JP2005155509A - Method and device for controlling wind power generation, wind power generator, and program of control method of wind power generation - Google Patents

Method and device for controlling wind power generation, wind power generator, and program of control method of wind power generation Download PDF

Info

Publication number
JP2005155509A
JP2005155509A JP2003396518A JP2003396518A JP2005155509A JP 2005155509 A JP2005155509 A JP 2005155509A JP 2003396518 A JP2003396518 A JP 2003396518A JP 2003396518 A JP2003396518 A JP 2003396518A JP 2005155509 A JP2005155509 A JP 2005155509A
Authority
JP
Japan
Prior art keywords
pitch angle
rotational speed
wind
value
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003396518A
Other languages
Japanese (ja)
Other versions
JP4218511B2 (en
Inventor
Hiroshi Mizuno
浩 水野
Masato Imaizumi
正人 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003396518A priority Critical patent/JP4218511B2/en
Publication of JP2005155509A publication Critical patent/JP2005155509A/en
Application granted granted Critical
Publication of JP4218511B2 publication Critical patent/JP4218511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a control method and the like for suppressing variation in the number of revolutions of a windmill, improving operation efficiency, and keeping constant the power-generation output as far as possible. <P>SOLUTION: The method for controlling wind power generation includes the following processes. A dispersion estimating device 31A computes dispersion of variation in wind speed which the windmill 1 undergoes in a specified time. A target number-of-revolution-correcting device 31B determines every specified time a value of the target number-of-revolution of a rotor 10 of the windmill 1 on the basis of the dispersion computed by the target number-of-revolution-correcting device 31B, and corrects the setting of the value. A PI controller 31C controls the angle of pitch of the blade of the windmill 1 so that the rotor 10 revolves at the corrected target number of revolution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は例えば風力発電において風力を受けて回転する風車の制御に関するものである。   The present invention relates to control of a wind turbine that rotates by receiving wind power, for example, in wind power generation.

風力発電は、風のエネルギーによって風車が有する回転体(ロータ)が回転し、接続された発電機を駆動することによって発電が行われる。そして、例えば、発電機の出力する交流電力がコンバータで直流電力に変換された後、さらにインバータにより商用周波数の交流電力に変換されて電力系統に供給される。   In wind power generation, a rotating body (rotor) included in a windmill rotates by wind energy, and power is generated by driving a connected generator. For example, after AC power output from the generator is converted into DC power by a converter, it is further converted into AC power of commercial frequency by an inverter and supplied to the power system.

ここで、発電を定格出力に保ち、また、風車、発電機等の過回転等による破損を防止するため、風車が有するブレードのピッチ角(以下、ピッチ角という)を操作し、風車回転数(ここで回転数とは、単位時間あたりの回転数のことをいう)を制御する方法が用いられている。この方法では、一般に、定格出力が得られないような低風速の風力領域では、極力風力エネルギーを受け止めるため、ピッチ角を最も回転効率が高くなる0゜に設定し、ピッチ角操作による風車回転数を制御せず、風に応じた最大発電出力が得られるようにする。一方、定格出力が得られるような風力領域(風車の回転体の回転領域)においては、常に一定の定格出力が得られるようにピッチ角を操作し、風車回転数が目標回転数で一定するように制御する。通常、制御系には目標回転数と風車回転数(実績)の偏差を0にするようなPI制御(比例−積分制御)系又はPID制御(比例−積分−微分制御)系(以下、これらを合わせてPI制御という)が用いられる(例えば特許文献1参照)。   Here, in order to keep the power generation at the rated output and to prevent damage due to excessive rotation of the windmill, generator, etc., the pitch angle (hereinafter referred to as pitch angle) of the blades of the windmill is operated, and the windmill rotation speed ( Here, the number of revolutions refers to the number of revolutions per unit time). In this method, in general, in the wind region of low wind speed where the rated output cannot be obtained, in order to receive wind energy as much as possible, the pitch angle is set to 0 ° at which the rotation efficiency is the highest, and the wind turbine rotation speed by the pitch angle operation is set. The maximum power output corresponding to the wind is obtained without controlling the power. On the other hand, in the wind power region where the rated output can be obtained (the rotational region of the rotating body of the windmill), the pitch angle is manipulated so that a constant rated output is always obtained, so that the windmill rotational speed becomes constant at the target rotational speed. To control. Normally, the control system is a PI control (proportional-integral control) system or a PID control (proportional-integral-derivative control) system (hereinafter referred to as these) that makes the deviation between the target rotational speed and the windmill rotational speed (actual) zero. (Also referred to as PI control) is used (see, for example, Patent Document 1).

特開2002−48050号公報(図1)JP 2002-48050 A (FIG. 1)

ただ、日本のように風況変動が激しい環境においては、通常のPI制御系による風車回転数の制御では、応答が遅れがちでピッチ角の制御が風の変動に合わせた追従ができず、風力と正の相関関係にある風車回転数の変動を十分に制御しきれない場合が生じ得る。特に、平均風速では発電の定格出力が得られないような場合でも、瞬時風速が20m/sのような大きな値に達する場合もあり、このような場合、風車回転数は、ブレードピッチ角0゜の状態(非制御状態)から突然定格出力が得られる回転領域になり、そして、風力回転数はさらに上昇するため、そうなった後に風車回転数の制御を行っても十分な回転数の抑制ができなくなり、機械的な上限回転数に達し、風力発電機を停止させてしまうことがあり得る。   However, in an environment where wind fluctuations are severe, such as in Japan, the control of the wind turbine rotation speed by the normal PI control system tends to delay the response, and the pitch angle control cannot follow the wind fluctuations. There may be a case where fluctuations in the wind turbine speed that are positively correlated with each other cannot be sufficiently controlled. In particular, even when the rated output of power generation cannot be obtained at the average wind speed, the instantaneous wind speed may reach a large value such as 20 m / s. In such a case, the wind turbine rotational speed is 0 ° in the blade pitch angle. In this state (uncontrolled state), it becomes a rotation region where the rated output is suddenly obtained, and the wind speed further increases, so even if the wind turbine speed is controlled after that, the sufficient speed can be suppressed. It may become impossible to reach the mechanical upper limit speed and stop the wind power generator.

機械的な上限回転数に達して風車が停止(以下、機械的停止という)した場合、風力発電機が自動的に発電を再開するわけではなく、風力発電機を再起動させるために、通常、人が現地に赴いて点検、再起動等の作業を行っている。ここで、風力発電機は、多くの風力エネルギーを安定して受けられる山岳部又は海洋部に設置されていることが多い。このような場所は、人が赴くには時間、労力等の面でかなり負担が大きい場所である。しかも、人が再起動を行うまでに長時間を費やし、その間、風力発電機を稼動できないため、一度、機械的停止してしまうと稼働率が著しく低下してしまい、安定した電力供給ができなくなる。   If the wind turbine stops after reaching the mechanical upper limit (hereinafter referred to as mechanical stop), the wind generator does not automatically restart power generation. A person visits the site to perform inspections and restarts. Here, the wind power generator is often installed in a mountainous area or an oceanic area where a lot of wind energy can be stably received. Such a place is a place where a burden is considerably large in terms of time, labor, etc. for people to go. In addition, since it takes a long time for a person to restart and the wind power generator cannot be operated during that time, once the machine is stopped, the operating rate is significantly reduced, and stable power supply cannot be achieved. .

そこで、本発明は上記のような問題を解決するため、風車回転数の変動を抑え、稼働率を向上させ、発電出力をできる限り一定にできる制御方法等を得ることを目的とする。   Accordingly, an object of the present invention is to obtain a control method that can suppress fluctuations in the number of rotations of the wind turbine, improve the operating rate, and make the power generation output as constant as possible in order to solve the above-described problems.

本発明に係る風力発電制御方法は、風車が受ける風速の一定時間における変動のばらつきを算出する工程と、ばらつきに基づいて風車が有する回転体の目標回転数の値を所定時間毎に決定し、値の設定を修正する工程と、修正した目標回転数で回転体が回転するように算出した指令値を含む信号を、風車が有するブレードのピッチ角を操作するブレードピッチ角操作機構に送信する工程とを有している。   In the wind power generation control method according to the present invention, the step of calculating variation in the wind speed received by the windmill over a certain period of time, and the target rotational speed value of the rotating body of the windmill based on the variation are determined every predetermined time, A step of correcting the setting of the value, and a step of transmitting a signal including a command value calculated so that the rotating body rotates at the corrected target rotational speed to a blade pitch angle operating mechanism that operates a pitch angle of the blade of the windmill. And have.

また、本発明に係る風力発電制御方法は、風車が有する回転体の回転数の変動に基づいて、風車が有するブレードのピッチ角をブレードピッチ角操作機構に操作させるための制御値を算出すると共に、ブレードピッチ角操作機構に操作されたブレードのピッチ角及び回転体の回転数の変動に基づいて、風による外乱を推定した補償値を算出する工程と、制御値に補償値を加えた指令値を含む信号をブレードピッチ角操作機構に送信する工程とを有している。   In addition, the wind power generation control method according to the present invention calculates a control value for causing the blade pitch angle operation mechanism to operate the pitch angle of the blades included in the windmill based on fluctuations in the rotational speed of the rotating body included in the windmill. , A step of calculating a compensation value for estimating a disturbance due to wind based on a change in the pitch angle of the blade operated by the blade pitch angle operation mechanism and the rotational speed of the rotating body, and a command value obtained by adding the compensation value to the control value And a step of transmitting a signal including the above to a blade pitch angle operating mechanism.

また、本発明に係る風力発電制御方法は、風車が受ける風速の一定時間における変動のばらつきに基づいて所定時間毎に修正した目標回転数の値で風車が有する回転体が回転するように、目標回転数と回転体の回転数の偏差とに基づいて、風車が有するブレードのピッチ角をブレードピッチ角操作機構に操作させるための制御値を算出すると共に、ブレードピッチ角操作機構に操作されたブレードのピッチ角及び回転体の回転数の変動に基づいて、風による外乱を推定した補償値を算出する工程と、制御値に補償値を加えた指令値を含む信号をブレードピッチ角操作機構に送信する工程とを有している。   Further, the wind power generation control method according to the present invention is configured so that the rotating body of the windmill rotates at the target rotational speed value corrected every predetermined time based on the variation in the wind speed received by the windmill over a certain period of time. Based on the rotational speed and the deviation between the rotational speeds of the rotating body, a control value for causing the blade pitch angle operating mechanism to operate the pitch angle of the blade of the windmill is calculated, and the blade operated by the blade pitch angle operating mechanism A signal including a step of calculating a compensation value by estimating a disturbance due to wind based on the pitch angle of the rotor and the rotational speed of the rotating body, and a command value obtained by adding the compensation value to the control value is transmitted to the blade pitch angle operating mechanism. And a process of performing.

また、本発明に係る風力発電制御装置は、風車が受ける風速の一定時間における変動のばらつきを算出するばらつき推定手段と、ばらつきに基づいて、風車が有する回転体の目標回転数の値を所定時間毎に決定し、修正する目標回転数修正手段と、修正した目標回転数で回転体が回転するように風車が有するブレードのピッチ角を制御するための指令値を算出するピッチ角制御手段とを備えている。本発明によれば、風速の変動が激しい場合には非制御状態を避けて突風による風車回転数の異常な上昇を抑えるようにしたので、機械的停止が発生せず、稼働率の著しい低下を避け、効率のよい発電処理、風力発電機を得ることができる。さらに目標回転数を抑えることにより風車回転数の変動も抑えられるので、安定した発電出力を得ることができる。   In addition, the wind power generation control device according to the present invention includes a variation estimation unit that calculates variation of a wind speed received by the windmill over a certain period of time, and a target rotational speed value of the rotor included in the windmill based on the variation for a predetermined time. Target rotational speed correcting means that is determined and corrected every time, and pitch angle control means that calculates a command value for controlling the pitch angle of the blades of the wind turbine so that the rotating body rotates at the corrected target rotational speed. I have. According to the present invention, when the wind speed fluctuates severely, an uncontrolled state is avoided to suppress an abnormal increase in the wind turbine rotation speed due to a gust of wind, so that no mechanical stop occurs and the operating rate is significantly reduced. By avoiding this, an efficient power generation process and a wind power generator can be obtained. Furthermore, since the fluctuation | variation of a windmill rotational speed is also suppressed by suppressing a target rotational speed, the stable electric power generation output can be obtained.

また、本発明に係る風力発電制御装置は、風車が有する回転体の回転数の変動に基づいて、風車が有するブレードのピッチ角を制御するための制御値を算出するピッチ角制御手段と、風車の回転数の変動及びブレードのピッチ角を操作するブレードピッチ角操作機構により操作されたピッチ角に基づいて、風による外乱を推定した補償値を算出する外乱推定手段と、制御値と補償値と加えた指令値を信号としてブレードピッチ角操作機構に送信する加算演算手段とを備えている。   In addition, the wind power generation control device according to the present invention includes a pitch angle control unit that calculates a control value for controlling the pitch angle of the blades included in the windmill based on fluctuations in the rotational speed of the rotating body included in the windmill, and the windmill. Disturbance estimation means for calculating a compensation value for estimating a wind disturbance based on a pitch angle operated by a blade pitch angle operating mechanism for operating a fluctuation in the rotational speed of the blade and a pitch angle of the blade, a control value and a compensation value, Addition operation means for transmitting the added command value as a signal to the blade pitch angle operation mechanism.

また、本発明に係る風力発電制御装置は、風車が受ける風速の一定時間における変動のばらつきを算出するばらつき推定手段と、ばらつきに基づいて、風車が有する回転体の目標回転数の値を所定時間毎に決定し、修正する目標回転数修正手段と、修正した目標回転数と回転体の回転数の偏差とに基づいて、風車が有するブレードのピッチ角をブレードピッチ角操作機構に操作させるための制御値を算出するピッチ角制御手段と、風車の回転数の変動及びブレードピッチ角操作機構により操作されたピッチ角に基づいて、風による外乱を推定した補償値を算出する外乱推定手段と、制御値と補償値と加えた指令値を信号としてブレードピッチ角操作機構に送信する加算演算手段とを備えている。   In addition, the wind power generation control device according to the present invention includes a variation estimation unit that calculates variation of a wind speed received by the windmill over a certain period of time, and a target rotational speed value of the rotor included in the windmill based on the variation for a predetermined time. Based on the target rotational speed correcting means that is determined and corrected every time, and the deviation between the corrected target rotational speed and the rotational speed of the rotating body, the blade pitch angle operating mechanism is configured to operate the blade pitch angle operating mechanism. A pitch angle control means for calculating a control value, a disturbance estimation means for calculating a compensation value for estimating a wind disturbance based on fluctuations in the rotational speed of the windmill and a pitch angle operated by a blade pitch angle operation mechanism, and a control Addition calculation means for transmitting a command value obtained by adding the value, the compensation value, and the blade signal to the blade pitch angle operation mechanism is provided.

また、本発明に係る風力発電制御装置の目標回転数修正手段は、ばらつきが大きいほど目標回転数の値を下げるように修正するものである。   Further, the target rotational speed correction means of the wind power generation control device according to the present invention corrects so that the value of the target rotational speed decreases as the variation increases.

また、本発明に係る風力発電制御装置のピッチ角制御手段は、PI(比例−積分)制御又はPID(比例−積分−微分)制御に基づく制御を行う。   The pitch angle control means of the wind power generation control device according to the present invention performs control based on PI (proportional-integral) control or PID (proportional-integral-derivative) control.

また、本発明に係る風力発電装置は、上述に記載の風力発電制御装置を備え、風力発電制御装置によるピッチ角で制御されたブレードにより回転する回転体と、回転体の回転に基づいて駆動し、発電する発電機とを備えている。   A wind turbine generator according to the present invention includes the wind turbine controller described above, and is driven based on a rotating body that is rotated by a blade controlled by a pitch angle by the wind turbine controller and the rotation of the rotor. And a generator for generating electricity.

また、本発明に係る風力発電制御方法のプログラムは、風車が受ける風速の一定時間における変動のばらつきを所定時間毎に算出する工程と、ばらつきに基づいて風車が有する回転体の目標回転数の値を所定時間毎に決定し、値の設定を修正する工程と、修正した目標回転数で回転体が回転するように算出した制御値に基づいて風車が有するブレードのピッチ角を制御する工程とをコンピュータ等の制御手段に行わせるものである。   Further, the program of the wind power generation control method according to the present invention includes a step of calculating a variation in the wind speed received by the windmill over a predetermined time every predetermined time, and a target rotational speed value of the rotating body of the windmill based on the variation. And a step of correcting the setting of the value and a step of controlling the pitch angle of the blades of the wind turbine based on the control value calculated so that the rotating body rotates at the corrected target rotational speed. This is performed by a control means such as a computer.

また、本発明に係る風力発電制御方法のプログラムは、風車が有する回転体の回転数に基づいて、風車が有するブレードのピッチ角をブレードピッチ角操作機構に操作させるための制御値を算出すると共に、ブレードピッチ角操作機構に操作されたブレードのピッチ角及び回転体の回転数に基づいて、風による外乱を推定した補償値を算出する工程と、制御値に補償値を加えた指令値の信号をブレードピッチ角操作機構に送信し、ブレードのピッチ角を制御させる工程とをコンピュータ等の制御手段に行わせるものである。   Further, the program for the wind power generation control method according to the present invention calculates a control value for causing the blade pitch angle operation mechanism to operate the pitch angle of the blade of the windmill based on the number of rotations of the rotating body of the windmill. , A step of calculating a compensation value by estimating a wind disturbance based on the pitch angle of the blade operated by the blade pitch angle operation mechanism and the rotational speed of the rotating body, and a command value signal obtained by adding the compensation value to the control value Is transmitted to the blade pitch angle operating mechanism, and the step of controlling the pitch angle of the blade is performed by a control means such as a computer.

以上のように本発明によれば、従来では定格出力に達せず制御しないような風況でも、風速の変動が激しい場合には非制御状態を避けて突風による風車回転数の異常な上昇を抑えるようにしたので、機械的停止が発生せず、稼働率の著しい低下を避け、効率のよい発電処理、風力発電機を得ることができる。さらに風車回転数の変動も抑えられるので、安定した発電出力を得ることができる。   As described above, according to the present invention, even if the wind speed does not reach the rated output and is not controlled in the past, if the wind speed fluctuates severely, the uncontrolled state is avoided to suppress the abnormal increase in the wind turbine speed due to the gust. Since it did in this way, a mechanical stop does not generate | occur | produce, a remarkable fall of an operation rate can be avoided, and efficient power generation processing and a wind power generator can be obtained. Furthermore, since fluctuations in the wind turbine speed can be suppressed, a stable power generation output can be obtained.

また、本発明によれば、フィードバック制御だけでは追従できない風車回転数の変動を予測し、その補償値を加えてブレードのピッチ角を制御するようにしたので、風車回転数の変動を抑制できるので、機械的停止が発生しない。さらに風車回転数の変動抑制により、安定した発電出力を得ることができる。   Further, according to the present invention, the fluctuation of the windmill speed that cannot be followed only by feedback control is predicted, and the pitch value of the blade is controlled by adding the compensation value. Therefore, the fluctuation of the windmill speed can be suppressed. No mechanical stop occurs. Furthermore, stable power generation output can be obtained by suppressing fluctuations in the wind turbine speed.

さらに本発明によれば、風速の変動が激しい場合には、目標回転数を下げることで非制御状態を避けて突風による風車回転数の異常な上昇を抑えるようにし、さらに風車回転数の変動を予測し、その補償値を加えてブレードのピッチ角を制御するようにしたので、機械的停止が発生せず、稼働率の著しい低下を避け、効率のよい発電処理、風力発電機を得ることができる。さらに風車回転数の変動も抑えられるので、安定した発電出力を得ることができる。   Further, according to the present invention, when the fluctuation of the wind speed is severe, the target rotation speed is lowered to avoid the uncontrolled state so as to suppress the abnormal increase of the windmill rotation speed due to the gust of wind, and the fluctuation of the windmill rotation speed is further reduced. Predicting and adding the compensation value to control the pitch angle of the blade, so that mechanical stop does not occur, avoiding a significant reduction in operating rate, and obtaining an efficient power generation process and wind power generator it can. Furthermore, since fluctuations in the wind turbine speed can be suppressed, a stable power generation output can be obtained.

実施の形態1.
図1は本発明の実施の形態に係る風力発電装置の構成図である。図1において、風車1はロータ(回転体)10、複数枚のブレード11及びピッチ角操作手段12で構成される。ロータ10は風車1の中心に設けられ、風力エネルギーを受けたブレード11に発生する揚力により回転し、その回転により発生したトルクが後述する発電機21を駆動して発電を行わせる。ロータ10は各ブレード11のブレードピッチ角(以下、ピッチ角という)を制御するためのピッチ角操作手段12を有している。ブレード11はロータ10を回転させるための風力エネルギーを受けるための翼であり、通常、風車1に1又は複数枚設けられている。ブレード11はピッチ角操作手段12により操作され、風と対向する角度(ピッチ角)が制御される。ピッチ角操作手段12はブレード11毎に設けられる。各ピッチ角操作手段12は後述する制御演算手段3のピッチ角制御演算手段31からのピッチ角指令信号に含まれるピッチ角又は差分の角度(以下、指令値という)に基づいて、ブレード11を操作し、ピッチ角を制御する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a wind turbine generator according to an embodiment of the present invention. In FIG. 1, a windmill 1 is composed of a rotor (rotary body) 10, a plurality of blades 11, and pitch angle operation means 12. The rotor 10 is provided at the center of the windmill 1 and is rotated by lift generated in the blade 11 that receives wind energy, and the torque generated by the rotation drives a generator 21 described later to generate power. The rotor 10 has pitch angle operation means 12 for controlling the blade pitch angle (hereinafter referred to as pitch angle) of each blade 11. The blade 11 is a blade for receiving wind energy for rotating the rotor 10, and usually one or a plurality of blades 11 are provided in the wind turbine 1. The blade 11 is operated by the pitch angle operation means 12, and the angle (pitch angle) facing the wind is controlled. The pitch angle operation means 12 is provided for each blade 11. Each pitch angle operation means 12 operates the blade 11 based on a pitch angle or a difference angle (hereinafter referred to as a command value) included in a pitch angle command signal from a pitch angle control calculation means 31 of the control calculation means 3 described later. And control the pitch angle.

ナセル2は内蔵された各機器を保護するための箱である。ナセル2内は、発電機21及びヨー角制御手段22で構成されている。発電機21はロータ10の回転による駆動に応じて発電する。ここで、本実施の形態では発電機を同期発電機として説明するが、特に同期発電機に限定する必要はなく、例えば誘導発電機等の発電機を用いることもできる。また、ロータ10と発電機21との間に、回転軸(図示せず)を介している場合もある。さらに、回転軸を有している場合、ロータ10の回転速度(回転数)に基づいて発電機21側の回転駆動を速くするための増速器(図示せず)が回転軸と発電機21との間に設けられていることもある。ヨー角制御手段22はヨー角指令信号に基づいてヨー角を制御する。   The nacelle 2 is a box for protecting each built-in device. The nacelle 2 includes a generator 21 and a yaw angle control means 22. The generator 21 generates electric power according to the driving by the rotation of the rotor 10. Here, although this embodiment demonstrates a generator as a synchronous generator, it is not necessary to specifically limit to a synchronous generator, For example, generators, such as an induction generator, can also be used. In some cases, a rotating shaft (not shown) is interposed between the rotor 10 and the generator 21. Furthermore, when it has a rotating shaft, the speed-up gear (not shown) for making the rotational drive by the side of the generator 21 faster based on the rotational speed (rotation speed) of the rotor 10 becomes a rotating shaft and the generator 21. It may be provided between. The yaw angle control means 22 controls the yaw angle based on the yaw angle command signal.

制御演算手段3は、ブレードピッチ角を制御するための演算処理を行うピッチ角制御演算手段31、ヨー角操作手段22にヨー角を制御させるための演算処理を行うヨー角制御演算手段32及び記憶手段33で構成されている。ピッチ角制御演算手段31の構成等については後述する。ヨー角制御演算手段32は、風向計(図示せず)から送信される風向信号に基づいて風車1を風に対向させるヨー角を演算し、ヨー角操作手段22にヨー角指令信号を送信する処理を行う。ここで、ヨー角制御演算手段32は、風に対向させるだけでなく、配線保護のため、同一のヨー方向に回転が偏るのを避ける演算を行う。記憶手段33は、風速データ、風車回転数のデータ、ブレード11のピッチ角を表す指令値のデータ等、風速回転数、発電の安定制御に必要なデータを、少なくとも各演算に必要な時間分(例えば10分)を一定周期で又は時々刻々と記憶しておく。また、ピッチ角制御演算手段31及びヨー角制御演算手段32が演算処理等を行うための手順を記載したプログラムが記憶されている場合もある。   The control calculation means 3 includes a pitch angle control calculation means 31 that performs calculation processing for controlling the blade pitch angle, a yaw angle control calculation means 32 that performs calculation processing for causing the yaw angle operation means 22 to control the yaw angle, and storage. The means 33 is constituted. The configuration of the pitch angle control calculation means 31 will be described later. The yaw angle control calculation means 32 calculates a yaw angle that causes the windmill 1 to face the wind based on a wind direction signal transmitted from an anemometer (not shown), and transmits a yaw angle command signal to the yaw angle operation means 22. Process. Here, the yaw angle control calculation means 32 not only opposes the wind but also performs a calculation to avoid the rotation being biased in the same yaw direction in order to protect the wiring. The storage means 33 stores data necessary for stable control of wind speed rotation speed and power generation, such as wind speed data, wind turbine rotation speed data, command value data indicating the pitch angle of the blade 11, at least for the time required for each calculation ( (For example, 10 minutes) is memorized at regular intervals or every moment. Further, there may be a case where a program that describes a procedure for the pitch angle control calculation means 31 and the yaw angle control calculation means 32 to perform calculation processing or the like is stored.

風速計4は風速を測定する。測定した風速の値は例えばA/D変換器(図示せず)等により例えば1秒間隔でサンプリングされ、デジタルデータ化され、風速データとして記憶手段33に記憶される。風速計4は、例えばブレード11等の影響を受けず、風車1が実際に受ける風の風速が測定できる位置に設けることが望ましい。BTB盤5は、発電された電力における周波数を安定させる逆変換装置のことである。   The anemometer 4 measures the wind speed. The measured wind speed value is sampled at, for example, an interval of 1 second by an A / D converter (not shown) or the like, converted into digital data, and stored in the storage means 33 as wind speed data. The anemometer 4 is preferably provided at a position where the wind speed of the wind actually received by the windmill 1 can be measured without being influenced by the blade 11 or the like. The BTB board 5 is an inverse conversion device that stabilizes the frequency of the generated power.

図2はピッチ角制御演算手段31を中心とした、風力発電装置のピッチ角制御のための信号の流れによる構成を表した図である。ピッチ角制御演算手段31は、さらにばらつき推定器31A、目標回転数修正器31B、PI制御器31C、外乱推定器31D、回転数検出器31E及び加算演算器31Fで構成される。ばらつき推定器31Aは、風速履歴信号に含まれる一定時間分の風速データに基づいて、一定時間毎(移動区間による標準偏差σ、分散σ2 でもよい)に風速の標準偏差、分散等を算出、推定した風速の変動によるばらつきを示すデータを含むばらつき信号として出力する。ここでは、風速のデータの標準偏差、分散等の結果をばらつきとする。目標回転数修正器31Bは、ばらつき推定器31Aが算出したばらつきを示すデータに基づいて、PI制御器31Cが制御演算のために用いる目標回転数のデータを修正し、目標回転数信号として出力する。 FIG. 2 is a diagram showing a configuration according to a signal flow for pitch angle control of the wind turbine generator, with the pitch angle control calculation means 31 as the center. The pitch angle control calculation means 31 further includes a variation estimator 31A, a target rotation speed corrector 31B, a PI controller 31C, a disturbance estimator 31D, a rotation speed detector 31E, and an addition calculator 31F. The variation estimator 31A calculates the standard deviation, variance, and the like of the wind speed at regular intervals (standard deviation σ or variance σ 2 depending on the moving section) based on the wind speed data for a certain time included in the wind speed history signal. A variation signal including data indicating variation due to the estimated variation in wind speed is output. Here, the results such as the standard deviation and variance of the wind speed data are defined as variations. The target rotational speed corrector 31B corrects the target rotational speed data used for the control calculation by the PI controller 31C based on the data indicating the variation calculated by the variation estimator 31A, and outputs the target rotational speed signal. .

PI制御器31CはPI制御(定値制御)に基づく演算処理を行ってブレード11のピッチ角を制御するための制御値を算出し、制御値を含むピッチ角制御信号を出力する。風車回転数を安定して制御するために、PI制御器31Cが演算をする際の基準とする目標回転数は、本実施の形態では目標回転数修正器31Bからの目標回転数信号に含まれる目標回転数のデータを用いる。外乱推定器31Dは、ピッチ角履歴信号に含まれる一定時間分の指令値のデータ及び風車回転数履歴信号に含まれる一定時間分の風車回転数のデータに基づいて、風による外乱を算出、推定した補償値のデータを含む信号を外乱補償信号として出力する。回転数検出器31Eは、風車回転数(ロータ10の回転数)を検出し、風車回転数のデータを含む回転数信号をPI制御器31C及び記憶手段33に出力する。記憶手段33に一定時間分記憶された風車回転数のデータを含む信号は、風車回転数履歴信号として外乱推定器31Dに出力される。加算演算器31Fは、PI制御器31Cから出力されたピッチ角制御信号が含む制御値と外乱推定器31Dから出力された外乱補償信号が含む補償値とを加算した値を含むピッチ角指令信号をピッチ角操作手段12に出力する。補償値が加算され、ピッチ角指令信号がピッチ角操作手段12によってピッチ角が制御されることにより、フィードフォーワード制御が行われる。   The PI controller 31C performs arithmetic processing based on PI control (constant value control), calculates a control value for controlling the pitch angle of the blade 11, and outputs a pitch angle control signal including the control value. In order to stably control the wind turbine rotational speed, the target rotational speed used as a reference when the PI controller 31C performs calculation is included in the target rotational speed signal from the target rotational speed corrector 31B in the present embodiment. Use target rotation speed data. The disturbance estimator 31D calculates and estimates a wind disturbance based on the command value data for a fixed time included in the pitch angle history signal and the wind turbine rotation speed data for a fixed time included in the wind turbine rotation history signal. A signal including the compensation value data is output as a disturbance compensation signal. The rotation speed detector 31E detects the wind turbine rotation speed (rotation speed of the rotor 10), and outputs a rotation speed signal including data on the wind turbine rotation speed to the PI controller 31C and the storage unit 33. A signal including wind turbine rotation speed data stored in the storage means 33 for a certain period of time is output to the disturbance estimator 31D as a wind turbine rotation speed history signal. The addition computing unit 31F receives a pitch angle command signal including a value obtained by adding the control value included in the pitch angle control signal output from the PI controller 31C and the compensation value included in the disturbance compensation signal output from the disturbance estimator 31D. Output to the pitch angle operation means 12. The compensation value is added, and the pitch angle of the pitch angle command signal is controlled by the pitch angle operation means 12, whereby feedforward control is performed.

本実施の形態は、従来、風況により変動する風車回転数の変動を抑え、特に機械的停止をできる限り生じさせないようにするため、従来、ピッチ角をPI制御を行う際に、一定だった目標回転数について、風速の変動によるばらつきと目標回転数との間にある相関関係を利用し、ばらつき推定器31Aが一定時間分の風速データの履歴に基づいて算出したばらつきのデータにより、目標回転数修正器31Bが目標回転数を一定時間毎に修正し、設定し直す。PI制御器31Cは、修正された目標回転数のデータと回転検出器31Eが検出した風車回転数のデータとに基づいて偏差を0にするようなPI制御を行い、ピッチ角制御信号を出力する。   In the present embodiment, conventionally, the pitch angle has been constant when performing PI control in order to suppress fluctuations in the wind turbine rotation speed, which fluctuates depending on the wind conditions, and in particular to prevent mechanical stoppage as much as possible. Using the correlation between the variation due to fluctuations in wind speed and the target rotation speed for the target rotation speed, the variation estimator 31A calculates the target rotation based on the variation data calculated based on the history of wind speed data for a certain period of time. The number corrector 31B corrects and resets the target rotational speed at regular intervals. The PI controller 31C performs PI control such that the deviation is zero based on the corrected target rotational speed data and the wind turbine rotational speed data detected by the rotation detector 31E, and outputs a pitch angle control signal. .

また、外乱推定器31Dでは、風車回転数のデータの履歴及び指令値のデータの履歴に基づいて、風による外乱を推定、予測演算した補償値を含む外乱補償信号を出力する。そして、加算演算器31Fにおいて、上述のPI制御又は従来のPI制御により出力されたピッチ角制御信号に含まれる制御値に補償値を加えた指令値を含むピッチ角指令信号を出力する。このピッチ角指令信号(指令値)に基づいてピッチ角操作手段12にブレード11のピッチ角を制御させることで、フィードフォーワード制御を行い、風況変動の強い場所に生じやすい、フィードバック制御のみの制御系に生じる制御遅れを補償し、風車回転数の変動を抑制する能力を高める。また、外乱推定には発電機の発電出力のデータ、風速のデータを用いずに風車回転数のデータを用いることでロータ10(風車1)の回転に対し、より精度の高い外乱推定を行う。本実施の形態では、目標回転数修正処理と外乱推定処理とを共に行って、得られたピッチ角操作による風車回転数制御を行っているが、それぞれ一方の処理だけを行うようにしてもよい。   In addition, the disturbance estimator 31D outputs a disturbance compensation signal including a compensation value obtained by estimating and predicting wind disturbance based on the wind turbine rotation speed data history and the command value data history. Then, the addition calculator 31F outputs a pitch angle command signal including a command value obtained by adding a compensation value to a control value included in the pitch angle control signal output by the above-described PI control or conventional PI control. Based on this pitch angle command signal (command value), the pitch angle operating means 12 controls the pitch angle of the blade 11 to perform feedforward control, which is likely to occur in a place where wind conditions fluctuate. Compensate for control delays that occur in the control system and increase the ability to suppress fluctuations in the wind turbine speed. Further, the disturbance estimation is performed with higher accuracy for the rotation of the rotor 10 (wind turbine 1) by using the wind turbine rotation speed data without using the generator power generation output data and the wind speed data. In the present embodiment, the target rotational speed correction process and the disturbance estimation process are performed together to perform the wind turbine rotational speed control by the obtained pitch angle operation. However, only one of the processes may be performed. .

ここで、本実施の形態では、制御演算手段3は、それぞれの処理を行うために独立した手段、機器で構成し、それぞれの機器間で信号によるデータ通信を行うことで、制御を御行っているが、例えば、CPUを中心とするコンピュータ等の処理手段、DSP等の信号処理手段等のマイクロプロセッサを1つ用いて、各部それぞれの処理機能を動作させるプログラムを実行させるようにしてもよい。   Here, in the present embodiment, the control calculation means 3 is composed of independent means and devices for performing each processing, and performs control by performing data communication with signals between the devices. However, for example, a single microprocessor such as a processing unit such as a computer centering on a CPU or a signal processing unit such as a DSP may be used to execute a program for operating each processing function of each unit.

次にピッチ角制御演算手段31を中心としたピッチ角制御動作についてさらに説明する。まず、PI制御に用いる目標回転数のデータ算出手順について説明する。ばらつき推定器31Aは、風速履歴信号に含まれる一定時間分(例えば10分)の風速データに基づいてばらつきのデータを、例えば所定時間(例えば5分)毎に算出する。上述したように、標準偏差、分散等、そのばらつき具合を表す結果をばらつきのデータとする。算出したばらつきのデータを含む信号をばらつき信号として出力する。   Next, the pitch angle control operation centered on the pitch angle control calculation means 31 will be further described. First, the data calculation procedure of the target rotational speed used for PI control will be described. The variation estimator 31A calculates variation data based on wind speed data for a certain time (for example, 10 minutes) included in the wind speed history signal, for example, every predetermined time (for example, 5 minutes). As described above, a result representing the degree of variation such as standard deviation and variance is used as variation data. A signal including the calculated variation data is output as a variation signal.

目標回転数修正器31Bは、ばらつき信号に含まれるばらつきのデータに基づいて目標回転数を所定時間(例えば5分)毎に修正し、設定する。目標回転数の設定は、風速変動の大きさ(風速のばらつき)と回転数変動の大きさ(回転数のばらつき)との相関関係を利用する。風速のばらつきが大きいことは風車1に発生するトルクが変動することであり、外乱変動が大きい。従って、同じ制御系のもとでは風車回転数の変動も当然大きくなる。このため、風速変動が大きい場合には、目標回転数を下げることで上限回転数までのマージンを増やせば、上限回転数に達する確率が減ることになる。また、目標回転数に達しない状況では、通常、風車1のブレード11のブレードピッチ角は0度となり、最もトルクが高くなる状態になるが、この状況で突風が発生すると一気に回転数が上がることとなる。このため、たとえ風速が低くても、風速変動の大きな状況下の場合は、目標回転数を低く設定しておけば、速やかに回転数制御に入ることができるため、過回転に至る問題を回避できる。ここで、目標回転数を下げると発電量も下がることになるので、下げすぎないように目標回転数の下限値を設けておいてもよい。ばらつきが小さくなると初期状態の目標回転数に戻していくようにする。   The target rotational speed corrector 31B corrects and sets the target rotational speed every predetermined time (for example, 5 minutes) based on the variation data included in the variation signal. The setting of the target rotational speed uses the correlation between the magnitude of the wind speed fluctuation (wind speed variation) and the magnitude of the rotational speed fluctuation (variation in the rotational speed). A large variation in wind speed means that the torque generated in the windmill 1 fluctuates, and the disturbance fluctuation is large. Therefore, naturally, fluctuations in the wind turbine speed also increase under the same control system. For this reason, when the wind speed fluctuation is large, the probability of reaching the upper limit rotational speed decreases if the margin to the upper limit rotational speed is increased by lowering the target rotational speed. In a situation where the target rotational speed is not reached, the blade pitch angle of the blade 11 of the windmill 1 is normally 0 degrees, and the torque becomes the highest. However, if a gust occurs in this situation, the rotational speed increases at a stretch. It becomes. For this reason, even if the wind speed is low, if the wind speed fluctuation is large, if the target speed is set low, the speed control can be entered quickly, avoiding the problem of overspeeding. it can. Here, if the target rotational speed is lowered, the power generation amount is also lowered. Therefore, a lower limit value of the target rotational speed may be provided so as not to reduce too much. When the variation becomes smaller, the target rotational speed is returned to the initial state.

PI制御器31Cは、目標回転数信号に含まれる目標回転数のデータ及び回転数信号に含まれる風車回転数のデータとに基づいて偏差を0にするようなPI制御を行う。PI制御を行うための手順については、風力発電を含めた通常のPI制御に用いられている手順と変わるところがないので説明を省略する。目標回転数を修正した上で、PI制御を行うことで、ばらつきを抑え、風車回転数の上昇を防ぐことで機械的停止をの発生を防ぎ、稼働率を高めることができる。   The PI controller 31C performs PI control such that the deviation is zero based on the target rotational speed data included in the target rotational speed signal and the windmill rotational speed data included in the rotational speed signal. The procedure for performing the PI control is not different from the procedure used for the normal PI control including wind power generation, and the description thereof will be omitted. By performing the PI control after correcting the target rotational speed, it is possible to suppress variations and prevent an increase in the windmill rotational speed, thereby preventing a mechanical stop and increasing the operating rate.

次に、外乱推定器31Dにおける補償値の算出処理について説明する。外乱を推定し、補償値を算出するためには、風力発電における風車1の動特性が必要であるが、この動特性は次式(1)で表される。   Next, compensation value calculation processing in the disturbance estimator 31D will be described. In order to estimate the disturbance and calculate the compensation value, the dynamic characteristic of the wind turbine 1 in wind power generation is necessary. This dynamic characteristic is expressed by the following equation (1).

Figure 2005155509
Figure 2005155509

ここで、
J:風車1及び発電機の慣性モーメント
ω:ロータ10の機械的角速度
k:風車1の粘性係数
g :発電負荷のトルク
w :風による風車1に発生するトルク
here,
J: Moment of inertia of windmill 1 and generator ω: Mechanical angular velocity of rotor 10 k: Viscosity coefficient of windmill 1 T g : Torque of power generation load T w : Torque generated in windmill 1 by wind

また、Tw は風速Vを用いた場合、さらに次式(2)のように記述される。
w =Ct(λ,β)ρV2πR3 /2=Cwt(λ,β)V2 …(2)
Further, T w is further described as the following equation (2) when the wind speed V is used.
T w = C t (λ, β) ρV 2 πR 3/2 = C w C t (λ, β) V 2 ... (2)

ここで、
t(λ,β):風車1のトルク係数
R:ロータ10中心からブレード11先端までの距離
λ:周速比(=ωR/V)
β:ブレードピッチ角
ρ:空気密度
w=ρπR3 /2 (π:円周率)
である。
here,
C t (λ, β): torque coefficient of the wind turbine 1 R: distance from the rotor 10 center to the blade 11 tip lambda: tip speed ratio (= ωR / V)
beta: blade pitch angle [rho: density of air C w = ρπR 3/2 ( π: circular constant)
It is.

図3はトルク係数、周速比及びブレードピッチ角の関係を表す図である。(2)式はCt(λ,β)を有しているため、ブレードピッチ角操作によって変化する。また、風速によっても変化する。 FIG. 3 is a diagram showing the relationship between the torque coefficient, the peripheral speed ratio, and the blade pitch angle. Since the equation (2) has C t (λ, β), it changes depending on the blade pitch angle operation. It also changes depending on the wind speed.

ここで、外乱推定器31Dの推定による外乱の補償は、風車回転数近辺の変動補償に限定するものとする。その上で、(1)(2)式の定格回転数周りの線形化モデルをベースに外乱推定を行う。例えば、定格運転状態として風Vw0、ブレードピッチ角β0 とすると、上述したTw は次式(3)のように表すことができる。 Here, the compensation of the disturbance by the estimation of the disturbance estimator 31D is limited to the fluctuation compensation in the vicinity of the wind turbine rotation speed. After that, disturbance estimation is performed based on the linearized model around the rated rotational speed of the equations (1) and (2). For example, when the rated operating state is wind V w0 and blade pitch angle β 0 , the above-described T w can be expressed by the following equation (3).

Figure 2005155509
Figure 2005155509

また、このとき、ロータ10が回転して得られる風車回転数(角速度)の変動領域を、目標回転数ωref の周辺と限定した場合に、その差を次式(4)で表す。
Δω=ω−ωref …(4)
At this time, when the rotor 10 is a variation region of the wind turbine rotational speed which is obtained by rotating (angular velocity), and limiting the surrounding target speed omega ref, representing the difference by the following equation (4).
Δω = ω−ω ref (4)

また、発電負荷のトルクTg の変動についても次式(5)で近似することができる。
g ≒Tg(ωref)+k2 ・Δω …(5)
It can also be approximated by the following equation (5) Changes in torque T g of the power generation load.
T g ≈T gref ) + k 2 · Δω (5)

そして、(3)、(4)、(5)式から、(1)式は、次式(6)のような線形近似モデルで表される。   Then, from the formulas (3), (4), and (5), the formula (1) is expressed by a linear approximation model like the following formula (6).

Figure 2005155509
Figure 2005155509

そして、さらに(6)式に対し、風による変動を外乱項dとして加えると次式(7)のようになる。そして、外乱推定には(7)式の線型近似モデルを用いる。   Further, when variation due to wind is added as a disturbance term d to the equation (6), the following equation (7) is obtained. Then, the linear approximation model of the equation (7) is used for disturbance estimation.

Figure 2005155509
Figure 2005155509

(7)式を伝達関数で表して変形すると、次式(8)のようになる。
Δω=(k1 ・Δβ+d)/(Js+k2 ) …(8)
When the expression (7) is transformed by a transfer function, the following expression (8) is obtained.
Δω = (k 1 · Δβ + d) / (Js + k 2) ... (8)

ここで、G(s)=1/(Js+k2 )とおくと、外乱項dは次式(9)で表される。
d=Δω/G(s)−k1 ・Δβ …(9)
Here, put the G (s) = 1 / ( Js + k 2), the disturbance term d is represented by the following formula (9).
d = Δω / G (s) -k 1 · Δβ ... (9)

1/G(s)は完全な微分の成分を含むので、補償値の精度に悪影響を与える(誤差を大きくする)高周波成分を増幅する。そこで、ローパスフィルタF(s)=1/(Ts+1)をかけた上で、外乱項推定値は次式(10)に基づいて算出する。ここでTは、例えばローパスフィルタを構成するコンデンサのキャパシタと抵抗との積である。   Since 1 / G (s) includes a completely differential component, a high frequency component that adversely affects the accuracy of the compensation value (increases the error) is amplified. Therefore, after applying a low-pass filter F (s) = 1 / (Ts + 1), the disturbance term estimated value is calculated based on the following equation (10). Here, T is, for example, the product of a capacitor and a resistor of a capacitor constituting a low-pass filter.

Figure 2005155509
Figure 2005155509

補償値(フィードフォーワード入力)ud は、(10)式にゲインKd =−kd (kg-1-12 )をかけて次式(11)を得る。 The compensation value (feed forward input) u d is obtained by multiplying the equation (10) by the gain K d = −k d (kg −1 m −1 s 2 ) and obtaining the following equation (11).

Figure 2005155509
Figure 2005155509

算出された補償値ud を含む外乱補償信号を出力する。加算演算器31Fは、PI制御器31Cから出力されたピッチ角制御信号に含まれる制御値に補償値ud を加算し、その値をピッチ角指令信号としてピッチ角操作手段12に出力する。 And it outputs a disturbance compensation signal including the calculated compensation value u d. Adders 31F adds the compensation value u d to the control value included in the pitch angle control signal outputted from the PI controller 31C, and outputs the value to the pitch angle operation section 12 as a pitch angle command signal.

図4は風車発電モデルに風速を代入し、外乱推定による補償をした場合としなかった場合との風車回転数の状況を比較した図である。図4(a)は風速の時間経過を表し、図4(b)はそのときの風車回転数の時間経過を表している。図4(b)から、従来から行われているPI制御のみの風車回転数変動に比べて、外乱推定器31Dによる算出、推定による補償値を加算してブレード11のピッチ角を制御することにより、風車回転数の変動幅が抑制できることがわかる。   FIG. 4 is a diagram comparing the wind turbine rotation speed with and without the wind speed substitution into the wind turbine power generation model and the compensation by disturbance estimation. FIG. 4A shows the time lapse of the wind speed, and FIG. 4B shows the time lapse of the wind turbine rotation speed at that time. As shown in FIG. 4B, the pitch angle of the blade 11 is controlled by adding the compensation value calculated and estimated by the disturbance estimator 31D as compared with the conventional wind turbine speed fluctuation of only PI control. It can be seen that the fluctuation range of the wind turbine rotation speed can be suppressed.

図5は外乱推定による補償を行い、さらにPI制御において回転数目標値を修正するようにした場合としなかった場合との風車回転数、電力の状況を比較した図である。図5(a)は風速の時間経過を表し、図5(b)は目標回転数の修正を表している。また、図5(c)はそのときの風車回転数、図5(d)は発電出力の時間経過を表している。   FIG. 5 is a diagram comparing the wind turbine rotational speed and power situation with and without compensation by disturbance estimation and when the rotational speed target value is corrected in PI control. FIG. 5A shows the passage of time of the wind speed, and FIG. 5B shows the correction of the target rotational speed. Further, FIG. 5C shows the wind turbine rotation speed at that time, and FIG. 5D shows the elapsed time of the power generation output.

図5(a)に示すように、ここでは定格出力を発電するための定格回転数(この場合27rpmを想定している)を維持できないほど、風速変動が大きい状況を表している。また、図5において目標回転数を修正した場合については、風速データの標準偏差をばらつきとして5分毎にばらつきデータを算出している。ここで、図5(b)に示すように目標回転数の修正については0.25rpmを設定間隔として行っている。   As shown in FIG. 5A, here, the wind speed fluctuation is so large that the rated rotational speed for generating the rated output (in this case, 27 rpm is assumed) cannot be maintained. Further, in the case where the target rotational speed is corrected in FIG. 5, the variation data is calculated every 5 minutes with the standard deviation of the wind speed data as the variation. Here, as shown in FIG. 5B, correction of the target rotational speed is performed at a set interval of 0.25 rpm.

図5(c)及び図5(d)に示すように、従来から行われているPI制御のみの風車回転数変動に比べて、本実施の形態で説明したような、目標回転数を修正した上でのPI制御器31Cにより算出したピッチ角の値に、外乱推定器31Dによる算出、推定による補償値を加算してブレード11のピッチ角を制御することにより、風車回転数の変動幅が抑制できることがわかる。また、それに伴って、発電出力の変動も小さくなっていることがわかる。   As shown in FIGS. 5 (c) and 5 (d), the target rotational speed as described in the present embodiment is corrected as compared with the wind turbine rotational speed fluctuation that has been conventionally performed only by PI control. By controlling the pitch angle of the blade 11 by adding the compensation value by the calculation and estimation by the disturbance estimator 31D to the pitch angle value calculated by the PI controller 31C above, the fluctuation range of the wind turbine rotation speed is suppressed. I understand that I can do it. Further, it can be seen that the fluctuation of the power generation output is also reduced accordingly.

以上の結果に基づいて、平均風車回転数、最大風車回転数及び平均発電出力を比較して表したのが表1である。   Table 1 shows a comparison of the average windmill speed, the maximum windmill speed, and the average power generation output based on the above results.

Figure 2005155509
Figure 2005155509

本実施の形態で説明したピッチ角操作による風車回転数の制御を行うと、通常のPI制御に比べて最大回転数は2rpm程度下がっている。また、風況に応じて目標回転数を下げるように設定したので、その分だけ風速回転数も低くなり発電出力も減少している。ただ、外乱推定器31Cが推定、算出した補償値を加算したことで、風車回転数の変動が抑えられるという効果を有し、そのため、効率のよい発電を行うことができているので、0.5%程度の発電出力低下に止まっている。機械的停止によって再起動までの長時間、発電が再開できないことによる稼働率の著しい低下、人が現地まで赴く労力等の損失の大きさを考えると、長期的な発電効率は高くなる。   When the wind turbine rotational speed is controlled by the pitch angle operation described in the present embodiment, the maximum rotational speed is reduced by about 2 rpm as compared with the normal PI control. In addition, since the target rotational speed is set to be lowered according to the wind conditions, the wind speed rotational speed is lowered accordingly, and the power generation output is also reduced. However, the addition of the compensation value estimated and calculated by the disturbance estimator 31C has the effect of suppressing fluctuations in the wind turbine rotation speed. Therefore, efficient power generation can be performed. Only about 5% decrease in power generation output. The long-term power generation efficiency is high considering the significant decrease in operating rate due to the inability to resume power generation for a long time due to mechanical stoppage, and the amount of workmanship loss.

以上のように本実施の形態によれば、ばらつき推定器31Aが算出したばらつきのデータに基づいて、風速の変動によるばらつきが大きい場合には目標回転数を下げ、風速の変動によるばらつきが小さくなると目標回転数を初期状態に戻していくように修正した目標回転数により、PI制御器31CがPI制御を行ってブレード11のピッチ角又は差分の値を決定し、風車1の風車回転数を制御するようにしたので、風速の変動が激しい場合の非制御状態を避けて突風による風車回転数の異常な上昇を抑えることで機械的停止が発生しない。そのため、人が赴いて再起動を行う労力、それに費やす時間、発電作業が再開できないことを考えると、稼働率の著しい低下を避け、効率のよい発電処理、風力発電機を得ることができる。そして、風車回転数の変動も抑えられるので、安定した発電出力が得られ、稼働率も向上する。   As described above, according to the present embodiment, based on the variation data calculated by the variation estimator 31A, when the variation due to the variation in the wind speed is large, the target rotational speed is decreased and the variation due to the variation in the wind velocity is reduced. The PI controller 31C performs PI control based on the target rotational speed corrected so as to return the target rotational speed to the initial state, determines the pitch angle or difference value of the blade 11, and controls the wind turbine rotational speed of the wind turbine 1. Therefore, a mechanical stop does not occur by avoiding an uncontrolled state when the wind speed fluctuates greatly and suppressing an abnormal increase in the wind turbine rotation speed due to a gust of wind. For this reason, considering the labor required for a person to start and restart, the time spent on it, and the inability to resume power generation work, it is possible to avoid a significant decrease in the operating rate and to obtain an efficient power generation process and wind power generator. And since the fluctuation | variation of a windmill rotational speed is also suppressed, the stable electric power output is obtained and an operation rate improves.

また、本実施の形態によれば、外乱推定器31Dが、風車回転数の履歴及びピッチ角の履歴に基づいて、風による外乱を推定、予測演算した補償値を、PI制御により算出したピッチ角又は差分の値に加えてブレード11のピッチ角を制御し、風車1の風車回転数を制御するようにしたので、フィードバック制御だけでは追従できない風車回転数の変動を予測した上で制御することで、風車回転数の変動を抑制でき機械的停止が発生しない。そして、風車回転数の変動抑制により、安定した発電出力を行うことができ、稼働率も向上する。また、風車回転数を制御するための補償値算出に風車回転数のデータを用いることでロータ10の回転に対し、より精度の高い外乱推定を行うことができる。   Further, according to the present embodiment, the pitch estimator 31D calculates the compensation value obtained by estimating and predicting the wind disturbance based on the wind turbine rotation speed history and the pitch angle history by the PI control. Alternatively, in addition to the difference value, the pitch angle of the blade 11 is controlled to control the wind turbine rotational speed of the wind turbine 1. Therefore, by controlling the wind turbine rotational speed that cannot be followed only by feedback control, the fluctuation is predicted. In addition, fluctuations in the rotational speed of the windmill can be suppressed and no mechanical stop occurs. And by suppressing the fluctuation | variation of a windmill rotation speed, the stable electric power generation output can be performed and an operation rate improves. Further, by using the wind turbine rotation speed data for calculating the compensation value for controlling the wind turbine rotation speed, it is possible to estimate the disturbance with higher accuracy with respect to the rotation of the rotor 10.

本発明の実施の形態に係る風力発電装置の構成図である。It is a lineblock diagram of a wind power generator concerning an embodiment of the invention. 風力発電装置のピッチ角制御のための信号の流れによる構成を表した図である。It is a figure showing the structure by the flow of the signal for pitch angle control of a wind power generator. トルク係数、周速比及びブレードピッチ角の関係を表す図である。It is a figure showing the relationship between a torque coefficient, a peripheral speed ratio, and a blade pitch angle. 外乱推定による補償をした場合としなかった場合との風車回転数の状況を比較した図である。It is the figure which compared the condition of the windmill rotation speed with the case where it does not compensate with disturbance estimation, and the case where it does not. 外乱推定による補償を行い、さらにPI制御において回転数目標値を修正するようにした場合としなかった場合とを比較した図である。It is the figure which compared with the case where the compensation by disturbance estimation is performed, and also the rotational speed target value is corrected in PI control.

符号の説明Explanation of symbols

1 風車
10 ロータ
11 ブレード
12 ピッチ角操作手段
2 ナセル
21 発電機
22 ヨー角操作手段
3 制御演算手段
31 ピッチ角制御演算手段
31A ばらつき推定器
31B 目標回転数修正器
31C PI制御器
31D 外乱推定器
31E 回転数検出器
31F 加算演算器
32 ヨー角制御演算手段
33 記憶手段
4 風速計
5 BTB盤
DESCRIPTION OF SYMBOLS 1 Windmill 10 Rotor 11 Blade 12 Pitch angle operation means 2 Nacelle 21 Generator 22 Yaw angle operation means 3 Control calculation means 31 Pitch angle control calculation means 31A Variation estimator 31B Target rotational speed corrector 31C PI controller 31D Disturbance estimator 31E Rotational speed detector 31F Addition calculator 32 Yaw angle control calculation means 33 Storage means 4 Anemometer 5 BTB board

Claims (11)

風車が受ける風速の一定時間における変動のばらつきを算出する工程と、
前記ばらつきに基づいて風車が有する回転体の目標回転数の値を前記所定時間毎に決定し、値の設定を修正する工程と、
修正した目標回転数で前記回転体が回転するように算出した指令値を含む信号を、前記風車が有するブレードのピッチ角を操作するブレードピッチ角操作機構に送信する工程と
を有することを特徴とする風力発電制御方法。
Calculating the variation of the wind speed received by the windmill over a certain period of time;
Determining the value of the target rotational speed of the rotating body of the wind turbine based on the variation for each predetermined time, and correcting the setting of the value;
Transmitting a signal including a command value calculated so that the rotating body rotates at a corrected target rotational speed to a blade pitch angle operating mechanism that operates a pitch angle of a blade of the windmill. Wind power generation control method.
風車が有する回転体の回転数の変動に基づいて、前記風車が有するブレードのピッチ角をブレードピッチ角操作機構に操作させるための制御値を算出すると共に、前記ブレードピッチ角操作機構に操作された前記ブレードのピッチ角及び前記回転体の回転数の変動に基づいて、風による外乱を推定した補償値を算出する工程と、
前記制御値に前記補償値を加えた指令値を含む信号を前記ブレードピッチ角操作機構に送信する工程と
を有することを特徴とする風力発電制御方法。
Based on fluctuations in the rotational speed of the rotating body of the windmill, a control value for causing the blade pitch angle operation mechanism to operate the blade pitch angle of the windmill is calculated, and the blade pitch angle operation mechanism is operated. A step of calculating a compensation value for estimating a disturbance due to wind based on the pitch angle of the blade and the fluctuation of the rotational speed of the rotating body;
And a step of transmitting a signal including a command value obtained by adding the compensation value to the control value to the blade pitch angle operation mechanism.
風車が受ける風速の一定時間における変動のばらつきに基づいて所定時間毎に修正した目標回転数の値で風車が有する回転体が回転するように、前記目標回転数と前記回転体の回転数の偏差とに基づいて、前記風車が有するブレードのピッチ角をブレードピッチ角操作機構に操作させるための制御値を算出すると共に、前記ブレードピッチ角操作機構に操作された前記ブレードのピッチ角及び前記回転体の回転数の変動に基づいて、風による外乱を推定した補償値を算出する工程と、
前記制御値に前記補償値を加えた指令値を含む信号を前記ブレードピッチ角操作機構に送信する工程と
を有することを特徴とする風力発電制御方法。
Deviation between the target rotational speed and the rotational speed of the rotating body so that the rotating body of the windmill rotates at the target rotational speed value corrected every predetermined time based on the variation of the wind speed received by the windmill over a certain period of time. And calculating a control value for causing the blade pitch angle operation mechanism to operate the blade pitch angle of the windmill, and the blade pitch angle operated by the blade pitch angle operation mechanism and the rotating body. A step of calculating a compensation value for estimating the disturbance due to wind based on the fluctuation of the rotational speed of
And a step of transmitting a signal including a command value obtained by adding the compensation value to the control value to the blade pitch angle operation mechanism.
風車が受ける風速の一定時間における変動のばらつきを算出するばらつき推定手段と、
前記ばらつきに基づいて、前記風車が有する回転体の目標回転数の値を前記所定時間毎に決定し、修正する目標回転数修正手段と、
修正した前記目標回転数で前記回転体が回転するように前記風車が有するブレードのピッチ角を制御するための指令値を算出するピッチ角制御手段と
を備えたこと特徴とする風力発電制御装置。
Variation estimating means for calculating variation of the wind speed received by the windmill over a certain period of time;
Based on the variation, target rotational speed correction means for determining and correcting a target rotational speed value of the rotating body of the wind turbine every predetermined time;
A wind power generation control device comprising pitch angle control means for calculating a command value for controlling a pitch angle of a blade of the wind turbine so that the rotating body rotates at the corrected target rotational speed.
風車が有する回転体の回転数の変動に基づいて、前記風車が有するブレードのピッチ角を制御するための制御値を算出するピッチ角制御手段と、
前記風車の回転数の変動及び前記ブレードのピッチ角を操作するブレードピッチ角操作機構により操作された前記ピッチ角に基づいて、風による外乱を推定した補償値を算出する外乱推定部と、
前記制御値と前記補償値と加えた指令値を信号として前記ブレードピッチ角操作機構に送信する加算演算部と
を備えたこと特徴とする風力発電制御装置。
Pitch angle control means for calculating a control value for controlling the pitch angle of the blades of the windmill based on fluctuations in the rotational speed of the rotating body of the windmill;
A disturbance estimation unit that calculates a compensation value for estimating a wind disturbance based on the pitch angle operated by a blade pitch angle operating mechanism that operates the fluctuation of the rotational speed of the windmill and the pitch angle of the blade;
A wind power generation control device comprising: an addition operation unit that transmits a command value obtained by adding the control value and the compensation value as a signal to the blade pitch angle operation mechanism.
風車が受ける風速の一定時間における変動のばらつきを算出するばらつき推定手段と、
前記ばらつきに基づいて、前記風車が有する回転体の目標回転数の値を前記所定時間毎に決定し、修正する目標回転数修正手段と、
修正した前記目標回転数と前記回転体の回転数の偏差とに基づいて、前記風車が有するブレードのピッチ角をブレードピッチ角操作機構に操作させるための制御値を算出するピッチ角制御手段と、
前記風車の回転数の変動及び前記ブレードピッチ角操作機構により操作された前記ピッチ角に基づいて、風による外乱を推定した補償値を算出する外乱推定部と、
前記制御値と前記補償値と加えた指令値を信号として前記ブレードピッチ角操作機構に送信する加算演算部と
を備えたこと特徴とする風力発電制御装置。
Variation estimating means for calculating variation of the wind speed received by the windmill over a certain period of time;
Based on the variation, target rotational speed correction means for determining and correcting a target rotational speed value of the rotating body of the wind turbine every predetermined time;
Pitch angle control means for calculating a control value for causing the blade pitch angle operation mechanism to operate the pitch angle of the blade of the wind turbine based on the corrected target rotational speed and the deviation of the rotational speed of the rotating body;
A disturbance estimation unit that calculates a compensation value for estimating a disturbance due to wind based on the fluctuation of the rotational speed of the windmill and the pitch angle operated by the blade pitch angle operation mechanism;
A wind power generation control device comprising: an addition operation unit that transmits a command value obtained by adding the control value and the compensation value as a signal to the blade pitch angle operation mechanism.
前記目標回転数修正手段は、前記ばらつきが大きいほど前記前記目標回転数の値を下げるように修正することを特徴とする請求項4又は6記載の風力発電制御装置。   7. The wind power generation control device according to claim 4, wherein the target rotational speed correction unit corrects the target rotational speed so as to decrease as the variation increases. 前記ピッチ角制御部は、PI(比例−積分)制御又はPID(比例−積分−微分)制御に基づく制御を行うことを特徴とする請求項4〜6のいずれかに記載の風力発電制御装置。   The wind power generation control device according to any one of claims 4 to 6, wherein the pitch angle control unit performs control based on PI (proportional-integral) control or PID (proportional-integral-derivative) control. 請求項4〜8のいずれかに記載の風力発電制御装置を備え、
該風力発電制御装置によるピッチ角で制御されたブレードにより回転する前記回転体と、
前記回転体の回転に基づいて駆動し、発電する発電機と
を備えたことを特徴とする風力発電装置。
The wind power generation control device according to any one of claims 4 to 8,
The rotating body rotated by a blade controlled at a pitch angle by the wind power generation control device;
A wind power generator comprising: a generator that generates power by driving based on rotation of the rotating body.
風車が受ける風速の一定時間における変動のばらつきを所定時間毎に算出する工程と、
前記ばらつきに基づいて風車が有する回転体の目標回転数の値を前記所定時間毎に決定し、値の設定を修正する工程と、
修正した目標回転数で前記回転体が回転するように算出した制御値に基づいて前記風車が有するブレードのピッチ角を制御する工程と
を制御手段に行わせることを特徴とする風力発電制御方法のプログラム。
Calculating the variation of the wind speed received by the windmill over a certain period of time at a predetermined time;
Determining the value of the target rotational speed of the rotating body of the wind turbine based on the variation for each predetermined time, and correcting the setting of the value;
And a step of controlling a pitch angle of a blade of the wind turbine based on a control value calculated so that the rotating body rotates at a corrected target rotational speed. program.
風車が有する回転体の回転数に基づいて、前記風車が有するブレードのピッチ角をブレードピッチ角操作機構に操作させるための制御値を算出すると共に、前記ブレードピッチ角操作機構に操作された前記ブレードのピッチ角及び前記回転体の回転数に基づいて、風による外乱を推定した補償値を算出する工程と、
前記制御値に前記補償値を加えた指令値の信号を前記ブレードピッチ角操作機構に送信し、前記ブレードのピッチ角を制御させる工程と
を制御手段に行わせることを特徴とする風力発電制御方法のプログラム。
Based on the number of rotations of the rotating body of the windmill, the blade operated by the blade pitch angle operating mechanism is calculated while calculating a control value for causing the blade pitch angle operating mechanism to operate the pitch angle of the blade of the windmill. A step of calculating a compensation value for estimating a disturbance due to wind based on the pitch angle and the rotational speed of the rotating body;
A wind power generation control method characterized by causing a control means to transmit a command value signal obtained by adding the compensation value to the control value to the blade pitch angle operation mechanism and to control the pitch angle of the blade. Program.
JP2003396518A 2003-11-27 2003-11-27 Wind power generation control method and apparatus, wind power generation apparatus, and wind power generation control method program Expired - Lifetime JP4218511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396518A JP4218511B2 (en) 2003-11-27 2003-11-27 Wind power generation control method and apparatus, wind power generation apparatus, and wind power generation control method program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396518A JP4218511B2 (en) 2003-11-27 2003-11-27 Wind power generation control method and apparatus, wind power generation apparatus, and wind power generation control method program

Publications (2)

Publication Number Publication Date
JP2005155509A true JP2005155509A (en) 2005-06-16
JP4218511B2 JP4218511B2 (en) 2009-02-04

Family

ID=34721938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396518A Expired - Lifetime JP4218511B2 (en) 2003-11-27 2003-11-27 Wind power generation control method and apparatus, wind power generation apparatus, and wind power generation control method program

Country Status (1)

Country Link
JP (1) JP4218511B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023811A (en) * 2005-07-13 2007-02-01 Shinko Electric Co Ltd Wind power generation facility
JP2008274953A (en) * 2007-05-03 2008-11-13 Siemens Ag Wind turbine operating method and wind turbine
WO2010032909A1 (en) * 2008-09-18 2010-03-25 삼성중공업 주식회사 Pitch control device and system for wind power generator
US8169096B2 (en) 2008-02-15 2012-05-01 Seiko Epson Corporation Power generator and motor device
JP2012249510A (en) * 2011-05-02 2012-12-13 Toshiba Corp Wind power generation system and method of controlling the same
WO2013002194A1 (en) * 2011-06-29 2013-01-03 三菱重工業株式会社 Maintenance device for wind power generator and maintenance method for wind power generator
KR101280764B1 (en) 2011-04-20 2013-07-05 강원대학교산학협력단 Method and apparatus for controlling wind turbine using wind speed feedforward control
JP2013204473A (en) * 2012-03-27 2013-10-07 Jfe Engineering Corp Wind power generation apparatus
KR101375768B1 (en) 2009-09-01 2014-03-18 현대중공업 주식회사 The Wind turbine individual blade pitch controlling method and controlling system
JP2016015882A (en) * 2011-05-02 2016-01-28 株式会社東芝 Wind turbine generator system and control method therefor
KR20160036214A (en) * 2014-09-25 2016-04-04 삼성중공업 주식회사 Wind turbine generator and control method for wind turbine generator
CN104329224B (en) * 2014-11-13 2017-02-15 湖南世优电气股份有限公司 Variable-rate pitching system and variable-rate pitching method for direct-drive permanent magnet wind generating set
KR20170052339A (en) * 2015-11-04 2017-05-12 대우조선해양 주식회사 Pitch control method for wind power generator under high wind and turbulence flow
CN112412697A (en) * 2019-08-23 2021-02-26 新疆金风科技股份有限公司 Variable pitch demand rate correction method and device and wind generating set
CN113255130A (en) * 2021-05-24 2021-08-13 中国华能集团清洁能源技术研究院有限公司 Method and system for evaluating control performance of wind generating set
US11182297B1 (en) 2020-09-22 2021-11-23 Coupang Corp. Electronic apparatus and information providing method using the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023811A (en) * 2005-07-13 2007-02-01 Shinko Electric Co Ltd Wind power generation facility
JP2008274953A (en) * 2007-05-03 2008-11-13 Siemens Ag Wind turbine operating method and wind turbine
US8169096B2 (en) 2008-02-15 2012-05-01 Seiko Epson Corporation Power generator and motor device
WO2010032909A1 (en) * 2008-09-18 2010-03-25 삼성중공업 주식회사 Pitch control device and system for wind power generator
KR101375768B1 (en) 2009-09-01 2014-03-18 현대중공업 주식회사 The Wind turbine individual blade pitch controlling method and controlling system
KR101280764B1 (en) 2011-04-20 2013-07-05 강원대학교산학협력단 Method and apparatus for controlling wind turbine using wind speed feedforward control
JP2012249510A (en) * 2011-05-02 2012-12-13 Toshiba Corp Wind power generation system and method of controlling the same
JP2016015882A (en) * 2011-05-02 2016-01-28 株式会社東芝 Wind turbine generator system and control method therefor
WO2013002194A1 (en) * 2011-06-29 2013-01-03 三菱重工業株式会社 Maintenance device for wind power generator and maintenance method for wind power generator
JP2013204473A (en) * 2012-03-27 2013-10-07 Jfe Engineering Corp Wind power generation apparatus
KR20160036214A (en) * 2014-09-25 2016-04-04 삼성중공업 주식회사 Wind turbine generator and control method for wind turbine generator
KR101656478B1 (en) * 2014-09-25 2016-09-22 삼성중공업 주식회사 Wind turbine generator
CN104329224B (en) * 2014-11-13 2017-02-15 湖南世优电气股份有限公司 Variable-rate pitching system and variable-rate pitching method for direct-drive permanent magnet wind generating set
KR20170052339A (en) * 2015-11-04 2017-05-12 대우조선해양 주식회사 Pitch control method for wind power generator under high wind and turbulence flow
KR102411512B1 (en) 2015-11-04 2022-06-22 대우조선해양 주식회사 Pitch control method for wind power generator under high wind and turbulence flow
CN112412697A (en) * 2019-08-23 2021-02-26 新疆金风科技股份有限公司 Variable pitch demand rate correction method and device and wind generating set
CN112412697B (en) * 2019-08-23 2023-04-07 新疆金风科技股份有限公司 Variable pitch demand rate correction method and device and wind generating set
US11182297B1 (en) 2020-09-22 2021-11-23 Coupang Corp. Electronic apparatus and information providing method using the same
CN113255130A (en) * 2021-05-24 2021-08-13 中国华能集团清洁能源技术研究院有限公司 Method and system for evaluating control performance of wind generating set
CN113255130B (en) * 2021-05-24 2024-01-23 中国华能集团清洁能源技术研究院有限公司 Method and system for evaluating control performance of wind generating set

Also Published As

Publication number Publication date
JP4218511B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4218511B2 (en) Wind power generation control method and apparatus, wind power generation apparatus, and wind power generation control method program
US5289041A (en) Speed control system for a variable speed wind turbine
US9745958B2 (en) Method and system for managing loads on a wind turbine
US10294923B2 (en) Damping oscillations in a wind turbine
JP5156029B2 (en) Wind power generator and control method thereof
JP4269941B2 (en) Wind power generator and control method thereof
US8979492B2 (en) Methods and systems for determining a pitch angle offset signal and for controlling a rotor frequency of a rotor of a wind turbine for speed avoidance control
JP4998885B2 (en) Maximum power tracking controller for wind turbine generator
US20140246855A1 (en) Generator-Fault-Tolerant Control for a Variable-Speed Variable-Pitch Wind Turbine
US11815066B2 (en) Method for operating a wind turbine, controller, wind turbine and wind farm
BR102015005452B1 (en) INERTIA CONTROL SYSTEM FOR WIND GENERATORS AND WIND FARM
EP3074629A1 (en) Power-ramping pitch feed-forward
RU2729587C1 (en) Wind-driven power plant and method of operation of wind-driven power plant
JP5455890B2 (en) Wind turbine generator control device, wind turbine generator system, and wind turbine generator control method
JP2006233912A (en) Wind turbine generator, its control method, and method for controlling pitch-angle of blade
EP3221581B1 (en) A method for estimating a wind speed in a stable manner
JP2005240725A (en) Wind turbine generator and its power generation output control method
JP2010159646A (en) Wind turbine generator, and method and program for controlling blade pitch angle of the same
JP2020139427A (en) Wind turbine generator system and control method for the same
US20180291877A1 (en) Method for operating a wind turbine
KR20170052339A (en) Pitch control method for wind power generator under high wind and turbulence flow
US9677542B2 (en) Method for operating a wind turbine
US9279410B2 (en) Wind turbine generator, method of wind turbine generation, and program of the wind turbine generator
EP3054152A1 (en) Wind power generation apparatus
EP3109461B1 (en) Operating a wind turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4218511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term