傷しにくくできて、公転速度検出、延ては上記荷重測定の信頼性確保が容易になる。   Even when the mounting hole 10b is inclined in order to obtain such actions and effects, the detection surfaces of the two revolution speed detection encoders 25a 'and 25b' and the two revolution speed detection sensors 23a and 23b are detected. Are arranged substantially parallel to each other, so that the magnetic flux emitted from the detected surfaces of the two revolution speed detection encoders 25a 'and 25b', each of which is made of a permanent magnet, becomes the two revolution speed detection sensors 23a, It flows in a direction substantially orthogonal to the detection unit 23b. For this reason, it is possible to stabilize the change in the detection signals of both the revolution speed detection sensors 23a and 23b and to ensure the reliability of the revolution speed detection of the rolling elements 9a and 9b. Further, even when the cages 24a 'and 24b' are swung around due to the influence of pocket gaps, etc., the detected surfaces of the two revolution speed detecting encoders 25a 'and 25b' and the both revolution speed detecting sensors 23a, It becomes difficult for the detection part of 23b to contact. As a result, the detection surfaces of the two revolution speed detection encoders 25a 'and 25b' and the detection parts of the two revolution speed detection sensors 23a and 23b can be hardly damaged, and the revolution speed detection and the load measurement can be performed. It is easy to ensure reliability.

尚、両公転速度検出用エンコーダの被検出面と両公転速度検出用センサの検出部とをほぼ平行にすべく、これら両公転速度検出用エンコーダの被検出面を傾斜させる構造は、これら両公転速度検出用エンコーダの軸方向に関する厚さを、径方向に関して異ならせる事でも実現できる。即ち、各転動体を保持した保持器として、前述の図5或は図7に示す様な一般的なものを使用する代わりに、軸方向外側の保持器の軸方向内側面に、径方向外方に向かう程厚さ寸法が小さくなる公転速度エンコーダを、軸方向内側の保持器の軸方向外側面に、径方向外方に向かう程厚さ寸法が大きくなる公転速度エンコーダを、それぞれ設ける事でも、上記構造を実現できる。又、スペース上等、何らかの問題で、センサユニットを複列の外輪軌道同士の間に設置できず、公転速度検出用センサを外輪の端部に設ける必要が生じた場合でも、本発明の様な構成で、公転速度検出用エンコーダの被検出面と公転速度検出用センサの検出部とを平行にする事は、荷重検出の信頼性向上の面から有効である。   It should be noted that the structure in which the detection surfaces of both the revolution speed detection encoders are inclined so that the detection surface of the both revolution speed detection encoders and the detection part of the both revolution speed detection sensors are substantially parallel to each other is the same. This can also be realized by making the thickness in the axial direction of the speed detection encoder different in the radial direction. That is, instead of using a general cage as shown in FIG. 5 or FIG. 7 as a cage for holding each rolling element, a radially outer side is provided on the axially inner side surface of the cage outside in the axial direction. It is possible to provide a revolution speed encoder whose thickness dimension decreases as it goes in the direction, and a revolution speed encoder whose thickness dimension increases as it goes outward in the radial direction on the axially outer surface of the cage inside in the axial direction. The above structure can be realized. Even if the sensor unit cannot be installed between the outer ring raceways of the double row due to some problem such as space, it is necessary to provide a revolution speed detection sensor at the end of the outer ring. In the configuration, it is effective for improving the reliability of load detection to make the detected surface of the revolution speed detection encoder parallel to the detection portion of the revolution speed detection sensor.

図2は、請求項1〜4に対応する、本発明の実施例2を示している。本実施例の場合には、センサユニット21aの先端面32を、このセンサユニット21aの中心軸に対し傾斜させる事で、この先端面32をハブ2bの軸方向に対しほぼ平行としている。そして、この先端面32部分に設置した、回転速度検出用センサ15aの検出部と、上記ハブ2bの中間部に外嵌固定した、永久磁石製の回転速度検出用エンコーダ13aの被検出面である外周面とを平行にしている。
本実施例の場合、この様に構成する事により、上記回転速度検出用エンコーダ13aの外周面から出た磁束が上記回転速度検出用センサ15aの検出部を、ほぼ直交して流れるので、この回転速度検出用センサ15aの検出信号の変化を安定させ、上記ハブ2bの回転速度検出、延ては外輪1とこのハブ2bとの間に作用する荷重測定の信頼性確保を図る様にしている。
その他の部分の構成及び作用は、上述した実施例1と同様であるから、重複する説明は省略する。
FIG. 2 shows a second embodiment of the present invention corresponding to claims 1 to 4. In the case of the present embodiment, the front end surface 32 of the sensor unit 21a is inclined with respect to the central axis of the sensor unit 21a so that the front end surface 32 is substantially parallel to the axial direction of the hub 2b. And it is a to-be-detected surface of the rotational speed detection encoder 13a made of a permanent magnet, which is externally fixed to the detection part of the rotational speed detection sensor 15a and the intermediate part of the hub 2b. The outer peripheral surface is parallel.
In the case of the present embodiment, with this configuration, the magnetic flux emitted from the outer peripheral surface of the rotational speed detection encoder 13a flows almost orthogonally through the detection portion of the rotational speed detection sensor 15a. The change of the detection signal of the speed detection sensor 15a is stabilized to ensure the reliability of the rotation speed detection of the hub 2b, and further the measurement of the load acting between the outer ring 1 and the hub 2b.
Since the configuration and operation of the other parts are the same as those in the first embodiment described above, a duplicate description is omitted.

本発明の実施例1を示す半部断面図。FIG. 2 is a half sectional view showing Example 1 of the present invention. 同実施例2を示す半部断面図。FIG. 6 is a half sectional view showing the second embodiment. 従来から知られている、ラジアル荷重測定用のセンサを組み込んだ転がり軸受ユニットの断面図。Sectional drawing of the rolling bearing unit which incorporated the sensor for radial load measurement known conventionally. 従来から知られている、アキシアル荷重測定用のセンサを組み込んだ転がり軸受ユニットの断面図。Sectional drawing of the rolling bearing unit which incorporated the sensor for axial load measurement conventionally known. 先発明に係る転がり軸受ユニットの荷重測定装置の断面図。Sectional drawing of the load measuring apparatus of the rolling bearing unit which concerns on a prior invention. 転がり軸受ユニットに加わる荷重を求められる理由を説明する為の模式図。The schematic diagram for demonstrating the reason for which the load added to a rolling bearing unit is calculated | required. 先発明の構造のままセンサユニットの挿入方向を傾斜させた場合の問題を説明する為の半部断面図。Sectional drawing of the half part for demonstrating the problem at the time of inclining the insertion direction of a sensor unit with the structure of a prior invention.

符号の説明Explanation of symbols

1、1a 外輪
2、2a ハブ
3、3a 回転側フランジ
4 ハブ本体
5 ナット
6 内輪
7 外輪軌道
8 内輪軌道
9a、9b 転動体
10、10a、10b 取付孔
11 変位センサ
12 センサリング
13、13a 回転速度検出用エンコーダ
14 カバー
15、15a 回転速度検出用センサ
16 ナックル
17 固定側フランジ
18 ボルト
19 ねじ孔
20 荷重センサ
21、21a センサユニット
22 先端部
23a、23b 公転速度検出用センサ
24a、24b、24a´、24b´ 保持器
25a、25b、25a´、25b´ 公転速度検出用エンコーダ
26 スプライン孔
27 組み合わせシールリング
28 空間
29 取付面
30 取付部
31a、31b リム部
32 先端面
DESCRIPTION OF SYMBOLS 1, 1a Outer ring 2, 2a Hub 3, 3a Rotation side flange 4 Hub main body 5 Nut 6 Inner ring 7 Outer ring raceway 8 Inner ring raceway 9a, 9b Rolling element 10, 10a, 10b Mounting hole 11 Displacement sensor 12 Sensor ring 13, 13a Rotational speed Detection encoder 14 Cover 15, 15a Rotational speed detection sensor 16 Knuckle 17 Fixed side flange 18 Bolt 19 Screw hole 20 Load sensor 21, 21a Sensor unit 22 Tip 23a, 23b Revolution speed detection sensor 24a, 24b, 24a ', 24b 'Cage 25a, 25b, 25a', 25b 'Revolution speed detection encoder 26 Spline hole 27 Combination seal ring 28 Space 29 Mounting surface 30 Mounting portion 31a, 31b Rim portion 32 Tip surface

Claims (4)

内周面に外輪軌道を有し使用時にも回転しない外輪相当部材と、この外輪相当部材の内径側にこの外輪相当部材と同心に配置された、外周面に内輪軌道を有し使用時に回転する内輪相当部材と、この内輪軌道と上記外輪軌道との間に接触角を付与した状態で設けられた複数個の転動体と、これら各転動体を転動自在に保持した保持器と、この保持器の軸方向側面に全周に亙って設けられた、軸方向側面に存在する被検出面の特性を円周方向に関して交互に且つ等間隔に変化させた公転速度検出用エンコーダと、上記外輪相当部材に設けられた取付孔と、この取付孔に挿入する挿入部を備えたセンサユニットの先端部に設けられ、その検出部を上記公転速度検出用エンコーダの被検出面に対向させる事で、上記転動体の公転速度を検出する為の公転速度検出用センサと、この公転速度検出用センサから送り込まれる検出信号に基づいて上記外輪相当部材と上記内輪相当部材との間に加わる荷重を算出する演算器とを備え、上記取付孔は上記外輪相当部材の径方向に対し傾斜した方向に設けられており、上記公転速度検出用エンコーダは上記保持器の軸方向側面に、上記取付孔と同じ方向に傾斜した状態で設けられて、この公転速度検出用エンコーダの被検出面と上記公転速度検出用センサの検出部とをほぼ平行に配置した転がり軸受ユニットの荷重測定装置。   An outer ring equivalent member having an outer ring raceway on the inner peripheral surface and an outer ring equivalent member arranged on the inner diameter side of the outer ring equivalent member concentrically with the outer ring equivalent member and having an inner ring raceway on the outer peripheral surface and rotating during use. An inner ring equivalent member, a plurality of rolling elements provided with a contact angle between the inner ring raceway and the outer ring raceway, a cage that holds each of the rolling bodies in a freely rollable manner, and this holding A revolving speed detecting encoder provided on the entire axial side surface of the vessel, wherein the characteristics of the detected surface existing on the axial side surface are changed alternately at equal intervals in the circumferential direction, and the outer ring By providing the mounting hole provided in the corresponding member and the tip of the sensor unit having the insertion portion inserted into the mounting hole, by making the detection portion face the detection surface of the revolution speed detection encoder, For detecting the revolution speed of the rolling element A rotation speed detection sensor, and a calculator for calculating a load applied between the outer ring equivalent member and the inner ring equivalent member based on a detection signal sent from the revolution speed detection sensor, The revolution speed detecting encoder is provided on the side surface in the axial direction of the cage in a state inclined in the same direction as the mounting hole. A load measuring device for a rolling bearing unit in which a detected surface of a speed detecting encoder and a detecting portion of the revolution speed detecting sensor are arranged substantially in parallel. 外輪相当部材の内周面に複列の外輪軌道を、内輪相当部材の外周面に複列の内輪軌道を、それぞれ設けると共に、これら両外輪軌道と両内輪軌道との間にそれぞれ複数個ずつの転動体を、互いに逆方向の接触角を付与した状態で設けており、これら各列の転動体を転動自在に保持した1対の保持器の互いに対向する軸方向側面に1対の公転速度検出用エンコーダを設けており、取付孔は、上記外輪相当部材の軸方向中間部で上記両外輪軌道の間部分に設けられており、センサユニットの先端部で上記外輪相当部材の軸方向に関して互いに反対側側面に設けられた1対の公転速度検出用センサの検出部を、それぞれ上記両公転速度検出用エンコーダの被検出面に対向させている、請求項1に記載した転がり軸受ユニットの荷重測定装置。   A double row outer ring raceway is provided on the inner peripheral surface of the outer ring equivalent member, and a double row inner ring raceway is provided on the outer peripheral surface of the inner ring equivalent member. A plurality of outer ring raceways are provided between the outer ring raceway and the inner ring raceway. The rolling elements are provided with contact angles in opposite directions, and a pair of revolution speeds on opposite axial side surfaces of a pair of cages that hold the rolling elements of each row in a freely rolling manner. An encoder for detection is provided, and the mounting hole is provided at an intermediate portion in the axial direction of the outer ring equivalent member at a portion between the outer ring raceways. The load measurement of the rolling bearing unit according to claim 1, wherein detection parts of a pair of revolution speed detection sensors provided on opposite side surfaces are opposed to the detection surfaces of the two revolution speed detection encoders, respectively. apparatus. 内輪相当部材の軸方向中間部で1対の内輪軌道の間部分に、その外周面を被検出面とした回転速度検出用エンコーダが設けられており、センサユニットの先端面に設置された回転速度検出用センサの検出部が上記回転速度検出用エンコーダの被検出面に対向している、請求項2に記載した転がり軸受ユニットの荷重測定装置。   A rotation speed detection encoder having an outer peripheral surface as a detected surface is provided at a portion between the pair of inner ring raceways in the axial intermediate portion of the inner ring equivalent member, and the rotation speed installed on the front end surface of the sensor unit. The load measuring device for a rolling bearing unit according to claim 2, wherein a detection portion of the detection sensor faces a detection surface of the rotation speed detection encoder. センサユニットの先端面をこのセンサユニットの中心軸に対し傾斜させる事で、この先端面を内輪相当部材の軸方向に対しほぼ平行とし、回転速度検出用センサの検出部と回転速度検出用エンコーダの被検出面とをほぼ平行に配置した、請求項3に記載した転がり軸受ユニットの荷重測定装置。   By tilting the front end surface of the sensor unit with respect to the central axis of the sensor unit, the front end surface is made substantially parallel to the axial direction of the inner ring equivalent member, and the detection unit of the rotation speed detection sensor and the rotation speed detection encoder The load measuring device for a rolling bearing unit according to claim 3, wherein the surface to be detected is arranged substantially in parallel.
JP2003399221A 2003-11-28 2003-11-28 Load measurement device for rolling bearing unit Pending JP2005156507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399221A JP2005156507A (en) 2003-11-28 2003-11-28 Load measurement device for rolling bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003399221A JP2005156507A (en) 2003-11-28 2003-11-28 Load measurement device for rolling bearing unit

Publications (1)

Publication Number Publication Date
JP2005156507A true JP2005156507A (en) 2005-06-16

Family

ID=34723831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399221A Pending JP2005156507A (en) 2003-11-28 2003-11-28 Load measurement device for rolling bearing unit

Country Status (1)

Country Link
JP (1) JP2005156507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164112A (en) * 2009-01-15 2010-07-29 Ntn Corp Sensor-equipped wheel bearing device
CN111637165A (en) * 2019-03-01 2020-09-08 斯凯孚公司 Rolling element bearing assembly for a rolling element surface element and method for repairing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164112A (en) * 2009-01-15 2010-07-29 Ntn Corp Sensor-equipped wheel bearing device
CN111637165A (en) * 2019-03-01 2020-09-08 斯凯孚公司 Rolling element bearing assembly for a rolling element surface element and method for repairing the same

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
JP4543643B2 (en) Load measuring device for rolling bearing units
JP2006322928A (en) Displacement measuring device and load measuring device for rolling bearing unit
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP2007085742A (en) Rolling bearing unit with load measuring device
JP2005156507A (en) Load measurement device for rolling bearing unit
JP4894277B2 (en) Load measuring device for rolling bearing units
JP2006292445A (en) Rolling bearing unit with load cell
JP2005283323A (en) Load measuring instrument for roller bearing unit
JP2005098771A (en) Load-measuring device of rolling bearing unit
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2005308134A (en) Rolling bearing unit with sensor for detecting revolution speed
JP2007057342A (en) Rolling bearing unit with load measuring device
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit
JP2005164253A (en) Load measuring instrument for rolling bearing unit
JP2007212389A (en) Load measuring device for rolling bearing unit
JP2006201157A (en) Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device
JP4370884B2 (en) Load measuring device for rolling bearing units
JP4487525B2 (en) Load measuring device for rolling bearing units
JP2005291457A (en) Ball bearing unit
JP4370885B2 (en) Load measuring device for rolling bearing units
JP4843958B2 (en) Load measuring device for rolling bearing units
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP2007010318A (en) Rolling bearing unit with load measuring device
JP2005090993A (en) Load measuring device for roller bearing unit