JP2005156348A - Device for detecting position - Google Patents

Device for detecting position Download PDF

Info

Publication number
JP2005156348A
JP2005156348A JP2003395260A JP2003395260A JP2005156348A JP 2005156348 A JP2005156348 A JP 2005156348A JP 2003395260 A JP2003395260 A JP 2003395260A JP 2003395260 A JP2003395260 A JP 2003395260A JP 2005156348 A JP2005156348 A JP 2005156348A
Authority
JP
Japan
Prior art keywords
detection
gear
iron core
magnetic flux
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395260A
Other languages
Japanese (ja)
Inventor
Noriyuki Fukui
憲之 福井
Koichi Hayashi
康一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2003395260A priority Critical patent/JP2005156348A/en
Priority to DE200410057206 priority patent/DE102004057206A1/en
Publication of JP2005156348A publication Critical patent/JP2005156348A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24409Interpolation using memories

Abstract

<P>PROBLEM TO BE SOLVED: To increase the detection signal level in a position detection device which adopts a reluctance type detection method, especially a type with detection coil patterns laid on a printed board. <P>SOLUTION: The position detection device comprises a gear 110, having projections and depressions on the surface thereof and made of a magnetic material and the printed board 101 (a second member) which faces the gear 110 via a gap and relatively moves with respect thereto, detecting a relative displacement, on the basis of the change in the projections and depressions of a first member. The second member comprises the printed board 101, forming the detection coil patterns 102a, 102b and an iron core 120 around which an exciting coil 121 generating varying magnetic flux is wound. The varying magnetic flux, generated by the iron core 120 which fluctuates due to the change in the magnetoresistance between the projections and depressions of the gear 110 and the detection coil patterns 102a, 102b, is detected with an induced voltage of the detection coil patterns. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、産業機械や工作機械等に使用される位置検出装置に関し、特に、検出原理をリラクタンス変化検出タイプとする位置検出装置の改良に関する。   The present invention relates to a position detection device used for industrial machines, machine tools, and the like, and more particularly to an improvement of a position detection device whose detection principle is a reluctance change detection type.

近年、産業機械や工作機械等に使用される位置検出装置は、劣悪な使用環境から、汚れ・高温・衝撃等に対して頑強な位置検出装置が望まれている。この分野で使用される位置検出装置は、大別して光学式と磁気式の2種類に分類される。格子が設けられたガラススケールを用いた光学式検出器は、結露・飛散油等によるガラススケールの汚れ(くもり)による精度悪化や、ガラススケールがガラス材を基材とすることによる機械的強度面の脆弱さ等のデメリットを持っている。特に、飛散油等によるガラススケールの汚れを防止するために、ガラススケールをシールドケース内に収納しなければならない場合が多い。更に、結露を防止するために、エアを送り込む装置の付加を必要とすることも多い。エア供給装置には、エアフィルタ回路も当然含むので、保守・点検を怠らないようにする必要もある。この様に、光学式検出器は、汚れに対する弱さを補うために、検出装置そのもの以外にも付帯装置が必要となるのが一般的であった。   In recent years, position detection devices used for industrial machines, machine tools, and the like have been desired to be robust against dirt, high temperatures, impacts, and the like from a poor usage environment. Position detection devices used in this field are roughly classified into two types, optical and magnetic. Optical detectors using a glass scale with a grid are not accurate due to condensation (cloudiness) of the glass scale due to condensation, splashing oil, etc., and mechanical strength due to the glass scale being made of glass. Have disadvantages such as vulnerability. In particular, it is often necessary to store the glass scale in a shield case in order to prevent contamination of the glass scale due to scattered oil or the like. Furthermore, in order to prevent condensation, it is often necessary to add a device for feeding air. Since the air supply device naturally includes an air filter circuit, it is necessary to neglect maintenance and inspection. As described above, the optical detector generally requires an auxiliary device in addition to the detection device itself in order to compensate for the weakness against dirt.

このようなことから、汚れに強く、堅牢性も高い磁気式の位置検出装置が注目されてきている。磁気式の位置検出装置も検出方式などからいくつかの種類に分類される。磁気抵抗素子をセンサに内蔵したものや、コイルで検出対象(非磁性材)の渦電流損失を検出するタイプや、コイルで検出対象(磁性材)との間のリラクタンス変化を変出するタイプがある。特に、リラクタンス変化を検出するタイプは、検出対象を鋼材(磁性材)とすることができ、温度特性も良好なことから、劣悪な使用環境に好適なセンサとして知られている。リラクタンス変化を検出するタイプの位置検出装置は、しばしば検出対象を鋼材よりなる歯車あるいはラック歯とし、センサ側は、珪素鋼板よりなるステータコアの極歯に巻線を巻装した形態をとっている。しかしながら、ステータコアが歯車全体を囲うことで大径化することと、ステータコアの極歯の巻線の巻き位置のずれなどによる誤差などが、この形態のデメリットとしてあった。そこで、センサ側をプリント基板にコイルを敷設した構成とし、ステータコアの極歯に巻線を巻装したものの代替をさせるタイプがある(特許文献1)。   For this reason, magnetic position detection devices that are resistant to dirt and have high robustness have attracted attention. Magnetic position detection devices are also classified into several types according to detection methods. There is a type that incorporates a magnetoresistive element in the sensor, a type that detects eddy current loss of the detection target (nonmagnetic material) with a coil, and a type that changes the reluctance change with the detection target (magnetic material) with a coil is there. In particular, a type that detects a change in reluctance is known as a sensor suitable for an inferior use environment because a detection target can be a steel material (magnetic material) and the temperature characteristics are good. A position detection device of a type that detects a change in reluctance often takes a form in which a detection target is a gear or rack tooth made of steel, and a winding is wound around pole teeth of a stator core made of a silicon steel plate. However, the diameter of the stator core is increased by enclosing the entire gear, and errors due to deviations in the winding positions of the pole teeth of the stator core are disadvantages of this configuration. In view of this, there is a type in which a coil is laid on a printed circuit board on the sensor side, and the sensor core is replaced with a winding wound around pole teeth of a stator core (Patent Document 1).

図4は、プリント基板に検出用コイルパターンを敷設した従来の位置検出装置のセンサ部と検出対象の一例を示す斜視図である。鋼材(磁性材)よりなる検出対象の歯車203は、図示しない回転軸の回転中心に対して、回転振れのないように接着固定されており、回転軸は図示しない軸受にて軸支され回転自在となっている。プリント基板401は、検出対象の歯車203の外周面の凹凸部と空隙を介した位置に固定されていて非回転である。プリント基板401には、検出用コイルパターン402a、402bとこれらを囲う励磁用コイルパターン403が敷設されており、励磁用コイルパターン403は図示しない励磁回路と接続され変化磁束を発している。検出用コイルパターン402a、402bは、正弦波状の形状をしており、その波長は検出対象の歯車203の1ピッチ長(=π・m m:歯車モジュール)と同寸法となっている。検出用コイルパターン402aと402bとは、1/4波長分だけ測定軸方向にずれて敷設されている。検出用コイルパターン402a、402bは、励磁用コイルパターン403が発した変化磁束が検出対象の歯車203の凹凸による磁気抵抗変化によって変動する磁束を誘起電圧として出力する。検出用コイルパターン402a、402bが1/4波長ずれているので、互いに直交する二相信号を出力することとなる。   FIG. 4 is a perspective view illustrating an example of a sensor unit and a detection target of a conventional position detection device in which a detection coil pattern is laid on a printed circuit board. A detection target gear 203 made of a steel material (magnetic material) is bonded and fixed to a rotation center of a rotation shaft (not shown) so that there is no runout. The rotation shaft is supported by a bearing (not shown) and is freely rotatable. It has become. The printed circuit board 401 is fixed at a position via the concave and convex portions on the outer peripheral surface of the gear 203 to be detected and a gap, and is not rotated. The printed circuit board 401 is provided with detection coil patterns 402a and 402b and an excitation coil pattern 403 surrounding them, and the excitation coil pattern 403 is connected to an excitation circuit (not shown) to generate a changing magnetic flux. The detection coil patterns 402a and 402b have a sinusoidal shape, and the wavelength thereof is the same as one pitch length (= π · mm: gear module) of the gear 203 to be detected. The detection coil patterns 402a and 402b are laid out while being shifted in the measurement axis direction by a quarter wavelength. The detection coil patterns 402a and 402b output, as an induced voltage, a magnetic flux in which the change magnetic flux generated by the excitation coil pattern 403 varies due to a change in magnetoresistance due to the unevenness of the gear 203 to be detected. Since the detection coil patterns 402a and 402b are shifted by ¼ wavelength, two-phase signals orthogonal to each other are output.

図4に示した例にあっては、ステータコアを使用していないので、薄型化が容易であり、検出用コイルパターン402a、402bの敷設される位置精度も良好となる。しかしながら、鉄芯(極歯)に磁路を形成していないこと、励磁用コイルパターン403のターン数が限定されることなどから、変化磁束そのものが弱く、検出される誘起電圧値も弱いという問題があった。また、プリント基板401を固定するためのケースは、銅材(磁性材)の場合もあれば、アルミ材(非磁性材)の場合もあるが、励磁用コイルパターン403から発せられる変化磁束の磁路は、周囲のケースの材質によって影響を受けることがあった。このようなことが起きると、検出用コイルパターン402a、402bを鎖交する磁束にバラツキが発生し、誤差要因となっていた。   In the example shown in FIG. 4, since the stator core is not used, it is easy to reduce the thickness, and the position accuracy in which the detection coil patterns 402a and 402b are laid is also good. However, since the magnetic path is not formed in the iron core (pole tooth) and the number of turns of the exciting coil pattern 403 is limited, the change magnetic flux itself is weak and the detected induced voltage value is also weak. was there. The case for fixing the printed circuit board 401 may be a copper material (magnetic material) or an aluminum material (non-magnetic material), but the magnetic flux of the changing magnetic flux generated from the exciting coil pattern 403 may be used. The road could be affected by the surrounding case material. When this occurs, variations occur in the magnetic flux interlinking the detection coil patterns 402a and 402b, which is an error factor.

特開平8−313295号公報JP-A-8-313295

従来の位置検出装置においては、光学式の検出方式を選択すると、汚れに対する防止策を考慮する必要があったり、強度そのものに問題があったりした。磁気式検出方式の中でも、渦電流損失を検出する方式にあっては、検出対象に導電性の優れた非磁性材料を選択せねばならず、鋼材を部材とすることが多い周辺の機構部との線膨張係数の違いが問題になったりしていた。検出対象を鋼材とする磁気式検出方式の中でも、磁気抵抗素子をセンサに使用した場合は、検出信号のコントラストの低さや、温度変化に対する特性の悪さが問題になった。また、検出対象を鋼材とする磁気式検出方式の中でも、リラクタンス型レゾルバのような磁気抵抗変化量を検出するタイプにあっては、ステータコアの極歯にボビン等の絶縁材を被せた後に巻線を巻装していることから、小型化・微細化に限界があった。また、巻線時の整列巻きや巻装位置等製造段階での誤差が、位置検出装置としての誤差になっていた。リラクタンス型の検出方式の中でも、プリント基板等の板材に励磁用及び検出用のコイルパターンを敷設したタイプにあっては、鉄芯(極歯)に磁路を形成できないことや励磁用コイルパターンのターン数が限定されることなどから、検出される誘起電圧のレベルが弱いという問題があった。更に、周囲の筐体の影響で、励磁用コイルパターンからの磁路が、所望の位置に形成されず、誤差要因となることがあった。   In the conventional position detection device, when an optical detection method is selected, it is necessary to consider a measure for preventing contamination, and there is a problem in strength itself. Among the magnetic detection methods, in the method of detecting eddy current loss, a nonmagnetic material with excellent conductivity must be selected as the detection target, and the surrounding mechanical parts that are often made of steel are used. The difference in the linear expansion coefficient was problematic. Among the magnetic detection methods in which the detection target is steel, when a magnetoresistive element is used for the sensor, the low contrast of the detection signal and the poor characteristics with respect to temperature changes have become problems. Among the magnetic detection methods that use steel as the detection target, in the type that detects the amount of change in magnetoresistance, such as a reluctance resolver, winding is performed after covering the pole teeth of the stator core with an insulating material such as a bobbin. There is a limit to miniaturization and miniaturization. Further, errors in the manufacturing stage such as aligned winding and winding position at the time of winding are errors as a position detecting device. Among the reluctance type detection methods, in the type in which the coil pattern for excitation and detection is laid on a plate material such as a printed circuit board, a magnetic path cannot be formed on the iron core (pole tooth) or the coil pattern for excitation There is a problem that the level of the induced voltage detected is weak because the number of turns is limited. Further, the magnetic path from the exciting coil pattern is not formed at a desired position due to the influence of the surrounding casing, which may cause an error.

本発明は上述のような事情に鑑みてなされたものであり、本発明の目的は、磁気式検出方式の中でも特に、プリント基板に検出用のコイルパターンを敷設した磁気抵抗変化量を検出するタイプでありながらも、検出信号レベルを高め且つ高精度な位置検出装置を提供することにある。   The present invention has been made in view of the circumstances as described above, and an object of the present invention is, among other magnetic detection methods, a type of detecting a magnetoresistive change amount in which a coil pattern for detection is laid on a printed circuit board. In spite of this, it is an object to provide a highly accurate position detection device with an increased detection signal level.

本発明に係る位置検出装置は、磁気抵抗の異なる繰返しパターンが形成された磁性材よりなる第一部材と、前記第一部材と空隙を介して対向し、且つ第一部材と相対移動可能な第二部材とを含み、前記第二部材は、検出用コイルパターンを形成してなる板材と、変化磁束を発生する励磁コイルとを具備し、前記第一部材の繰返しパターンと前記第二部材の前記検出用コイルパターンとの間の磁気抵抗変化によって変動する前記励磁コイルが発した変化磁束を前記検出用コイルパターンの誘導電圧として検出し、前記第一部材と前記第二部材との相対移動量を検出する位置検出装置において、前記励磁コイルは、前記板材の背面に固定された鉄芯に巻装されていることを特徴とする。   The position detection device according to the present invention includes a first member made of a magnetic material on which repeated patterns having different magnetic resistances are formed, a first member that faces the first member through a gap and is relatively movable with respect to the first member. The second member includes a plate formed by forming a detection coil pattern and an exciting coil that generates a change magnetic flux, and the repetitive pattern of the first member and the second member A change magnetic flux generated by the exciting coil that fluctuates due to a change in magnetoresistance with the detection coil pattern is detected as an induced voltage of the detection coil pattern, and a relative movement amount between the first member and the second member is determined. In the position detecting device for detection, the exciting coil is wound around an iron core fixed to the back surface of the plate member.

励磁用のコイルを鉄芯に巻くことで、プリント基板等の板材に励磁コイルを敷設するものに比べ、比較的低い周波数でも、大きな検出信号を得ることができる。また、励磁のための磁路に、空気に比べ透磁率の大きな鉄芯を介することにより、検出用コイルパターンへ一様な磁束を発することができる。   By winding an exciting coil around an iron core, a large detection signal can be obtained even at a relatively low frequency compared to a case where an exciting coil is laid on a plate material such as a printed circuit board. Moreover, a uniform magnetic flux can be emitted to the detection coil pattern by passing an iron core having a larger permeability than air in the magnetic path for excitation.

図1は、本発明の位置検出装置のセンサ部となる第二部材の検出用コイルパターンを形成したプリント基板の一例を示す正面図である。プリント基板101の表面層に正弦波状にパターンを敷設した検出用コイルパターン102aは、第二層に正弦波状にパターンを敷設した検出用コイルパターン102cとスルーホール103eにて電気的に接続されている。検出用コイルパターン102aと検出用コイルパターン102cは、正弦波状の波形位相が逆位相となっているが、電気的な位相も逆位相となっているため、結果として同相を検出している。この検出用コイルパターン102aから、正弦波状の波形位相を測定軸方向に90°(1ピッチの1/4)ずらした位置に、検出用コイルパターン102bがパターン成形されており、同様に、第二層にパターン成形された検出用コイルパターン102cから正弦波状の波形位相を、測定軸方向に90°ずらした位置に、検出用コイルパターン102dがパターン成形されている。検出用コイルパターン102bと検出用コイルパターン102dは、スルーホール103fにて電気的に接続されている。   FIG. 1 is a front view showing an example of a printed circuit board on which a detection coil pattern of a second member serving as a sensor unit of the position detection device of the present invention is formed. The detection coil pattern 102a having a sine wave pattern laid on the surface layer of the printed circuit board 101 is electrically connected to the detection coil pattern 102c having a sine wave pattern laid on the second layer by a through hole 103e. . The detection coil pattern 102a and the detection coil pattern 102c have a sinusoidal waveform phase that is opposite in phase, but the electrical phase is also opposite, so that the same phase is detected as a result. From this detection coil pattern 102a, the detection coil pattern 102b is pattern-formed at a position where the sine waveform phase is shifted by 90 ° (1/4 of one pitch) in the measurement axis direction. The detection coil pattern 102d is pattern-shaped at a position where the sinusoidal waveform phase is shifted by 90 ° in the measurement axis direction from the detection coil pattern 102c patterned on the layer. The detection coil pattern 102b and the detection coil pattern 102d are electrically connected through a through hole 103f.

図2は、本発明の位置検出装置の第二部材(センサ部)と検出対象の第一部材との関係の一例を示す斜視図である。第一部材を形成する検出対象の歯車110は、磁性材よりなる鋼材を加工してできており、プリント基板101と対向する側が凹凸の磁気抵抗との異なる繰返しパターンとなるように歯切り加工がされている。本発明において、プリント基板を含む第二部材は検出対象となる歯車110すなわち第一部材と空隙を介して対向しており、両部材101,110の相対移動量が検出される。   FIG. 2 is a perspective view showing an example of the relationship between the second member (sensor unit) of the position detection device of the present invention and the first member to be detected. The gear 110 to be detected, which forms the first member, is made by processing a steel material made of a magnetic material, and is geared so that the side facing the printed circuit board 101 has a repetitive pattern different from the uneven magnetic resistance. Has been. In the present invention, the second member including the printed circuit board is opposed to the gear 110 to be detected, that is, the first member via a gap, and the relative movement amount of both the members 101 and 110 is detected.

検出対象となる歯車110の回転をリラクタンス変化として磁気的に検出するために、変化磁束を発生する励磁コイルが必要となるが、本発明においては、この励磁コイルをプリント基板101の背面に固定された鉄芯に巻装することによって、充分に大きな変化磁束を得ている。図2において、ソフトフェライトを基材とする鉄芯120には、励磁用のコイル121が巻装されており、図示しない励磁回路に接続され、励磁状態となっている。更に、鉄芯120の第一部材と第二部材すなわち検出対象の歯車110をプリント基板101との相対移動方向における幅は、検出対象の歯車110の5ピッチ分の幅としてある。プリント基板101の背面と鉄芯201は、接着剤により固定されている。プリント基板101の表面と適当な空隙を介した位置に、検出対象の歯車110が位置している。また、検出対象の歯車120の1ピッチ(=π・m)と、図1の検出用コイルパターン102a〜dの1波長とは、ほぼ同寸法となっている。   In order to magnetically detect the rotation of the gear 110 to be detected as a reluctance change, an excitation coil that generates a change magnetic flux is required. In the present invention, this excitation coil is fixed to the back surface of the printed circuit board 101. A sufficiently large change magnetic flux is obtained by winding it on an iron core. In FIG. 2, an excitation coil 121 is wound around an iron core 120 made of soft ferrite as a base material, and is connected to an excitation circuit (not shown) and is in an excited state. Furthermore, the width of the iron core 120 in the relative movement direction of the first member and the second member, that is, the gear 110 to be detected, with respect to the printed circuit board 101 is a width corresponding to five pitches of the gear 110 to be detected. The back surface of the printed circuit board 101 and the iron core 201 are fixed with an adhesive. The gear 110 to be detected is located at a position through the surface of the printed circuit board 101 and an appropriate gap. Further, one pitch (= π · m) of the gear 120 to be detected and one wavelength of the detection coil patterns 102a to 102d in FIG.

図3は、図1及び図2で示されるセンサ部からの検出信号を処理する回路の一例を示す概略構成図である。励磁コイル121には、励磁回路122にて100kHzの交流電流が供給されており、鉄芯120からは100kHzで変化する磁束が検出対象の歯車110へ発せられる。鉄芯120から発せられた交流磁束は、検出対象の歯車110の表面の凹凸繰返しパターンによる磁気抵抗変化量に応じて変調される。検出用コイル102a、102cと102b、102dとは、変調された磁束に比例した電圧VSO、VCOを出力する。このとき、検出対象の歯車110の歯数をn、回転角度をθ、励磁電流をsinωtとすると、コイル102a、102cと102b、102dとを鎖交する磁束変化によって、それぞれのコイル102a、102cと102b、102dとに発生する誘起電圧は、式(1)、(2)で表すことができる。   FIG. 3 is a schematic configuration diagram illustrating an example of a circuit that processes a detection signal from the sensor unit illustrated in FIGS. 1 and 2. The exciting coil 121 is supplied with an alternating current of 100 kHz by the exciting circuit 122, and a magnetic flux that changes at 100 kHz is emitted from the iron core 120 to the gear 110 to be detected. The AC magnetic flux generated from the iron core 120 is modulated according to the amount of change in magnetoresistance due to the concavo-convex pattern on the surface of the gear 110 to be detected. The detection coils 102a and 102c and 102b and 102d output voltages VSO and VCO proportional to the modulated magnetic flux. At this time, assuming that the number of teeth of the gear 110 to be detected is n, the rotation angle is θ, and the excitation current is sinωt, each coil 102a, 102c and The induced voltages generated in 102b and 102d can be expressed by equations (1) and (2).

Figure 2005156348
Figure 2005156348

このように表される電圧信号VSO、VCOは、差動増幅器130a、130bにて増幅され、信号VS、VCとなる。信号VS、VCは、アナログ/ディジタル変換器131a、131bにて、タイミング発生器132が発生する励磁電流が零(即ち、cosωt=1)となるタイミングにてアナログ/ディジタル変換され、ディジタル信号DS、DCとなる。このときディジタル信号DS、DCは、式(3)、(4)で表すことができる。   The voltage signals VSO and VCO expressed in this way are amplified by the differential amplifiers 130a and 130b to become signals VS and VC. The signals VS and VC are analog / digital converted by the analog / digital converters 131a and 131b at the timing when the excitation current generated by the timing generator 132 becomes zero (that is, cosωt = 1), and the digital signals DS, DC. At this time, the digital signals DS and DC can be expressed by equations (3) and (4).

Figure 2005156348
Figure 2005156348

ディジタル信号DS、DCは、内挿演算器133にて逆正接演算され、検出対象の歯車110の回転位置を示すn・θが算出される。 The digital signals DS and DC are subjected to arc tangent calculation by the interpolation calculator 133, and n · θ indicating the rotational position of the gear 110 to be detected is calculated.

尚、鋼材からできた歯車の凹凸部の磁気抵抗変化を交流磁束によって検出する場合、鋼材の鉄損により、あまり高い周波数を用いることができない。従って、渦電流損失を検出するタイプのように、プリント基板に敷設した励磁コイル及び検出コイルでは巻数(ターン数)が少ないため、検出電圧が非常に微弱となる。このため、検出電圧を高い増幅率の増幅回路で増幅する必要があり、コスト的・ノイズ的に不利である。本発明では、励磁コイルを巻装した鉄芯により、強く一様に磁束を歯車等の検出対象側へ集中させて発することができるため、比較的低い励磁周波数でも、検出巻線から大きな誘起電圧を出力することが可能である。また、本発明では鉄芯の幅を歯車等の表面の凹凸ピッチの整数倍に合わせることにより、鉄芯から歯車等の検出対象側へ発する総磁束量が一定となり、高精度な位置検出が可能である。通常、鉄芯の幅を凹凸ピッチの整数倍に対して、±1/8ピッチ以上変えると、凹凸部の回転(乃至は移動)に際して、鉄芯から凹凸部側へ発せられる総磁束量が変動し、その変動分が図3のような例においては電圧信号VSO、VCOの両者に加わるため、検出誤差が増加する問題が発生する。   In addition, when detecting the magnetic resistance change of the uneven part of the gear made of steel by AC magnetic flux, a very high frequency cannot be used due to the iron loss of the steel. Therefore, since the number of turns (the number of turns) is small in the excitation coil and the detection coil laid on the printed circuit board as in the type detecting eddy current loss, the detection voltage becomes very weak. For this reason, it is necessary to amplify the detection voltage with an amplifier circuit having a high amplification factor, which is disadvantageous in terms of cost and noise. In the present invention, the iron core around which the excitation coil is wound can generate a strong and uniform magnetic flux concentrated on the detection target side such as a gear, so that a large induced voltage can be generated from the detection winding even at a relatively low excitation frequency. Can be output. In addition, in the present invention, by adjusting the width of the iron core to an integral multiple of the uneven pitch on the surface of the gear or the like, the total amount of magnetic flux emitted from the iron core to the detection target side such as the gear becomes constant, and highly accurate position detection is possible. It is. Normally, when the width of the iron core is changed by ± 1/8 pitch or more with respect to an integral multiple of the uneven pitch, the total amount of magnetic flux emitted from the iron core to the uneven portion side changes when the uneven portion rotates (or moves). However, in the example as shown in FIG. 3, the variation is added to both the voltage signals VSO and VCO, which causes a problem that the detection error increases.

以上の実施例では、本発明を特定の実施形態について説明したが、本発明はこれに限られるものではない。例えば、検出対象たる表面に凹凸を有した鋼材よりなる磁性体は、ラック形状とすることができ、両部材の相対変位量を検出するものであれば、本発明の位置検出装置とすることができる。また、検出用コイルパターンを形成する板は、本実施例で示したプリント基板に限られるものではなく、例えば半導体製造技術を応用してコイルパターンを膜状に形成したものに置き換えても本発明の位置検出装置とすることができる。   Although the present invention has been described with respect to specific embodiments in the above examples, the present invention is not limited to this. For example, a magnetic body made of a steel material having irregularities on the surface to be detected can be made into a rack shape, and the position detection device of the present invention can be used as long as it detects the relative displacement amount of both members. it can. In addition, the plate on which the detection coil pattern is formed is not limited to the printed circuit board shown in the present embodiment. For example, the present invention may be applied even if the coil pattern is replaced with a film formed by applying semiconductor manufacturing technology. It can be set as a position detecting device.

本発明の位置検出装置の第二部材(センサ部)の一例を示す正面図である。It is a front view which shows an example of the 2nd member (sensor part) of the position detection apparatus of this invention. 本発明の位置検出装置の第二部材(センサ部)と検出対象となる歯車からなる第一部材の関係の一例を示す斜視図である。It is a perspective view which shows an example of the relationship between the 2nd member (sensor part) of the position detection apparatus of this invention, and the 1st member consisting of the gearwheel used as a detection target. 図1及び図2で示されるセンサ部からの検出信号を処理する回路の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the circuit which processes the detection signal from the sensor part shown by FIG.1 and FIG.2. 従来の位置検出装置のセンサ部と検出対象の関係を示す斜視図である。It is a perspective view which shows the relationship between the sensor part of the conventional position detection apparatus, and a detection target.

符号の説明Explanation of symbols

101 プリント基板、102a,102b,102c,102d 検出用コイルパターン、103a,103b,103c,103d,103e,103f スルーホール、110 検出対象の歯車(第一部材)、120 鉄芯、121 励磁コイル、122 励磁回路。   DESCRIPTION OF SYMBOLS 101 Printed circuit board, 102a, 102b, 102c, 102d Detection coil pattern, 103a, 103b, 103c, 103d, 103e, 103f Through hole, 110 Gear to be detected (first member), 120 Iron core, 121 Excitation coil, 122 Excitation circuit.

Claims (2)

磁気抵抗の異なる繰返しパターンが形成された磁性材よりなる第一部材と、前記第一部材と空隙を介して対向し、且つ前記第一部材と相対移動可能な第二部材とを含み、
前記第二部材は、検出用コイルパターンを形成してなる板材と、変化磁束を発生する励磁コイルとを具備し、
前記第一部材の繰返しパターンと前記第二部材の前記検出用コイルパターンとの間の磁気抵抗変化によって変動する前記励磁コイルが発した変化磁束を前記検出用コイルパターンの誘導電圧として検出し、前記第一部材と前記第二部材との相対移動量を検出する位置検出装置において、
前記励磁コイルは、前記板材の背面に固定された鉄芯に巻装されていることを特徴とする位置検出装置。
A first member made of a magnetic material in which a repetitive pattern having different magnetic resistance is formed, and a second member that is opposed to the first member via a gap and is relatively movable with the first member;
The second member includes a plate material formed with a detection coil pattern, and an excitation coil that generates a change magnetic flux,
Detecting a change magnetic flux generated by the exciting coil, which is fluctuated by a magnetic resistance change between the repetitive pattern of the first member and the detection coil pattern of the second member, as an induced voltage of the detection coil pattern; In the position detection device that detects the relative movement amount between the first member and the second member,
The position detecting device, wherein the exciting coil is wound around an iron core fixed to the back surface of the plate member.
前記第一部材と前記第二部材の相対移動方向における前記鉄芯の幅は、前記第一部材の繰返しパターンのピッチのほぼ整数倍であることを特徴とする請求項1に記載の位置検出装置。   The position detection device according to claim 1, wherein the width of the iron core in the relative movement direction of the first member and the second member is substantially an integral multiple of the pitch of the repetitive pattern of the first member. .
JP2003395260A 2003-11-26 2003-11-26 Device for detecting position Pending JP2005156348A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003395260A JP2005156348A (en) 2003-11-26 2003-11-26 Device for detecting position
DE200410057206 DE102004057206A1 (en) 2003-11-26 2004-11-26 Magnetic position detector for use in industrial plants and machine tools has a planar detector with detection coils and an excitation coil that is wound around an iron core mounted behind a circuit board with the detection coils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395260A JP2005156348A (en) 2003-11-26 2003-11-26 Device for detecting position

Publications (1)

Publication Number Publication Date
JP2005156348A true JP2005156348A (en) 2005-06-16

Family

ID=34616493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395260A Pending JP2005156348A (en) 2003-11-26 2003-11-26 Device for detecting position

Country Status (2)

Country Link
JP (1) JP2005156348A (en)
DE (1) DE102004057206A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029069A (en) * 2006-07-19 2008-02-07 Tamagawa Seiki Co Ltd Angle detector
EP1970672A2 (en) 2007-03-16 2008-09-17 Okuma Corporation Position detector
JP2012159495A (en) * 2011-01-10 2012-08-23 Aisan Ind Co Ltd Position sensor
JP2013513810A (en) * 2009-12-15 2013-04-22 ポジック エスアー Configuration comprising an inductive proximity sensor and method of using such a sensor
CN106403807A (en) * 2016-11-30 2017-02-15 重庆中电天时精密装备技术有限公司 Incremental-detection-based absolute type time-grating angular displacement sensor
WO2020202864A1 (en) * 2019-04-02 2020-10-08 村田機械株式会社 Magnetic linear sensor
JP2021505919A (en) * 2018-01-08 2021-02-18 レイセオン カンパニー Inductive sensor with digital demodulation
CN114280980A (en) * 2021-11-30 2022-04-05 宁波普瑞均胜汽车电子有限公司 Method and device for identifying odor type of automobile fragrance block

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578882A (en) * 1980-06-17 1982-01-18 Sony Corp Position detecting device
JPS60237302A (en) * 1984-04-19 1985-11-26 ベリフアイ エレクトロニクス リミテツド Position detector
JPS6326532A (en) * 1986-07-18 1988-02-04 Honda Motor Co Ltd Magnetic signal generating ring
JPH01502545A (en) * 1987-09-04 1989-08-31 カルコンプ インコーポレーテッド Numerical tablet
JPH10500481A (en) * 1994-05-14 1998-01-13 サイエンティフィック ジェネリックス リミテッド Position encoder
JPH1062109A (en) * 1996-04-29 1998-03-06 Csem Centre Suisse Electron & De Microtech Sa Rech & Dev Device for detecting at least either of position or movement of movable part
JPH10206104A (en) * 1997-01-20 1998-08-07 Makome Kenkyusho:Kk Position detecting apparatus
JPH11185578A (en) * 1997-12-19 1999-07-09 Makome Kenkyusho:Kk Position detecting sensor and travel distance detecting system
JPH11513797A (en) * 1995-10-17 1999-11-24 サイエンティフィック ジェネリクス リミテッド Position detection encoder
JP2001124590A (en) * 1999-09-30 2001-05-11 Elevadores Atlas Schindler Sa Position detector
JP2001129214A (en) * 1999-11-02 2001-05-15 Sensatec Kk Pachinko ball counter and detector
JP2002508060A (en) * 1997-06-17 2002-03-12 シナプティクス(ユーケー)リミテッド Position detection device
WO2003091655A1 (en) * 2002-04-26 2003-11-06 Azuma Systems Co., Ltd Metal inspecting method and metal inspector

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578882A (en) * 1980-06-17 1982-01-18 Sony Corp Position detecting device
JPS60237302A (en) * 1984-04-19 1985-11-26 ベリフアイ エレクトロニクス リミテツド Position detector
JPS6326532A (en) * 1986-07-18 1988-02-04 Honda Motor Co Ltd Magnetic signal generating ring
JPH01502545A (en) * 1987-09-04 1989-08-31 カルコンプ インコーポレーテッド Numerical tablet
JPH10500481A (en) * 1994-05-14 1998-01-13 サイエンティフィック ジェネリックス リミテッド Position encoder
JPH11513797A (en) * 1995-10-17 1999-11-24 サイエンティフィック ジェネリクス リミテッド Position detection encoder
JPH1062109A (en) * 1996-04-29 1998-03-06 Csem Centre Suisse Electron & De Microtech Sa Rech & Dev Device for detecting at least either of position or movement of movable part
JPH10206104A (en) * 1997-01-20 1998-08-07 Makome Kenkyusho:Kk Position detecting apparatus
JP2002508060A (en) * 1997-06-17 2002-03-12 シナプティクス(ユーケー)リミテッド Position detection device
JPH11185578A (en) * 1997-12-19 1999-07-09 Makome Kenkyusho:Kk Position detecting sensor and travel distance detecting system
JP2001124590A (en) * 1999-09-30 2001-05-11 Elevadores Atlas Schindler Sa Position detector
JP2001129214A (en) * 1999-11-02 2001-05-15 Sensatec Kk Pachinko ball counter and detector
WO2003091655A1 (en) * 2002-04-26 2003-11-06 Azuma Systems Co., Ltd Metal inspecting method and metal inspector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029069A (en) * 2006-07-19 2008-02-07 Tamagawa Seiki Co Ltd Angle detector
EP1970672A2 (en) 2007-03-16 2008-09-17 Okuma Corporation Position detector
US7711508B2 (en) 2007-03-16 2010-05-04 Okuma Corporation Position detector
JP2013513810A (en) * 2009-12-15 2013-04-22 ポジック エスアー Configuration comprising an inductive proximity sensor and method of using such a sensor
JP2012159495A (en) * 2011-01-10 2012-08-23 Aisan Ind Co Ltd Position sensor
CN106403807A (en) * 2016-11-30 2017-02-15 重庆中电天时精密装备技术有限公司 Incremental-detection-based absolute type time-grating angular displacement sensor
JP2021505919A (en) * 2018-01-08 2021-02-18 レイセオン カンパニー Inductive sensor with digital demodulation
WO2020202864A1 (en) * 2019-04-02 2020-10-08 村田機械株式会社 Magnetic linear sensor
JP2020169851A (en) * 2019-04-02 2020-10-15 村田機械株式会社 Magnetic linear sensor
CN113614492A (en) * 2019-04-02 2021-11-05 村田机械株式会社 Magnetic linear sensor
EP3951325A4 (en) * 2019-04-02 2022-12-28 Murata Machinery, Ltd. Magnetic linear sensor
JP7346879B2 (en) 2019-04-02 2023-09-20 村田機械株式会社 magnetic linear sensor
CN113614492B (en) * 2019-04-02 2024-03-29 村田机械株式会社 Magnetic linear sensor
CN114280980A (en) * 2021-11-30 2022-04-05 宁波普瑞均胜汽车电子有限公司 Method and device for identifying odor type of automobile fragrance block
CN114280980B (en) * 2021-11-30 2024-03-12 宁波普瑞均胜汽车电子有限公司 Identification method and device for odor types of automobile aromatherapy blocks

Also Published As

Publication number Publication date
DE102004057206A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US6118271A (en) Position encoder using saturable reactor interacting with magnetic fields varying with time and with position
JP4476717B2 (en) Electromagnetic induction type position sensor
US8564283B2 (en) Rotation-angle-detecting apparatus, rotating machine and rotation-angle-detecting method
JP5079816B2 (en) Preferably a magnetic position sensor having a magnet shape that varies pseudo-sinusoidally.
JP4700845B2 (en) Inductive length measuring system
US9383184B2 (en) Inductive position-measuring device
US20130218517A1 (en) Rotation Angle Sensor for Absolute Rotation Angle Determination Even Upon Multiple Revolutions
JP2017106922A (en) Electronic absolute type encoder
JP6132085B2 (en) Magnetic detector
JP2005156348A (en) Device for detecting position
EP1972899B1 (en) Position detector with tilt sensor
US20150061650A1 (en) Method and arrangement and sensor for determing the postion of a component
JP4063402B2 (en) Cylinder position detector
JP2009276262A (en) Position detector and linear drive device
JP2012247250A (en) Current measuring device
JP5374739B2 (en) Linear sensor
CN111492206B (en) Electromagnetic measuring system for distance or angle measurement based on the magnetoresistive effect
CN111693910A (en) System for determining at least one rotation parameter of a rotating member
US6687111B2 (en) Electromagnetic mark device for a magnetism encoder
JP2004264136A (en) Position detector
JP4211278B2 (en) Encoder
JP5356737B2 (en) Rotation angle detector
JP5668211B2 (en) Linear sensor
JP5141000B2 (en) Position detection method and position detection apparatus
CN111693909A (en) System for determining at least one rotation parameter of a rotating member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525