JP2005154158A - Porous granular basic magnesium carbonate and its producing method - Google Patents

Porous granular basic magnesium carbonate and its producing method Download PDF

Info

Publication number
JP2005154158A
JP2005154158A JP2003390863A JP2003390863A JP2005154158A JP 2005154158 A JP2005154158 A JP 2005154158A JP 2003390863 A JP2003390863 A JP 2003390863A JP 2003390863 A JP2003390863 A JP 2003390863A JP 2005154158 A JP2005154158 A JP 2005154158A
Authority
JP
Japan
Prior art keywords
magnesium carbonate
basic magnesium
porous granular
porous
total volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003390863A
Other languages
Japanese (ja)
Other versions
JP4378160B2 (en
Inventor
Osamu Misumi
修 三隅
Hitoshi Mito
均 三戸
Toyotaka Uchida
豊隆 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2003390863A priority Critical patent/JP4378160B2/en
Publication of JP2005154158A publication Critical patent/JP2005154158A/en
Application granted granted Critical
Publication of JP4378160B2 publication Critical patent/JP4378160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide basic magnesium carbonate which can be easily pulverized or disintegrated into a particle size suitable to be used as a magnesium enhancer in foods or beverages and to provide a method for producing the basic magnesium carbonate. <P>SOLUTION: The porous granular basic magnesium carbonate comprises aggregation of primary particles and has 10 to 100 m<SP>2</SP>/g specific surface area, 10 to 80 μm average particle size and 0.2 to 1.0 mL/g total volume of pores having 10 to 300 nm diameter. The porous granular basic magnesium carbonate is produced by bringing magnesium oxide powder having 0.01 to 0.5 μm average particle size of primary particles into contact with carbon dioxide gas in an aqueous medium. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多孔質粒状塩基性炭酸マグネシウムに関するものであり、特に、食品や飲料のマグネシウム補強剤としての使用に適した粒子サイズへの粉砕もしくは解砕が容易な多孔質粒状塩基性炭酸マグネシウムに関するものである。   The present invention relates to porous granular basic magnesium carbonate, and more particularly to porous granular basic magnesium carbonate that can be easily pulverized or crushed to a particle size suitable for use as a magnesium reinforcing agent for foods and beverages. Is.

近年、食品や飲料のマグネシウム補強剤として、塩基性炭酸マグネシウムを用いることが検討されている。食品や飲料に添加される塩基性炭酸マグネシウムは、食品や飲料の食感を損なわないように、粒子サイズが小さい方が好ましい。一般に平均粒子径で、食品では3μm以下、飲料では0.5μm以下であることが好ましいといわれている。   In recent years, the use of basic magnesium carbonate as a magnesium reinforcing agent for foods and beverages has been studied. The basic magnesium carbonate added to foods and beverages preferably has a smaller particle size so as not to impair the texture of foods and beverages. In general, it is said that the average particle size is preferably 3 μm or less for foods and 0.5 μm or less for beverages.

例えば、特許文献1には、平均体積粒子が0.1〜0.5μmの範囲にある塩基性炭酸マグネシウムが分散されているマグネシウムの補強飲料もしくはペースト状食品が開示されている。また、特許文献2には、カルシウム素材と平均体積粒子が0.1〜0.5μmの範囲にある塩基性炭酸マグネシウムとが分散されているカルシウムとマグネシウムの補強飲料もしくはペースト状食品が開示されている。これらの特許文献1、2には、上記粒子サイズの塩基性炭酸マグネシウムは、水酸化マグネシウム懸濁液に、炭酸ガスを接触させて、水酸化マグネシウムの炭酸化反応により炭酸マグネシウムを生成し、次いで炭酸マグネシウムを分解熟成して塩基性炭酸マグネシウムに転化することによって製造された塩基性炭酸マグネシウム(二次粒子)を、ビーズミルを用いた湿式粉砕法によって粉砕することによって得られると記載されている。   For example, Patent Literature 1 discloses a magnesium-reinforced beverage or pasty food in which basic magnesium carbonate having an average volume particle in the range of 0.1 to 0.5 μm is dispersed. Patent Document 2 discloses a calcium and magnesium reinforced beverage or pasty food in which a calcium material and basic magnesium carbonate having an average volume particle in the range of 0.1 to 0.5 μm are dispersed. Yes. In these patent documents 1 and 2, the basic magnesium carbonate having the above particle size is produced by bringing a magnesium hydroxide suspension into contact with carbon dioxide gas to produce magnesium carbonate by a carbonation reaction of magnesium hydroxide, It is described that basic magnesium carbonate (secondary particles) produced by decomposing and aging magnesium carbonate and converting it to basic magnesium carbonate is obtained by pulverization by a wet pulverization method using a bead mill.

上記の水酸化マグネシウムの炭酸化反応を利用して、塩基性炭酸マグネシウムを合成する方法は、工業的に広く行われている。この水酸化マグネシウムの炭酸化反応により得られる塩基性炭酸マグネシウム(二次粒子)は、一般に鱗片状の一次粒子が球状に凝集してなる多孔質粒子である。   A method for synthesizing basic magnesium carbonate by utilizing the above-mentioned carbonation reaction of magnesium hydroxide is widely performed industrially. Basic magnesium carbonate (secondary particles) obtained by the carbonation reaction of magnesium hydroxide is generally porous particles formed by agglomerating flaky primary particles into a spherical shape.

例えば、特許文献3には、塩基性炭酸マグネシウム出発懸濁液に、水酸化マグネシウム懸濁液を添加しながら、炭酸ガスを吹き込んで炭酸化反応を行なう多孔質球状塩基性炭酸マグネシウムの製造方法が開示されている。この特許文献の実施例1では、鱗片状の一次粒子が多孔質に凝集した、15μm程度の均一な粒子径をもつ球状体であって、見掛比重0.25g/cc、吸油量170mL/100gで、水500mLに粉末100gを懸濁させた際の粘度が200cpsの多孔質球状塩基性炭酸マグネシウムが得られている。
また、この特許文献の記載によれば、上述の方法によって製造される多孔質球状塩基性炭酸マグネシウムは、水、有機溶媒あるいはポリマー等への分散性に優れ、塗料、化粧料、紙あるいはポリマー等の充填剤及び薬剤のキャリアー、芳香剤の担体等の広い用途に好適に使用できるとされている。
特開2001−258525号公報 特開2001−258526号公報 特開昭63−89418号公報
For example, Patent Document 3 discloses a method for producing porous spherical basic magnesium carbonate, in which carbonic acid gas is blown into a basic magnesium carbonate starting suspension while adding a magnesium hydroxide suspension to perform a carbonation reaction. It is disclosed. In Example 1 of this patent document, a spherical body having a uniform particle diameter of about 15 μm, in which scaly primary particles are aggregated in a porous manner, has an apparent specific gravity of 0.25 g / cc, and an oil absorption amount of 170 mL / 100 g. Thus, porous spherical basic magnesium carbonate having a viscosity of 200 cps when 100 g of powder is suspended in 500 mL of water is obtained.
Further, according to the description of this patent document, the porous spherical basic magnesium carbonate produced by the above-described method is excellent in dispersibility in water, an organic solvent, a polymer or the like, such as a paint, a cosmetic, paper or a polymer. It is said that it can be suitably used for a wide range of applications, such as fillers and drug carriers, and fragrance carriers.
JP 2001-258525 A JP 2001-258526 A JP-A 63-89418

上述の水酸化マグネシウムの炭酸化反応を利用して多孔質粒状塩基性炭酸マグネシウムを製造する場合、水性媒体中の多孔質粒状塩基性炭酸マグネシウムの粒子サイズを小さくすると(特に、平均粒子径で3μm以下にすると)、後工程であるろ過工程でのろ過効率が低下するため、多孔質粒状塩基性炭酸マグネシウムの生産性が低下する傾向にある。また、粒子サイズの小さい多孔質粒状塩基性炭酸マグネシウムは、乾燥時に、固結しやすいという問題がある。これらの理由から、水酸化マグネシウムの炭酸化反応を利用して製造された多孔質粒状塩基性炭酸マグネシウムは、平均粒子径で10μm以上であることが多い。   When producing the porous granular basic magnesium carbonate using the above-mentioned carbonation reaction of magnesium hydroxide, the particle size of the porous granular basic magnesium carbonate in the aqueous medium is reduced (particularly, the average particle diameter is 3 μm). If it is set below), the filtration efficiency in the subsequent filtration step is lowered, so the productivity of the porous granular basic magnesium carbonate tends to be lowered. In addition, porous granular basic magnesium carbonate having a small particle size has a problem that it tends to solidify during drying. For these reasons, the porous granular basic magnesium carbonate produced by utilizing the carbonation reaction of magnesium hydroxide often has an average particle diameter of 10 μm or more.

上記のような粒子サイズの大きい多孔質粒状塩基性炭酸マグネシウムを食品や飲料のマグネシウム補強剤として用いるためには、その粒子サイズを予め使用目的に応じたサイズに粉砕もしくは解砕することが必要とある。しかしながら、本発明者の検討によると、水酸化マグネシウム懸濁液中の水酸化マグネシウム(一次粒子)は、緻密な凝集体(二次粒子)を形成し易いため、水酸化マグネシウムの炭酸化反応を利用して製造した多孔質粒状塩基性炭酸マグネシウムは、一次粒子の緻密な凝集体となる傾向にあり、食品や飲料のマグネシウム補強剤としての使用に適した粒子サイズにまで粉砕もしくは解砕するのは容易ではない。
従って、本発明の課題は、食品や飲料のマグネシウム補強剤としての使用に適した粒子サイズへの粉砕もしくは解砕が容易な塩基性炭酸マグネシウム及びその製造方法を提供することにある。
In order to use porous granular basic magnesium carbonate having a large particle size as described above as a magnesium reinforcing agent for foods and beverages, it is necessary to pulverize or crush the particle size to a size according to the purpose of use in advance. is there. However, according to the study by the present inventor, magnesium hydroxide (primary particles) in the magnesium hydroxide suspension tends to form dense aggregates (secondary particles), and therefore, the carbonation reaction of magnesium hydroxide is not performed. Porous granular basic magnesium carbonate produced by use tends to be a dense aggregate of primary particles, and is pulverized or crushed to a particle size suitable for use as a magnesium reinforcing agent in foods and beverages. Is not easy.
Accordingly, an object of the present invention is to provide basic magnesium carbonate that can be easily pulverized or pulverized into a particle size suitable for use as a magnesium reinforcing agent in foods and beverages, and a method for producing the same.

本発明者は、一次粒子の平均粒子径が0.01〜0.5μmの範囲にある酸化マグネシウム粉末の懸濁液に炭酸ガスを接触させることにより、比表面積が10〜100m2/gの範囲にあり、平均粒子径が10〜80μmの範囲にあって、直径が10〜300nmの細孔(以下、このサイズの細孔をマクロ細孔ということもある)の総容積が0.2〜1.0mL/gの範囲にある多孔質粒状塩基性炭酸マグネシウムを得ることができ、さらに、この多孔質粒状塩基性炭酸マグネシウムが、上記の水酸化マグネシウムの炭酸化反応を利用して得られた多孔質粒状塩基性炭酸マグネシウムと比べて粉砕性もしくは解砕性に優れることを見い出して、本発明に到達した。 The inventor of the present invention has a specific surface area of 10 to 100 m 2 / g by bringing carbon dioxide gas into contact with a suspension of magnesium oxide powder having an average primary particle diameter of 0.01 to 0.5 μm. The total volume of pores having an average particle diameter of 10 to 80 μm and a diameter of 10 to 300 nm (hereinafter, pores of this size may be referred to as macropores) is 0.2 to 1 A porous granular basic magnesium carbonate in a range of 0.0 mL / g can be obtained, and the porous granular basic magnesium carbonate is obtained by using the above-mentioned carbonation reaction of magnesium hydroxide. The present inventors have found that it is excellent in pulverization property or pulverization property compared with granular granular magnesium carbonate, and has reached the present invention.

従って、本発明は、一次粒子が凝集してなる多孔質粒状塩基性炭酸マグネシウムであって、比表面積が10〜100m2/gの範囲にあり、平均粒子径が10〜80μmの範囲にあって、直径が10〜300nmの細孔(マクロ細孔)の総容積が0.2〜1.0mL/gの範囲にあることを特徴とする多孔質粒状塩基性炭酸マグネシウムにある。 Accordingly, the present invention is a porous granular basic magnesium carbonate in which primary particles are aggregated, having a specific surface area in the range of 10 to 100 m 2 / g and an average particle diameter in the range of 10 to 80 μm. In the porous granular basic magnesium carbonate, the total volume of pores (macropores) having a diameter of 10 to 300 nm is in the range of 0.2 to 1.0 mL / g.

本発明の多孔質粒状塩基性炭酸マグネシウムの好ましい態様を下記に示す。
(1)マクロ細孔の総容積が全細孔の総容積の80%以上を占める。
(2)粒子径が5μm未満の多孔質粒子を10体積%以上含まない。
The preferable aspect of the porous granular basic magnesium carbonate of this invention is shown below.
(1) The total volume of macropores occupies 80% or more of the total volume of all pores.
(2) Does not contain 10% by volume or more of porous particles having a particle diameter of less than 5 μm.

本発明の多孔質粒状塩基性炭酸マグネシウムは、一次粒子の平均粒子径が0.01〜0.5μmの範囲にある酸化マグネシウム粉末を、水性媒体中で炭酸ガスに接触させることによって製造することができる。   The porous granular basic magnesium carbonate of the present invention can be produced by contacting magnesium oxide powder having an average primary particle diameter in the range of 0.01 to 0.5 μm with carbon dioxide gas in an aqueous medium. it can.

本発明の多孔質粒状塩基性炭酸マグネシウムは、マクロ細孔の総容積が大きく、一次粒子が粗に凝集した多孔質粒子であるので、容易に粉砕もしくは解砕することができる。従って、本発明の多孔質粒状塩基性炭酸マグネシウムは、食品や飲料のマグネシウム補強剤の原料として有利に使用することができる。
また、本発明の製造方法では、酸化マグネシウム粉末を水性媒体中で炭酸ガスに接触させるので、酸化マグネシウムの水和反応による水酸化マグネシウムの生成と、その生成した水酸化マグネシウムの炭酸化反応とが同時に進行する。すなわち、水酸化マグネシウムが緻密な凝集体を形成する前に水酸化マグネシウムの炭酸化反応が進行する。従って、本発明の製造方法より、マクロ細孔の総容積の大きい多孔質粒状塩基性炭酸マグネシウムを工業的に有利に製造することができる。
Since the porous granular basic magnesium carbonate of the present invention is a porous particle in which the total volume of macropores is large and primary particles are coarsely aggregated, it can be easily pulverized or crushed. Therefore, the porous granular basic magnesium carbonate of the present invention can be advantageously used as a raw material for a magnesium reinforcing agent for foods and beverages.
Further, in the production method of the present invention, the magnesium oxide powder is brought into contact with carbon dioxide gas in an aqueous medium. Therefore, the production of magnesium hydroxide by the hydration reaction of magnesium oxide and the carbonation reaction of the produced magnesium hydroxide are performed. Progress at the same time. That is, the carbonate reaction of magnesium hydroxide proceeds before magnesium hydroxide forms a dense aggregate. Therefore, the porous granular basic magnesium carbonate having a large total volume of macropores can be industrially advantageously produced by the production method of the present invention.

本発明の多孔質粒状塩基性炭酸マグネシウムは、一次粒子が凝集してなる多孔質粒状塩基性炭酸マグネシウムであって、比表面積が10〜100m2/gの範囲にあり、平均粒子径が10〜80μmの範囲にあって、直径が10〜300nmの細孔(マクロ細孔)の総容積が0.2〜1.0mL/gの範囲にあることを特徴とする。上記マクロ細孔の総容積は、全細孔の総容積の80体積%以上(特に、85〜99体積%の範囲)を占めることが好ましい。 The porous granular basic magnesium carbonate of the present invention is a porous granular basic magnesium carbonate formed by aggregation of primary particles, having a specific surface area in the range of 10 to 100 m 2 / g, and an average particle diameter of 10 to 10. The total volume of pores (macropores) having a diameter of 10 to 300 nm in a range of 80 μm is in a range of 0.2 to 1.0 mL / g. The total volume of the macropores preferably occupies 80% by volume or more (particularly in the range of 85 to 99% by volume) of the total volume of all the pores.

さらに本発明の多孔質粒状塩基性炭酸マグネシウムは、粒子径が5μm未満の多孔質粒子を10体積%以上含まないことが好ましい。また、ハンドリング性(流動性)の指標として、安息角が50度以下、特に、20〜40度の範囲にあることが好ましい。   Furthermore, it is preferable that the porous granular basic magnesium carbonate of the present invention does not contain 10% by volume or more of porous particles having a particle diameter of less than 5 μm. Further, as an index of handling property (fluidity), it is preferable that the angle of repose is 50 degrees or less, particularly 20 to 40 degrees.

本発明の多孔質粒状塩基性炭酸マグネシウムは、例えば、水などの適当な溶媒に分散させた状態で超音波振動を付与することにより、あるいはボールミルを用いた湿式粉砕法により、食品や飲料のマグネシウム補強剤として有用な粒子サイズとすることができる。   The porous granular basic magnesium carbonate of the present invention can be obtained by applying ultrasonic vibrations in a state dispersed in a suitable solvent such as water, or by wet pulverization using a ball mill. The particle size can be useful as a reinforcing agent.

上記の多孔質粒状塩基性炭酸マグネシウムは、一次粒子の平均粒子径が0.01〜0.5μmにある酸化マグネシウム粉末を、水性媒体中で炭酸ガスに接触させることにより有利に製造することができる。なお、酸化マグネシウム粉末の一次粒子の平均粒子径は、X線粉末法により求めた結晶子サイズを意味する。   The porous granular basic magnesium carbonate can be advantageously produced by bringing a magnesium oxide powder having an average primary particle diameter of 0.01 to 0.5 μm into contact with carbon dioxide gas in an aqueous medium. . In addition, the average particle diameter of the primary particle of magnesium oxide powder means the crystallite size calculated | required by the X-ray powder method.

酸化マグネシウム粉末の一次粒子は、二次粒子を形成していてもよい。二次粒子のサイズは、平均粒子径で1〜3μmの範囲にあることが好ましい。酸化マグネシウム粉末は、水酸化マグネシウムや炭酸マグネシウムなどのマグネシウム化合物を、1200℃以下の温度で焼成して製造した仮焼酸化マグネシウム粉末であることが好ましい。   The primary particles of the magnesium oxide powder may form secondary particles. The size of the secondary particles is preferably in the range of 1 to 3 μm in terms of average particle diameter. The magnesium oxide powder is preferably a calcined magnesium oxide powder produced by firing a magnesium compound such as magnesium hydroxide or magnesium carbonate at a temperature of 1200 ° C. or lower.

水性媒体には、90℃以下、特に60〜80℃の温水を用いることが好ましい。水性媒体の温度が低くなると、酸化マグネシウムの水和速度が遅くなったり、また水酸化マグネシウムの炭酸化反応によって生成した炭酸マグネシウムからの塩基性炭酸マグネシウムへの転化速度が遅くなる傾向にある。水性媒体中の酸化マグネシウム濃度は、1〜20質量%の範囲にあることが好ましい。   As the aqueous medium, it is preferable to use hot water of 90 ° C. or less, particularly 60 to 80 ° C. When the temperature of the aqueous medium is lowered, the hydration rate of magnesium oxide tends to be slow, and the conversion rate of magnesium carbonate produced by the carbonate reaction of magnesium hydroxide to basic magnesium carbonate tends to be slow. The magnesium oxide concentration in the aqueous medium is preferably in the range of 1 to 20% by mass.

炭酸ガスの供給(水性媒体への吹き込み)は、酸化マグネシウムの水和反応により生成した水酸化マグネシウムが水性媒体中にて緻密な凝集体を形成しないように、酸化マグネシウム粉末を水性媒体に投入する前もしくは投入後直ちに行なうことが好ましい。炭酸ガスは、CO2濃度で20〜100容量%の範囲にあることが好ましい。炭酸ガスの流量は、酸化マグネシウム粉末1kgあたり、5〜30L/分の範囲にあることが好ましい。炭酸ガスの供給は、水性媒体中に炭酸ガスが十分に分散するように、水性媒体を攪拌しながら行なうことが好ましい。攪拌は、生成した塩基性炭酸マグネシウムの多孔質粒子に衝撃を与えないように緩やかに行なうことが好ましい。 The supply of carbon dioxide gas (blowing into the aqueous medium) is performed by introducing magnesium oxide powder into the aqueous medium so that the magnesium hydroxide produced by the hydration reaction of magnesium oxide does not form a dense aggregate in the aqueous medium. It is preferable to carry out it immediately before or immediately after charging. The carbon dioxide gas is preferably in the range of 20 to 100% by volume in terms of CO 2 concentration. The flow rate of carbon dioxide gas is preferably in the range of 5 to 30 L / min per kg of magnesium oxide powder. The carbon dioxide gas is preferably supplied while stirring the aqueous medium so that the carbon dioxide gas is sufficiently dispersed in the aqueous medium. The stirring is preferably performed gently so as not to give an impact to the produced porous particles of basic magnesium carbonate.

上記の方法により得られた多孔質粒状塩基性炭酸マグネシウムは、ろ過し、乾燥することによって、回収することができる。   The porous granular basic magnesium carbonate obtained by the above method can be recovered by filtration and drying.

以下、実施例により本発明を詳細に説明する。なお、下記の実施例及び比較例において得られた多孔質粒状塩基性炭酸マグネシウムの比表面積、マクロ細孔の総容積、全細孔総容積に対するマクロ細孔総容積の占有率、平均粒子径、粒子径が5μm未満の多孔質粒子含有率、超音波粉砕処理の平均粒子径及び安息角は下記の方法により測定した。   Hereinafter, the present invention will be described in detail by way of examples. The specific surface area of the porous granular basic magnesium carbonate obtained in the following Examples and Comparative Examples, the total volume of macropores, the occupation ratio of the total macropore volume to the total total pore volume, the average particle diameter, The content of porous particles having a particle diameter of less than 5 μm, the average particle diameter of the ultrasonic grinding treatment, and the angle of repose were measured by the following methods.

(1)比表面積:試料を120℃で3時間真空乾燥した後、ユアサアイオニクス(株)製、Autosorb−MP3を用いて、BET法により測定した。
(2)マクロ細孔の総容積及びマクロ細孔の総容積占有率:試料を120℃で3時間真空乾燥した後、ユアサアイオニクス(株)製、Autosorb−MP3を用いて、窒素吸着法により測定した。減圧度合いを変化させることによって、細孔径ごとに総容積を測定して、マクロ細孔の総容積とマクロ細孔の総容積占有率とを算出した。
(3)平均粒子径及び5μm未満の多孔質粒子含有率:試料5gを水50gが入った100mLビーカに投入し、試料が均一に分散するまでガラス棒でゆっくりかき混ぜた後、レーザ回折式粒度分布測定装置(日機装(株)製、MicrotacX100)を用いて、平均粒子径及び5μm未満の多孔質粒子含有率を測定した。
(4)超音波粉砕処理後の平均粒子径:試料5gを水50gが入った100mLビーカに投入し、超音波振動子(日本精機(株)製、US−300)を用いて電流値300μAの条件下にて10分間超音波粉砕処理を行なった後、レーザ回折式粒度分布測定装置を用いて平均粒子径を測定した。
(5)安息角:ホソカワミクロン(株)製、パウダーテスターを用いて測定した。
(1) Specific surface area: The sample was vacuum-dried at 120 ° C. for 3 hours and then measured by BET method using Autosorb-MP3 manufactured by Yuasa Ionics Co., Ltd.
(2) Total volume of macropores and total volume occupancy of macropores: After the sample was vacuum-dried at 120 ° C. for 3 hours, it was subjected to nitrogen adsorption method using Autosorb-MP3 manufactured by Yuasa Ionics Co., Ltd. It was measured. By changing the degree of decompression, the total volume was measured for each pore diameter, and the total volume of the macropores and the total volume occupation ratio of the macropores were calculated.
(3) Average particle diameter and porous particle content of less than 5 μm: 5 g of a sample is put into a 100 mL beaker containing 50 g of water, and stirred slowly with a glass rod until the sample is uniformly dispersed, and then laser diffraction particle size distribution Using a measuring device (Nikkiso Co., Ltd., Microtac X100), the average particle size and the content of porous particles less than 5 μm were measured.
(4) Average particle size after ultrasonic pulverization treatment: 5 g of sample was put into a 100 mL beaker containing 50 g of water, and the current value was 300 μA using an ultrasonic vibrator (Nippon Seiki Co., Ltd., US-300). After ultrasonic pulverization for 10 minutes under the conditions, the average particle size was measured using a laser diffraction particle size distribution analyzer.
(5) Angle of repose: Measured using a powder tester manufactured by Hosokawa Micron Corporation.

[実施例1]
水酸化マグネシウム(関東化学(株)製、鹿1級)を電気炉に入れ、室温から450℃まで45分間、450℃から700℃まで50分間、700℃から950℃まで80分間の昇温条件で昇温した後、950℃にて1時間保持して酸化マグネシウム粉末を得た。得られた酸化マグネシウム粉末の一次粒子の平均粒子径をX線粉末法により測定したところ、その値は0.04μmであった。また、酸化マグネシウム粉末をエタノールに分散させた後、レーザ回折式粒度分布測定装置(日機装(株)製、MicrotacX100)を用いて、二次粒子の平均粒子径を測定したところ、その値は2.6μmであった。
上記の酸化マグネシウム粉末1kgを70℃の温水20kgが入った攪拌機付き反応槽に入れ、CO2濃度25容量%の炭酸ガスを10.5L/分の流量にて吹き込みながら5時間攪拌した。反応生成物を吸引ろ過した後、エタノール洗浄し、120℃の温度にて24時間乾燥した。乾燥後、反応生成物の組成を分析したところ、塩基性炭酸マグネシウムであることが確認された。また、粒子形状を電子顕微鏡を用いて観察したところ、鱗片状の一次粒子が凝集した球状の多孔質粒子であることが確認された。
得られた多孔質粒状塩基性炭酸マグネシウムの比表面積、マクロ細孔の総容積、マクロ細孔の総容積占有率、平均粒子径及び5μm未満の多孔質粒子含有率を表1に、超音波粉砕処理後の平均粒子径及び安息角を表2に示す。
[Example 1]
Magnesium hydroxide (manufactured by Kanto Chemical Co., Ltd., deer grade 1) is placed in an electric furnace, and the temperature is raised from room temperature to 450 ° C for 45 minutes, from 450 ° C to 700 ° C for 50 minutes, and from 700 ° C to 950 ° C for 80 minutes. And then held at 950 ° C. for 1 hour to obtain a magnesium oxide powder. When the average particle diameter of the primary particles of the obtained magnesium oxide powder was measured by the X-ray powder method, the value was 0.04 μm. In addition, after dispersing the magnesium oxide powder in ethanol, the average particle diameter of the secondary particles was measured using a laser diffraction particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., Microtac X100). It was 6 μm.
1 kg of the above magnesium oxide powder was placed in a reaction vessel equipped with a stirrer containing 20 kg of hot water at 70 ° C., and stirred for 5 hours while blowing carbon dioxide gas having a CO 2 concentration of 25% by volume at a flow rate of 10.5 L / min. The reaction product was filtered with suction, washed with ethanol, and dried at a temperature of 120 ° C. for 24 hours. After drying, the composition of the reaction product was analyzed and confirmed to be basic magnesium carbonate. Moreover, when the particle shape was observed using an electron microscope, it was confirmed that the particles were spherical porous particles in which the scaly primary particles were aggregated.
Table 1 shows the specific surface area of the obtained porous granular basic magnesium carbonate, the total volume of macropores, the total volume occupancy of macropores, the average particle diameter, and the content of porous particles less than 5 μm. Table 2 shows the average particle diameter and angle of repose after treatment.

[実施例2]
水酸化マグネシウム(関東化学(株)製、鹿1級)を電気炉に入れ、室温から450℃まで45分間、450℃から700℃まで50分間、700℃から750℃まで10分間の昇温条件で昇温した後、750℃にて1時間保持して酸化マグネシウム粉末を得た。得られた酸化マグネシウム粉末の一次粒子の平均粒子径をX線粉末法により測定したところ、その値は0.02μmであった。また、酸化マグネシウム粉末をエタノールに分散させた後、レーザ回折式粒度分布測定装置(日機装(株)製、MicrotacX100)を用いて、二次粒子の平均粒子径を測定したところ、その値は2.1μmであった。
上記の酸化マグネシウム粉末1kgを60℃の温水20kgが入った攪拌機付き反応槽に入れ、CO2濃度100容量%の炭酸ガスを10.5L/分の流量にて吹き込みながら5時間攪拌した。反応生成物を吸引ろ過した後、エタノール洗浄し、120℃の温度にて24時間乾燥した。乾燥後、反応生成物の組成を分析したところ、塩基性炭酸マグネシウムであることが確認された。また、粒子形状を電子顕微鏡を用いて観察したところ、鱗片状の一次粒子が凝集した球状の多孔質粒子であることが確認された。
得られた多孔質粒状塩基性炭酸マグネシウムの比表面積、マクロ細孔の総容積、マクロ細孔の総容積占有率、平均粒子径及び5μm未満の多孔質粒子含有率を表1に、超音波粉砕処理後の平均粒子径及び安息角を表2に示す。
[Example 2]
Magnesium hydroxide (manufactured by Kanto Chemical Co., Ltd., deer grade 1) is placed in an electric furnace, and the temperature is raised from room temperature to 450 ° C for 45 minutes, from 450 ° C to 700 ° C for 50 minutes, and from 700 ° C to 750 ° C for 10 minutes. And then kept at 750 ° C. for 1 hour to obtain a magnesium oxide powder. When the average particle diameter of the primary particles of the obtained magnesium oxide powder was measured by the X-ray powder method, the value was 0.02 μm. In addition, after dispersing the magnesium oxide powder in ethanol, the average particle diameter of the secondary particles was measured using a laser diffraction particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., Microtac X100). It was 1 μm.
1 kg of the above magnesium oxide powder was placed in a reaction vessel equipped with a stirrer containing 20 kg of hot water at 60 ° C., and stirred for 5 hours while blowing CO 2 gas of 100% by volume at a flow rate of 10.5 L / min. The reaction product was filtered with suction, washed with ethanol, and dried at a temperature of 120 ° C. for 24 hours. After drying, the composition of the reaction product was analyzed and confirmed to be basic magnesium carbonate. Moreover, when the particle shape was observed using an electron microscope, it was confirmed that the particles were spherical porous particles in which the scaly primary particles were aggregated.
Table 1 shows the specific surface area of the obtained porous granular basic magnesium carbonate, the total volume of macropores, the total volume occupancy of macropores, the average particle diameter, and the content of porous particles less than 5 μm. Table 2 shows the average particle diameter and angle of repose after treatment.

[比較例1]
水酸化マグネシウム(関東化学(株)製、鹿1級)1.45kgを70℃の温水20kgが入った攪拌機付き反応槽に入れ、CO2濃度25容量%の炭酸ガスを10.5L/分の流量にて吹き込みながら5時間攪拌した。
反応生成物を吸引ろ過した後、エタノール洗浄し、120℃の温度にて24時間乾燥した。乾燥後、反応生成物の組成を分析したところ、塩基性炭酸マグネシウムであることが確認された。また、粒子形状を電子顕微鏡を用いて観察したところ、鱗片状の一次粒子が凝集した球状の多孔質粒子であることが確認された。
得られた多孔質粒状塩基性炭酸マグネシウムの比表面積、マクロ細孔の総容積、マクロ細孔の総容積占有率、平均粒子径及び5μm未満の多孔質粒子含有率を表1に、超音波粉砕処理後の平均粒子径及び安息角を表2に示す。
[Comparative Example 1]
1.45 kg of magnesium hydroxide (manufactured by Kanto Chemical Co., Ltd., deer grade 1) is placed in a reactor equipped with a stirrer containing 20 kg of hot water at 70 ° C., and carbon dioxide with a CO 2 concentration of 25% by volume is 10.5 L / min. The mixture was stirred for 5 hours while blowing at a flow rate.
The reaction product was filtered with suction, washed with ethanol, and dried at a temperature of 120 ° C. for 24 hours. After drying, the composition of the reaction product was analyzed and confirmed to be basic magnesium carbonate. Moreover, when the particle shape was observed using an electron microscope, it was confirmed that the particles were spherical porous particles in which the scaly primary particles were aggregated.
Table 1 shows the specific surface area of the obtained porous granular basic magnesium carbonate, the total volume of macropores, the total volume occupancy of macropores, the average particle diameter, and the content of porous particles less than 5 μm. Table 2 shows the average particle diameter and angle of repose after treatment.

[比較例2]
前記の特許文献3(特開昭63−89418号公報)の実施例1の記載に従って、下記の方法により多孔質粒状塩基性炭酸マグネシウムを製造した。
水酸化マグネシウム(関東化学(株)製、鹿1級)を炭酸化して得た濃度30gMgO/Lの塩基性炭酸マグネシウム出発懸濁液10Lを60℃に保持して反応槽に入れ、これに濃度30gMgO/Lの水酸化マグネシウム懸濁液を10L/時間の速度で添加しながら、CO2濃度25容量%の炭酸ガスを10.5L/分の流量にて吹き込んだ。反応槽内の懸濁液量が50Lになるまで水酸化マグネシウム懸濁液を添加し、添加終了後30分間さらに炭酸ガスを吹き込んだ。反応生成物を吸引ろ過した後、エタノール洗浄し、120℃の温度にて24時間乾燥した。乾燥後、反応生成物の組成を分析したところ、塩基性炭酸マグネシウムであることが確認された。また、粒子形状を電子顕微鏡を用いて観察したところ、鱗片状の一次粒子が凝集した球状の多孔質粒子であることが確認された。
得られた多孔質粒状塩基性炭酸マグネシウムの比表面積、マクロ細孔の総容積、マクロ細孔の総容積占有率、平均粒子径及び5μm未満の多孔質粒子含有率を表1に、超音波粉砕処理後の平均粒子径及び安息角を表2に示す。
[Comparative Example 2]
Porous granular basic magnesium carbonate was produced by the following method according to the description in Example 1 of Patent Document 3 (Japanese Patent Laid-Open No. 63-89418).
10 L of basic magnesium carbonate starting suspension having a concentration of 30 g MgO / L obtained by carbonation of magnesium hydroxide (manufactured by Kanto Chemical Co., Ltd., deer grade 1) was kept at 60 ° C. and placed in a reaction vessel. While adding a magnesium hydroxide suspension of 30 g MgO / L at a rate of 10 L / hour, carbon dioxide gas having a CO 2 concentration of 25 vol% was blown at a flow rate of 10.5 L / min. Magnesium hydroxide suspension was added until the amount of suspension in the reaction vessel reached 50 L, and carbon dioxide gas was blown for 30 minutes after the addition was completed. The reaction product was filtered with suction, washed with ethanol, and dried at a temperature of 120 ° C. for 24 hours. After drying, the composition of the reaction product was analyzed and confirmed to be basic magnesium carbonate. Moreover, when the particle shape was observed using an electron microscope, it was confirmed that the particles were spherical porous particles in which the scaly primary particles were aggregated.
Table 1 shows the specific surface area of the obtained porous granular basic magnesium carbonate, the total volume of macropores, the total volume occupancy of macropores, the average particle diameter, and the content of porous particles less than 5 μm. Table 2 shows the average particle diameter and angle of repose after treatment.

表1
────────────────────────────────────────
比表面積 マクロ細孔の マクロ細孔の 平均粒子径 5μm未満の多孔
総容積 総容積占有率 質粒子含有率
(m2/g) (mL/g) (体積%) (μm) (体積%)
────────────────────────────────────────
実施例1 51.8 0.4625 91 43 3
実施例2 41.1 0.3337 86 32 5
────────────────────────────────────────
比較例1 19.7 0.1746 54 9.1 32
比較例2 23.0 0.1894 55 18 17
────────────────────────────────────────
Table 1
────────────────────────────────────────
Specific surface area Macropores Macropores Average particle size Pore with less than 5μm
Total volume Total volume share Mass particle content
(M 2 / g) (mL / g) (volume%) (μm) (volume%)
────────────────────────────────────────
Example 1 51.8 0.4625 91 43 3
Example 2 41.1 0.3337 86 32 5
────────────────────────────────────────
Comparative Example 1 19.7 0.1746 54 9.1 32
Comparative Example 2 23.0 0.1894 55 18 17
────────────────────────────────────────

表2
────────────────────────────────────────
超音波粉砕処理の平均粒子径(μm) 安息角(度)
────────────────────────────────────────
実施例1 2.8 36
実施例2 2.5 38
────────────────────────────────────────
比較例1 8.8 55
比較例2 14 45
────────────────────────────────────────
Table 2
────────────────────────────────────────
Average particle size of ultrasonic grinding (μm) Angle of repose (degrees)
────────────────────────────────────────
Example 1 2.8 36
Example 2 2.5 38
────────────────────────────────────────
Comparative Example 1 8.8 55
Comparative Example 2 14 45
────────────────────────────────────────

表1及び表2に示した結果から、マクロ細孔の容積が0.2mL/g以上の塩基性炭酸マグネシウム(実施例1、実施例2)は、マクロ細孔の容積が0.2mL/gよりも小さいもの(比較例1、比較例2)と比べて、超音波粉砕処理後の平均粒子径が小さいことがわかる。   From the results shown in Tables 1 and 2, basic magnesium carbonate (Example 1, Example 2) having a macropore volume of 0.2 mL / g or more has a macropore volume of 0.2 mL / g. It can be seen that the average particle size after the ultrasonic pulverization treatment is smaller than those smaller than those (Comparative Example 1 and Comparative Example 2).

Claims (4)

一次粒子が凝集してなる多孔質粒状塩基性炭酸マグネシウムであって、比表面積が10〜100m2/gの範囲にあり、平均粒子径が10〜80μmの範囲にあって、直径が10〜300nmの細孔の総容積が0.2〜1.0mL/gの範囲にあることを特徴とする多孔質粒状塩基性炭酸マグネシウム。 A porous granular basic magnesium carbonate obtained by agglomerating primary particles, having a specific surface area in the range of 10 to 100 m 2 / g, an average particle diameter in the range of 10 to 80 μm, and a diameter of 10 to 300 nm. A porous granular basic magnesium carbonate characterized by having a total volume of pores in the range of 0.2 to 1.0 mL / g. 直径が10〜300nmの細孔の総容積が全細孔の総容積の80%以上を占める請求項1に記載の多孔質粒状塩基性炭酸マグネシウム。   The porous granular basic magnesium carbonate according to claim 1, wherein the total volume of pores having a diameter of 10 to 300 nm occupies 80% or more of the total volume of all pores. 粒子径が5μm未満の多孔質粒子を10体積%以上含むことのない請求項1に記載の多孔質粒状塩基性炭酸マグネシウム。   The porous granular basic magnesium carbonate according to claim 1, which does not contain 10 vol% or more of porous particles having a particle diameter of less than 5 μm. 一次粒子の平均粒子径が0.01〜0.5μmの範囲にある酸化マグネシウム粉末を、水性媒体中で炭酸ガスに接触させることを特徴とする請求項1に記載の多孔質粒状塩基性炭酸マグネシウムの製造方法。




2. The porous granular basic magnesium carbonate according to claim 1, wherein a magnesium oxide powder having an average primary particle diameter of 0.01 to 0.5 μm is brought into contact with carbon dioxide gas in an aqueous medium. Manufacturing method.




JP2003390863A 2003-11-20 2003-11-20 Porous granular basic magnesium carbonate and method for producing the same Expired - Fee Related JP4378160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390863A JP4378160B2 (en) 2003-11-20 2003-11-20 Porous granular basic magnesium carbonate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390863A JP4378160B2 (en) 2003-11-20 2003-11-20 Porous granular basic magnesium carbonate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005154158A true JP2005154158A (en) 2005-06-16
JP4378160B2 JP4378160B2 (en) 2009-12-02

Family

ID=34718107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390863A Expired - Fee Related JP4378160B2 (en) 2003-11-20 2003-11-20 Porous granular basic magnesium carbonate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4378160B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254193A (en) * 2006-03-22 2007-10-04 Ube Material Industries Ltd Anhydrous magnesium carbonate powder and its manufacturing method
JP2009234829A (en) * 2008-03-26 2009-10-15 Bio Coke Lab Co Ltd Method and apparatus for recycling magnesium hydroxide
JP2013510206A (en) * 2009-11-03 2013-03-21 オムヤ・デイベロツプメント・アー・ゲー Precipitated magnesium carbonate
WO2014009802A2 (en) * 2012-07-13 2014-01-16 Calix Limited Production of magnesium carbonate
JP2016508104A (en) * 2012-12-06 2016-03-17 ディスルプチベ マテリアルズ アクティエボラーグ Anhydrous, amorphous and porous magnesium carbonate and process for producing the same
WO2019044121A1 (en) * 2017-08-28 2019-03-07 神島化学工業株式会社 Highly dispersed basic magnesium carbonate powder, and method for producing same
JP2021133318A (en) * 2020-02-27 2021-09-13 株式会社ジョンクェルコンサルティング Method for treating carbon dioxide, and water dispersion used therein
JP2021171706A (en) * 2020-04-24 2021-11-01 株式会社ジョンクェルコンサルティング Carbon dioxide treatment method, and water dispersion used in the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254193A (en) * 2006-03-22 2007-10-04 Ube Material Industries Ltd Anhydrous magnesium carbonate powder and its manufacturing method
JP2009234829A (en) * 2008-03-26 2009-10-15 Bio Coke Lab Co Ltd Method and apparatus for recycling magnesium hydroxide
JP2013510206A (en) * 2009-11-03 2013-03-21 オムヤ・デイベロツプメント・アー・ゲー Precipitated magnesium carbonate
WO2014009802A2 (en) * 2012-07-13 2014-01-16 Calix Limited Production of magnesium carbonate
WO2014009802A3 (en) * 2012-07-13 2014-03-06 Calix Limited Production of magnesium carbonate
JP2016508104A (en) * 2012-12-06 2016-03-17 ディスルプチベ マテリアルズ アクティエボラーグ Anhydrous, amorphous and porous magnesium carbonate and process for producing the same
US10508041B2 (en) 2012-12-06 2019-12-17 Disruptive Materials Ab Anhydrous, amorphous and porous magnesium carbonates and methods of production thereof
US11155469B2 (en) 2012-12-06 2021-10-26 Disruptive Materials Operations Ab Mesoporous composite comprising anhydrous, amorphous magnesium carbonate and calcium carbonate, and methods of production thereof
WO2019044121A1 (en) * 2017-08-28 2019-03-07 神島化学工業株式会社 Highly dispersed basic magnesium carbonate powder, and method for producing same
JP2019038724A (en) * 2017-08-28 2019-03-14 神島化学工業株式会社 Highly-dispersible basic magnesium carbonate powder and production method thereof
JP2021133318A (en) * 2020-02-27 2021-09-13 株式会社ジョンクェルコンサルティング Method for treating carbon dioxide, and water dispersion used therein
JP2021171706A (en) * 2020-04-24 2021-11-01 株式会社ジョンクェルコンサルティング Carbon dioxide treatment method, and water dispersion used in the same

Also Published As

Publication number Publication date
JP4378160B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP5710822B2 (en) Highly dispersible alkaline earth metal carbonate fine powder
JP5094408B2 (en) Method for synthesizing supported catalysts for the production of carbon nanotubes
JP2007176789A (en) Barium carbonate powder and method of manufacturing the same
JP5467276B2 (en) Method for producing nano-sized calcium carbonate
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
KR101761952B1 (en) Strontium carbonate micropowder and process for production thereof
JP3910503B2 (en) Method for producing basic magnesium carbonate
JP4944466B2 (en) Anhydrous magnesium carbonate powder and method for producing the same
JP4613348B2 (en) Method for producing thin plate-like porous silica
TW200900355A (en) Highly dispersible fine powder of alkaline earth metal carbonate and process for producing the same
JP2005162504A (en) Binary porous silica particle
JP2006124198A (en) Strontium carbonate fine particle
JP2006160541A (en) Method for production of acicular aluminum hydroxide
KR101498374B1 (en) Method for manufacturing iron based catalyst and iron based catalyst manufactured by the same
JP4969076B2 (en) Method for producing fine strontium carbonate powder
EP3786113A1 (en) Metahalloysite powder and metahalloysite powder production method
JP2007099614A (en) Strontium carbonate fine powder
JP7207082B2 (en) Magnesium oxide and its production method
EP4303180A1 (en) Hexagonal boron nitride agglomerated particles, hexagonal boron nitride powder, resin composition, and resin sheet
JP2003267722A (en) Nonporous spherical silica and method of manufacturing it
US20230093119A1 (en) Halloysite powder
TW202344305A (en) Resin hydrogenation catalyst and method for manufacturing same
JP2007186379A (en) Method for manufacturing alpha alumina particle
JP2005238192A (en) Metal supported catalyst
Khalid et al. Development of porous calcite structure from industrial waste for efficient adsorbent for protein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

R150 Certificate of patent or registration of utility model

Ref document number: 4378160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees